201
|
Duan J, Qian XL, Li J, Xiao XH, Lu XT, Lv LC, Huang QY, Ding W, Zhang HY, Xiong LX. miR-29a Negatively Affects Glucose-Stimulated Insulin Secretion and MIN6 Cell Proliferation via Cdc42/ β-Catenin Signaling. Int J Endocrinol 2019; 2019:5219782. [PMID: 31662747 PMCID: PMC6735210 DOI: 10.1155/2019/5219782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetes is a progressive metabolic disease characterized by hyperglycemia. Functional impairment of islet β cells can occur to varying degrees. This impairment can initially be compensated for by proliferation and metabolic changes of β cells. Cell division control protein 42 (Cdc42) and the microRNA (miRNA) miR-29 have important roles in β-cell proliferation and glucose-stimulated insulin secretion (GSIS), which we further explored using the mouse insulinoma cell line MIN6. METHODS Upregulation and downregulation of miR-29a and Cdc42 were accomplished using transient transfection. miR-29a and Cdc42 expression was detected by real-time PCR and western blotting. MIN6 proliferation was detected using a cell counting kit assay. GSIS under high-glucose (20.0 mM) or basal-glucose (5.0 mM) stimulation was detected by enzyme-linked immunosorbent assay. The miR-29a binding site in the Cdc42 mRNA 3'-untranslated region (UTR) was determined using bioinformatics and luciferase reporter assays. RESULTS miR-29a overexpression inhibited proliferation (P < 0.01) and GSIS under high-glucose stimulation (P < 0.01). Cdc42 overexpression promoted proliferation (P < 0.05) and GSIS under high-glucose stimulation (P < 0.05). miR-29a overexpression decreased Cdc42 expression (P < 0.01), whereas miR-29a downregulation increased Cdc42 expression (P < 0.01). The results showed that the Cdc42 mRNA 3'-UTR is a direct target of miR-29a in vitro. Additionally, Cdc42 reversed miR-29a-mediated inhibition of proliferation and GSIS (P < 0.01). Furthermore, miR-29a inhibited β-catenin expression (P < 0.01), whereas Cdc42 promoted β-catenin expression (P < 0.01). CONCLUSION By negatively regulating Cdc42 and the downstream molecule β-catenin, miR-29a inhibits MIN6 proliferation and insulin secretion.
Collapse
Affiliation(s)
- Jing Duan
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Xian-Ling Qian
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Jun Li
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Xing-Hua Xiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Xiang-Tong Lu
- Department of Pathology, Second Affiliated Hospital, Nanchang University, No. 1 Mingde Road, Nanchang 330006, China
| | - Lin-Chen Lv
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Qing-Yun Huang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Wen Ding
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Hong-Yan Zhang
- Department of Burn, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang 330066, China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| |
Collapse
|
202
|
Shahjalal HM, Abdal Dayem A, Lim KM, Jeon TI, Cho SG. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther 2018; 9:355. [PMID: 30594258 PMCID: PMC6310974 DOI: 10.1186/s13287-018-1099-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) are considered attractive sources of pancreatic β cells and islet organoids. Recently, several reports presented that hESC/iPSC-derived cells enriched with specific transcription factors can form glucose-responsive insulin-secreting cells in vitro and transplantation of these cells ameliorates hyperglycemia in diabetic mice. However, the glucose-stimulated insulin-secreting capacity of these cells is lower than that of endogenous islets, suggesting the need to improve induction procedures. One of the critical problems facing in vivo maturation of hESC/iPSC-derived cells is their low survival rate after transplantation, although this rate increases when the implanted pancreatic cells are encapsulated to avoid the immune response. Several groups have also reported on the generation of hESC/iPSC-derived islet-like organoids, but development of techniques for complete islet structures with the eventual generation of vascularized constructs remains a major challenge to their application in regenerative therapies. Many issues also need to be addressed before the successful clinical application of hESC/iPSC-derived cells or islet organoids. In this review, we summarize advances in the generation of hESC/iPSC-derived pancreatic β cells or islet organoids and discuss the limitations and challenges for their successful therapeutic application in diabetes.
Collapse
Affiliation(s)
- Hussain Md. Shahjalal
- Department of Stem Cell & Regenerative Biotechnology and IDASI (Incurable Disease Animal model & Stem cell Institute), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and IDASI (Incurable Disease Animal model & Stem cell Institute), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and IDASI (Incurable Disease Animal model & Stem cell Institute), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Tak-il Jeon
- Department of Stem Cell & Regenerative Biotechnology and IDASI (Incurable Disease Animal model & Stem cell Institute), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and IDASI (Incurable Disease Animal model & Stem cell Institute), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| |
Collapse
|
203
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
204
|
Kamiya K, Osaki T, Nakao K, Kawano R, Fujii S, Misawa N, Hayakawa M, Takeuchi S. Electrophysiological measurement of ion channels on plasma/organelle membranes using an on-chip lipid bilayer system. Sci Rep 2018; 8:17498. [PMID: 30504856 PMCID: PMC6269590 DOI: 10.1038/s41598-018-35316-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
Ion channels are located in plasma membranes as well as on mitochondrial, lysosomal, and endoplasmic reticulum membranes. They play a critical role in physiology and drug targeting. It is particularly challenging to measure the current mediated by ion channels in the lysosomal and the endoplasmic reticulum membranes using the conventional patch clamp method. In this study, we show that our proposed device is applicable for an electrophysiological measurement of various types of ion channel in plasma and organelle membranes. We designed an on-chip device that can form multiple electrical contacts with a measurement system when placed on a mount system. Using crude cell membranes containing ion channels extracted from cultured cells without detergents, we detected open/close signals of the hERG, TRPV1, and NMDA channels on plasma membranes, those of the TRPML1 channels on lysosomal membranes, and open/close signals of the RyR channels on SR membranes. This method will provide a highly versatile drug screening system for ion channels expressed by various cell membranes, including plasma, SR, mitochondrial, Golgi, and lysosomal membranes.
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kenji Nakao
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 2-26-1 Muraokahigashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryuji Kawano
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Satoshi Fujii
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Masatoshi Hayakawa
- Research and Development Department, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kanagawa, 213-0012, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan. .,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
205
|
Hastoy B, Godazgar M, Clark A, Nylander V, Spiliotis I, van de Bunt M, Chibalina MV, Barrett A, Burrows C, Tarasov AI, Scharfmann R, Gloyn AL, Rorsman P. Electrophysiological properties of human beta-cell lines EndoC-βH1 and -βH2 conform with human beta-cells. Sci Rep 2018; 8:16994. [PMID: 30451893 PMCID: PMC6242937 DOI: 10.1038/s41598-018-34743-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Limited access to human islets has prompted the development of human beta cell models. The human beta cell lines EndoC-βH1 and EndoC-βH2 are increasingly used by the research community. However, little is known of their electrophysiological and secretory properties. Here, we monitored parameters that constitute the glucose-triggering pathway of insulin release. Both cell lines respond to glucose (6 and 20 mM) with 2- to 3-fold stimulation of insulin secretion which correlated with an elevation of [Ca2+]i, membrane depolarisation and increased action potential firing. Similar to human primary beta cells, KATP channel activity is low at 1 mM glucose and is further reduced upon increasing glucose concentration; an effect that was mimicked by the KATP channel blocker tolbutamide. The upstroke of the action potentials reflects the activation of Ca2+ channels with some small contribution of TTX-sensitive Na+ channels. The repolarisation involves activation of voltage-gated Kv2.2 channels and large-conductance Ca2+-activated K+ channels. Exocytosis presented a similar kinetics to human primary beta cells. The ultrastructure of these cells shows insulin vesicles composed of an electron-dense core surrounded by a thin clear halo. We conclude that the EndoC-βH1 and -βH2 cells share many features of primary human β-cells and thus represent a useful experimental model.
Collapse
Affiliation(s)
- Benoît Hastoy
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mahdieh Godazgar
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anne Clark
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vibe Nylander
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ioannis Spiliotis
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martijn van de Bunt
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom ,0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Margarita V. Chibalina
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Amy Barrett
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Carla Burrows
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrei I. Tarasov
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Raphael Scharfmann
- 0000 0001 2188 0914grid.10992.33INSERM U1016, Cochin Institute, Université Paris Descartes, Paris, France
| | - Anna L. Gloyn
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom ,0000 0004 1936 8948grid.4991.5Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom ,0000 0004 0488 9484grid.415719.fNational Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Patrik Rorsman
- 0000 0004 1936 8948grid.4991.5Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom ,0000 0004 0488 9484grid.415719.fNational Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom ,0000 0000 9919 9582grid.8761.8Department of Physiology, Institute of Neuroscience and Physiology, University of Goteborg, Goteborg, Sweden
| |
Collapse
|
206
|
Dufurrena Q, Bäck N, Mains R, Hodgson L, Tanowitz H, Mandela P, Eipper B, Kuliawat R. Kalirin/Trio Rho GDP/GTP exchange factors regulate proinsulin and insulin secretion. J Mol Endocrinol 2018; 62:JME-18-0048.R2. [PMID: 30407917 PMCID: PMC6494717 DOI: 10.1530/jme-18-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
Key features for progression to pancreatic β-cell failure and disease are loss of glucose responsiveness and an increased ratio of secreted proinsulin to insulin. Proinsulin and insulin are stored in secretory granules (SGs) and the fine-tuning of hormone output requires signal mediated recruitment of select SG populations according to intracellular location and age. The GTPase Rac1 coordinates multiple signaling pathways that specify SG release and Rac1 activity is controlled in part by GDP/GTP exchange factors (GEFs). To explore the function of two large multidomain GEFs, Kalirin and Trio in β-cells, we manipulated their Rac1-specific GEF1 domain activity by using small molecule inhibitors and by genetically ablating Kalirin. We examined age related secretory granule behavior employing radiolabeling protocols. Loss of Kalirin/Trio function attenuated radioactive proinsulin release by reducing constitutive-like secretion and exocytosis of 2-hour old granules. At later chase times or at steady state, Kalirin/Trio manipulations decreased glucose stimulated insulin output. Finally, use of a Rac1 FRET biosensor with cultured β-cell lines, demonstrated that Kalirin/Trio GEF1 activity was required for normal rearrangement of Rac1 to the plasma membrane in response to glucose. Rac1 activation can be evoked by both glucose metabolism and signaling through the incretin glucagon-like peptide 1 (GLP-1) receptor. GLP-1 addition restored Rac1 localization/activity and insulin secretion in the absence of Kalirin, thereby assigning Kalirin's participation to stimulatory glucose signaling.
Collapse
Affiliation(s)
- Quinn Dufurrena
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Nils Bäck
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Herbert Tanowitz
- Departments of Pathology, Medicine, Albert Einstein College of Medicine, Bronx, NY
| | | | - Betty Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| | - Regina Kuliawat
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
207
|
Huising MO, van der Meulen T, Huang JL, Pourhosseinzadeh MS, Noguchi GM. The Difference δ-Cells Make in Glucose Control. Physiology (Bethesda) 2018; 33:403-411. [PMID: 30303773 PMCID: PMC6347098 DOI: 10.1152/physiol.00029.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
The role of beta and α-cells to glucose control are established, but the physiological role of δ-cells is poorly understood. Delta-cells are ideally positioned within pancreatic islets to modulate insulin and glucagon secretion at their source. We review the evidence for a negative feedback loop between delta and β-cells that determines the blood glucose set point and suggest that local δ-cell-mediated feedback stabilizes glycemic control.
Collapse
Affiliation(s)
- Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California , Davis, California
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Jessica L Huang
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| |
Collapse
|
208
|
Bogaert H, De Koster J, Van den Broeck W, Van Eetvelde M, Opsomer G. Effects of overconditioning on pancreatic insulin secretory capacity, fat infiltration, and the number and size of islets in dairy cows at the end of the dry period. J Dairy Sci 2018; 101:11413-11420. [PMID: 30316589 DOI: 10.3168/jds.2018-14931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
In the present study, we tested the hypothesis that overconditioning in dairy cows at the end of the dry period leads to infiltration of fat and alterations of the insulin secretory capacity of the pancreas. Pregnant Holstein Friesian dairy cows were selected based on body condition score (BCS) at the start of the dry period. Body condition score varied between cows to have optimal conditioned (2.5 < BCS ≤3.5, n = 5) and overconditioned (3.5 < BCS ≤5, n = 5) cows. All animals underwent an intravenous glucose tolerance test (IVGTT) at an average of 260 d of gestation to measure the pancreatic insulin secretory capacity and assess peripheral insulin sensitivity regarding glucose metabolism. Eight days after the IVGTT, animals were slaughtered. The pancreas was dissected and weighed and tissue samples were taken for histological analysis. Results revealed that overconditioning in dairy cows led to fat infiltration in the pancreas and an increase in size of pancreatic islets expressed relative to the total area of pancreatic tissue. In addition, results revealed a positive correlation between serum fatty acid concentration and peak insulin concentration and area and number of pancreatic islets expressed relative to the total area of pancreatic tissue. The IVGTT revealed that overconditioned animals have a higher insulin secretory capacity of the pancreas, as demonstrated by higher peak insulin concentration, higher acute insulin response to glucose, and higher area under the curve (AUC) for insulin compared with optimal conditioned cows. A higher AUC for glucose during the first 60 min following administration of the glucose bolus in overconditioned cows indicates an insulin-resistant state regarding glucose metabolism. Our results suggest that the pancreas of overconditioned dairy cows at the end of gestation compensates for the concomitantly elevated level of peripheral insulin resistance by greater secretion of insulin.
Collapse
Affiliation(s)
- H Bogaert
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - J De Koster
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - W Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - M Van Eetvelde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
209
|
Veluthakal R, Chepurny OG, Leech CA, Schwede F, Holz GG, Thurmond DC. Restoration of Glucose-Stimulated Cdc42-Pak1 Activation and Insulin Secretion by a Selective Epac Activator in Type 2 Diabetic Human Islets. Diabetes 2018; 67:1999-2011. [PMID: 29986926 PMCID: PMC6152341 DOI: 10.2337/db17-1174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Glucose metabolism stimulates cell division control protein 42 homolog (Cdc42)-p21-activated kinase (Pak1) activity and initiates filamentous actin (F-actin) cytoskeleton remodeling in pancreatic β-cells so that cytoplasmic secretory granules can translocate to the plasma membrane where insulin exocytosis occurs. Since glucose metabolism also generates cAMP in β-cells, the cross talk of cAMP signaling with Cdc42-Pak1 activation might be of fundamental importance to glucose-stimulated insulin secretion (GSIS). Previously, the type-2 isoform of cAMP-regulated guanine nucleotide exchange factor 2 (Epac2) was established to mediate a potentiation of GSIS by cAMP-elevating agents. Here we report that nondiabetic human islets and INS-1 832/13 β-cells treated with the selective Epac activator 8-pCPT-2'-O-Me-cAMP-AM exhibited Cdc42-Pak1 activation at 1 mmol/L glucose and that the magnitude of this effect was equivalent to that which was measured during stimulation with 20 mmol/L glucose in the absence of 8-pCPT-2'-O-Me-cAMP-AM. Conversely, the cAMP antagonist Rp-8-Br-cAMPS-pAB prevented glucose-stimulated Cdc42-Pak1 activation, thereby blocking GSIS while also increasing cellular F-actin content. Although islets from donors with type 2 diabetes had profound defects in glucose-stimulated Cdc42-Pak1 activation and insulin secretion, these defects were rescued by the Epac activator so that GSIS was restored. Collectively, these findings indicate an unexpected role for cAMP as a permissive or direct metabolic coupling factor in support of GSIS that is Epac2 and Cdc42-Pak1 regulated.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY
| | - Colin A Leech
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY
| | | | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
210
|
Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018; 108:656-662. [PMID: 30245465 DOI: 10.1016/j.biopha.2018.09.058] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
The role of oxidative stress in the occurrence and development of diabetes mellitus is both critical and pivotal. Several molecular event cascade in different metabolic pathways such as glycolytic, hexosamine, protein kinase C, polyol and advanced glycation end-product (AGE) pathways have been identified as pro-oxidative processes and are usually up-regulated in the diabetics. Inhibition of glyceraldehyde-3-P dehydrogenase by poly-ADP-ribose polymerase 1 and subsequent accumulation of the enzyme substrate (glyceraldehyde-3-P) appears to be central to diabetes-associated oxidative stress. Increased level of glyceraldehyde-3-P activates two major pro-oxidative pathways in diabetes: (i) It activates the AGE pathway, precisely the synthesis of methylglyoxal from non-enzymatic dephosphorylation of the triose phosphates (ii) It activates protein kinase C (PKC) pathway by promoting the synthesis of diacylglycerol. In addition, it causes the accumulation of glycolytic metabolites upstream, and this leads to excessive stimulation of other pro-oxidative pathways such as hexosamine and polyol pathways. This review tends to highlight the main oxidative processes associated with diabetes mellitus.
Collapse
|
211
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
212
|
Hashim M, Yokoi N, Takahashi H, Gheni G, Okechi OS, Hayami T, Murao N, Hidaka S, Minami K, Mizoguchi A, Seino S. Inhibition of SNAT5 Induces Incretin-Responsive State From Incretin-Unresponsive State in Pancreatic β-Cells: Study of β-Cell Spheroid Clusters as a Model. Diabetes 2018; 67:1795-1806. [PMID: 29954738 DOI: 10.2337/db17-1486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/11/2018] [Indexed: 11/13/2022]
Abstract
β-Cell-β-cell interactions are required for normal regulation of insulin secretion. We previously found that formation of spheroid clusters (called K20-SC) from MIN6-K20 clonal β-cells lacking incretin-induced insulin secretion (IIIS) under monolayer culture (called K20-MC) drastically induced incretin responsiveness. Here we investigated the mechanism by which an incretin-unresponsive state transforms to an incretin-responsive state using K20-SC as a model. Glutamate production by glucose through the malate-aspartate shuttle and cAMP signaling, both of which are critical for IIIS, were enhanced in K20-SC. SC formed from β-cells deficient for aspartate aminotransferase 1, a critical enzyme in the malate-aspartate shuttle, exhibited reduced IIIS. Expression of the sodium-coupled neutral amino acid transporter 5 (SNAT5), which is involved in glutamine transport, was downregulated in K20-SC and pancreatic islets of normal mice but was upregulated in K20-MC and islets of rodent models of obesity and diabetes, both of which exhibit impaired IIIS. Inhibition of SNAT5 significantly increased cellular glutamate content and improved IIIS in islets of these models and in K20-MC. These results suggest that suppression of SNAT5 activity, which results in increased glutamate production, and enhancement of cAMP signaling endows incretin-unresponsive β-cells with incretin responsiveness.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/agonists
- Amino Acid Transport Systems, Neutral/antagonists & inhibitors
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Animals
- Anti-Obesity Agents/pharmacology
- Cell Communication/drug effects
- Cell Line
- Cells, Cultured
- Clone Cells
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Drug Resistance/drug effects
- Gene Expression Regulation/drug effects
- Hypoglycemic Agents/pharmacology
- Incretins/pharmacology
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/ultrastructure
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/ultrastructure
- Male
- Membrane Transport Modulators/pharmacology
- Mice, Inbred Strains
- Microscopy, Electron, Transmission
- Models, Biological
- Obesity/drug therapy
- Obesity/metabolism
- Obesity/pathology
- RNA Interference
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Spheroids, Cellular/ultrastructure
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Mahira Hashim
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Ghupurjan Gheni
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Oduori S Okechi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohide Hayami
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Kansai Electric Power Medical Research Institute, Kobe, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Naoya Murao
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shihomi Hidaka
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohtaro Minami
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Kansai Electric Power Medical Research Institute, Kobe, Japan
| |
Collapse
|
213
|
Doyle ME, Fiori JL, Gonzalez Mariscal I, Liu QR, Goodstein E, Yang H, Shin YK, Santa-Cruz Calvo S, Indig FE, Egan JM. Insulin Is Transcribed and Translated in Mammalian Taste Bud Cells. Endocrinology 2018; 159:3331-3339. [PMID: 30060183 PMCID: PMC6112595 DOI: 10.1210/en.2018-00534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022]
Abstract
We and others have reported that taste cells in taste buds express many peptides in common with cells in the gut and islets of Langerhans in the pancreas. Islets and taste bud cells express the hormones glucagon and ghrelin, the same ATP-sensitive potassium channel responsible for depolarizing the insulin-secreting β cell during glucose-induced insulin secretion, as well as the propeptide-processing enzymes PC1/3 and PC2. Given the common expression of functionally specific proteins in taste buds and islets, it is surprising that no one has investigated whether insulin is synthesized in taste bud cells. Using immunofluorescence, we demonstrated the presence of insulin in mouse, rat, and human taste bud cells. By detecting the postprocessing insulin molecule C-peptide and green fluorescence protein (GFP) in taste cells of both insulin 1-GFP and insulin 2-GFP mice and the presence of the mouse insulin transcript by in situ hybridization, we further proved that insulin is synthesized in individual taste buds and not taken up from the parenchyma. In addition to our cytology data, we measured the level of insulin transcript by quantitative RT-PCR in the anterior and posterior lingual epithelia. These analyses showed that insulin is translated in the circumvallate and foliate papillae in the posterior, but only insulin transcript was detected in the anterior fungiform papillae of the rodent tongue. Thus, some taste cells are insulin-synthesizing cells generated from a continually replenished source of precursor cells in the adult mammalian lingual epithelium.
Collapse
Affiliation(s)
- Máire E Doyle
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Jennifer L Fiori
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Isabel Gonzalez Mariscal
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Erin Goodstein
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hyekyung Yang
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Yu-Kyong Shin
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Fred E Indig
- The Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Laboratory of Clinical Investigation/Diabetes Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
- Correspondence: Josephine M. Egan, MD, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224. E-mail:
| |
Collapse
|
214
|
VAMP8, a vesicle-SNARE required for RAB37-mediated exocytosis, possesses a tumor metastasis suppressor function. Cancer Lett 2018; 437:79-88. [PMID: 30165196 DOI: 10.1016/j.canlet.2018.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
We previously identified a metastasis suppressor RAB37 small GTPase that regulated exocytosis of tissue inhibitor of metalloproteinases 1 (TIMP1) to suppress lung cancer metastasis. Here, we show that vesicle-associated membrane protein 8 (VAMP8), a v-SNARE (vesicle soluble N-ethylmaleimide-sensitive factor activating protein receptor), interacts with RAB37 and drives the secretion of TIMP1 to inhibit tumor metastases. Confocal and total internal reflection fluorescence microscopic images demonstrated that VAMP8 co-localized with RAB37 and facilitated trafficking of RAB37-TIMP1 vesicles. Reconstitution experiments using tail-vein injection and lung-to-lung metastasis in mice showed that VAMP8 was essential for RAB37-regulated vesicle trafficking of TIMP1 to suppress cancer metastasis. Lung cancer patients with low VAMP8 showed distant metastasis, poor overall survival and progression-free survival. Importantly, multivariate Cox regression analysis indicated that patients with low VAMP8/low RAB37 expression profile showed significantly high risk of death (hazard ratio = 3.42, P < 0.001) even after adjusting for tumor metastasis parameter. Our findings reveal that VAMP8 is a novel v-SNARE crucial for RAB37-mediated exocytic transport of TIMP1 to suppress lung tumor metastasis. VAMP8 possesses a tumor metastasis suppressor function with a prognostic value in lung cancer.
Collapse
|
215
|
Thomsen SK, Raimondo A, Hastoy B, Sengupta S, Dai XQ, Bautista A, Censin J, Payne AJ, Umapathysivam MM, Spigelman AF, Barrett A, Groves CJ, Beer NL, Manning Fox JE, McCarthy MI, Clark A, Mahajan A, Rorsman P, MacDonald PE, Gloyn AL. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 2018; 50:1122-1131. [PMID: 30054598 PMCID: PMC6237273 DOI: 10.1038/s41588-018-0173-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Vertex Pharmaceuticals Europe Ltd, Milton Park, Abingdon, UK
| | - Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- National Health and Medical Research Council, Canberra, Australia
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
216
|
Li S, Wang YY, Cui J, Chen DN, Li Y, Xin Z, Xie RR, Cao X, Lu J, Yang FY, Yang JK. Are low levels of serum bicarbonate associated with risk of progressing to impaired fasting glucose/diabetes? A single-centre prospective cohort study in Beijing, China. BMJ Open 2018; 8:e019145. [PMID: 30037858 PMCID: PMC6059285 DOI: 10.1136/bmjopen-2017-019145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AIMS Bicarbonate is involved in many human essential metabolic processes, but little is known about the association between serum bicarbonate and glucose metabolism. This study aims to investigate the association between serum bicarbonate and the risk of progressing to impaired fasting glucose (IFG)/diabetes mellitus (DM). SETTING The data were obtained from a large-scale prospective cohort study in a single health centre in Beijing. PARTICIPANTS A total of 5318 participants aged 18-70 years who underwent health examinations annually with baseline fasting plasma glucose (FPG) ranging from 3.9 to 5.5 mmol/L, without a history of either diabetes or concomitant chronic diseases, were enrolled in this 6-year observational study. PRIMARY OUTCOME MEASURES A logistic regression analysis was used to calculate ORs for progressing to IFG/DM by the category of baseline serum bicarbonate. In addition, an analysis of the receiver operating characteristic (ROC) curve for predicting IFG was performed. RESULTS Of the 5318 participants, 210 developed IFG after a median 2.2 years of follow-up. After adjusting for sex, age, FPG, body mass index, systolic blood pressure, serum creatinine, serum alanine aminotransferase and low-density lipoprotein cholesterol at baseline, the participants in the first (OR 4.18, 95% CI 2.42 to 7.21; p<0.001), second (OR 3.02, 95% CI 1.71 to 5.33; p<0.001) and third (OR 2.12, 95% CI 1.15 to 3.89; p=0.015) quartiles of serum bicarbonate had higher odds for progressing to IFG/DM compared with those in the highest quartile. The area under the ROC curve for predicting IFG/DM was 0.69 (95% CI 0.65 to 0.72; p<0.001). CONCLUSIONS Lower serum bicarbonate is associated with higher risk of the development of IFG/DM.
Collapse
Affiliation(s)
- Sen Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Ying-Ying Wang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Cui
- Health Examination Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong-Ning Chen
- Health Examination Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Health Examination Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Rong-Rong Xie
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Xi Cao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Fang-Yuan Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| |
Collapse
|
217
|
Nasteska D, Hodson DJ. The role of beta cell heterogeneity in islet function and insulin release. J Mol Endocrinol 2018; 61:R43-R60. [PMID: 29661799 PMCID: PMC5976077 DOI: 10.1530/jme-18-0011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly apparent that not all insulin-secreting beta cells are equal. Subtle differences exist at the transcriptomic and protein expression levels, with repercussions for beta cell survival/proliferation, calcium signalling and insulin release. Notably, beta cell heterogeneity displays plasticity during development, metabolic stress and type 2 diabetes mellitus (T2DM). Thus, heterogeneity or lack thereof may be an important contributor to beta cell failure during T2DM in both rodents and humans. The present review will discuss the molecular and cellular features of beta cell heterogeneity at both the single-cell and islet level, explore how this influences islet function and insulin release and look into the alterations that may occur during obesity and T2DM.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| |
Collapse
|
218
|
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK.
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
219
|
Woo HJ, Reifman J. Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks. BMC Med Genomics 2018; 11:54. [PMID: 29925367 PMCID: PMC6011398 DOI: 10.1186/s12920-018-0373-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Common metabolic diseases, including type 2 diabetes, coronary artery disease, and hypertension, arise from disruptions of the body's metabolic homeostasis, with relatively strong contributions from genetic risk factors and substantial comorbidity with obesity. Although genome-wide association studies have revealed many genomic loci robustly associated with these diseases, biological interpretation of such association is challenging because of the difficulty in mapping single-nucleotide polymorphisms (SNPs) onto the underlying causal genes and pathways. Furthermore, common diseases are typically highly polygenic, and conventional single variant-based association testing does not adequately capture potentially important large-scale interaction effects between multiple genetic factors. METHODS We analyzed moderately sized case-control data sets for type 2 diabetes, coronary artery disease, and hypertension to characterize the genetic risk factors arising from non-additive, collective interaction effects, using a recently developed algorithm (discrete discriminant analysis). We tested associations of genes and pathways with the disease status while including the cumulative sum of interaction effects between all variants contained in each group. RESULTS In contrast to non-interacting SNP mapping, which produced few genome-wide significant loci, our analysis revealed extensive arrays of pathways, many of which are involved in the pathogenesis of these metabolic diseases but have not been directly identified in genetic association studies. They comprised cell stress and apoptotic pathways for insulin-producing β-cells in type 2 diabetes, processes covering different atherosclerotic stages in coronary artery disease, and elements of both type 2 diabetes and coronary artery disease risk factors (cell cycle, apoptosis, and hemostasis) associated with hypertension. CONCLUSIONS Our results support the view that non-additive interaction effects significantly enhance the level of common metabolic disease associations and modify their genetic architectures and that many of the expected genetic factors behind metabolic disease risks reside in smaller genotyping samples in the form of interacting groups of SNPs.
Collapse
Affiliation(s)
- Hyung Jun Woo
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA.
| |
Collapse
|
220
|
Ahn C, Kang HS, Lee JH, Hong EJ, Jung EM, Yoo YM, Jeung EB. Bisphenol A and octylphenol exacerbate type 1 diabetes mellitus by disrupting calcium homeostasis in mouse pancreas. Toxicol Lett 2018; 295:162-172. [PMID: 29935216 DOI: 10.1016/j.toxlet.2018.06.1071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/14/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
In pancreatic β cells, which produce and secrete insulin, Ca2+ signals contribute to insulin production and secretion. Bisphenol A (BPA) and octylphenol (OP) are reported to increase plasma insulin levels and insulin transcription factors, but regulation of plasma glucose levels did not decrease proportionally to the insulin increase. We hypothesized that BPA and OP disrupt calcium homeostasis resulting in insulin resistance through induction of endoplasmic reticulum (ER) stress. BPA and OP treatment leads to survival of pancreatic β cells against streptozotocin, but despite an increased insulin level, serum glucose regulation is not properly regulated. The expression of genes involved in transporting calcium ions to the cytosol and ER decreased while the expression of those affecting the removal of calcium from the cytosol and ER increased. Depletion of calcium from the ER leads to ER stress and can induce insulin resistance. Insulin resistance is also confirmed by insulin-responsive gene, such as glucose transporter 4 (GLUT4) and IRS2, expression. Taken together, these results imply that disruption of calcium homeostasis by BPA and OP induces ER stress and leads to insulin resistance, especially in a streptozotocin (STZ) -induced type 1 diabetes mellitus model.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Hong-Seok Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Jae-Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Eui-Ju Hong
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea.
| |
Collapse
|
221
|
Perrier R, Pirog A, Jaffredo M, Gaitan J, Catargi B, Renaud S, Raoux M, Lang J. Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin. Biosens Bioelectron 2018; 117:253-259. [PMID: 29909196 DOI: 10.1016/j.bios.2018.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
On-line and real-time analysis of micro-organ activity permits to use the endogenous analytical power of cellular signal transduction algorithms as biosensors. We have developed here such a sensor using only a few pancreatic endocrine islets and the avoidance of transgenes or chemical probes reduces bias and procures general usage. Nutrient and hormone-induced changes in islet ion fluxes through channels provide the first integrative read-out of micro-organ activity. Using extracellular electrodes we captured this read-out non-invasively as slow potentials which reflect glucose concentration-dependent (3-15 mM) micro-organ activation and coupling. Custom-made PDMS-based microfluidics with platinum black micro-electrode arrays required only some tens of islets and functioned at flow rates of 1-10 µl/min which are compatible with microdialysis. We developed hardware solutions for on-line real-time analysis on a reconfigurable Field-Programmable Gate Array (FPGA) that offered resource-efficient architecture and storage of intermediary processing stages. Moreover, real-time adaptive and reconfigurable algorithms accounted for signal disparities and noise distribution. Based on islet slow potentials, this integrated set-up allowed within less than 40 μs the discrimination and precise automatic ranking of small increases (2 mM steps) of glucose concentrations in real time and within the physiological glucose range. This approach shall permit further development in continuous monitoring of the demand for insulin in type 1 diabetes as well as monitoring of organs-on-chip or maturation of stem-cell derived islets.
Collapse
Affiliation(s)
- R Perrier
- Laboratoire de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), UMR CNRS 5248, Univ. Bordeaux, 18 Av Geoffroy St Hilaire, 33600 Pessac, France
| | - A Pirog
- Laboratoire d'Intégration du Matériau au Système (IMS), UMR CNRS 5218, Univ. Bordeaux, Bordeaux INP, 33400 Talence, France
| | - M Jaffredo
- Laboratoire de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), UMR CNRS 5248, Univ. Bordeaux, 18 Av Geoffroy St Hilaire, 33600 Pessac, France
| | - J Gaitan
- Laboratoire de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), UMR CNRS 5248, Univ. Bordeaux, 18 Av Geoffroy St Hilaire, 33600 Pessac, France
| | - B Catargi
- Laboratoire de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), UMR CNRS 5248, Univ. Bordeaux, 18 Av Geoffroy St Hilaire, 33600 Pessac, France; Hôpital St André, Bordeaux University Hospital, Univ. Bordeaux, 1 rue Jean Burguet, 33000 Bordeaux, France
| | - S Renaud
- Laboratoire d'Intégration du Matériau au Système (IMS), UMR CNRS 5218, Univ. Bordeaux, Bordeaux INP, 33400 Talence, France
| | - M Raoux
- Laboratoire de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), UMR CNRS 5248, Univ. Bordeaux, 18 Av Geoffroy St Hilaire, 33600 Pessac, France
| | - J Lang
- Laboratoire de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), UMR CNRS 5248, Univ. Bordeaux, 18 Av Geoffroy St Hilaire, 33600 Pessac, France.
| |
Collapse
|
222
|
Yin R, Kyle J, Burnum-Johnson K, Bloodsworth KJ, Sussel L, Ansong C, Laskin J. High Spatial Resolution Imaging of Mouse Pancreatic Islets Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 90:6548-6555. [PMID: 29718662 PMCID: PMC5990474 DOI: 10.1021/acs.analchem.8b00161] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanospray Desorption Electrospray Ionization mass spectrometry imaging (nano-DESI MSI) enables ambient imaging of biological samples with high sensitivity and minimal sample pretreatment. Recently, we developed an approach for constant-distance mode MSI using shear force microscopy to precisely control the distance between the sample and the nano-DESI probe. Herein, we demonstrate the power of this approach for robust imaging of pancreatic islets with high spatial resolution of ∼11 μm. Pancreatic islets are difficult to characterize using traditional mass spectrometry approaches due to their small size (∼100 μm) and molecular heterogeneity. Nano-DESI MSI was used to examine the spatial localization of several lipid classes including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), phosphatidylinositol (PI), and phosphatidylserine (PS) along with fatty acids and their metabolites (e.g., prostaglandins) in the individual islets and surrounding tissue. Several lipids were found to be substantially enhanced in the islets indicating these lipids may be involved in insulin secretion. Remarkably different distributions were observed for several pairs of Lyso PC (LPC) and PC species differing only by one double bond, such as LPC 18:1 vs LPC 18:0, PC 32:1 vs PC 32:0, and PC 34:2 vs PC 34:1. These findings indicate that minor variations in the fatty acid chain length and saturation have a pronounced effect on the localization of PC and LPC species in pancreatic islets. Interestingly, oxidized PC species observed experimentally were found to be specifically localized to pancreatic islets. These PCs are potential biomarkers for reactive oxygen species in the islets, which could be harmful to pancreatic beta cells. The experimental approach presented in this study will provide valuable information on the heterogeneity of individual pancreatic islets, which is difficult to assess using bulk characterization techniques.
Collapse
Affiliation(s)
- Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Jennifer Kyle
- Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| | | | - Kent J. Bloodsworth
- Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado, 80045, United States
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
- Pacific Northwest National Laboratory, Richland, Washington, 99352, United States
| |
Collapse
|
223
|
Loppini A, Pedersen MG. Gap-junction coupling can prolong beta-cell burst period by an order of magnitude via phantom bursting. CHAOS (WOODBURY, N.Y.) 2018; 28:063111. [PMID: 29960397 DOI: 10.1063/1.5022217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pancreatic β-cells show multiple intrinsic modes of oscillation with bursting electrical activity playing a crucial role. Bursting is seen both in experimentally isolated β-cells as well as in electrically coupled cells in the pancreatic islets, but the burst period is typically an order of magnitude greater in coupled cells. This difference has previously been attributed to noisier dynamics, or perturbed electrophysiological properties, in isolated β-cells. Here, we show that diffusive coupling alone can extend the period more than ten-fold in bursting oscillators modeled with a so-called phantom burster model and analyze this result with slow-fast bifurcation analysis of an electrically coupled pair of cells. Our results should be applicable to other scenarios where coupling of bursting units, e.g., neurons, may increase the oscillation period drastically.
Collapse
Affiliation(s)
- Alessandro Loppini
- Unit of Nonlinear Physics and Mathematical Modeling, Campus Bio-Medico University of Rome, I-00128 Rome, Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padua, I-35131 Padua, Italy
| |
Collapse
|
224
|
The somatostatin-secreting pancreatic δ-cell in health and disease. NATURE REVIEWS. ENDOCRINOLOGY 2018. [PMID: 29773871 DOI: 10.1038/s41574‐018‐0020‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
|
225
|
Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun 2018. [PMID: 29773801 DOI: 10.1038/s41467‐018‐04353‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glucose homeostasis depends critically on insulin that is secreted by pancreatic β-cells. Serum glucose, which is directly sensed by β-cells, stimulates depolarization- and Ca2+-dependent exocytosis of insulin granules. Here we show that pancreatic islets prominently express LRRC8A and LRRC8D, subunits of volume-regulated VRAC anion channels. Hypotonicity- or glucose-induced β-cell swelling elicits canonical LRRC8A-dependent VRAC currents that depolarize β-cells to an extent that causes electrical excitation. Glucose-induced excitation and Ca2+ responses are delayed in onset, but not abolished, in β-cells lacking the essential VRAC subunit LRRC8A. Whereas Lrrc8a disruption does not affect tolbutamide- or high-K+-induced insulin secretion from pancreatic islets, it reduces first-phase glucose-induced insulin secretion. Mice lacking VRAC in β-cells have normal resting serum glucose levels but impaired glucose tolerance. We propose that opening of LRRC8/VRAC channels increases glucose sensitivity and insulin secretion of β-cells synergistically with KATP closure. Neurotransmitter-permeable LRRC8D-containing VRACs might have additional roles in autocrine/paracrine signaling within islets.
Collapse
Affiliation(s)
- Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Graduate Program of the Faculty for Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
226
|
Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun 2018; 9:1974. [PMID: 29773801 PMCID: PMC5958052 DOI: 10.1038/s41467-018-04353-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Glucose homeostasis depends critically on insulin that is secreted by pancreatic β-cells. Serum glucose, which is directly sensed by β-cells, stimulates depolarization- and Ca2+-dependent exocytosis of insulin granules. Here we show that pancreatic islets prominently express LRRC8A and LRRC8D, subunits of volume-regulated VRAC anion channels. Hypotonicity- or glucose-induced β-cell swelling elicits canonical LRRC8A-dependent VRAC currents that depolarize β-cells to an extent that causes electrical excitation. Glucose-induced excitation and Ca2+ responses are delayed in onset, but not abolished, in β-cells lacking the essential VRAC subunit LRRC8A. Whereas Lrrc8a disruption does not affect tolbutamide- or high-K+-induced insulin secretion from pancreatic islets, it reduces first-phase glucose-induced insulin secretion. Mice lacking VRAC in β-cells have normal resting serum glucose levels but impaired glucose tolerance. We propose that opening of LRRC8/VRAC channels increases glucose sensitivity and insulin secretion of β-cells synergistically with KATP closure. Neurotransmitter-permeable LRRC8D-containing VRACs might have additional roles in autocrine/paracrine signaling within islets.
Collapse
Affiliation(s)
- Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Graduate Program of the Faculty for Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
227
|
Srivastava S, Li Z, Soomro I, Sun Y, Wang J, Bao L, Coetzee WA, Stanley CA, Li C, Skolnik EY. Regulation of K ATP Channel Trafficking in Pancreatic β-Cells by Protein Histidine Phosphorylation. Diabetes 2018; 67:849-860. [PMID: 29440278 PMCID: PMC5909995 DOI: 10.2337/db17-1433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022]
Abstract
Protein histidine phosphatase 1 (PHPT-1) is an evolutionarily conserved 14-kDa protein that dephosphorylates phosphohistidine. PHPT-1-/- mice were generated to gain insight into the role of PHPT-1 and histidine phosphorylation/dephosphorylation in mammalian biology. PHPT-1-/- mice exhibited neonatal hyperinsulinemic hypoglycemia due to impaired trafficking of KATP channels to the plasma membrane in pancreatic β-cells in response to low glucose and leptin and resembled patients with congenital hyperinsulinism (CHI). The defect in KATP channel trafficking in PHPT-1-/- β-cells was due to the failure of PHPT-1 to directly activate transient receptor potential channel 4 (TRPC4), resulting in decreased Ca2+ influx and impaired downstream activation of AMPK. Thus, these studies demonstrate a critical role for PHPT-1 in normal pancreatic β-cell function and raise the possibility that mutations in PHPT-1 and/or TRPC4 may account for yet to be defined cases of CHI.
Collapse
Affiliation(s)
- Shekhar Srivastava
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Zhai Li
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Irfana Soomro
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Ying Sun
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Jianhui Wang
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| | - Li Bao
- Department of Pediatrics, New York University Langone Medical Center, New York, NY
| | - William A Coetzee
- Department of Pediatrics, New York University Langone Medical Center, New York, NY
| | - Charles A Stanley
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Chonghong Li
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Edward Y Skolnik
- Division of Nephrology, New York University Langone Medical Center, New York, NY
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY
- Skirball Institute for Biomolecular Medicine Skirball Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
228
|
Hansson SF, Zhou AX, Vachet P, Eriksson JW, Pereira MJ, Skrtic S, Jongsma Wallin H, Ericsson-Dahlstrand A, Karlsson D, Ahnmark A, Sörhede Winzell M, Magnone MC, Davidsson P. Secretagogin is increased in plasma from type 2 diabetes patients and potentially reflects stress and islet dysfunction. PLoS One 2018; 13:e0196601. [PMID: 29702679 PMCID: PMC5922551 DOI: 10.1371/journal.pone.0196601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Beta cell dysfunction accompanies and drives the progression of type 2 diabetes mellitus (T2D), but there are few clinical biomarkers available to assess islet cell stress in humans. Secretagogin, a protein enriched in pancreatic islets, demonstrates protective effects on beta cell function in animals. However, its potential as a circulating biomarker released from human beta cells and islets has not been studied. In this study primary human islets, beta cells and plasma samples were used to explore secretion and expression of secretagogin in relation to the T2D pathology. Secretagogin was abundantly and specifically expressed and secreted from human islets. Furthermore, T2D patients had an elevated plasma level of secretagogin compared with matched healthy controls, which was confirmed in plasma of diabetic mice transplanted with human islets. Additionally, the plasma secretagogin level of the human cohort had an inverse correlation to clinical assessments of beta cell function. To explore the mechanism of secretagogin release in vitro, human beta cells (EndoC-βH1) were exposed to elevated glucose or cellular stress-inducing agents. Secretagogin was not released in parallel with glucose stimulated insulin release, but was markedly elevated in response to endoplasmic reticulum stressors and cytokines. These findings indicate that secretagogin is a potential novel biomarker, reflecting stress and islet cell dysfunction in T2D patients.
Collapse
Affiliation(s)
- Sara F. Hansson
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Alex-Xianghua Zhou
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Paulina Vachet
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- Translational Medicine Unit CVRM, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Daniel Karlsson
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Sörhede Winzell
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Chiara Magnone
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Pia Davidsson
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
229
|
Aziz Q, Finlay M, Montaigne D, Ojake L, Li Y, Anderson N, Ludwig A, Tinker A. ATP-sensitive potassium channels in the sinoatrial node contribute to heart rate control and adaptation to hypoxia. J Biol Chem 2018; 293:8912-8921. [PMID: 29666184 DOI: 10.1074/jbc.ra118.002775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive potassium channels (KATP) contribute to membrane currents in many tissues, are responsive to intracellular metabolism, and open as ATP falls and ADP rises. KATP channels are widely distributed in tissues and are prominently expressed in the heart. They have generally been observed in ventricular tissue, but they are also expressed in the atria and conduction tissues. In this study, we focused on the contribution and role of the inwardly rectifying KATP channel subunit, Kir6.1, in the sinoatrial node (SAN). To develop a murine, conduction-specific Kir6.1 KO model, we selectively deleted Kir6.1 in the conduction system in adult mice (cKO). Electrophysiological data in single SAN cells indicated that Kir6.1 underlies a KATP current in a significant proportion of cells and influences early repolarization during pacemaking, resulting in prolonged cycle length. Implanted telemetry probes to measure heart rate and electrocardiographic characteristics revealed that the cKO mice have a slow heart rate, with episodes of sinus arrest in some mice. The PR interval (time between the onset of the P wave to the beginning of QRS complex) was increased, suggesting effects on the atrioventricular node. Ex vivo studies of whole heart or dissected heart regions disclosed impaired adaptive responses of the SAN to hypoxia, and this may have had long-term pathological consequences in the cKO mice. In conclusion, Kir6.1-containing KATP channels in the SAN have a role in excitability, heart rate control, and the electrophysiological adaptation of the SAN to hypoxia.
Collapse
Affiliation(s)
- Qadeer Aziz
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Malcolm Finlay
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - David Montaigne
- the Department of Clinical Physiology & Echocardiography, CHU Lille and the University of Lille, EGID, INSERM UMR1011, F-59000 Lille, France
| | - Leona Ojake
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Yiwen Li
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Naomi Anderson
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom
| | - Andreas Ludwig
- the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany, and
| | - Andrew Tinker
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, EC1M 6BQ, United Kingdom,
| |
Collapse
|
230
|
Jayakumar S, Hasan G. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress. Front Neural Circuits 2018; 12:25. [PMID: 29674958 PMCID: PMC5895653 DOI: 10.3389/fncir.2018.00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/02/2018] [Indexed: 01/13/2023] Open
Abstract
All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.
Collapse
Affiliation(s)
- Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
231
|
Jacquet A, Cottet-Rousselle C, Arnaud J, Julien Saint Amand K, Ben Messaoud R, Lénon M, Demeilliers C, Moulis JM. Mitochondrial Morphology and Function of the Pancreatic β-Cells INS-1 Model upon Chronic Exposure to Sub-Lethal Cadmium Doses. TOXICS 2018; 6:E20. [PMID: 29565305 PMCID: PMC6027415 DOI: 10.3390/toxics6020020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
Abstract
The impact of chronic cadmium exposure and slow accumulation on the occurrence and development of diabetes is controversial for human populations. Islets of Langerhans play a prominent role in the etiology of the disease, including by their ability to secrete insulin. Conversion of glucose increase into insulin secretion involves mitochondria. A rat model of pancreatic β-cells was exposed to largely sub-lethal levels of cadmium cations applied for the longest possible time. Cadmium entered cells at concentrations far below those inducing cell death and accumulated by factors reaching several hundred folds the basal level. The mitochondria reorganized in response to the challenge by favoring fission as measured by increased circularity at cadmium levels already ten-fold below the median lethal dose. However, the energy charge and respiratory flux devoted to adenosine triphosphate synthesis were only affected at the onset of cellular death. The present data indicate that mitochondria participate in the adaptation of β-cells to even a moderate cadmium burden without losing functionality, but their impairment in the long run may contribute to cellular dysfunction, when viability and β-cells mass are affected as observed in diabetes.
Collapse
Affiliation(s)
- Adeline Jacquet
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Josiane Arnaud
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
- Biochemistry, Molecular Biology and Environmental Toxicology (SB2TE), Grenoble University Hospital, CS 10217, 38043 Grenoble, France.
| | - Kevin Julien Saint Amand
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Raoua Ben Messaoud
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Marine Lénon
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Christine Demeilliers
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Jean-Marc Moulis
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
- CEA-Grenoble, Bioscience and Biotechnology Institute (BIG), 38054 Grenoble, France.
| |
Collapse
|
232
|
Functional Characterization of Native, High-Affinity GABA A Receptors in Human Pancreatic β Cells. EBioMedicine 2018; 30:273-282. [PMID: 29606630 PMCID: PMC5952339 DOI: 10.1016/j.ebiom.2018.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 01/19/2023] Open
Abstract
In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule synthesized by and released from the insulin-secreting β cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABAA receptors in human islet β cells as biological sensors and reveal that 100–1000 nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1) but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D) islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets β cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D. In human islets GABA (≤μM) activates β cell-specific GABAA receptors that become supersensitive to GABA in type 2 diabetes. GABAA receptors activity in β cells is enhanced by diazepam, anesthetics, the incretin GLP-1 but not the hypnotic zolpidem. GABA modulates rate of insulin granule exocytosis and glucose-stimulated insulin secretion.
GABA is a signal molecule in the brain but is also secreted by the insulin-producing β cells in pancreatic islets. GABA has many roles in human islets that most aim at optimizing function and survival of β cells. In the report by Korol, Jin et al. the authors identify and characterize the molecular unit that GABA binds to in human β cells, the GABAA receptors. These receptors normally sensitive become super-sensitive to GABA in type 2 diabetes. The GABAA receptors regulate insulin secretion and can themselves be regulated by the anxiolytic diazepam, anesthetics, the incretin GLP-1 but not the hypnotic zolpidem. Targeting GABA signaling in human islets in diabetes mellitus is likely to be a part of the solution when curing diabetes.
Collapse
|
233
|
The role of adherens junction proteins in the regulation of insulin secretion. Biosci Rep 2018; 38:BSR20170989. [PMID: 29459424 PMCID: PMC5861323 DOI: 10.1042/bsr20170989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
In healthy individuals, any rise in blood glucose levels is rapidly countered by the release of insulin from the β-cells of the pancreas which in turn promotes the uptake and storage of the glucose in peripheral tissues. The β-cells possess exquisite mechanisms regulating the secretion of insulin to ensure that the correct amount of insulin is released. These mechanisms involve tight control of the movement of insulin containing secretory vesicles within the β-cells, initially preventing most vesicles being able to move to the plasma membrane. Elevated glucose levels trigger an influx of Ca2+ that allows fusion of the small number of insulin containing vesicles that are pre-docked at the plasma membrane but glucose also stimulates processes that allow other insulin containing vesicles located further in the cell to move to and fuse with the plasma membrane. The mechanisms controlling these processes are complex and not fully understood but it is clear that the interaction of the β-cells with other β-cells in the islets is very important for their ability to develop the appropriate machinery for proper regulation of insulin secretion. Emerging evidence indicates one factor that is key for this is the formation of homotypic cadherin mediated adherens junctions between β-cells. Here, we review the evidence for this and discuss the mechanisms by which these adherens junctions might regulate insulin vesicle trafficking as well as the implications this has for understanding the dysregulation of insulin secretion seen in pathogenic states.
Collapse
|
234
|
Quinault A, Leloup C, Denwood G, Spiegelhalter C, Rodriguez M, Lefebvre P, Messaddeq N, Zhang Q, Dacquet C, Pénicaud L, Collins SC. Modulation of large dense core vesicle insulin content mediates rhythmic hormone release from pancreatic beta cells over the 24h cycle. PLoS One 2018; 13:e0193882. [PMID: 29543849 PMCID: PMC5854349 DOI: 10.1371/journal.pone.0193882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
The rhythmic nature of insulin secretion over the 24h cycle in pancreatic islets has been mostly investigated using transcriptomics studies showing that modulation of insulin secretion over this cycle is achieved via distal stages of insulin secretion. We set out to measure β-cell exocytosis using in depth cell physiology techniques at several time points. In agreement with the activity and feeding pattern of nocturnal rodents, we find that C57/Bl6J islets in culture for 24h exhibit higher insulin secretion during the corresponding dark phase than in the light phase (Zeitgeber Time ZT20 and ZT8, respectively, in vivo). Glucose-induced insulin secretion is increased by 21% despite normal intracellular Ca2+ transients and depolarization-evoked exocytosis, as measured by whole-cell capacitance measurements. This paradox is explained by a 1.37-fold increase in beta cell insulin content. Ultramorphological analyses show that vesicle size and density are unaltered, demonstrating that intravesicular insulin content per granule is modulated over the 24h cycle. Proinsulin levels did not change between ZT8 and ZT20. Islet glucagon content was inversely proportional to insulin content indicating that this unique feature is likely to support a physiological role. Microarray data identified the differential expression of 301 transcripts, of which 26 are miRNAs and 54 are known genes (including C2cd4b, a gene previously involved in insulin processing, and clock genes such as Bmal1 and Rev-erbα). Mouse β-cell secretion over the full course of the 24h cycle may rely on several distinct cellular functions but late night increase in insulin secretion depends solely on granule insulin content.
Collapse
Affiliation(s)
- Aurore Quinault
- CSGA, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, Dijon, France
| | - Corinne Leloup
- CSGA, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, Dijon, France
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | | | - Marianne Rodriguez
- Metabolism Discovery Research Pole of Therapeutical innovation Institut de Recherche Servier, 11 rue des Moulineaux Suresnes, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes and UMR 1011 Inserm Université Nord de France-Institut Pasteur de Lille, Boulevard du Professeur Leclerc, Lille, France
| | | | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | - Catherine Dacquet
- Biotechnology and Biomarker Research, Institut de Recherche Servier, 125 Chemin de Ronde, Croissy sur Seine, France
| | - Luc Pénicaud
- CSGA, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, Dijon, France
| | - Stephan C. Collins
- CSGA, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, Dijon, France
- IGBMC, 1 Rue Laurent Fries, Illkirch-Graffenstaden, France
- * E-mail:
| |
Collapse
|
235
|
Towards a comprehensive understanding of emerging dynamics and function of pancreatic islets: A complex network approach. Phys Life Rev 2018; 24:140-142. [DOI: 10.1016/j.plrev.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022]
|
236
|
Grespan E, Giorgino T, Arslanian S, Natali A, Ferrannini E, Mari A. Defective Amplifying Pathway of β-Cell Secretory Response to Glucose in Type 2 Diabetes: Integrated Modeling of In Vitro and In Vivo Evidence. Diabetes 2018; 67:496-506. [PMID: 29229615 DOI: 10.2337/db17-1039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022]
Abstract
In vivo studies have investigated the role of β-cell dysfunction in type 2 diabetes (T2D), whereas in vitro research on islets has elucidated key mechanisms that control the insulin secretion rate. However, the relevance of the cellular mechanisms identified in vitro (i.e., the triggering and amplifying pathways) has not been established in vivo. Furthermore, the mechanisms underpinning β-cell dysfunction in T2D remain undetermined. We propose a unifying explanation of several characteristic features of insulin secretion both in vitro and in vivo by using a mathematical model. The model describes the triggering and amplifying pathways and reproduces a variety of in vitro and in vivo tests in subjects with and without T2D, identifies the mechanisms modulating first-phase insulin secretion rate in response to basal hyperglycemia or insulin resistance, and shows that β-cell dysfunction in T2D can be explained by an impaired amplifying pathway with no need to postulate defects in intracellular calcium handling.
Collapse
Affiliation(s)
- Eleonora Grespan
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Toni Giorgino
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Silva Arslanian
- Division of Weight Management, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| |
Collapse
|
237
|
Richards P, Rachdi L, Oshima M, Marchetti P, Bugliani M, Armanet M, Postic C, Guilmeau S, Scharfmann R. MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic β-Cells. Diabetes 2018; 67:461-472. [PMID: 29282201 DOI: 10.2337/db17-0595] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/15/2017] [Indexed: 11/13/2022]
Abstract
Although the mechanisms by which glucose regulates insulin secretion from pancreatic β-cells are now well described, the way glucose modulates gene expression in such cells needs more understanding. Here, we demonstrate that MondoA, but not its paralog carbohydrate-responsive element-binding protein, is the predominant glucose-responsive transcription factor in human pancreatic β-EndoC-βH1 cells and in human islets. In high-glucose conditions, MondoA shuttles to the nucleus where it is required for the induction of the glucose-responsive genes arrestin domain-containing protein 4 (ARRDC4) and thioredoxin interacting protein (TXNIP), the latter being a protein strongly linked to β-cell dysfunction and diabetes. Importantly, increasing cAMP signaling in human β-cells, using forskolin or the glucagon-like peptide 1 mimetic Exendin-4, inhibits the shuttling of MondoA and potently inhibits TXNIP and ARRDC4 expression. Furthermore, we demonstrate that silencing MondoA expression improves glucose uptake in EndoC-βH1 cells. These results highlight MondoA as a novel target in β-cells that coordinates transcriptional response to elevated glucose levels.
Collapse
Affiliation(s)
- Paul Richards
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Latif Rachdi
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Masaya Oshima
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mathieu Armanet
- Cell Therapy Unit Hospital Saint-Louis and University Paris-Diderot, Paris, France
| | - Catherine Postic
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sandra Guilmeau
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raphael Scharfmann
- INSERM U1016, Cochin Institute, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
238
|
Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance. PLoS One 2018; 13:e0192441. [PMID: 29466430 PMCID: PMC5821323 DOI: 10.1371/journal.pone.0192441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen) amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP) on insulin secretion rates (ISRs) and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP) levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s) infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.
Collapse
|
239
|
Gandasi NR, Yin P, Omar-Hmeadi M, Ottosson Laakso E, Vikman P, Barg S. Glucose-Dependent Granule Docking Limits Insulin Secretion and Is Decreased in Human Type 2 Diabetes. Cell Metab 2018; 27:470-478.e4. [PMID: 29414688 DOI: 10.1016/j.cmet.2017.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 12/23/2017] [Indexed: 01/19/2023]
Abstract
Glucose-stimulated insulin secretion is biphasic, with a rapid first phase and a slowly developing sustained second phase; both are disturbed in type 2 diabetes (T2D). Biphasic secretion results from vastly different release probabilities of individual insulin granules, but the morphological and molecular basis for this is unclear. Here, we show that human insulin secretion and exocytosis critically depend on the availability of membrane-docked granules and that T2D is associated with a strong reduction in granule docking. Glucose accelerated granule docking, and this effect was absent in T2D. Newly docked granules only slowly acquired release competence; this was regulated by major signaling pathways, but not glucose. Gene expression analysis indicated that key proteins involved in granule docking are downregulated in T2D, and overexpression of these proteins increased granule docking. The findings establish granule docking as an important glucose-dependent step in human insulin secretion that is dysregulated in T2D.
Collapse
Affiliation(s)
- Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Peng Yin
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Emilia Ottosson Laakso
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, 20502 Malmö, Sweden
| | - Petter Vikman
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, 20502 Malmö, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden.
| |
Collapse
|
240
|
Guo R, Jiang J, Jing Z, Chen Y, Shi Z, Deng B. Cysteinyl leukotriene receptor 1 regulates glucose-stimulated insulin secretion (GSIS). Cell Signal 2018; 46:129-134. [PMID: 29412178 DOI: 10.1016/j.cellsig.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 01/17/2023]
Abstract
Insulin resistance is an important pathological hallmark of type 2 diabetes mellitus. Glucose-stimulated insulin secretion (GSIS) plays a key role in maintaining blood glucose levels within normal range. Impaired GSIS has been associated with type 2 diabetes, however, the underlying molecular mechanisms remain largely unknown. Cysteinyl leukotriene receptor 1 (cysLT1R) is an important G protein-coupled receptor mediating the biological functions of cysteinyl leukotrienes (cys-LTs). Little is known about the effects of cysLT1R in insulin secretion and pathogenesis of T2DM. In the present study, we aimed to define the physiological functions of cysLT1R in GSIS in MIN6 β-cells. Using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis, we found that cysLT1R was expressed in pancreatic MIN6 β-cells. We also reported that glucose increased the expression of cysLT1R in MIN6 cells. Additionally, the cysLT1R antagonist montelukast promoted GSIS in a dose dependent manner, however, the cysLT1R agonist LD4 inhibited GSIS, suggesting an antagonistic effect of cysLT1R on GSIS. Silencing of cysLT1R by transfection with cysLT1R siRNA enhanced GSIS while overexpression of cysLT1R reduced GSIS in pancreatic MIN6 β-cells. Mechanistically, we found that the Arf6/Cdc42/Rac1 pathway was involved in this process. Collectively, our findings highlight the essential role of cysLT1R in suppressing pancreatic insulin secretion, and potentially provided a new insight into understanding the mechanical regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Runmin Guo
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, PR China
| | - Jiamei Jiang
- Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, PR China
| | - Zhiliang Jing
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, PR China
| | - Yonghua Chen
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, PR China
| | - Zhizhou Shi
- Department of Endocrinology and Metabolism, Longgang District People's Hospital, Shenzhen 518172, China
| | - Baoping Deng
- Department of cardiovascular surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, PR China.
| |
Collapse
|
241
|
Wedgwood KCA, Satin LS. Six degrees of depolarization: Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al. Phys Life Rev 2018; 24:136-139. [PMID: 29395878 DOI: 10.1016/j.plrev.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/18/2018] [Indexed: 11/17/2022]
Affiliation(s)
| | - Leslie S Satin
- University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
242
|
Castiello FR, Tabrizian M. Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification. Anal Chem 2018; 90:3132-3139. [DOI: 10.1021/acs.analchem.7b04288] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
243
|
Abstract
Insulin secretion is initiated by activation of voltage-gated Ca2+ channels (VGCC) to trigger Ca2+-mediated insulin vesicle fusion with the β-cell plasma membrane. The firing of VGCC requires β-cell membrane depolarization, which is regulated by a balance of depolarizing and hyperpolarizing ionic currents. Here, we show that SWELL1 mediates a swell-activated, depolarizing chloride current (ICl,SWELL) in both murine and human β-cells. Hypotonic and glucose-stimulated β-cell swelling activates SWELL1-mediated ICl,SWELL and this contributes to membrane depolarization and activation of VGCC-dependent intracellular calcium signaling. SWELL1 depletion in MIN6 cells and islets significantly impairs glucose-stimulated insulin secretion. Tamoxifen-inducible β-cell-targeted Swell1 KO mice have normal fasting serum glucose and insulin levels but impaired glucose-stimulated insulin secretion and glucose tolerance; and this is further exacerbated in mild obesity. Our results reveal that β-cell SWELL1 modulates insulin secretion and systemic glycaemia by linking glucose-mediated β-cell swelling to membrane depolarization and activation of VGCC-triggered calcium signaling.
Collapse
|
244
|
Kang C, Xie L, Gunasekar SK, Mishra A, Zhang Y, Pai S, Gao Y, Kumar A, Norris AW, Stephens SB, Sah R. SWELL1 is a glucose sensor regulating β-cell excitability and systemic glycaemia. Nat Commun 2018; 9:367. [PMID: 29371604 PMCID: PMC5785485 DOI: 10.1038/s41467-017-02664-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Insulin secretion is initiated by activation of voltage-gated Ca2+ channels (VGCC) to trigger Ca2+-mediated insulin vesicle fusion with the β-cell plasma membrane. The firing of VGCC requires β-cell membrane depolarization, which is regulated by a balance of depolarizing and hyperpolarizing ionic currents. Here, we show that SWELL1 mediates a swell-activated, depolarizing chloride current (ICl,SWELL) in both murine and human β-cells. Hypotonic and glucose-stimulated β-cell swelling activates SWELL1-mediated ICl,SWELL and this contributes to membrane depolarization and activation of VGCC-dependent intracellular calcium signaling. SWELL1 depletion in MIN6 cells and islets significantly impairs glucose-stimulated insulin secretion. Tamoxifen-inducible β-cell-targeted Swell1 KO mice have normal fasting serum glucose and insulin levels but impaired glucose-stimulated insulin secretion and glucose tolerance; and this is further exacerbated in mild obesity. Our results reveal that β-cell SWELL1 modulates insulin secretion and systemic glycaemia by linking glucose-mediated β-cell swelling to membrane depolarization and activation of VGCC-triggered calcium signaling.
Collapse
Affiliation(s)
- Chen Kang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Litao Xie
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Susheel K Gunasekar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Anil Mishra
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Yanhui Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Saachi Pai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Yiwen Gao
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Andrew W Norris
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242, USA
| | - Samuel B Stephens
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242, USA
| | - Rajan Sah
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA.
- Fraternal Order of the Eagles Diabetes Research Center, Iowa City, IA, 52242, USA.
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
245
|
20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nat Commun 2018; 9:177. [PMID: 29330456 PMCID: PMC5766607 DOI: 10.1038/s41467-017-02539-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
The long-chain fatty acid receptor FFAR1 is highly expressed in pancreatic β-cells. Synthetic FFAR1 agonists can be used as antidiabetic drugs to promote glucose-stimulated insulin secretion (GSIS). However, the physiological role of FFAR1 in β-cells remains poorly understood. Here we show that 20-HETE activates FFAR1 and promotes GSIS via FFAR1 with higher potency and efficacy than dietary fatty acids such as palmitic, linoleic, and α-linolenic acid. Murine and human β-cells produce 20-HETE, and the ω-hydroxylase-mediated formation and release of 20-HETE is strongly stimulated by glucose. Pharmacological inhibition of 20-HETE formation and blockade of FFAR1 in islets inhibits GSIS. In islets from type-2 diabetic humans and mice, glucose-stimulated 20-HETE formation and 20-HETE-dependent stimulation of GSIS are strongly reduced. We show that 20-HETE is an FFAR1 agonist, which functions as an autocrine positive feed-forward regulator of GSIS, and that a reduced glucose-induced 20-HETE formation contributes to inefficient GSIS in type-2 diabetes. FFAR1 receptor is highly expressed in beta cells and its activation has been suggested as therapy against type-2 diabetes. Here, Tunaru et al. show that 20-hydroxyeicosatetraenoic acid, produced within the islets upon glucose stimulation, acts in an autocrine manner to stimulate insulin secretion via FFAR1 activation.
Collapse
|
246
|
Chen Z, Wang J, Sun W, Archibong E, Kahkoska AR, Zhang X, Lu Y, Ligler FS, Buse JB, Gu Z. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat Chem Biol 2018; 14:86-93. [PMID: 29083418 PMCID: PMC6053053 DOI: 10.1038/nchembio.2511] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
Generating artificial pancreatic beta cells by using synthetic materials to mimic glucose-responsive insulin secretion in a robust manner holds promise for improving clinical outcomes in people with diabetes. Here, we describe the construction of artificial beta cells (AβCs) with a multicompartmental 'vesicles-in-vesicle' superstructure equipped with a glucose-metabolism system and membrane-fusion machinery. Through a sequential cascade of glucose uptake, enzymatic oxidation and proton efflux, the AβCs can effectively distinguish between high and normal glucose levels. Under hyperglycemic conditions, high glucose uptake and oxidation generate a low pH (<5.6), which then induces steric deshielding of peptides tethered to the insulin-loaded inner small liposomal vesicles. The peptides on the small vesicles then form coiled coils with the complementary peptides anchored on the inner surfaces of large vesicles, thus bringing the membranes of the inner and outer vesicles together and triggering their fusion and insulin 'exocytosis'.
Collapse
Affiliation(s)
- Zhaowei Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edikan Archibong
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xudong Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
247
|
Lei CL, Kellard JA, Hara M, Johnson JD, Rodriguez B, Briant LJ. Beta-cell hubs maintain Ca 2+ oscillations in human and mouse islet simulations. Islets 2018; 10:151-167. [PMID: 30142036 PMCID: PMC6113907 DOI: 10.1080/19382014.2018.1493316] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Islet β-cells are responsible for secreting all circulating insulin in response to rising plasma glucose concentrations. These cells are a phenotypically diverse population that express great functional heterogeneity. In mice, certain β-cells (termed 'hubs') have been shown to be crucial for dictating the islet response to high glucose, with inhibition of these hub cells abolishing the coordinated Ca2+ oscillations necessary for driving insulin secretion. These β-cell hubs were found to be highly metabolic and susceptible to pro-inflammatory and glucolipotoxic insults. In this study, we explored the importance of hub cells in human by constructing mathematical models of Ca2+ activity in human islets. Our simulations revealed that hubs dictate the coordinated Ca2+ response in both mouse and human islets; silencing a small proportion of hubs abolished whole-islet Ca2+ activity. We also observed that if hubs are assumed to be preferentially gap junction coupled, then the simulations better adhere to the available experimental data. Our simulations of 16 size-matched mouse and human islet architectures revealed that there are species differences in the role of hubs; Ca2+ activity in human islets was more vulnerable to hub inhibition than mouse islets. These simulation results not only substantiate the existence of β-cell hubs, but also suggest that hubs may be favorably coupled in the electrical and metabolic network of the islet, and that targeted destruction of these cells would greatly impair human islet function.
Collapse
Affiliation(s)
- Chon-Lok Lei
- Doctoral Training Centre, University of Oxford, Oxford, UK
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Joely A. Kellard
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, USA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Linford J.B. Briant
- Department of Computer Science, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
248
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
249
|
Wu W, Yao X, Jiang L, Zhang Q, Bai J, Qiu T, Yang L, Gao N, Yang G, Liu X, Chen M, Sun X. Pancreatic islet-autonomous effect of arsenic on insulin secretion through endoplasmic reticulum stress-autophagy pathway. Food Chem Toxicol 2018; 111:19-26. [PMID: 29111283 DOI: 10.1016/j.fct.2017.10.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/26/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Inorganic arsenic is a worldwide environmental pollutant. Arsenic's relationship with the incidence of diabetes arouses concerns on its etiological mechanism. In this study, the glucose-stimulated insulin secretion (GSIS) from isolated pancreatic islets of As2O3-treated mice was significantly lower than that of control mice. It indicated that the effect of As2O3-inhibited GSIS was pancreatic islet-autonomous. The level of phospho-PERK (p-PERK), a biomarker of endoplasmic reticulum (ER) stress, in pancreas of As2O3-treated mice was increased significantly. After treatment with NaAsO2, the p-PERK level in INS-1 rat pancreatic β- cells was increased correspondingly. After treatment with PERK inhibitor, the GSIS from isolated pancreatic islets of As2O3-treated mice was recovered. Arsenic induced autophagy in pancreatic islets, as evidenced by elevated LC3-II level and depressed P62 level in vivo and in vitro. In NaAsO2-treated INS-1 cells, the initiation of ER stress preceded the stimulation of autophagy, which was a key factor controlling pancreatic β cell function. Furthermore, knockdown of PERK attenuated NaAsO2-induced autophagy in INS-1 cells. These data indicated that arsenic impaired β cell function through ER stress-autophagy pathway. The present study will provide new mechanistic insights into arsenic-related diabetes.
Collapse
Affiliation(s)
- Wei Wu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Qiaoting Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Lei Yang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Ni Gao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofang Liu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Min Chen
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
250
|
Misunderstandings and controversies about the insulin-secreting properties of antidiabetic sulfonylureas. Biochimie 2017; 143:3-9. [DOI: 10.1016/j.biochi.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
|