201
|
Mousavi-Derazmahalleh M, Nevado B, Bayer PE, Filatov DA, Hane JK, Edwards D, Erskine W, Nelson MN. The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2543-2554. [PMID: 30225643 PMCID: PMC6244526 DOI: 10.1007/s00122-018-3171-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/25/2018] [Indexed: 05/21/2023]
Abstract
This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication. The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today's crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.
Collapse
Affiliation(s)
- Mahsa Mousavi-Derazmahalleh
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Philipp E Bayer
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - James K Hane
- CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - William Erskine
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Matthew N Nelson
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Natural Capital and Plant Health, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK.
| |
Collapse
|
202
|
Gu C, Zhou YH, Shu WS, Cheng HY, Wang L, Han YP, Zhang YY, Yu ML, Joldersma D, Zhang SL. RNA-Seq analysis unveils gene regulation of fruit size cooperatively determined by velocity and duration of fruit swelling in peach. PHYSIOLOGIA PLANTARUM 2018; 164:320-336. [PMID: 29603750 DOI: 10.1111/ppl.12736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 05/18/2023]
Abstract
Fruit swelling determines fruit size and usually occurs in two distinct time periods in peach. However, little is known about the gene regulation of fruit swelling. In this study, measurements of longitudinal and transverse diameters in developing and ripening peach fruits unveiled two periods of fruit swelling: the first swelling ends at approximately 65 days after flower blooming (DAFB) and the second swelling starts at approximately 75 DAFB. Comparisons of diameters sizes and development periods among cultivars and accessions revealed a cooperative regulation of swelling velocity and swelling duration, which leads to final determination of fruit size. Furthermore, RNA-sequencing was conducted for fruits at the initial swelling, non-swelling interval between the two swellings (hereafter, 'the interval'), second swelling and ripening stages. A total of 110 and 128 differentially expressed genes were screened from fruits in the first and second swelling, respectively. Besides, the nine most differentially expressed genes located within the reported quantitative trait locations (QTLs) of fruit size in peach were detected in both the first and second swelling stages. Those genes have been reported to be involved in mediating cell size, which indicates the occurrence of both cell proliferation and cell expansion in each of the two major periods of fruit swelling. In addition, a potential gene regulation network is proposed herein and could be used to elucidate the molecular mechanism of peach fruit swellings mediated by multiple key genes.
Collapse
Affiliation(s)
- Chao Gu
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Hang Zhou
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei-Sheng Shu
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai-Yan Cheng
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yue-Peng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu-Yan Zhang
- Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Nanjing, 210014, China
| | - Ming-Liang Yu
- Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Nanjing, 210014, China
| | - Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20817, USA
| | - Shao-Ling Zhang
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
203
|
Albert E, Duboscq R, Latreille M, Santoni S, Beukers M, Bouchet JP, Bitton F, Gricourt J, Poncet C, Gautier V, Jiménez-Gómez JM, Rigaill G, Causse M. Allele-specific expression and genetic determinants of transcriptomic variations in response to mild water deficit in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:635-650. [PMID: 30079488 DOI: 10.1111/tpj.14057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Characterizing the natural diversity of gene expression across environments is an important step in understanding how genotype-by-environment interactions shape phenotypes. Here, we analyzed the impact of water deficit onto gene expression levels in tomato at the genome-wide scale. We sequenced the transcriptome of growing leaves and fruit pericarps at cell expansion stage in a cherry and a large fruited accession and their F1 hybrid grown under two watering regimes. Gene expression levels were steadily affected by the genotype and the watering regime. Whereas phenotypes showed mostly additive inheritance, ~80% of the genes displayed non-additive inheritance. By comparing allele-specific expression (ASE) in the F1 hybrid to the allelic expression in both parental lines, respectively, 3005 genes in leaf and 2857 genes in fruit deviated from 1:1 ratio independently of the watering regime. Among these genes, ~55% were controlled by cis factors, ~25% by trans factors and ~20% by a combination of both types of factors. A total of 328 genes in leaf and 113 in fruit exhibited significant ASE-by-watering regime interaction, among which ~80% presented trans-by-watering regime interaction, suggesting a response to water deficit mediated through a majority of trans-acting loci in tomato. We cross-validated the expression levels of 274 transcripts in fruit and leaves of 124 recombinant inbred lines (RILs) and identified 163 expression quantitative trait loci (eQTLs) mostly confirming the divergences identified by ASE. Combining phenotypic and expression data, we observed a complex network of variation between genes encoding enzymes involved in the sugar metabolism.
Collapse
Affiliation(s)
- Elise Albert
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Renaud Duboscq
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Muriel Latreille
- INRA, UMR1334, Amélioration génétique et Adaptation des Plantes, Montpellier SupAgro-INRA-IRD-UMII, 2 Place Pierre Viala, Montpellier, 34060, France
| | - Sylvain Santoni
- INRA, UMR1334, Amélioration génétique et Adaptation des Plantes, Montpellier SupAgro-INRA-IRD-UMII, 2 Place Pierre Viala, Montpellier, 34060, France
| | - Matthieu Beukers
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Jean-Paul Bouchet
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Fréderique Bitton
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Justine Gricourt
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Charles Poncet
- INRA, UMR1095, Génétique Diversité et Ecophysiologie des Céréales, 5 Chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Véronique Gautier
- INRA, UMR1095, Génétique Diversité et Ecophysiologie des Céréales, 5 Chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - José M Jiménez-Gómez
- INRA, UMR1318, Institut Jean-Pierre Bourgin, AgroParisTech-INRA-CNRS, Route de Saint Cyr, Versailles, 78026, France
| | - Guillem Rigaill
- INRA, UMR8071, Laboratoire de Mathématiques et Modélisation d'Evry, Université d'Evry Val d'Essonne, ENSIIE-INRA-CNRS, Évry, 91037, France
| | - Mathilde Causse
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| |
Collapse
|
204
|
Huang Y, Zhao S, Fu Y, Sun H, Ma X, Tan L, Liu F, Sun X, Sun H, Gu P, Xie D, Sun C, Zhu Z. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:716-733. [PMID: 30101570 DOI: 10.1111/tpj.14062] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 05/08/2023]
Abstract
Inflorescence branching is a key agronomic trait determining rice yield. The primary branch of the ancestral wild rice (Oryza rufipogon Griff.) bears few grains, due to minimal secondary branching. By contrast, Oryza sativa cultivars have been selected to produce large panicles with more secondary branches. Here we showed that the CONTROL OF SECONDARY BRANCH 1 (COS1) gene, which is identical to FRIZZY PANICLE (FZP), plays an important role in the key transition from few secondary branches in wild rice to more secondary branches in domesticated rice cultivars. A 4-bp tandem repeat deletion approximately 2.7 kb upstream of FZP may affect the binding activities of auxin response factors to the FZP promoter, decrease the expression level of FZP and significantly enhance the number of secondary branches and grain yield in cultivated rice. Functional analyses showed that NARROW LEAF 1 (NAL1), a trypsin-like serine and cysteine protease, interacted with FZP and promoted its degradation. Consistently, downregulating FZP expression or upregulating NAL1 expression in the commercial cultivar Zhonghua 17 increased the number of secondary branches per panicle, grain number per panicle and grain yield per plant. Our findings not only provide insights into the molecular mechanism of increasing grain number and yield during rice domestication, but also offer favorable genes for improving the grain yield of rice.
Collapse
Affiliation(s)
- Yongyu Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Zhao
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yongcai Fu
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Hengdi Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xin Ma
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lubin Tan
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongying Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ping Gu
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zuofeng Zhu
- MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
205
|
Guan S, Xu Q, Ma D, Zhang W, Xu Z, Zhao M, Guo Z. Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene 2018; 685:96-105. [PMID: 30389557 DOI: 10.1016/j.gene.2018.10.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/24/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022]
Abstract
Weedy rice is an important germplasm resource for rice improvement because it has useful genes for many abiotic stresses including cold tolerance. We identified the cold tolerance and cold sensitivity of two weedy rice lines (WR 03-35 and WR 03-26) and two cultivated rice lines (Kongyu 131 and 9311). During the seedling stage of these lines, we used RNA-seq to measure changes in weedy rice and cultivated rice whole-genome transcriptome before and after cold treatment. We identified 14,213 and 14,730 differentially expressed genes (DEGs) in cold-tolerant genotypes (WR 03-35, Kongyu 131), and 9219 and 720 DEGs were observed in two cold-sensitive genotypes (WR 03-26, 9311). Many common and special DEGs were analyzed in cold-tolerant and cold-sensitive genotypes, respectively. Some typical genes related to cold stress such as the basic helix-loop-helix (bHLH) gene and leucine-rich repeat (LRR) domain gene etc. The number of these DEGs in cold-tolerant genotypes is more than those found in cold-sensitive genotypes. The gene ontology (GO) enrichment analyses showed significantly enriched terms for biological processes, cellular components and molecular functions. In addition, some genes related to several plant hormones such as abscisic acid (ABA), gibberellic acid (GA), auxin and ethylene were identified. To confirm the RNA-seq data, semi-quantitative RT-PCR and qRT-PCR were performed on 12 randomly selected DEGs. The expression patterns of RNA-seq on these genes corresponded with the semi-quantitative RT-PCR and qRT-PCR method. This study suggests the gene resources related to cold stress from weedy rice could be valuable for understanding the mechanisms involved in cold stress and rice breeding for improving cold tolerance.
Collapse
Affiliation(s)
- Shixin Guan
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Quan Xu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dianrong Ma
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenzhong Zhang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhengjin Xu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhifu Guo
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
206
|
Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP. De novo domestication of wild tomato using genome editing. Nat Biotechnol 2018; 36:nbt.4272. [PMID: 30272678 DOI: 10.1038/nbt.4272] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023]
Abstract
Breeding of crops over millennia for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Tomáš Čermák
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Marcela Morato Notini
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, Brazil
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Stefan Weinl
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Luciano Freschi
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
207
|
Li Y, Wang H, Zhang Y, Martin C. Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? PLANT CELL REPORTS 2018; 37:1443-1450. [PMID: 29594330 PMCID: PMC6153642 DOI: 10.1007/s00299-018-2283-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 05/02/2023]
Abstract
Tomato has a relatively short growth cycle (fruit ready to pick within 65-85 days from planting) and a relatively high yield (the average for globe tomatoes is 3-9 kg fruit per plant rising to as much as 40 kg fruit per plant). Tomatoes also produce large amounts of important primary and secondary metabolites which can serve as intermediates or substrates for producing valuable new compounds. As a model crop, tomato already has a broad range of tools and resources available for biotechnological applications, either increased nutrients for health-promoting biofortified foods or as a production system for high-value compounds. These advantages make tomato an excellent chassis for the production of important metabolites. We summarize recent achievements in metabolic engineering of tomato and suggest new candidate metabolites which could be targets for metabolic engineering. We offer a scheme for how to establish tomato as a chassis for industrial-scale production of high-value metabolites.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Hsihua Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Cathie Martin
- Metabolic Biology Department, The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
208
|
Aviña-Padilla K, Rivera-Bustamante R, Kovalskaya NY, Hammond RW. Pospiviroid Infection of Tomato Regulates the Expression of Genes Involved in Flower and Fruit Development. Viruses 2018; 10:v10100516. [PMID: 30241423 PMCID: PMC6213050 DOI: 10.3390/v10100516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
Viroids are unencapsidated, single-stranded, covalently-closed circular, highly structured, noncoding RNAs of 239–401 nucleotides that cause disease in several economically important crop plants. In tomato (Solanum lycopersicum cv. Rutgers), symptoms of pospiviroid infection include stunting, reduced vigor, flower abortion, and reduced size and number of fruits, resulting in significant crop losses. Dramatic alterations in plant development triggered by viroid infection are the result of differential gene expression; in our study, we focused on the effect of tomato planta macho viroid (TPMVd) and Mexican papita viroid (MPVd) infection on gene networks associated with the regulation of flower and fruit development. The expression of several of the genes were previously reported to be affected by viroid infection, but two genes not previously studied were included. Changes in gene expression of SlBIGPETAL1 (bHLH transcription factor) and SlOVA6 (proline-like tRNA synthetase) are involved in petal morphology and fertility, respectively. Expression of SlOVA6 was down-regulated in flowers of TPMVd- and MPVd-infected plants, while expression of SlBIGPETAL1 was up-regulated in flowers. Up-regulation of SlBIGPETAL1 and down-regulation of SlOVA6 were positively correlated with symptoms such as reduced petal size and flower abortion. Expression analysis of additional tomato genes and a prediction of a global network association of genes involved in flower and fruit development and impacted by viroid infection may further elucidate the pathways underlying viroid pathogenicity.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Campus Juriquilla, Universidad Nacional Autónoma de Mexico, Querátaro Qro 76300, Mexico.
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Rafael Rivera-Bustamante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato 36821, Mexico.
| | - Natalia Y Kovalskaya
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | - Rosemarie W Hammond
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
209
|
Garbowicz K, Liu Z, Alseekh S, Tieman D, Taylor M, Kuhalskaya A, Ofner I, Zamir D, Klee HJ, Fernie AR, Brotman Y. Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. MOLECULAR PLANT 2018; 11:1147-1165. [PMID: 29960108 DOI: 10.1016/j.molp.2018.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
To gain insight into the genetic regulation of lipid metabolism in tomato, we conducted metabolic trait loci (mQTL) analysis following the lipidomic profiling of fruit pericarp and leaf tissue of the Solanum pennellii introgression lines (IL). To enhance mapping resolution for selected fruit-specific mQTL, we profiled the lipids in a subset of independently derived S. pennellii backcross inbred lines, as well as in a near-isogenic sub-IL population. We identified a putative lecithin:cholesterol acyltransferase that controls the levels of several lipids, and two members of the class III lipase family, LIP1 and LIP2, that were associated with decreased levels of diacylglycerols (DAGs) and triacylglycerols (TAGs). Lipases of this class cleave fatty acids from the glycerol backbone of acylglycerols. The released fatty acids serve as precursors of flavor volatiles. We show that LIP1 expression correlates with fatty acid-derived volatile levels. We further confirm the function of LIP1 in TAG and DAG breakdown and volatile synthesis using transgenic plants. Taken together, our study extensively characterized the genetic architecture of lipophilic compounds in tomato and demonstrated at molecular level that release of free fatty acids from the glycerol backbone can have a major impact on downstream volatile synthesis.
Collapse
Affiliation(s)
- Karolina Garbowicz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zhongyuan Liu
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Denise Tieman
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Mark Taylor
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | | | - Itai Ofner
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Harry J Klee
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.
| |
Collapse
|
210
|
Jiang S, An H, Luo J, Wang X, Shi C, Xu F. Comparative Analysis of Transcriptomes to Identify Genes Associated with Fruit Size in the Early Stage of Fruit Development in Pyrus pyrifolia. Int J Mol Sci 2018; 19:ijms19082342. [PMID: 30096896 PMCID: PMC6122012 DOI: 10.3390/ijms19082342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 11/26/2022] Open
Abstract
Pear (Pyrus L.) is an important commercial fruit in the world. The fruit size is one of the important characters in fruit quality. The previous research reported that the fruit size of pear was mainly caused by the number of cell in about 40 days after blossom (DAB) in nature. However, studies about the mechanisms underlying cell division in young fruit development are very limited in pear. Two pear accessions codenamed ‘GH59B’ with big fruit and ‘GH81S’ with small fruit in three stages were sampled and the RNA-seq high-throughput sequencing was used to evaluate changes of gene transcription levels in the early stage of fruit development. The difference of cell size among two samples was little in 40 DAB, implying that the difference of the fruit size was caused by the number of the cell. More than 274,517,982 high quality reads from six libraries of fruit development were sequenced. A total of 797 differentially expressed genes (DEGs) were identified. Three cytokinin dehydrogenase genes and two gibberellin 2-beta-dioxygenase gene were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to zeatin and gibberellin. Their expression was upregulated at 20 DAB in ‘GH81S’ and at 30 DAB in ‘GH59B’, suggesting that the small fruit size might be related to the early degradation of cytokinin and gibberellin inducing a short period of cell division. A total of 38 DEGs of transcription factors were found and 23 DEGs including NAC, ERF and bHLH transcription factors were highly related with cytokinin dehydrogenase and gibberellin dioxygenase genes. Altogether, the results of the present study provide information from a comprehensive gene expression analysis and insight into the molecular mechanism underlying the difference of fruit size in Pyrus pyrifolia.
Collapse
Affiliation(s)
- Shuang Jiang
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| | - Haishan An
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| | - Jun Luo
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| | - Xiaoqing Wang
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| | - Chunhui Shi
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| | - Fanjie Xu
- Forestry and Pomology Research Institute, Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China.
| |
Collapse
|
211
|
Qi L, Ding Y, Zheng X, Xu R, Zhang L, Wang Y, Wang X, Zhang L, Cheng Y, Qiao W, Yang Q. Fine mapping and identification of a novel locus qGL12.2 control grain length in wild rice (Oryza rufipogon Griff.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1497-1508. [PMID: 29675645 DOI: 10.1007/s00122-018-3093-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
A wild rice QTL qGL12.2 for grain length was fine mapped to an 82-kb interval in chromosome 12 containing six candidate genes and none was reported previously. Grain length is an important trait for yield and commercial value in rice. Wild rice seeds have a very slender shape and have many desirable genes that have been lost in cultivated rice during domestication. In this study, we identified a quantitative trait locus, qGL12.2, which controls grain length in wild rice. First, a wild rice chromosome segment substitution line, CSSL41, was selected that has longer glume and grains than does the Oryza sativa indica cultivar, 9311. Next, an F2 population was constructed from a cross between CSSL41 and 9311. Using the next-generation sequencing combined with bulked-segregant analysis and F3 recombinants analysis, qGL12.2 was finally fine mapped to an 82-kb interval in chromosome 12. Six candidate genes were found, and no reported grain length genes were found in this interval. Using scanning electron microscopy, we found that CSSL41 cells are significantly longer than those of 9311, but there is no difference in cell widths. These data suggest that qGL12.2 is a novel gene that controls grain cell length in wild rice. Our study provides a new genetic resource for rice breeding and a starting point for functional characterization of the wild rice GL gene.
Collapse
Affiliation(s)
- Lan Qi
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Science, Wenchang, 571339, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingbin Ding
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Science, Wenchang, 571339, China
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoming Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lizhen Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanyan Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoning Wang
- Key Laboratory of Crop Genetic Breeding, Hainan Academy of Agricultural Science, Haikou, 571100, China
| | - Lifang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlian Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qingwen Yang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
212
|
Zhang S, Yu H, Wang K, Zheng Z, Liu L, Xu M, Jiao Z, Li R, Liu X, Li J, Cui X. Detection of major loci associated with the variation of 18 important agronomic traits between Solanum pimpinellifolium and cultivated tomatoes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:312-323. [PMID: 29738097 DOI: 10.1111/tpj.13952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Wild species can be used to improve various agronomic traits in cultivars; however, a limited understanding of the genetic basis underlying the morphological differences between wild and cultivated species hinders the integration of beneficial traits from wild species. In the present study, we generated and sequenced recombinant inbred lines (RILs, 201 F10 lines) derived from a cross between Solanum pimpinellifolium and Solanum lycopersicum tomatoes. Based on a high-resolution recombination bin map to uncover major loci determining the phenotypic variance between wild and cultivated tomatoes, 104 significantly associated loci were identified for 18 agronomic traits. On average, these loci explained ~39% of the phenotypic variance of the RILs. We further generated near-isogenic lines (NILs) for four identified loci, and the lines exhibited significant differences for the associated traits. We found that two loci could improve the flower number and inflorescence architecture in the cultivar following introgression of the wild-species alleles. These findings allowed us to construct a trait-locus network to help explain the correlations among different traits based on the pleiotropic or linked loci. Our results provide insights into the morphological changes between wild and cultivated tomatoes, and will help to identify key genes governing important agronomic traits for the molecular selection of elite tomato varieties.
Collapse
Affiliation(s)
- Shuaibin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ketao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zheng Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Huayuan Road 116, Zhengzhou, 450002, Henan, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhicheng Jiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
213
|
Kaushik P, Plazas M, Prohens J, Vilanova S, Gramazio P. Diallel genetic analysis for multiple traits in eggplant and assessment of genetic distances for predicting hybrids performance. PLoS One 2018; 13:e0199943. [PMID: 29949625 PMCID: PMC6021119 DOI: 10.1371/journal.pone.0199943] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 11/22/2022] Open
Abstract
Evaluation and prediction of the performance of hybrids is important in eggplant (Solanum melongena) breeding. A set of 10 morphologically highly diverse eggplant parents, including nine inbred S. melongena and one weedy S. insanum accessions, were intercrossed according to a half-diallel mating design without reciprocals to obtain 45 hybrids. Parents and hybrids were evaluated for 14 morphological and agronomic conventional descriptors and 14 fruit morphometric traits using Tomato Analyzer. Genetic distances among parents were estimated with 7,335 polymorphic SNP markers. Wide ranges of variation and significant differences were observed in the set of 55 genotypes for all traits, although the hybrids group had significantly higher vigour and yield than parents. General and specific combining abilities (GCA and SCA) were significant for most (GCA) or all (SCA) traits, although a wide variation was obtained for GCA/SCA ratios. Many relevant traits associated to vigour and yield had low GCA/SCA ratios and narrow-sense heritability (h2) values, while the reverse occurred for most fruit shape descriptors. Broad-sense heritability (H2) values were generally high, irrespective of GCA/SCA ratios. Significant correlations were found between traits related to size of leaf, flower and fruit, as well as among many fruit morphometric traits. Genetic distances (GD) among parents were coherent with their phylogenetic relationships, but few significant and generally low correlations were found between GD and hybrid means, heterosis or SCA. The results provide relevant information for developing appropriate strategies for parent selection and hybrid development in eggplant and suggest that GD among parents have limited value to predict hybrid performance in this crop.
Collapse
Affiliation(s)
- Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
214
|
Wu J, Wang Y, Xu J, Korban SS, Fei Z, Tao S, Ming R, Tai S, Khan AM, Postman JD, Gu C, Yin H, Zheng D, Qi K, Li Y, Wang R, Deng CH, Kumar S, Chagné D, Li X, Wu J, Huang X, Zhang H, Xie Z, Li X, Zhang M, Li Y, Yue Z, Fang X, Li J, Li L, Jin C, Qin M, Zhang J, Wu X, Ke Y, Wang J, Yang H, Zhang S. Diversification and independent domestication of Asian and European pears. Genome Biol 2018; 19:77. [PMID: 29890997 PMCID: PMC5996476 DOI: 10.1186/s13059-018-1452-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pear (Pyrus) is a globally grown fruit, with thousands of cultivars in five domesticated species and dozens of wild species. However, little is known about the evolutionary history of these pear species and what has contributed to the distinct phenotypic traits between Asian pears and European pears. RESULTS We report the genome resequencing of 113 pear accessions from worldwide collections, representing both cultivated and wild pear species. Based on 18,302,883 identified SNPs, we conduct phylogenetics, population structure, gene flow, and selective sweep analyses. Furthermore, we propose a model for the divergence, dissemination, and independent domestication of Asian and European pears in which pear, after originating in southwest China and then being disseminated throughout central Asia, has eventually spread to western Asia, and then on to Europe. We find evidence for rapid evolution and balancing selection for S-RNase genes that have contributed to the maintenance of self-incompatibility, thus promoting outcrossing and accounting for pear genome diversity across the Eurasian continent. In addition, separate selective sweep signatures between Asian pears and European pears, combined with co-localized QTLs and differentially expressed genes, underline distinct phenotypic fruit traits, including flesh texture, sugar, acidity, aroma, and stone cells. CONCLUSIONS This study provides further clarification of the evolutionary history of pear along with independent domestication of Asian and European pears. Furthermore, it provides substantive and valuable genomic resources that will significantly advance pear improvement and molecular breeding efforts.
Collapse
Affiliation(s)
- Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingtao Wang
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang Fruit Tree Research Institute, Shijiazhuang, 050061, China
| | - Jiabao Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Zhangjun Fei
- Plant Pathology and Plant-Microbe Section, Cornell University, Geneva, NY, 14853, USA
- USDA-ARS, Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shutian Tao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ray Ming
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | - Awais M Khan
- Plant Pathology and Plant-Microbe Section, Cornell University, Geneva, NY, 14853, USA
| | - Joseph D Postman
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danman Zheng
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Li
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang Fruit Tree Research Institute, Shijiazhuang, 050061, China
| | - Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Satish Kumar
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Xiaolong Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaosan Huang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huping Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang Fruit Tree Research Institute, Shijiazhuang, 050061, China
| | - Mingyue Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanhong Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cong Jin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengfan Qin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaying Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqi Ke
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanmimg Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
215
|
Li M, Wang X, Li C, Li H, Zhang J, Ye Z. Silencing GRAS2 reduces fruit weight in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:498-513. [PMID: 29359472 DOI: 10.1111/jipb.12636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
GRAS family transcription factors are involved in multiple biological processes in plants. Here, we report that GRAS2 plays a vital role in regulating fruit weight in tomato (Solanum lycopersicum). We establish that the expression of GRAS2 was elevated in ovaries and maintained at a constant level in fertilized ovules. Reduction of GRAS2 expression in transgenic plants reduced fruit weight through modulating ovary growth and cell size. At the metabolic level, downregulation of GRAS2 decreased activities of the gibberellic acid biosynthesis and signal transduction pathways, leading to insufficient levels of active gibberellic acid during the initial ovary development of tomato. Moreover, genotypic diversity of GRAS2 was consistent with the molecular basis of fruit weight evolution, suggesting that GRAS2 contributes to the molecular basis of the evolution of fruit weight in tomato. Collectively, these findings enhance our understanding of GRAS2 functions, in fruit development of tomato, and demonstrate a strong association between the GRAS gene family and fruit development.
Collapse
Affiliation(s)
- Miao Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
216
|
Xiong W, Wang P, Yan T, Cao B, Xu J, Liu D, Luo M. The rice "fruit-weight 2.2-like" gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots. PLANTA 2018; 247:1247-1260. [PMID: 29453663 DOI: 10.1007/s00425-018-2859-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Heterogeneous expression of the rice genes "fruit-weight 2.2-like" (OsFWL) affects Cd resistance in yeast, and OsFWL4 mediates the translocation of Cd from roots to shoots. Cadmium (Cd) induces chronic and toxic effects in humans. In a previous study (Xu et al. in Planta 238:643-655, 2013), we cloned the rice genes, designated OsFWL1-8, homologous to the tomato fruit-weight 2.2. Here, we show that expression of genes OsFWL3-7 in yeast confers resistance to Cd. The Cd contents of OsFWL3-, -4-, -6- and -7-transformed Cd(II)-sensitive yeast mutant ycf1 cells were strongly decreased compared with those of empty vector, with the strongest resistance to Cd observed in cells expressing OsFWL4. Evaluation of truncated and site-directed mutation derivatives revealed that the CCXXG motifs near the second transmembrane region of OsFWL4 are involved in Cd resistance in yeast. Real-time PCR analysis showed that OsFWL4 expression was induced by CdCl2 stress in rice seedlings. Compared with WT plants, the Cd contents in the shoots of RNAi mediated OsFWL4 knockdown plants were significantly decreased, and Cd translocation from roots to shoots was reduced. According to bimolecular fluorescence complementation, yeast two-hybrid and Western-blotting assays, the OsFWL4 protein forms homo-oligomers. These results suggest that OsFWL4 might act directly as a transporter and is involved in the translocation of Cd from roots to shoots in rice.
Collapse
Affiliation(s)
- Wentao Xiong
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Wang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianze Yan
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baobao Cao
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Xu
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Defang Liu
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
217
|
Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo YN, Roberts PA, Xu S, Fatokun C, Close TJ. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci Rep 2018; 8:6261. [PMID: 29674702 PMCID: PMC5908840 DOI: 10.1038/s41598-018-24349-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/29/2018] [Indexed: 11/08/2022] Open
Abstract
Cowpea (Vigna unguiculata L. Walp) is a warm-season legume with a genetically diverse gene-pool composed of wild and cultivated forms. Cowpea domestication involved considerable phenotypic changes from the wild progenitor, including reduction of pod shattering, increased organ size, and changes in flowering time. Little is known about the genetic basis underlying these changes. In this study, 215 recombinant inbred lines derived from a cross between a cultivated and a wild cowpea accession were used to evaluate nine domestication-related traits (pod shattering, peduncle length, flower color, days to flowering, 100-seed weight, pod length, leaf length, leaf width and seed number per pod). A high-density genetic map containing 17,739 single nucleotide polymorphisms was constructed and used to identify 16 quantitative trait loci (QTL) for these nine traits. Based on annotations of the cowpea reference genome, genes within these regions are reported. Four regions with clusters of QTL were identified, including one on chromosome 8 related to increased organ size. This study provides new knowledge of the genomic regions controlling domestication-related traits in cowpea as well as candidate genes underlying those QTL. This information can help to exploit wild relatives in cowpea breeding programs.
Collapse
Affiliation(s)
- Sassoum Lo
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA.
| | - Ousmane Boukar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Ira Herniter
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | - Ndiaga Cisse
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sècheresse, ISRA/CERAAS, Thies, Senegal
| | - Yi-Ning Guo
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | - Philip A Roberts
- Department of Nematology, University of California Riverside, Riverside, CA, USA
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | | | - Timothy J Close
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
218
|
Parins-Fukuchi C. Use of Continuous Traits Can Improve Morphological Phylogenetics. Syst Biol 2018; 67:328-339. [PMID: 28945906 DOI: 10.1093/sysbio/syx072] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
The recent surge in enthusiasm for simultaneously inferring relationships from extinct and extant species has reinvigorated interest in statistical approaches for modeling morphological evolution. Current statistical methods use the Mk model to describe substitutions between discrete character states. Although representing a significant step forward, the Mk model presents challenges in biological interpretation, and its adequacy in modeling morphological evolution has not been well explored. Another major hurdle in morphological phylogenetics concerns the process of character coding of discrete characters. The often subjective nature of discrete character coding can generate discordant results that are rooted in individual researchers' subjective interpretations. Employing continuous measurements to infer phylogenies may alleviate some of these issues. Although not widely used in the inference of topology, models describing the evolution of continuous characters have been well examined, and their statistical behavior is well understood. Also, continuous measurements avoid the substantial ambiguity often associated with the assignment of discrete characters to states. I present a set of simulations to determine whether use of continuous characters is a feasible alternative or supplement to discrete characters for inferring phylogeny. I compare relative reconstruction accuracy by inferring phylogenies from simulated continuous and discrete characters. These tests demonstrate significant promise for continuous traits by demonstrating their higher overall accuracy as compared to reconstruction from discrete characters under Mk when simulated under unbounded Brownian motion, and equal performance when simulated under an Ornstein-Uhlenbeck model. Continuous characters also perform reasonably well in the presence of covariance between sites. I argue that inferring phylogenies directly from continuous traits may be benefit efforts to maximize phylogenetic information in morphological data sets by preserving larger variation in state space compared to many discretization schemes. I also suggest that the use of continuous trait models in phylogenetic reconstruction may alleviate potential concerns of discrete character model adequacy, while identifying areas that require further study in this area. This study provides an initial controlled demonstration of the efficacy of continuous characters in phylogenetic inference.
Collapse
Affiliation(s)
- Caroline Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| |
Collapse
|
219
|
Wang X, Chen Q, Wu Y, Lemmon ZH, Xu G, Huang C, Liang Y, Xu D, Li D, Doebley JF, Tian F. Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population. MOLECULAR PLANT 2018; 11:443-459. [PMID: 29275164 DOI: 10.1016/j.molp.2017.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/21/2017] [Accepted: 12/11/2017] [Indexed: 05/18/2023]
Abstract
Gene expression regulation plays an important role in controlling plant phenotypes and adaptation. Here, we report a comprehensive assessment of gene expression variation through the transcriptome analyses of a large maize-teosinte experimental population. Genome-wide mapping identified 25 660 expression quantitative trait loci (eQTL) for 17 311 genes, capturing an unprecedented range of expression variation. We found that local eQTL were more frequently mapped to adjacent genes, displaying a mode of expression piggybacking, which consequently created co-regulated gene clusters. Genes within the co-regulated gene clusters tend to have relevant functions and shared chromatin modifications. Distant eQTL formed 125 significant distant eQTL hotspots with their targets significantly enriched in specific functional categories. By integrating different sources of information, we identified putative trans- regulators for a variety of metabolic pathways. We demonstrated that the bHLH transcription factor R1 and hexokinase HEX9 might act as crucial regulators for flavonoid biosynthesis and glycolysis, respectively. Moreover, we showed that domestication or improvement has significantly affected global gene expression, with many genes targeted by selection. Of particular interest, the Bx genes for benzoxazinoid biosynthesis may have undergone coordinated cis-regulatory divergence between maize and teosinte, and a transposon insertion that inactivates Bx12 was under strong selection as maize spread into temperate environments with a distinct herbivore community.
Collapse
Affiliation(s)
- Xufeng Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaoyao Wu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zachary H Lemmon
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Guanghui Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yameng Liang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dingyi Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dan Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Feng Tian
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
220
|
Truffault V, Riqueau G, Garchery C, Gautier H, Stevens RG. Is monodehydroascorbate reductase activity in leaf tissue critical for the maintenance of yield in tomato? JOURNAL OF PLANT PHYSIOLOGY 2018; 222:1-8. [PMID: 29287283 DOI: 10.1016/j.jplph.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 05/08/2023]
Abstract
Ascorbate redox metabolism and growth have been shown to be linked and related to the activity of enzymes that produce or remove the radical monodehydroascorbate, the semi-oxidized form of ascorbate (ascorbate oxidase or peroxidase and monodehydroascorbate reductase respectively). Previous work in cherry tomato has revealed correlations between monodehydroascorbate reductase and ascorbate oxidase activity and fruit yield: decreased whole plant MDHAR activity decreases yield while decreased whole plant ascorbate oxidase activity increases yield under unfavourable environmental conditions. We aimed to investigate if similar effects on yield are obtained in a large-fruited variety of tomato, Moneymaker. Furthermore we wished to establish whether previously observed effects on yield in cherry tomato following changes in whole plant enzyme activity could be reproduced by reducing MDHAR activity in fruit only by using a fruit-specific promoter in cherry tomato (West Virginia 106). In Moneymaker, RNAi lines for monodehydroascorbate reductase did not show significant yield decrease compared to control lines when plants were grown under optimal or non-optimal conditions of carbon stress generated by mature leaf removal. In addition, we show that a decrease in monodehydroascorbate reductase activity in fruit of cherry tomato had no effect on yield compared to a reduction in whole-plant monodehydroascorbate reductase activity: we therefore show that whole plant MDHAR activity is necessary to maintain yield in cherry tomato, suggesting that the carbon source in autotrophic tissue is more important than fruit sink activity. The present data also revealed differences between cherry and large fruited tomato that could be linked to a source of genetic variability in the response to monodehydroascorbate metabolism in tomato: maybe the domestication of tomato towards large-fruited lines could have affected the importance of MDHAR in yield maintenance.
Collapse
Affiliation(s)
- Vincent Truffault
- Institut National de la Recherche Agronomique, INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, 84143 Montfavet, France; INRA, UR1115, Plantes et Systèmes de culture Horticoles, CS40509, 84914 Avignon Cedex 9, France
| | - Gisèle Riqueau
- Institut National de la Recherche Agronomique, INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, 84143 Montfavet, France
| | - Cécile Garchery
- Institut National de la Recherche Agronomique, INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, 84143 Montfavet, France
| | - Hélène Gautier
- INRA, UR1115, Plantes et Systèmes de culture Horticoles, CS40509, 84914 Avignon Cedex 9, France
| | - Rebecca G Stevens
- Institut National de la Recherche Agronomique, INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, CS60094, 84143 Montfavet, France.
| |
Collapse
|
221
|
de Oliveira Silva FM, Lichtenstein G, Alseekh S, Rosado-Souza L, Conte M, Suguiyama VF, Lira BS, Fanourakis D, Usadel B, Bhering LL, DaMatta FM, Sulpice R, Araújo WL, Rossi M, de Setta N, Fernie AR, Carrari F, Nunes-Nesi A. The genetic architecture of photosynthesis and plant growth-related traits in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:327-341. [PMID: 29044606 DOI: 10.1111/pce.13084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 05/22/2023]
Abstract
To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement.
Collapse
Affiliation(s)
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | | | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Dimitrios Fanourakis
- Department of Viticulture, Floriculture, Vegetable Crops and Plant Protection, GR, 71307, Heraklion, Greece
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
- Forschungszentrum Jülich, IBG-2 Plant Sciences, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Leonardo Lopes Bhering
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Plant & Agribiosiences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Nathalia de Setta
- Universidade Federal do ABC, 09606070, São Bernardo do Campo, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
222
|
LaBonte NR, Zhao P, Woeste K. Signatures of Selection in the Genomes of Chinese Chestnut ( Castanea mollissima Blume): The Roots of Nut Tree Domestication. FRONTIERS IN PLANT SCIENCE 2018; 9:810. [PMID: 29988533 PMCID: PMC6026767 DOI: 10.3389/fpls.2018.00810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 05/18/2023]
Abstract
Chestnuts (Castanea) are major nut crops in East Asia and southern Europe, and are unique among temperate nut crops in that the harvested seeds are starchy rather than oily. Chestnut species have been cultivated for three millennia or more in China, so it is likely that artificial selection has affected the genome of orchard-grown chestnuts. The genetics of Chinese chestnut (Castanea mollissima Blume) domestication are also of interest to breeders of hybrid American chestnut, especially if the low-growing, branching habit of Chinese chestnut, an impediment to American chestnut restoration, is partly the result of artificial selection. We resequenced genomes of wild and orchard-derived Chinese chestnuts and identified selective sweeps based on pooled whole-genome SNP datasets. We present candidate gene loci for chestnut domestication and discuss the potential phenotypic effects of candidate loci, some of which may be useful genes for chestnut improvement in Asia and North America. Selective sweeps included predicted genes potentially related to flower phenology and development, fruit maturation, and secondary metabolism, and included some genes homologous to domestication candidates in other woody plants.
Collapse
Affiliation(s)
- Nicholas R. LaBonte
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Nicholas R. LaBonte
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Keith Woeste
- Hardwood Tree Improvement and Regeneration Center, Northern Research Station, USDA Forest Service, West Lafayette, IN, United States
| |
Collapse
|
223
|
Diouf IA, Derivot L, Bitton F, Pascual L, Causse M. Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:279. [PMID: 29559986 PMCID: PMC5845638 DOI: 10.3389/fpls.2018.00279] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs. drought condition and the other in control vs. salt condition. Overall 250 individual lines from the MAGIC population-derived from eight parental lines covering a large diversity in cultivated tomato-were used to identify QTL in both experiments for fruit quality and yield component traits (fruit weight, number of fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a vegetative trait, leaf length. All the traits showed a large genotype variation (33-86% of total phenotypic variation) in both experiments and high heritability whatever the year or treatment. Significant genotype × treatment interactions were detected for five of the seven traits over the 2 years of experiments. QTL were mapped using 1,345 SNP markers. A total of 54 QTL were found among which 15 revealed genotype × environment interactions and 65% (35 QTL) were treatment specific. Confidence intervals of the QTL were projected on the genome physical map and allowed identifying regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied a strategy for candidate gene detection based on the high resolution mapping offered by the MAGIC population, the allelic effect of each parental line at the QTL and the sequence information of the eight parental lines.
Collapse
Affiliation(s)
- Isidore A. Diouf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | | | - Frédérique Bitton
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Laura Pascual
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- *Correspondence: Mathilde Causse
| |
Collapse
|
224
|
Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C. NOG1 increases grain production in rice. Nat Commun 2017; 8:1497. [PMID: 29133783 PMCID: PMC5684330 DOI: 10.1038/s41467-017-01501-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
During rice domestication and improvement, increasing grain yield to meet human needs was the primary objective. Rice grain yield is a quantitative trait determined by multiple genes, but the molecular basis for increased grain yield is still unclear. Here, we show that NUMBER OF GRAINS 1 (NOG1), which encodes an enoyl-CoA hydratase/isomerase, increases the grain yield of rice by enhancing grain number per panicle without a negative effect on the number of panicles per plant or grain weight. NOG1 can significantly increase the grain yield of commercial high-yield varieties: introduction of NOG1 increases the grain yield by 25.8% in the NOG1-deficient rice cultivar Zhonghua 17, and overexpression of NOG1 can further increase the grain yield by 19.5% in the NOG1-containing variety Teqing. Interestingly, NOG1 plays a prominent role in increasing grain number, but does not change heading date or seed-setting rate. Our findings suggest that NOG1 could be used to increase rice production.
Collapse
Affiliation(s)
- Xing Huo
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Shuang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Zuofeng Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Yongcai Fu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Hongwei Cai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Ping Gu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lubin Tan
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China.
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
225
|
van der Knaap E, Østergaard L. Shaping a fruit: Developmental pathways that impact growth patterns. Semin Cell Dev Biol 2017; 79:27-36. [PMID: 29092788 DOI: 10.1016/j.semcdb.2017.10.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
Angiosperms produce seeds as their progeny enclosed in maternally-derived structures called fruits. Evolutionarily, fruits have contributed enormously to the success of the Angiosperms phylum by providing protection and nutrition to the developing seeds, while ensuring the efficient dispersal upon maturity. Fruits vary massively in both size and shape and certain species have been targeted for domestication due to their nutritional value and delicious taste. Among the vast array of 3D fruit shapes that exist in nature, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. In this review, we discuss the latest results in identifying components that control fruit morphology and their effect on isotropic and anisotropic growth. Moreover, we will compare the current knowledge on the mechanisms that control fruit growth, size and shape between the domesticated Solanaceae species, tomato and members of the large family of Brassicaceae.
Collapse
Affiliation(s)
- Esther van der Knaap
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA, 30602, USA.
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
226
|
Yang H, Wang W, He Q, Xiang S, Tian D, Zhao T, Gai J. Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:877-889. [PMID: 29158636 PMCID: PMC5671450 DOI: 10.1007/s12298-017-0468-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/22/2017] [Accepted: 09/01/2017] [Indexed: 05/15/2023]
Abstract
Size and shape of soybean seeds are closely related to seed yield and market value. Annual wild soybeans have the potential to improve cultivated soybeans, but their inferior seed characteristics should be excluded. To detect quantitative trait loci (QTLs)/segments of seed size and shape traits in annual wild soybean, its chromosome segment substitution lines (CSSLs) derived from NN1138-2 (recurrent parent, Glycine max) and N24852 (donor parent, Glycine soja) and then modified 2 iterations (coded SojaCSSLP3) were improved further to contain more lines (diagonal segments) and less heterozygous and missing portions. The new population (SojaCSSLP4) composed of 195 CSSLs was evaluated under four environments, and 11, 13, 7, 15 and 14 QTLs/segments were detected for seed length (SL), seed width (SW), seed roundness (SR), seed perimeter (SP) and seed cross section area (SA), respectively, with all 60 wild allele effects negative. Among them, 16 QTLs/segments were shared by 2-5 traits, respectively, but 0-3 segments for each of the 5 traits were independent. The non-shared Satt274 and shared Satt305, Satt540 and Satt239 were major segments, along with other segments composed of two different but related sets of genetic systems for SR and the other 4 traits, respectively. Compared with the literature, 7 SL, 5 SW and 2 SR QTLs/segments were also detected in cultivated soybeans; allele distinction took place between cultivated and wild soybeans, and also among cultivated parents. The present mapping is understood as macro-segment mapping, the segments may be further dissected into smaller segments as well as corresponding QTLs/genes.
Collapse
Affiliation(s)
- Hongyan Yang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
| | - Wubin Wang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Qingyuan He
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
| | - Shihua Xiang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
| | - Dong Tian
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095 Jiangsu China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
227
|
Colle M, Weng Y, Kang Y, Ophir R, Sherman A, Grumet R. Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. PLANTA 2017. [PMID: 28623561 DOI: 10.1007/s00425-017-2721-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Morphological, QTL, and gene expression analyses indicate variation in cucumber fruit size and shape results from orientation, timing, and extent of cell division and expansion, and suggest candidate gene factors. Variation in cucumber (Cucumis sativus L.) fruit size and shape is highly quantitative, implicating interplay of multiple components. Recent studies have identified numerous fruit size and shape quantitative trait loci (QTL); however, underlying factors remain to be determined. We examined ovary and fruit development of two sequenced cucumber genotypes with extreme differences in fruit size and shape, Chinese Long '9930' (CL9930), and pickling type 'Gy14'. Differences were observed in several independent factors that can influence size and shape: ovule number, rate and period of cell division in longitudinal and cross section in ovaries and fruit, timing and rate of fruit expansion in length and diameter, and cell shape. Level and timing of expression of select fruit growth stage marker genes and candidate fruit size gene homologs associated with cucumber fruit size and shape QTL were examined from 5-day pre-anthesis to 20-day post-pollination. Our results indicate that variation in fruit size and shape results from differences in cell number and shape in longitudinal and cross section, driven in turn by differences in orientation, timing, and duration of cell division and expansion, both pre- and post-anthesis, and suggest candidate genes contributing to determination of cucumber fruit size and shape.
Collapse
Affiliation(s)
- Marivi Colle
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Plant and Soil Science Building, Michigan State University, 1066 Bogue Street, East Lansing, MI, 48824, USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yunyan Kang
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Plant and Soil Science Building, Michigan State University, 1066 Bogue Street, East Lansing, MI, 48824, USA
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ron Ophir
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Amir Sherman
- Department of Fruit Trees Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Plant and Soil Science Building, Michigan State University, 1066 Bogue Street, East Lansing, MI, 48824, USA.
| |
Collapse
|
228
|
Mathan J, Bhattacharya J, Ranjan A. Enhancing crop yield by optimizing plant developmental features. Development 2017; 143:3283-94. [PMID: 27624833 DOI: 10.1242/dev.134072] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of plant features and traits, such as overall plant architecture, leaf structure and morphological features, vascular architecture and flowering time are important determinants of photosynthetic efficiency and hence the overall performance of crop plants. The optimization of such developmental traits thus has great potential to increase biomass and crop yield. Here, we provide a comprehensive review of these developmental traits in crop plants, summarizing their genetic regulation and highlighting the potential of manipulating these traits for crop improvement. We also briefly review the effects of domestication on the developmental features of crop plants. Finally, we discuss the potential of functional genomics-based approaches to optimize plant developmental traits to increase yield.
Collapse
Affiliation(s)
- Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Juhi Bhattacharya
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
229
|
Díaz A, Martín-Hernández AM, Dolcet-Sanjuan R, Garcés-Claver A, Álvarez JM, Garcia-Mas J, Picó B, Monforte AJ. Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1837-1856. [PMID: 28584902 DOI: 10.1007/s00122-017-2928-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 05/06/2023]
Abstract
Loci on LGIV, VI, and VIII of melon genome are involved in the control of fruit domestication-related traits and they are candidate to have played a role in the domestication of the crop. The fruit of wild melons is very small (20-50 g) without edible pulp, contrasting with the large size and high pulp content of cultivated melon fruits. An analysis of quantitative trait loci (QTL) controlling fruit morphology domestication-related traits was carried out using an in vitro maintained F2 population from the cross between the Indian wild melon "Trigonus" and the western elite cultivar 'Piel de Sapo'. Twenty-seven QTL were identified in at least two out of the three field trials. Six of them were also being detected in BC1 and BC3 populations derived from the same cross. Ten of them were related to fruit morphological traits, 12 to fruit size characters, and 5 to pulp content. The Trigonus alleles decreased the value of the characters, except for the QTL at andromonoecious gene at linkage group (LG) II, and the QTL for pulp content at LGV. QTL genotypes accounted for a considerable degree of the total phenotypic variation, reaching up to 46%. Around 66% of the QTL showed additive gene action, 19% exhibited dominance, and 25% consisted of overdominance. The regions on LGIV, VI, and VIII included the QTL with more consistent and strong effects on domestication-related traits. QTLs on those regions were validated in BC2S1, BC2S2, and BC3 families, with "Trigonus" allele decreasing the fruit morphological traits in all cases. The validated QTL could represent loci involved in melon domestication, although further experiments as genomic variation studies across wild and cultivated genotypes would be necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Aurora Díaz
- Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Avenida de Montañana 930., 50059, Saragossa, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n., 46022, Valencia, Spain
| | - Ana Montserrat Martín-Hernández
- IRTA, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Parc de Recerca de la UAB, C/Vall de Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Ramón Dolcet-Sanjuan
- IRTA Fruitcentre, PCiTAL Parc de Gardeny-Edifici Fruitcentre, 25003, Lleida, Spain
| | - Ana Garcés-Claver
- Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Avenida de Montañana 930., 50059, Saragossa, Spain
| | - José María Álvarez
- Unidad de Hortofruticultura, Instituto Agroalimentario de Aragón (IA2) (CITA-Universidad de Zaragoza), Avenida de Montañana 930., 50059, Saragossa, Spain
| | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Parc de Recerca de la UAB, C/Vall de Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n., 46022, Valencia, Spain
| | - Antonio José Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n., 46022, Valencia, Spain.
| |
Collapse
|
230
|
Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet 2017; 13:e1006930. [PMID: 28817560 PMCID: PMC5560543 DOI: 10.1371/journal.pgen.1006930] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Increases in fruit weight of cultivated vegetables and fruits accompanied the domestication of these crops. Here we report on the positional cloning of a quantitative trait locus (QTL) controlling fruit weight in tomato. The derived allele of Cell Size Regulator (CSR-D) increases fruit weight predominantly through enlargement of the pericarp areas. The expanded pericarp tissues result from increased mesocarp cell size and not from increased number of cell layers. The effect of CSR on fruit weight and cell size is found across different genetic backgrounds implying a consistent impact of the locus on the trait. In fruits, CSR expression is undetectable early in development from floral meristems to the rapid cell proliferation stage after anthesis. Expression is low but detectable in growing fruit tissues and in or around vascular bundles coinciding with the cell enlargement stage of the fruit maturation process. CSR encodes an uncharacterized protein whose clade has expanded in the Solanaceae family. The mutant allele is predicted to encode a shorter protein due to a 1.4 kb deletion resulting in a 194 amino-acid truncation. Co-expression analyses and GO term enrichment analyses suggest association of CSR with cell differentiation in fruit tissues and vascular bundles. The derived allele arose in Solanum lycopersicum var cerasiforme and appears completely fixed in many cultivated tomato’s market classes. This finding suggests that the selection of this allele was critical to the full domestication of tomato from its intermediate ancestors. Starting about 10,000 years ago, during the Neolithic period, human societies began the transformation from a hunting and gathering-dependent lifestyle to an agrarian lifestyle. This transformation was accompanied by plant and animal domestication. Tomato shows a huge increase in fruit weight that has arisen as a consequence of its domestication. We identified a gene that encodes a poorly characterized protein that controls fruit weight in tomato. The mutation that led to the increase in fruit weight arose early during the cultivation of tomato and is now incorporated in all large tomato varieties. The gene regulates cell size in the fruit and is called Cell Size Regulator. The increases in cell size are proposed to relate to cellular maturation that accompanies fruit growth.
Collapse
|
231
|
Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong GY, Cheng L, Fei Z, Chen X. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun 2017; 8:249. [PMID: 28811498 PMCID: PMC5557836 DOI: 10.1038/s41467-017-00336-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 01/05/2023] Open
Abstract
Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road is proposed based on evidence from diverse genomic analyses. Cultivated apples likely originate from Malus sieversii in Kazakhstan, followed by intensive introgressions from M. sylvestris. M. sieversii in Xinjiang of China turns out to be an "ancient" isolated ecotype not directly contributing to apple domestication. We have identified selective sweeps underlying quantitative trait loci/genes of important fruit quality traits including fruit texture and flavor, and provide evidences supporting a model of apple fruit size evolution comprising two major events with one occurring prior to domestication and the other during domestication. This study outlines the genetic basis of apple domestication and evolution, and provides valuable information for facilitating marker-assisted breeding and apple improvement.Apple is one of the most important fruit crops. Here, the authors perform deep genome resequencing of 117 diverse accessions and reveal comprehensive models of apple origin, speciation, domestication, and fruit size evolution as well as candidate genes associated with important agronomic traits.
Collapse
Affiliation(s)
- Naibin Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
- Shandong Centre of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, People's Republic of China
| | - Yang Bai
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Yumin Ma
- Shandong Centre of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, People's Republic of China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xin Wang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Noah Legall
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Linyong Mao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Sibao Wan
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kun Wang
- The Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, 125100, People's Republic of China
| | - Tianming He
- College of Forestry and Horticulture, Research Centre of Specialty Fruits, Xinjiang Agricultural University, Urumqi, Xinjiang, 830000, People's Republic of China
| | - Shouqian Feng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Xiang Shen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Xiaoliu Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Yuanmao Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Shujing Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Shunfeng Ge
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Long Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Jingxuan Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Deyun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Changzhi Qu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Weifang Zuo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Li Xiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Chang Liu
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Science, Mudanjiang, Heilongjiang, 157500, People's Republic of China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, People's Republic of China
| | - Yuan Gao
- The Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, 125100, People's Republic of China
| | - Yimin Xu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Kenong Xu
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas Chao
- USDA-Agricultural Research Service, Plant Genetic Resources Unit, Geneva, NY, 14456, USA
| | - Gennaro Fazio
- USDA-Agricultural Research Service, Plant Genetic Resources Unit, Geneva, NY, 14456, USA
| | - Huairui Shu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China
| | - Gan-Yuan Zhong
- USDA-Agricultural Research Service, Plant Genetic Resources Unit, Geneva, NY, 14456, USA
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.
- USDA-Agricultural Research Service, Robert W. Holley Center for Plant and Health, Ithaca, NY, 14853, USA.
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271000, People's Republic of China.
| |
Collapse
|
232
|
Qiao Z, Brechenmacher L, Smith B, Strout GW, Mangin W, Taylor C, Russell SD, Stacey G, Libault M. The GmFWL1 (FW2-2-like) nodulation gene encodes a plasma membrane microdomain-associated protein. PLANT, CELL & ENVIRONMENT 2017; 40:1442-1455. [PMID: 28241097 DOI: 10.1111/pce.12941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 05/14/2023]
Abstract
The soybean gene GmFWL1 (FW2-2-like1) belongs to a plant-specific family that includes the tomato FW2-2 and the maize CNR1 genes, two regulators of plant development. In soybean, GmFWL1 is specifically expressed in root hair cells in response to rhizobia and in nodules. Silencing of GmFWL1 expression significantly reduced nodule numbers supporting its role during soybean nodulation. While the biological role of GmFWL1 has been described, its molecular function and, more generally, the molecular function of plant FW2-2-like proteins is unknown. In this study, we characterized the role of GmFWL1 as a membrane microdomain-associated protein. Specifically, using biochemical, molecular and cellular methods, our data show that GmFWL1 interacts with various proteins associated with membrane microdomains such as remorin, prohibitins and flotillins. Additionally, comparative genomics revealed that GmFWL1 interacts with GmFLOT2/4 (FLOTILLIN2/4), the soybean ortholog to Medicago truncatula FLOTILLIN4, a major regulator of the M. truncatula nodulation process. We also observed that, similarly to MtFLOT4 and GmFLOT2/4, GmFWL1 was localized at the tip of the soybean root hair cells in response to rhizobial inoculation supporting the early function of GmFWL1 in the rhizobium infection process.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laurent Brechenmacher
- Division of Biochemistry and Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Benjamin Smith
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, 73019, USA
| | - Gregory W Strout
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, 73019, USA
| | - William Mangin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Christopher Taylor
- Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, 44691, USA
| | - Scott D Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, 73019, USA
| | - Gary Stacey
- Division of Biochemistry and Plant Sciences, C.S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
233
|
Sauvage C, Rau A, Aichholz C, Chadoeuf J, Sarah G, Ruiz M, Santoni S, Causse M, David J, Glémin S. Domestication rewired gene expression and nucleotide diversity patterns in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:631-645. [PMID: 28488328 DOI: 10.1111/tpj.13592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 05/25/2023]
Abstract
Plant domestication has led to considerable phenotypic modifications from wild species to modern varieties. However, although changes in key traits have been well documented, less is known about the underlying molecular mechanisms, such as the reduction of molecular diversity or global gene co-expression patterns. In this study, we used a combination of gene expression and population genetics in wild and crop tomato to decipher the footprints of domestication. We found a set of 1729 differentially expressed genes (DEG) between the two genetic groups, belonging to 17 clusters of co-expressed DEG, suggesting that domestication affected not only individual genes but also regulatory networks. Five co-expression clusters were enriched in functional terms involving carbohydrate metabolism or epigenetic regulation of gene expression. We detected differences in nucleotide diversity between the crop and wild groups specific to DEG. Our study provides an extensive profiling of the rewiring of gene co-expression induced by the domestication syndrome in one of the main crop species.
Collapse
Affiliation(s)
- Christopher Sauvage
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Andrea Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Charlotte Aichholz
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Joël Chadoeuf
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Gautier Sarah
- Montpellier SupAgro, UMR 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398, Montpellier, France
| | - Manuel Ruiz
- CIRAD, UMR AGAP, Baillarguet, F-34980, Montferrier-sur-Lez, France
| | - Sylvain Santoni
- Montpellier SupAgro, UMR 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398, Montpellier, France
| | - Mathilde Causse
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), Domaine St Maurice - 67 Allée des Chênes - CS 60094, 84143, Montfavet Cedex, France
| | - Jacques David
- Montpellier SupAgro, UMR 1334, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, F-34398, Montpellier, France
| | - Sylvain Glémin
- Institut des Sciences de l'Evolution de Montpellier (ISEM-UMR 5554 Université de Montpellier - CNRS-IRD-EPHE), F-34095, Montpellier, France
- Department of Ecology and Genetics, Evolutionary Biology Center and Science for Life Laboratory, Uppsala University, 75236, Uppsala, Sweden
| |
Collapse
|
234
|
Kumar J, Gupta DS, Gupta S, Dubey S, Gupta P, Kumar S. Quantitative trait loci from identification to exploitation for crop improvement. PLANT CELL REPORTS 2017; 36:1187-1213. [PMID: 28352970 DOI: 10.1007/s00299-017-2127-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/09/2017] [Indexed: 05/24/2023]
Abstract
Advancement in the field of genetics and genomics after the discovery of Mendel's laws of inheritance has led to map the genes controlling qualitative and quantitative traits in crop plant species. Mapping of genomic regions controlling the variation of quantitatively inherited traits has become routine after the advent of different types of molecular markers. Recently, the next generation sequencing methods have accelerated the research on QTL analysis. These efforts have led to the identification of more closely linked molecular markers with gene/QTLs and also identified markers even within gene/QTL controlling the trait of interest. Efforts have also been made towards cloning gene/QTLs or identification of potential candidate genes responsible for a trait. Further new concepts like crop QTLome and QTL prioritization have accelerated precise application of QTLs for genetic improvement of complex traits. In the past years, efforts have also been made in exploitation of a number of QTL for improving grain yield or other agronomic traits in various crops through markers assisted selection leading to cultivation of these improved varieties at farmers' field. In present article, we reviewed QTLs from their identification to exploitation in plant breeding programs and also reviewed that how improved cultivars developed through introgression of QTLs have improved the yield productivity in many crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Rabat, Morocco
| |
Collapse
|
235
|
Liu X, Geng X, Zhang H, Shen H, Yang W. Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:1269. [PMID: 28769968 PMCID: PMC5515879 DOI: 10.3389/fpls.2017.01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/05/2017] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum) fruit weight (FW), soluble solid content (SSC), fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI), and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19-1.30 × 10-4) associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05) associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.
Collapse
Affiliation(s)
| | | | | | | | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural UniversityBeijing, China
| |
Collapse
|
236
|
Zhu J, Chen J, Gao F, Xu C, Wu H, Chen K, Si Z, Yan H, Zhang T. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4125-4135. [PMID: 28922761 PMCID: PMC5853531 DOI: 10.1093/jxb/erx240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Map-based gene cloning is a vital strategy for the identification of the quantitative trait loci or genes underlying important agronomic traits. The conventional map-based cloning method is powerful but generally time-consuming and labor-intensive. In this context, we introduce an improved bulked segregant analysis method in combination with a virus-induced gene silencing (VIGS) strategy for rapid and reliable gene mapping, identification and functional verification. This method was applied to a multiple recessive marker line of upland cotton, Texas 582 (T582), and identified unique genomic positions harboring mutant loci, showing the reliability and efficacy of this method. The v1 locus was further fine-mapped. Only one gene, GhCHLI, which encodes one of the subunits of Mg chelatase, was differentially down-regulated in T582 compared with TM-1. A point mutation occurred in the AAA+ conserved region of GhCHLI and led to an amino acid substitution. Suppression of its expression by VIGS in TM-1 resulted in a yellow blade phenotype that was similar to T582. This integrated approach provides a paradigm for the rapid mapping and identification of the candidate genes underlying the genetic traits in plants with large and complex genomes in the future.
Collapse
Affiliation(s)
- Jiankun Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiedan Chen
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
| | - Fengkai Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyu Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Huaitong Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhanfeng Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hu Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310029, China
| |
Collapse
|
237
|
Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 DOI: 10.1038/s41598-017-04028-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
Affiliation(s)
- Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiao-Li Fan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chun-Hua Zhao
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Li-Juan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Rui-Qing Pan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mei Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xue-Qiang Zhao
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Ping Tong
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Xia Zhang
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Ji-Zeng Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Yao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun-Ming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
238
|
Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 PMCID: PMC5476560 DOI: 10.1038/s41598-017-04028-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
|
239
|
Musseau C, Just D, Jorly J, Gévaudant F, Moing A, Chevalier C, Lemaire-Chamley M, Rothan C, Fernandez L. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:988. [PMID: 28659942 PMCID: PMC5467581 DOI: 10.3389/fpls.2017.00988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/24/2017] [Indexed: 05/25/2023]
Abstract
Key mechanisms controlling fruit weight and shape at the levels of meristem, ovary or very young fruit have already been identified using natural tomato diversity. We reasoned that new developmental modules prominent at later stages of fruit growth could be discovered by using new genetic and phenotypic diversity generated by saturated mutagenesis. Twelve fruit weight and tissue morphology mutants likely affected in late fruit growth were selected among thousands of fruit size and shape EMS mutants available in our tomato EMS mutant collection. Their thorough characterization at organ, tissue and cellular levels revealed two major clusters controlling fruit growth and tissue morphogenesis either through (i) the growth of all fruit tissues through isotropic cell expansion or (ii) only the growth of the pericarp through anisotropic cell expansion. These likely correspond to new cell expansion modules controlling fruit growth and tissue morphogenesis in tomato. Our study therefore opens the way for the identification of new gene regulatory networks controlling tomato fruit growth and morphology.
Collapse
|
240
|
Bucksch A, Atta-Boateng A, Azihou AF, Battogtokh D, Baumgartner A, Binder BM, Braybrook SA, Chang C, Coneva V, DeWitt TJ, Fletcher AG, Gehan MA, Diaz-Martinez DH, Hong L, Iyer-Pascuzzi AS, Klein LL, Leiboff S, Li M, Lynch JP, Maizel A, Maloof JN, Markelz RJC, Martinez CC, Miller LA, Mio W, Palubicki W, Poorter H, Pradal C, Price CA, Puttonen E, Reese JB, Rellán-Álvarez R, Spalding EP, Sparks EE, Topp CN, Williams JH, Chitwood DH. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. FRONTIERS IN PLANT SCIENCE 2017; 8:900. [PMID: 28659934 PMCID: PMC5465304 DOI: 10.3389/fpls.2017.00900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/12/2017] [Indexed: 05/21/2023]
Abstract
The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.
Collapse
Affiliation(s)
- Alexander Bucksch
- Department of Plant Biology, University of Georgia, AthensGA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, AthensGA, United States
- Institute of Bioinformatics, University of Georgia, AthensGA, United States
| | | | - Akomian F. Azihou
- Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-CalaviCotonou, Benin
| | - Dorjsuren Battogtokh
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| | - Aly Baumgartner
- Department of Geosciences, Baylor University, WacoTX, United States
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | | | - Cynthia Chang
- Division of Biology, University of Washington, BothellWA, United States
| | - Viktoirya Coneva
- Donald Danforth Plant Science Center, St. LouisMO, United States
| | - Thomas J. DeWitt
- Department of Wildlife and Fisheries Sciences–Department of Plant Pathology and Microbiology, Texas A&M University, College StationTX, United States
| | - Alexander G. Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of SheffieldSheffield, United Kingdom
| | - Malia A. Gehan
- Donald Danforth Plant Science Center, St. LouisMO, United States
| | | | - Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, IthacaNY, United States
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West LafayetteIN, United States
| | - Laura L. Klein
- Department of Biology, Saint Louis University, St. LouisMO, United States
| | - Samuel Leiboff
- School of Integrative Plant Science, Cornell University, IthacaNY, United States
| | - Mao Li
- Department of Mathematics, Florida State University, TallahasseeFL, United States
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University ParkPA, United States
| | - Alexis Maizel
- Center for Organismal Studies, Heidelberg UniversityHeidelberg, Germany
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - R. J. Cody Markelz
- Department of Plant Biology, University of California, Davis, DavisCA, United States
| | - Ciera C. Martinez
- Department of Molecular and Cell Biology, University of California, Berkeley, BerkeleyCA, United States
| | - Laura A. Miller
- Program in Bioinformatics and Computational Biology, The University of North Carolina, Chapel HillNC, United States
| | - Washington Mio
- Department of Mathematics, Florida State University, TallahasseeFL, United States
| | - Wojtek Palubicki
- The Sainsbury Laboratory, University of CambridgeCambridge, United Kingdom
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, JülichGermany
| | | | - Charles A. Price
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | - Eetu Puttonen
- Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of FinlandMasala, Finland
- Centre of Excellence in Laser Scanning Research, National Land Survey of FinlandMasala, Finland
| | - John B. Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | - Rubén Rellán-Álvarez
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV)Irapuato, Mexico
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin–Madison, MadisonWI, United States
| | - Erin E. Sparks
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, NewarkDE, United States
| | | | - Joseph H. Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, KnoxvilleTN, United States
| | | |
Collapse
|
241
|
Hackauf B, Bauer E, Korzun V, Miedaner T. Fine mapping of the restorer gene Rfp3 from an Iranian primitive rye (Secale cereale L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1179-1189. [PMID: 28315925 DOI: 10.1007/s00122-017-2879-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
A comparative genetics approach allowed to precisely determine the map position of the restorer gene Rfp3 in rye and revealed that Rfp3 and the restorer gene Rfm1 in barley reside at different positions in a syntenic 4RL/6HS segment. Cytoplasmic male sterility (CMS) is a reliable and striking genetic mechanism for hybrid seed production. Breeding of CMS-based hybrids in cereals requires the use of effective restorer genes as an indispensable pre-requisite. We report on the fine mapping of a restorer gene for the Pampa cytoplasm in winter rye that has been tapped from the Iranian primitive rye population Altevogt 14160. For this purpose, we have mapped 41 gene-derived markers to a 38.8 cM segment in the distal part of the long arm of chromosome 4R, which carries the restorer gene. Male fertility restoration was comprehensively analyzed in progenies of crosses between a male-sterile tester genotype and 21 recombinant as well as six non-recombinant BC4S2 lines. This approach allowed us to validate the position of this restorer gene, which we have designated Rfp3, on chromosome 4RL. Rfp3 was mapped within a 2.5 cM interval and cosegregated with the EST-derived marker c28385. The gene-derived conserved ortholog set (COS) markers enabled us to investigate the orthology of restorer genes originating from different genetic resources of rye as well as barley. The observed localization of Rfp3 and Rfm1 in a syntenic 4RL/6HS segment asks for further efforts towards cloning of both restorer genes as an option to study the mechanisms of male sterility and fertility restoration in cereals.
Collapse
Affiliation(s)
- Bernd Hackauf
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Rudolf-Schick-Platz 3a, 18190, Groß Lüsewitz, Germany.
| | - Eva Bauer
- Plant Breeding, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Viktor Korzun
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| |
Collapse
|
242
|
Xu P, Gao J, Cao Z, Chee PW, Guo Q, Xu Z, Paterson AH, Zhang X, Shen X. Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1309-1319. [PMID: 28361363 DOI: 10.1007/s00122-017-2890-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/02/2017] [Indexed: 05/20/2023]
Abstract
A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length. Prior analysis of a backcross-self mapping population derived from a cross between Gossypium hirsutum L. and G. barbadense L. revealed a QTL on chromosome 1 associated with increased fiber length (qFL-chr1), which was confirmed in three independent populations of near-isogenic introgression lines (NIILs). Here, a single NIIL, R01-40-08, was used to develop a large population segregating for the target region. Twenty-two PCR-based polymorphic markers used to genotype 1672 BC4F2 plants identified 432 recombinants containing breakpoints in the target region. Substitution mapping using 141 informative recombinants narrowed the position of qFL-chr1 to a 1.0-cM interval between SSR markers MUSS084 and CIR018. To exclude possible effects of non-target introgressions on fiber length, different heterozygous BC4F3 plants introgressed between SSR markers NAU3384 and CGR5144 were selected to develop sub-NILs. The qFL-chr1 was further mapped at 0.9-cM interval between MUSS422 and CIR018 by comparisons of sub-NIL phenotype, and increased fiber length by ~1 mm. The 2.38-Mb region between MUSS422 and CIR018 in G. barbadense contained 19 annotated genes. Expression levels of two of these genes, GOBAR07705 (encoding 1-aminocyclopropane-1-carboxylate synthase) and GOBAR25992 (encoding amino acid permease), were positively correlated with fiber length in a small F2 population, supporting these genes as candidates for qFL-chr1.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jin Gao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Zhibin Cao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Peng W Chee
- Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 3179, USA
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Xianggui Zhang
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China.
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
243
|
Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS. Enhancing genetic gain in the era of molecular breeding. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2641-2666. [PMID: 28830098 DOI: 10.1093/jxb/erx135] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 05/20/2023]
Abstract
As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary approaches, team breeding, will be required to address the challenge of maintaining a plentiful and safe food supply for future generations. New opportunities for enhancing genetic gain, a high efficiency breeding pipeline, and broad-sense genetic gain are also discussed prospectively.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Ping Li
- Nantong Xinhe Bio-Technology, Nantong 226019, PR China
| | - Cheng Zou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, CP 56130, México
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF campus, United Nations Avenue, Nairobi, Kenya
| |
Collapse
|
244
|
Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:875-889. [PMID: 28188333 DOI: 10.1007/s00122-017-2857-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/16/2017] [Indexed: 05/20/2023]
Abstract
A panel of 300 tomato accessions including breeding materials was built and characterized with >11,000 SNP. A population structure in six subgroups was identified. Strong heterogeneity in linkage disequilibrium and recombination landscape among groups and chromosomes was shown. GWAS identified several associations for fruit weight, earliness and plant growth. Genome-wide association studies (GWAS) have become a method of choice in quantitative trait dissection. First limited to highly polymorphic and outcrossing species, it is now applied in horticultural crops, notably in tomato. Until now GWAS in tomato has been performed on panels of heirloom and wild accessions. Using modern breeding materials would be of direct interest for breeding purpose. To implement GWAS on a large panel of 300 tomato accessions including 168 breeding lines, this study assessed the genetic diversity and linkage disequilibrium decay and revealed the population structure and performed GWA experiment. Genetic diversity and population structure analyses were based on molecular markers (>11,000 SNP) covering the whole genome. Six genetic subgroups were revealed and associated to traits of agronomical interest, such as fruit weight and disease resistance. Estimates of linkage disequilibrium highlighted the heterogeneity of its decay among genetic subgroups. Haplotype definition allowed a fine characterization of the groups and their recombination landscape revealing the patterns of admixture along the genome. Selection footprints showed results in congruence with introgressions. Taken together, all these elements refined our knowledge of the genetic material included in this panel and allowed the identification of several associations for fruit weight, plant growth and earliness, deciphering the genetic architecture of these complex traits and identifying several new loci useful for tomato breeding.
Collapse
Affiliation(s)
- Guillaume Bauchet
- Syngenta Seeds, 12 Chemin de l'Hobit, 31790, Saint Sauveur, France
- INRA, UR1052, Centre de Recherche PACA, GAFL, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, 84143, Montfavet Cedex, France
- Boyce Thompson Institute, Cornell University, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - Stéphane Grenier
- Syngenta Seeds, 12 Chemin de l'Hobit, 31790, Saint Sauveur, France
| | - Nicolas Samson
- Syngenta Seeds, 12 Chemin de l'Hobit, 31790, Saint Sauveur, France
| | - Julien Bonnet
- Syngenta Seeds, 12 Chemin de l'Hobit, 31790, Saint Sauveur, France
| | - Laurent Grivet
- Syngenta Seeds, 12 Chemin de l'Hobit, 31790, Saint Sauveur, France
| | - Mathilde Causse
- INRA, UR1052, Centre de Recherche PACA, GAFL, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, 84143, Montfavet Cedex, France.
| |
Collapse
|
245
|
Xanthopoulou A, Ganopoulos I, Psomopoulos F, Manioudaki M, Moysiadis T, Kapazoglou A, Osathanunkul M, Michailidou S, Kalivas A, Tsaftaris A, Nianiou-Obeidat I, Madesis P. De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers. Gene 2017; 622:50-66. [PMID: 28435133 DOI: 10.1016/j.gene.2017.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 01/03/2023]
Abstract
The genetic basis of fruit size and shape was investigated for the first time in Cucurbita species and genetic loci associated with fruit morphology have been identified. Although extensive genomic resources are available at present for tomato (Solanum lycopersicum), cucumber (Cucumis sativus), melon (Cucumis melo) and watermelon (Citrullus lanatus), genomic databases for Cucurbita species are limited. Recently, our group reported the generation of pumpkin (Cucurbita pepo) transcriptome databases from two contrasting cultivars with extreme fruit sizes. In the current study we used these databases to perform comparative transcriptome analysis in order to identify genes with potential roles in fruit morphology and fruit size. Differential Gene Expression (DGE) analysis between cv. 'Munchkin' (small-fruit) and cv. 'Big Moose' (large-fruit) revealed a variety of candidate genes associated with fruit morphology with significant differences in gene expression between the two cultivars. In addition, we have set the framework for generating EST-SSR markers, which discriminate different C. pepo cultivars and show transferability to related Cucurbitaceae species. The results of the present study will contribute to both further understanding the molecular mechanisms regulating fruit morphology and furthermore identifying the factors that determine fruit size. Moreover, they may lead to the development of molecular marker tools for selecting genotypes with desired morphological traits.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki 570 01, Greece; Lab of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, Thessaloniki GR-54124, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources ELGO-DEMETER (ex NAGREF), Thermi, Macedonia GR-57001, Greece
| | - Fotis Psomopoulos
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
| | - Maria Manioudaki
- Centre for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Theodoros Moysiadis
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki 570 01, Greece
| | - Aliki Kapazoglou
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki 570 01, Greece
| | - Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sofia Michailidou
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki 570 01, Greece
| | - Apostolos Kalivas
- Institute of Plant Breeding and Genetic Resources ELGO-DEMETER (ex NAGREF), Thermi, Macedonia GR-57001, Greece
| | - Athanasios Tsaftaris
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki 570 01, Greece; Lab of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, Thessaloniki GR-54124, Greece
| | - Irini Nianiou-Obeidat
- Lab of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, Thessaloniki GR-54124, Greece.
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki 570 01, Greece.
| |
Collapse
|
246
|
Zhou Q, Dong Y, Shi Q, Zhang L, Chen H, Hu C, Li Y. Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Mol Genet Genomics 2017; 292:871-881. [PMID: 28405778 DOI: 10.1007/s00438-017-1318-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05-1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Yongbin Dong
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Qingling Shi
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Long Zhang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Huanqing Chen
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Chunhui Hu
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Yuling Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China.
| |
Collapse
|
247
|
Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid MAR, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol 2017; 15:28. [PMID: 28385155 PMCID: PMC5383996 DOI: 10.1186/s12915-017-0365-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Most agronomic traits in rice are complex and polygenic. The identification of quantitative trait loci (QTL) for grain length is an important objective of rice genetic research and breeding programs. RESULTS Herein, we identified 99 QTL for grain length by GWAS based on approximately 10 million single nucleotide polymorphisms from 504 cultivated rice accessions (Oryza sativa L.), 13 of which were validated by four linkage populations and 92 were new loci for grain length. We scanned the Ho (observed heterozygosity per locus) index of coupled-parents of crosses mapping the same QTL, based on linkage and association mapping, and identified two new genes for grain length. We named this approach as Ho-LAMap. A simulation study of six known genes showed that Ho-LAMap could mine genes rapidly across a wide range of experimental variables using deep-sequencing data. We used Ho-LAMap to clone a new gene, OsLG3, as a positive regulator of grain length, which could improve rice yield without influencing grain quality. Sequencing of the promoter region in 283 rice accessions from a wide geographic range identified four haplotypes that seem to be associated with grain length. Further analysis showed that OsLG3 alleles in the indica and japonica evolved independently from distinct ancestors and low nucleotide diversity of OsLG3 in indica indicated artificial selection. Phylogenetic analysis showed that OsLG3 might have much potential value for improvement of grain length in japonica breeding. CONCLUSIONS The results demonstrated that Ho-LAMap is a potential approach for gene discovery and OsLG3 is a promising gene to be utilized in genomic assisted breeding for rice cultivar improvement.
Collapse
Affiliation(s)
- Jianping Yu
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haiyan Xiong
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Zhu
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinli Miao
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zuoshun Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhanying Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoxin Yao
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yinghua Pan
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xin Wang
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - M A R Rashid
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongming Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weicai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
248
|
|
249
|
Zsögön A, Cermak T, Voytas D, Peres LEP. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:120-130. [PMID: 28167025 DOI: 10.1016/j.plantsci.2016.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 05/02/2023]
Abstract
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.
Collapse
Affiliation(s)
- Agustin Zsögön
- Laboratory of Molecular Plant Physiology, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tomas Cermak
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lázaro Eustáquio Pereira Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
250
|
Celik I, Gurbuz N, Uncu AT, Frary A, Doganlar S. Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines (IBLs) of solanum pimpinellifolium using genotyping by sequencing. BMC Genomics 2017; 18:1. [PMID: 28049423 PMCID: PMC5209891 DOI: 10.1186/s12864-016-3406-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Solanum pimpinellifolium has high breeding potential for fruit quality traits and has been used as a donor in tomato breeding programs. Unlocking the genetic potential of S. pimpinellifolium requires high-throughput polymorphism identification protocols for QTL mapping and introgression of favourable alleles into cultivated tomato by both positive and background selection. Results In this study we identified SNP loci using a genotyping by sequencing (GBS) approach in an IBL mapping population derived from the cross between a high yielding fresh market tomato and S. pimpinellifolium (LA1589) as the recurrent and donor parents, respectively. A total of 120,983,088 reads were generated by the Illumina HiSeq next-generation sequencing platform. From these reads 448,539 sequence tags were generated. A majority of the sequence tags (84.4%) were uniquely aligned to the tomato genome. A total of 3.125 unique SNP loci were identified as a result of tag alignment to the genome assembly and were used in QTL analysis of 11 fruit quality traits. As a result, 37 QTLs were identified. S. pimpinellifolium contributed favourable alleles for 16 QTLs (43.2%), thus confirming the high breeding potential of this wild species. Conclusions The present work introduced a set of SNPs at sufficiently high density for QTL mapping in populations derived from S. pimpinellifolium (LA1589). Moreover, this study demonstrated the high efficiency of the GBS approach for SNP identification, genotyping and QTL mapping in an interspecific tomato population. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3406-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ibrahim Celik
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Nergiz Gurbuz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ali Tevfik Uncu
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey.,Pressent Address: Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Turkey
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Sami Doganlar
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|