201
|
Creeden JF, Imami AS, Eby HM, Gillman C, Becker KN, Reigle J, Andari E, Pan ZK, O'Donovan SM, McCullumsmith RE, McCullumsmith CB. Fluoxetine as an anti-inflammatory therapy in SARS-CoV-2 infection. Biomed Pharmacother 2021; 138:111437. [PMID: 33691249 PMCID: PMC7904450 DOI: 10.1016/j.biopha.2021.111437] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023] Open
Abstract
Hyperinflammatory response caused by infections such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) increases organ failure, intensive care unit admission, and mortality. Cytokine storm in patients with Coronavirus Disease 2019 (COVID-19) drives this pattern of poor clinical outcomes and is dependent upon the activity of the transcription factor complex nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and its downstream target gene interleukin 6 (IL6) which interacts with IL6 receptor (IL6R) and the IL6 signal transduction protein (IL6ST or gp130) to regulate intracellular inflammatory pathways. In this study, we compare transcriptomic signatures from a variety of drug-treated or genetically suppressed (i.e. knockdown) cell lines in order to identify a mechanism by which antidepressants such as fluoxetine demonstrate non-serotonergic, anti-inflammatory effects. Our results demonstrate a critical role for IL6ST and NF-kappaB Subunit 1 (NFKB1) in fluoxetine's ability to act as a potential therapy for hyperinflammatory states such as asthma, sepsis, and COVID-19.
Collapse
Affiliation(s)
- Justin Fortune Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Ali Sajid Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Hunter M Eby
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Cassidy Gillman
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kathryn N Becker
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jim Reigle
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elissar Andari
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Zhixing K Pan
- Department of Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Cheryl B McCullumsmith
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
202
|
Cao W, Zhang C, Wang H, Wu Q, Yuan Y, Chen J, Geng S, Zhang X. Ischemic Stroke: An Underestimated Complication of COVID-19. Aging Dis 2021; 12:691-704. [PMID: 34094634 PMCID: PMC8139195 DOI: 10.14336/ad.2021.0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has spread rapidly as a pandemic around the world. In addition to severe acute respiratory syndrome, more and more studies have focused on the complication of COVID-19, especially ischemic stroke. Here, we propose several pathophysiological processes and possible mechanisms underlying ischemic stroke after COVID-19 for early prevention and better treatment of COVID-19-related stroke.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Qianqian Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
203
|
Ungogo MA, Mohammed M, Umar BN, Bala AA, Khalid GM. Review of pharmacologic and immunologic agents in the management of COVID-19. BIOSAFETY AND HEALTH 2021; 3:148-155. [PMID: 33458647 PMCID: PMC7796672 DOI: 10.1016/j.bsheal.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) is the third coronavirus outbreak in the last two decades. Emerging and re-emerging infections like COVID-19 pose serious challenges of the paucity of information and lack of specific cure or vaccines. This leaves utilisation of existing scientific data on related viral infections and repurposing relevant aetiologic and supportive therapies as the best control approach while novel strategies are developed and trialled. Many promising antiviral agents including lopinavir, ritonavir, remdesivir, umifenovir, darunavir, and oseltamivir have been repurposed and are currently trialled for the care for COVID-19 patients. Adjunct therapies for the management of symptoms and to provide support especially in severe and critically ill patients have also been identified. This review provides an appraisal of the current evidence for the rational use of frontline therapeutics in the management of COVID-19. It also includes updates regarding COVID-19 immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang City 11800, Pulau Pinang State, Malaysia
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
| | - Bala N Umar
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
| | - Auwal A Bala
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University, Dutse 720231, Jigawa State, Nigeria
| | - Garba M Khalid
- Faculty of Pharmaceutical Sciences, Bayero University, Kano P.M.B. 3011, Kano State, Nigeria
- Department of Pharmaceutical Sciences, Università Degli Studi di Milano, Via G. Colombo, 71, Milano 20133, Italy
| |
Collapse
|
204
|
Gupta DL, Sharma A, Soni KD, Kazim SN, Bhoi S, Rao DN. Changes in the behaviour of monocyte subsets in acute post-traumatic sepsis patients. Mol Immunol 2021; 136:65-72. [PMID: 34087625 DOI: 10.1016/j.molimm.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Trauma remains a major public health problem worldwide, marked as the fourth leading cause of death among all diseases. Trauma patients who survived at initial stages in the Emergency Department (ED), have significantly higher chances of mortality due to sepsis associated complications in the ICU at the later stage. There is paucity of literature regarding the role of circulating monocytes subsets and development of sepsis complications following trauma haemorrhagic shock (THS). The study was conducted to investigate the circulating level of monocyte subsets (Classical, Inflammatory, and Patrolling) and its functions in patients with acute post-traumatic sepsis. A total 72, THS patients and 30 age matched healthy controls were recruited. Blood samples were collected at different time points on days 1, 7, and 14 to measure the serum levels of cytokines by Cytometric bead assay (CBA), for the immunophenotyping of monocytes subsets, and also for the cell sorting of monocytes subsets for the functional studies. The circulating levels of monocytes subsets were found to be significantly differs among THS patients, who developed sepsis when compared with others who did not. The levels of patrolling monocytes were elevated in THS patients who developed sepsis and showed negative correlation with Sequential organ failure assessment (SOFA) score on days 7 and 14. Classical monocytes responded strongly to bacterial TLR-agonist (LPS) and produced anti-inflammatory cytokines, whereas patrolling monocytes responded with viral TLR agonist TLR-7/8 (R848) and produced inflammatory cytokines in post-traumatic sepsis patients. In conclusion, this study shows disparity in the behaviour of monocytes subsets in patients with acute post-traumatic sepsis.
Collapse
Affiliation(s)
- Dablu Lal Gupta
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India.
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| | - Kapil Dev Soni
- Department of Intensive and Critical Care, JPNATC, All India Institute of Medical Sciences, New Delhi, India.
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Central University, New Delhi, India.
| | - Sanjeev Bhoi
- Department of Emergency Medicine, JPNATC, All India Institute of Medical Sciences, New Delhi, India.
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
205
|
Kan X, Liu J, Chen Y, Guo W, Xu D, Cheng J, Cao Y, Yang Z, Fu S. Protective effect of myricetin on LPS-induced mastitis in mice through ERK1/2 and p38 protein author. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1727-1735. [PMID: 34057544 DOI: 10.1007/s00210-021-02069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022]
Abstract
The inflammatory reaction of mammary gland tissue in dairy cattle leads to the occurrence of mastitis disease and causes huge economic loss. Myricetin (Myr), a flavonoid natural product, is extracted from the root, stem, and leaves of Myrica rubra. It has a wide range of biological activities, such as anti-oxidant, anti-inflammatory, and anti-tumor. The purpose of this experiment is to further explore the effect of Myr on mastitis and further explore its potential mechanism in LPS-induced mice mastitis model and LPS-induced mice mammary epithelial cells (mMECs). The results showed that Myr could significantly inhibit the expression of TNF-α, IL-6, and IL-1β in the mammary gland of mice. Furthermore, the results of mechanism studies show that Myr can significantly inhibit P38 and ERK1/2 protein phosphorylation levels in mice mammary tissue, and this result has been further verified at the cellular level. These results confirm that Myr can significantly inhibit mammary inflammation, and its potential mechanism is to play a protective role by inhibiting the phosphorylation level of P38 and ERK1/2 protein.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Yingsheng Chen
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Dianwen Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Ji Cheng
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Zhanqing Yang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.
| |
Collapse
|
206
|
Zajác P, Čurlej J, Benešová L, Čapla J. Hygiene measures in supermarkets, retail food stores, and grocery shops during the COVID-19 pandemic in Slovakia. POTRAVINARSTVO 2021. [DOI: 10.5219/1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The article presents the hygiene measures that are applied in the Slovak Republic in supermarkets, food stores, grocery stores as a result of the COVID-19 pandemic situation in Slovakia. These measures have been published by the Public Health Authority of the Slovak Republic in the relevant legal regulations and are based on the decisions of the Government of the Slovak Republic, which took into account the opinions of the experts of the Pandemic Commission of the Government of the Slovak Republic. In general, these measures are based on the mask-distance-hand principle. In public areas outside and inside, it was ordered to wear masks and later wear a respirator of FFP2 class in exterior and interior, gloves on hands or disinfection of customers' hands before entering the store, observance of 2 m distance of people standing in a row at the cash registers, maximum capacity of persons in stores was determined one person per 25 m2 of sales area and later, this measure was tightened to 15 m2 of sales area. Also, to perform regular ventilation of the premises and to have as many cash registers as possible so as not to create long lines of customers. All shops were closed at 8:00 PM. In the case of shopping centers, entry is prohibited for people with a body temperature higher than 37 °C, and disinfection of hands is mandatory, wearing a mask and later wear respirators of FFP2 class is necessary. In a stricter regime, during the peak of the pandemic, there was a restriction for persons to shop food only in the nearest retail/grocery or similar place from the place of residence to the extent necessary to procure the essential needs of life.
Collapse
|
207
|
Baik AH, Oluwole OO, Johnson DB, Shah N, Salem JE, Tsai KK, Moslehi JJ. Mechanisms of Cardiovascular Toxicities Associated With Immunotherapies. Circ Res 2021; 128:1780-1801. [PMID: 33934609 PMCID: PMC8159878 DOI: 10.1161/circresaha.120.315894] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune-based therapies have revolutionized cancer treatments. Cardiovascular sequelae from these treatments, however, have emerged as critical complications, representing new challenges in cardio-oncology. Immune therapies include a broad range of novel drugs, from antibodies and other biologics, including immune checkpoint inhibitors and bispecific T-cell engagers, to cell-based therapies, such as chimeric-antigen receptor T-cell therapies. The recognition of immunotherapy-associated cardiovascular side effects has also catapulted new research questions revolving around the interactions between the immune and cardiovascular systems, and the signaling cascades affected by T cell activation, cytokine release, and immune system dysregulation. Here, we review the specific mechanisms of immune activation from immunotherapies and the resulting cardiovascular toxicities associated with immune activation and excess cytokine production.
Collapse
Affiliation(s)
- Alan H Baik
- Division of Cardiovascular Medicine, Department of Medicine, UCSF, San Francisco, CA (A.H.B.)
| | - Olalekan O Oluwole
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Douglas B Johnson
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nina Shah
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA (N.S., K.K.T.)
| | - Joe-Elie Salem
- Department of Pharmacology, Cardio-oncology Program, CIC-1901, APHP.Sorbonne Université, Paris, France (J.-E.S.)
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| | - Katy K Tsai
- Division of Hematology and Oncology, Department of Medicine, UCSF, San Francisco, CA (N.S., K.K.T.)
| | - Javid J Moslehi
- Division of Cardiovascular Medicine (J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Division of Oncology (D.B.J., J.J.M., O.O.O.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.-E.S., J.J.M.)
| |
Collapse
|
208
|
Xu K, Wei Y, Giunta S, Zhou M, Xia S. Do inflammaging and coagul-aging play a role as conditions contributing to the co-occurrence of the severe hyper-inflammatory state and deadly coagulopathy during COVID-19 in older people? Exp Gerontol 2021; 151:111423. [PMID: 34048906 PMCID: PMC8149167 DOI: 10.1016/j.exger.2021.111423] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is a new infectious respiratory disease, which has caused a pandemic that has become the world's leading public health emergency, threatening people of all ages worldwide, especially the elderly. Complications of COVID-19 are closely related to an upregulation of the inflammatory response revealed by the pro-inflammatory profile of plasma cytokines (to the point of causing a cytokine storm), which is also a contributing cause of the associated coagulation disorders with venous and arterial thromboembolisms, causing multiple organ dysfunction and failure. In severe fulminant cases of COVID-19, there is an activation of coagulation and consumption of clotting factors leading to a deadly disseminated intravascular coagulation (DIC). It is well established that human immune response changes with age, and also that the pro-inflammatory profile of plasma cytokines is upregulated in both healthy and diseased elderly people. In fact, normal aging is known to be associated with a subclinical, sterile, low-grade, systemic pro-inflammatory state linked to the chronic activation of the innate immune system, a phenomenon known as “inflammaging”. Inflammaging may play a role as a condition contributing to the co-occurrence of the severe hyper-inflammatory state (cytokine storm) during COVID-19, and also in other severe infections (sepsis) in older people. Moreover, we must consider the impact of inflammation on coagulation due to the crosstalk between inflammation and coagulation. The systemic inflammatory state and coagulation disorders are closely related, a phenomenon that here we call “coagul-aging” (Giunta S.). In this review, we discuss the various degrees of inflammation in older adults after being infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the adverse effects of aging on the inflammatory response and coagulation system. It is important to note that although there is no gender difference in susceptibility to COVID-19 infection, however, due to differences in angiotensin-converting enzyme 2 (ACE2) expression, innate immunity, and comorbidities, older men exhibit more severe disease and higher mortality than older women. There are currently no FDA-approved specific antiviral drugs that can be used against the virus. Therapies used in patients with COVID-19 consist of remdesivir, dexamethasone, low-molecular-weight heparin, in addition to monoclonal antibodies against the spike protein of SARS-CoV-2 in the early phase of the disease. Future pharmacological research should also consider targeting the possible role of the underlying scenario of inflammaging in healthy older people to prevent or mitigate disease complications. It is worth mentioning that some specific cytokine antagonists and traditional Chinese medicine preparations can reduce the elderly's inflammatory state.
Collapse
Affiliation(s)
- Kangqiao Xu
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China.
| | - Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China; School of Clinical Medicine, Bengbu Medical College, Bengbu, PR China
| | - Sergio Giunta
- Casa di Cura Prof. Nobili-GHC Garofalo Health Care, Bologna, Italy
| | - Min Zhou
- Department of Respiratory Diseases, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai, PR China.
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
209
|
Tascioglu D, Akkaya E, Genc S. The understanding of the immunopathology in COVID-19 infection. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:255-263. [PMID: 34032527 DOI: 10.1080/00365513.2021.1892817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coronaviruses belonging to the Coronaviridae family are single-stranded RNA viruses. The entry of SARS-CoV-2 is accomplished via ACE-2 receptors. SARS-CoV-2 infection coactivates both innate and adaptive immune responses. Although SARS-CoV-2 stimulates antibody production with a typical pattern of IgM/IgG, cellular immunity is also impaired. In severe cases, low CD4 + and CD8 + T cell counts are associated with impaired immune functions, and high neutrophil/lymphocyte ratios accompanying low lymphocyte subsets have been demonstrated. Recently, high IFN -α/γ ratios with impaired T cell responses, and increased IL-1, IL-6, TNF-α, MCP-1, IP-10, IL-4, IL-10 have been reported in COVID-19 infection. Increased proinflammatory cytokines and chemokines in patients with severe COVID-19 may cause the suppression of CD4 + and CD8 + T cells and regulatory T cells, causing excessive inflammatory responses and fatal cytokine storm with tissue and organ damage. Consequently, novel therapeutics to be developed against host immune system, including blockade of cytokines (IL-6, IL-1, IFN) themselves, their receptors or signaling pathways- JAK inhibitors- could be effective as potential therapeutics.
Collapse
Affiliation(s)
- Didem Tascioglu
- Department of Infectious Disease and Clinical Microbiology, Liv Hospital, Istinye University, Esenyurt, Istanbul, Turkey
| | - Emre Akkaya
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey
| | - Sema Genc
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey
| |
Collapse
|
210
|
Roushdy T, Hamid E. A review on SARS-CoV-2 and stroke pathogenesis and outcome. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021; 57:63. [PMID: 34025115 PMCID: PMC8132483 DOI: 10.1186/s41983-021-00319-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome corona virus 2 hit strongly and hardly the entire globe for more than 1 year with a morbidity exceeding 139 million and a mortality approaching 3 million worldwide since its emergence in China in December 2019 until April 2021. Although being termed after its ancestor the acute respiratory syndrome corona virus that emerged in 2002. Yet, the current corona virus has its unique devastating presentations being pulmonary and extra pulmonary. In the current review, a highlight on the role played by corona virus 2 on pathogenesis and outcome of stroke is presented with an attempt to point to the most approved ways through which the corona virus induce stroke being disturbance in renin angiotensin system and angiotensin-converting enzyme 2 receptors downregulation, endothelial cell damage with coagulopathy, cytokine storm, and platelet as well as outcome and risks in patients who are suffering stroke with modifiable vascular risk factors and catching the severe acute respiratory syndrome corona virus 2.
Collapse
Affiliation(s)
- Tamer Roushdy
- Neurology Department, Faculty of Medicine, Ain Shams University, 38 Abbasia, PO 11591, Cairo, Egypt
| | - Eman Hamid
- Neurology Department, Faculty of Medicine, Ain Shams University, 38 Abbasia, PO 11591, Cairo, Egypt
| |
Collapse
|
211
|
Varikasuvu SR, Varshney S, Dutt N. Markers of coagulation dysfunction and inflammation in diabetic and non-diabetic COVID-19. J Thromb Thrombolysis 2021; 51:941-946. [PMID: 32889620 PMCID: PMC7474490 DOI: 10.1007/s11239-020-02270-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Coagulation dysfunction and inflammatory status were compared between diabetic and non-diabetic COVID-19 patients. The standardized mean difference (SMD) and its 95% confidence interval (CI) was computed for the difference of inflammatory and hypercoagulability markers. The levels of serum ferritin (standardized mean difference-SMD: 0.47, CI 0.17–0.77, p = 0.002), C-reactive protein (SMD = 0.53, CI 0.20–0.86, p = 0.002), interleukin-6 (SMD = 0.31, CI 0.09–0.52, p = 0.005), fibrinogen (SMD = 0.31, CI 0.09–0.54, p = 0.007) and D-dimers (SMD = 0.54, CI 0.16–0.91, p = 0.005) were significantly higher in diabetic COVID-19 cases as compared to non-diabetic COVID-19 patients, suggesting more susceptibility of diabetic COVID-19 patients to coagulation dysfunction and inflammatory storm.
Collapse
Affiliation(s)
- Seshadri Reddy Varikasuvu
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, 814152, India.
| | - Saurabh Varshney
- All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Naveen Dutt
- Department of Respiratory Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| |
Collapse
|
212
|
Niu Y, Chen Y, Sun P, Wang Y, Luo J, Ding Y, Xie W. Intragastric and atomized administration of canagliflozin inhibit inflammatory cytokine storm in lipopolysaccharide-treated sepsis in mice: A potential COVID-19 treatment. Int Immunopharmacol 2021; 96:107773. [PMID: 34020392 PMCID: PMC8106881 DOI: 10.1016/j.intimp.2021.107773] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
To date, drugs to attenuate cytokine storm in severe cases of Corona Virus Disease 2019 (COVID-19) are not available. In this study, we investigated the effects of intragastric and atomized administration of canagliflozin (CAN) on cytokine storm in lung tissues of lipopolysaccharides (LPS)-induced mice. Results showed that intragastric administration of CAN significantly and widely inhibited the production of inflammatory cytokines in lung tissues of LPS-induced sepsis mice. Simultaneously, intragastric administration of CAN significantly improved inflammatory pathological changes of lung tissues. Atomized administration of CAN also exhibited similar effects in LPS-induced sepsis mice. Furthermore, CAN significantly inhibited hypoxia inducible factor 1α (HIF-1α) and phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) protein levels in LPS-treated lung tissues. These results indicated that CAN might attenuate cytokine storm and reduce the inflammatory symptoms in critical cases in COVID-19. Its action mechanism might involve the regulation of HIF-1α and glycolysis in vivo. However, further studies about clinical application and mechanism analysis should be validated in the future.
Collapse
Affiliation(s)
- Yaoyun Niu
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Chen
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pengbo Sun
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yangyang Wang
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingyi Luo
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yipei Ding
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
213
|
Zawawi A, Naser AY, Alwafi H, Minshawi F. Profile of Circulatory Cytokines and Chemokines in Human Coronaviruses: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:666223. [PMID: 34046036 PMCID: PMC8147689 DOI: 10.3389/fimmu.2021.666223] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND SARS, MERS, and COVID-19 share similar characteristics. For instance, the genetic homology of SARS-CoV-2 compared to SARS-CoV and MERS-CoV is 80% and 50%, respectively, which may cause similar clinical features. Moreover, uncontrolled release of proinflammatory mediators (also called a cytokine storm) by activated immune cells in SARS, MERS, and COVID-19 patients leads to severe phenotype development. AIM This systematic review and meta-analysis aimed to evaluate the inflammatory cytokine profile associated with three strains of severe human coronavirus diseases (MERS-CoV, SARS-CoV, and SARS-CoV-2). METHOD The PubMed, Embase, and Cochrane Library databases were searched for studies published until July 2020. Randomized and observational studies reporting the inflammatory cytokines associated with severe and non-severe human coronavirus diseases, including MERS-CoV, SARS-CoV, and SARS-CoV-2, were included. Two reviewers independently screened articles, extracted data, and assessed the quality of the included studies. Meta-analysis was performed using a random-effects model with a 95% confidence interval to estimate the pooled mean of inflammatory biomarkers. RESULTS A high level of circulating IL-6 could be associated with the severity of infection of the three coronavirus strains. TNF, IL-10, and IL-8 are associated with the severity of COVID-19. Increased circulating levels of CXCL10/IP10 and CCL2/MCP-1 might also be related to the severity of MERS. CONCLUSION This study suggests that the immune response and immunopathology in the three severe human coronavirus strains are somewhat similar. The findings highlight that nearly all studies reporting severe cases of SARS, MERS, and COVID-19 have been associated with elevated levels of IL-6. This could be used as a potential therapeutic target to improve patients' outcomes in severe cases. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration 94 number: CRD42020209931.
Collapse
Affiliation(s)
- Ayat Zawawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdallah Y. Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
214
|
Croce L, Gangemi D, Ancona G, Liboà F, Bendotti G, Minelli L, Chiovato L. The cytokine storm and thyroid hormone changes in COVID-19. J Endocrinol Invest 2021; 44:891-904. [PMID: 33559848 PMCID: PMC7871522 DOI: 10.1007/s40618-021-01506-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND COVID-19 is now a worldwide pandemic. Among the many extra-pulmonary manifestations of COVID-19, recent evidence suggested a possible occurrence of thyroid dysfunction. PURPOSE The Aim of the present review is to summarize available studies regarding thyroid function alterations in patients with COVID-19 and to overview the possible physio-pathological explanations. CONCLUSIONS The repercussions of the thyroid of COVID-19 seem to be related, in part, with the occurrence of a "cytokine storm" that would, in turn, induce a "non-thyroidal illness". Some specific cytokines and chemokines appear to have a direct role on the hypothalamus-pituitary-thyroid axis. On the other hand, some authors have observed an increased incidence of a destructive thyroiditis, either subacute or painless, in patients with COVID-19. The hypothesis of a direct infection of the thyroid by SARS-Cov-2 stems from the observation that its receptor, ACE2, is strongly expressed in thyroid tissue. Lastly, it is highly probable that some pharmaceutical agents largely used for the treatment of COVID-19 can act as confounding factors in the laboratory evaluation of thyroid function parameters.
Collapse
Affiliation(s)
- L Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- PHD Course in Experimental Medicine, University of Pavia, 27100, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - D Gangemi
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - G Ancona
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - F Liboà
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - G Bendotti
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - L Minelli
- Postgraduate School in Endocrinology and Metabolism, University of Pavia, 27100, Pavia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
215
|
Pomponio G, Ferrarini A, Bonifazi M, Moretti M, Salvi A, Giacometti A, Tavio M, Titolo G, Morbidoni L, Frausini G, Onesta M, Amico D, Rocchi MLB, Menzo S, Zuccatosta L, Mei F, Menditto V, Svegliati S, Donati A, D'Errico MM, Pavani M, Gabrielli A. Tocilizumab in COVID-19 interstitial pneumonia. J Intern Med 2021; 289:738-746. [PMID: 33511686 PMCID: PMC8013903 DOI: 10.1111/joim.13231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Published reports on tocilizumab in COVID-19 pneumonitis show conflicting results due to weak designs or heterogeneity in critical methodological issues. METHODS This open-label trial, structured according to Simon's optimal design, aims to identify factors predicting which patients could benefit from anti-IL6 strategies and to enhance the design of unequivocal and reliable future randomized trials. A total of 46 patients with COVID-19 pneumonia needing of oxygen therapy to maintain SO2 > 93% and with recent worsening of lung function received a single infusion of tocilizumab. Clinical and biological markers were measured to test their predictive values. Primary end point was early and sustained clinical response. RESULTS Twenty-one patients fulfilled pre-defined response criteria. Lower levels of IL-6 at 24 h after tocilizumab infusion (P = 0.049) and higher baseline values of PaO2/FiO2 (P = 0.008) predicted a favourable response. CONCLUSIONS Objective clinical response rate overcame the pre-defined threshold of 30%. Efficacy of tocilizumab to improve respiratory function in patients selected according to our inclusion criteria warrants investigations in randomized trials.
Collapse
Affiliation(s)
- G Pomponio
- From the, Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy
| | - A Ferrarini
- From the, Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M Bonifazi
- Pneumologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M Moretti
- SOD Medicina di Laboratorio Ospedali Riuniti di Ancona, Ancona, Italy
| | - A Salvi
- Medicina Interna e Sub Intensiva, Ospedali Riuniti di Ancona, Ancona, Italy
| | - A Giacometti
- Clinica di Malattie Infettive, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M Tavio
- Malattie Infettive, Ospedali Riuniti di Ancona, Ancona, Italy
| | - G Titolo
- Medicina di Urgenza, Ospedali Riuniti Marche Nord, Pesaro/Fano, Italy
| | - L Morbidoni
- Medicina Interna, Ospedale di Senigallia, Senigallia, Italy
| | - G Frausini
- Medicina Interna, Ospedali Riuniti Marche Nord, Pesaro/Fano, Italy
| | - M Onesta
- Medicina Interna, Ospedale di Fabriano, Fabriano, Italy
| | - D Amico
- Pneumologia, Ospedali Riuniti Marche Nord, Pesaro/Fano, Italy
| | - M L B Rocchi
- Statistica Medica, Dipartimento di Scienze Biomolecolari, Università di Urbino, Urbino, Italy
| | - S Menzo
- Virologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - L Zuccatosta
- Pneumologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - F Mei
- Pneumologia, Ospedali Riuniti di Ancona, Ancona, Italy
| | - V Menditto
- Medicina Interna e Sub Intensiva, Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Svegliati
- Clinica Medica, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Donati
- Clinica di Rianimazione, Ospedali Riuniti di Ancona, Ancona, Italy
| | - M M D'Errico
- Dip. Scienze biomediche e sanità pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - M Pavani
- Laboratorio di Patologia Sperimentale, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - A Gabrielli
- From the, Clinica Medica, Ospedali Riuniti di Ancona, Ancona, Italy.,Clinica Medica, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
216
|
The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother 2021; 137:111267. [PMID: 33508618 PMCID: PMC7836975 DOI: 10.1016/j.biopha.2021.111267] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus causing serious human disease to spread across the world in the past 20 years, after SARS and Middle East respiratory syndrome. As of mid-September 2020, more than 200 countries and territories have reported 30 million cases of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, including 950,000 deaths. Supportive treatment remains the mainstay of therapy for COVID-19. The World Health Organization reported that four candidate drugs, including remdesivir, are ineffective or have little effect on COVID-19. According to China News, 90 % of Chinese patients with COVID-19 use traditional Chinese medicine (TCM), with an effectiveness rate of 80 %, and no deterioration in patient condition. We have compiled the direct evidence of TCM treatment for COVID-19 as of December 31, 2020. We describe the advantages of TCM in the treatment of COVID-19 based on clinical evidence and the required methods for its clinical use. TCM can inhibit virus replication and transcription, prevent the combination of SARS-CoV-2 and the host, and attenuate the cytokine storm and immune deficiency caused by the virus infection. The cooperation of many countries is required to establish international guidelines regarding the use of TCM in patients with severe COVID-19 from other regions and of different ethnicities. Studies on the psychological abnormalities in patients with COVID-19, and medical staff, is lacking; it is necessary to provide a complete chain of evidence to determine the efficacy of TCM in the related prevention, treatment, and recovery. This study aims to provide a reference for the rational use of TCM in the treatment of COVID-19.
Collapse
|
217
|
Liang C, Hui N, Liu Y, Qiao G, Li J, Tian L, Ju X, Jia M, Liu H, Cao W, Yu P, Li H, Ren X. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100027. [PMID: 35399819 PMCID: PMC7833308 DOI: 10.1016/j.phyplu.2021.100027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 04/17/2023]
Abstract
Background In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.
Collapse
Key Words
- 3C-like protease (3CLpro)
- 3CLpro, 3C-like protease
- ACE2, Angiotensin-converting enzyme 2
- AECOPD, Acute exacerbation of chronic obstructive pulmonary disease
- AIDS, Acquired immune deficiency syndrome
- AQP3, Aquaporins 3
- ARDS, Acute respiratory distress syndrome
- CAT, COPD assessment test
- CC50, 50% Cytotoxic concentration
- CCL-2/MCP-1, C—C motif ligand 2/monocyte chemoattractant protein-1
- CFDA, China Food and Drug Administration
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- COVID-19, Coronavirus disease 2019
- CPE, Cytopathic effect
- CSS, Cytokine storm syndrome
- CT, Computed tomography
- CXCL-10/IP-10, C-X-C Motif Chemokine Ligand 10/ Interferon Gamma-induced Protein 10
- Cytokine storm syndrome (CSS)
- DMSO, Dimethyl sulfoxide
- E protein, Envelope protein
- ERK, Extracellular signal-regulated kinase
- FBS, Fatal bovine serum
- Forsythia honeysuckle (Lianhuaqingwen,LH) capsules
- Grb2, Growth factor receptor-bound protein 2
- HIV, Human immunodeficiency virus
- HPLC, High-performance liquid chromatography
- HSV-1, Herpes simplex virus type 1
- HVJ, Hemagglutinating virus of Japan
- Hep-2, Human epithelial type 2
- Huh-7, Human Hepatocellular Carcinoma-7
- IAV, Influenza A virus
- IBV, Influenza B virus
- IC50, 50% Inhibition concentration
- IFN-λ1, Interferon-λ1
- IL-6, Interleukin-6
- IL-6R, IL-6 Receptor
- IL-8, Interleukin-8
- IP-10, Interferon-inducible protein-10
- JAK/STAT, Janus kinase/signal transducers and activators of transcription
- JAK1/2, Janus kinase1/2
- LD50, 50% Lethal dose
- LH capsules, Forsythia honeysuckle (Lianhuaqingwen) capsules
- M protein, Membrane protein
- MAPK, Mitogen-activated protein kinase
- MCP-1, Monocyte chemotactic protein 1
- MDCK, Madin-darby canine kidney
- MEK, Mitogen-activated protein kinase kinase
- MERS, Middle east respiratory syndrome
- MIP-1β, Macrophage Inflammatory Protein-1β
- MLD50, 50% Minimum lethal dose
- MOF, Multifunctional organ damage
- MOI, Multiplicity of infection
- MTT, Methyl Thiazolyl Tetrazolium
- NF-kB, Nuclear transcription factor kappa-B
- NHC, National Health Commission
- ORFs, Open reading frames
- PBS, Phosphate buffered saline
- PHN, Phillyrin
- PI3K, Phosphoinositide 3-kinases
- PKA/p-CREB, Protein kinase A /phosphorylated cAMP response element-binding protein
- PKB, Akt, Protein kinase B
- PLpro, Papain-like proteases
- PRC, People's Republic of China
- QC, Quality control
- RANTES, Regulated on activation normal T cell expressed and secreted
- RSV, Respiratory syncytial virus
- RT-PCR, Reverse transcription PCR
- Ras, Ras GTPase
- SARS-CoV-2
- TCID50, 50% Tissue culture infective dose
- TD0, Non-toxic Dose
- TD50, Half-toxic dose
- Vero E6, African Green Monkey Kidney Epithelial-6
- gp-130, Glycoprotein 130
- mIL-6R, Membrane-bound form IL-6 Receptor
- mTOR, Mammalian target of rapamycin
- nsps, Non-structural proteins
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xingke Ju
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Pengcheng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
218
|
Salvaris R, Ong J, Gregory GP. Bispecific Antibodies: A Review of Development, Clinical Efficacy and Toxicity in B-Cell Lymphomas. J Pers Med 2021; 11:jpm11050355. [PMID: 33946635 PMCID: PMC8147062 DOI: 10.3390/jpm11050355] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
The treatment landscape of B-cell lymphomas is evolving with the advent of novel agents including immune and cellular therapies. Bispecific antibodies (bsAbs) are molecules that recognise two different antigens and are used to engage effector cells, such as T-cells, to kill malignant B-cells. Several bispecific antibodies have entered early phase clinical development since the approval of the CD19/CD3 bispecific antibody, blinatumomab, for relapsed/refractory acute lymphoblastic leukaemia. Novel bsAbs include CD20/CD3 antibodies that are being investigated in both aggressive and indolent non-Hodgkin lymphoma with encouraging overall response rates including complete remissions. These results are seen even in heavily pre-treated patient populations such as those who have relapsed after chimeric antigen receptor T-cell therapy. Potential toxicities include cytokine release syndrome, neurotoxicity and tumour flare, with a number of strategies existing to mitigate these risks. Here, we review the development of bsAbs, their mechanism of action and the different types of bsAbs and how they differ in structure. We will present the currently available data from clinical trials regarding response rates, progression free survival and outcomes across a range of non-Hodgkin lymphoma subtypes. Finally, we will discuss the key toxicities of bsAbs, their rates and management of these adverse events.
Collapse
Affiliation(s)
- Ross Salvaris
- Monash Haematology, Monash Health, Clayton, VIC 3168, Australia; (J.O.); (G.P.G.)
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Correspondence:
| | - Jeremy Ong
- Monash Haematology, Monash Health, Clayton, VIC 3168, Australia; (J.O.); (G.P.G.)
| | - Gareth P. Gregory
- Monash Haematology, Monash Health, Clayton, VIC 3168, Australia; (J.O.); (G.P.G.)
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
219
|
Rabaan AA, Al-Ahmed SH, Muhammad J, Khan A, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Al-Omari A, Dhawan M, Tiwari R, Sharun K, Mohapatra RK, Mitra S, Bilal M, Alyami SA, Emran TB, Moni MA, Dhama K. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines (Basel) 2021; 9:436. [PMID: 33946736 PMCID: PMC8145892 DOI: 10.3390/vaccines9050436] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a severe pandemic of the current century. The vicious tentacles of the disease have been disseminated worldwide with unknown complications and repercussions. Advanced COVID-19 syndrome is characterized by the uncontrolled and elevated release of pro-inflammatory cytokines and suppressed immunity, leading to the cytokine storm. The uncontrolled and dysregulated secretion of inflammatory and pro-inflammatory cytokines is positively associated with the severity of the viral infection and mortality rate. The secretion of various pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6 leads to a hyperinflammatory response by recruiting macrophages, T and B cells in the lung alveolar cells. Moreover, it has been hypothesized that immune cells such as macrophages recruit inflammatory monocytes in the alveolar cells and allow the production of large amounts of cytokines in the alveoli, leading to a hyperinflammatory response in severely ill patients with COVID-19. This cascade of events may lead to multiple organ failure, acute respiratory distress, or pneumonia. Although the disease has a higher survival rate than other chronic diseases, the incidence of complications in the geriatric population are considerably high, with more systemic complications. This review sheds light on the pivotal roles played by various inflammatory markers in COVID-19-related complications. Different molecular pathways, such as the activation of JAK and JAK/STAT signaling are crucial in the progression of cytokine storm; hence, various mechanisms, immunological pathways, and functions of cytokines and other inflammatory markers have been discussed. A thorough understanding of cytokines' molecular pathways and their activation procedures will add more insight into understanding immunopathology and designing appropriate drugs, therapies, and control measures to counter COVID-19. Recently, anti-inflammatory drugs and several antiviral drugs have been reported as effective therapeutic drug candidates to control hypercytokinemia or cytokine storm. Hence, the present review also discussed prospective anti-inflammatory and relevant immunomodulatory drugs currently in various trial phases and their possible implications.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan;
| | - Amjad Khan
- Department of Public Health/Nutrition, The University of Haripur, Khyber Pakhtunkhwa 22620, Pakistan;
| | - Anupam A Sule
- Medical Director of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA;
| | - Raghavendra Tirupathi
- Department of Medicine Keystone Health, Penn State University School of Medicine, Hershey, PA 16801, USA;
- Department of Medicine, Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA 16801, USA
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Alahsa 36342, Saudi Arabia;
- College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Ministry of Health, Alahsa 31982, Saudi Arabia;
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Dr. Sulaiman Al-Habib Medical Group, Critical Care and Infection Control Department, Research Centre, Riyadh 11372, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141027, Punjab, India;
- The Trafford Group of Colleges, Manchester WA14 5PQ, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh; Pandit DeenDayal Upadhyaya PashuChikitsa Vigyan Vishwavidyalaya Evam Go AnusandhaSansthan (DUVASU), Mathura 281001, Uttar Pradesh, India;
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Mathura 281001, Uttar Pradesh, India;
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
220
|
Coperchini F, Chiovato L, Rotondi M. Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine Storm: Not One for All But All for One! Front Immunol 2021; 12:668507. [PMID: 33981314 PMCID: PMC8107352 DOI: 10.3389/fimmu.2021.668507] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-COV-2 virus is responsible for the ongoing devastating pandemic. Since the early phase of the pandemic, the "cytokine-storm" appeared a peculiar aspect of SARS-COV-2 infection which, at least in the severe cases, is responsible for respiratory treat damage and subsequent multi-organ failure. The efforts made in the last few months elucidated that the cytokine-storm results from a complex network involving cytokines/chemokines/infiltrating-immune-cells which orchestrate the aberrant immune response in COVID-19. Clinical and experimental studies aimed at depicting a potential "immune signature" of SARS-COV-2, identified three main "actors," namely the cytokine IL-6, the chemokine CXCL10 and the infiltrating immune cell type macrophages. Although other cytokines, chemokines and infiltrating immune cells are deeply involved and their role should not be neglected, based on currently available data, IL-6, CXCL10, and infiltrating macrophages could be considered prototype factors representing each component of the immune system. It rapidly became clear that a strong and continuous interplay among the three components of the immune response is mandatory in order to produce a severe clinical course of the disease. Indeed, while IL-6, CXCL10 and macrophages alone would not be able to fully drive the onset and maintenance of the cytokine-storm, the establishment of a IL-6/CXCL10/macrophages axis is crucial in driving the sequence of events characterizing this condition. The present review is specifically aimed at overviewing current evidences provided by both in vitro and in vivo studies addressing the issue of the interplay among IL-6, CXCL10 and macrophages in the onset and progression of cytokine storm. SARS-COV-2 infection and the "cytokine storm."
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
221
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
222
|
Savla SR, Prabhavalkar KS, Bhatt LK. Cytokine storm associated coagulation complications in COVID-19 patients: Pathogenesis and Management. Expert Rev Anti Infect Ther 2021; 19:1397-1413. [PMID: 33832398 PMCID: PMC8074652 DOI: 10.1080/14787210.2021.1915129] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction SARS-CoV-2, the causative agent of COVID-19, attacks the immune system causing an exaggerated and uncontrolled release of pro-inflammatory mediators (cytokine storm). Recent studies propose an active role of coagulation disorders in disease progression. This hypercoagulability has been displayed by marked increase in D-dimer in hospitalized patients. Areas Covered This review summarizes the pathogenesis of SARS-CoV-2 infection, generation of cytokine storm, the interdependence between inflammation and coagulation, its consequences and the possible management options for coagulation complications like venous thromboembolism (VTE), microthrombosis, disseminated intravascular coagulation (DIC), and systemic and local coagulopathy. We searched PubMed, Scopus, and Google Scholar for relevant reports using COVID-19, cytokine storm, and coagulation as keywords. Expert Opinion A prophylactic dose of 5000–7500 units of low molecular weight heparin (LMWH) has been recommended for hospitalized COVID-19 patients in order to prevent VTE. Treatment dose of LMWH, based on disease severity, is being contemplated for patients showing a marked rise in levels of D-dimer due to possible pulmonary thrombi. Additionally, targeting PAR-1, thrombin, coagulation factor Xa and the complement system may be potentially useful in reducing SARS-CoV-2 infection induced lung injury, microvascular thrombosis, VTE and related outcomes like DIC and multi-organ failure.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh K Bhatt
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| |
Collapse
|
223
|
Silva Andrade B, Siqueira S, de Assis Soares WR, de Souza Rangel F, Santos NO, dos Santos Freitas A, Ribeiro da Silveira P, Tiwari S, Alzahrani KJ, Góes-Neto A, Azevedo V, Ghosh P, Barh D. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021; 13:700. [PMID: 33919537 PMCID: PMC8072585 DOI: 10.3390/v13040700] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has infected millions worldwide, leaving a global burden for long-term care of COVID-19 survivors. It is thus imperative to study post-COVID (i.e., short-term) and long-COVID (i.e., long-term) effects, specifically as local and systemic pathophysiological outcomes of other coronavirus-related diseases (such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS)) were well-cataloged. We conducted a comprehensive review of adverse post-COVID health outcomes and potential long-COVID effects. We observed that such adverse outcomes were not localized. Rather, they affected different human systems, including: (i) immune system (e.g., Guillain-Barré syndrome, rheumatoid arthritis, pediatric inflammatory multisystem syndromes such as Kawasaki disease), (ii) hematological system (vascular hemostasis, blood coagulation), (iii) pulmonary system (respiratory failure, pulmonary thromboembolism, pulmonary embolism, pneumonia, pulmonary vascular damage, pulmonary fibrosis), (iv) cardiovascular system (myocardial hypertrophy, coronary artery atherosclerosis, focal myocardial fibrosis, acute myocardial infarction, cardiac hypertrophy), (v) gastrointestinal, hepatic, and renal systems (diarrhea, nausea/vomiting, abdominal pain, anorexia, acid reflux, gastrointestinal hemorrhage, lack of appetite/constipation), (vi) skeletomuscular system (immune-mediated skin diseases, psoriasis, lupus), (vii) nervous system (loss of taste/smell/hearing, headaches, spasms, convulsions, confusion, visual impairment, nerve pain, dizziness, impaired consciousness, nausea/vomiting, hemiplegia, ataxia, stroke, cerebral hemorrhage), (viii) mental health (stress, depression and anxiety). We additionally hypothesized mechanisms of action by investigating possible molecular mechanisms associated with these disease outcomes/symptoms. Overall, the COVID-19 pathology is still characterized by cytokine storm that results to endothelial inflammation, microvascular thrombosis, and multiple organ failures.
Collapse
Affiliation(s)
- Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sérgio Siqueira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Wagner Rodrigues de Assis Soares
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Departamento de Saúde II, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil
| | - Fernanda de Souza Rangel
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Naiane Oliveira Santos
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Bahia CEP 45662-900, Brazil;
| | - Andria dos Santos Freitas
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Priscila Ribeiro da Silveira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia CEP 45206-190, Brazil; (B.S.A.); (S.S.); (W.R.d.A.S.); (F.d.S.R.); (A.d.S.F.); (P.R.d.S.)
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Insti-tuto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CEP 31270-901, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais CEP 31270-901, Brazil; (S.T.); (V.A.)
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Bio-technology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
| |
Collapse
|
224
|
Rowaiye AB, Okpalefe OA, Onuh Adejoke O, Ogidigo JO, Hannah Oladipo O, Ogu AC, Oli AN, Olofinase S, Onyekwere O, Rabiu Abubakar A, Jahan D, Islam S, Dutta S, Haque M. Attenuating the Effects of Novel COVID-19 (SARS-CoV-2) Infection-Induced Cytokine Storm and the Implications. J Inflamm Res 2021; 14:1487-1510. [PMID: 33889008 PMCID: PMC8057798 DOI: 10.2147/jir.s301784] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic constitutes an arduous global health challenge, and the increasing number of fatalities calls for the speedy pursuit of a remedy. This review emphasizes the changing aspects of the COVID-19 disease, featuring the cytokine storm's pathological processes. Furthermore, we briefly reviewed potential therapeutic agents that may modulate and alleviate cytokine storms. The literature exploration was made using PubMed, Embase, MEDLINE, Google scholar, and China National Knowledge Infrastructure databases to retrieve the most recent literature on the etiology, diagnostic markers, and the possible prophylactic and therapeutic options for the management of cytokine storm in patients hospitalized with COVID-19 disease. The causative agent, severe acute respiratory coronavirus-2 (SARS-CoV-2), continually threatens the efficiency of the immune system of the infected individuals. As the first responder, the innate immune system provides primary protection against COVID-19, affecting the disease's progression, clinical outcome, and prognosis. Evidence suggests that the fatalities associated with COVID-19 are primarily due to hyper-inflammation and an aberrant immune function. Accordingly, the magnitude of the release of pro-inflammatory cytokines such as interleukin (IL)-1, (IL-6), and tumor necrosis alpha (TNF-α) significantly differentiate between mild and severe cases of COVID-19. The early prediction of a cytokine storm is made possible by several serum chemistry and hematological markers. The prompt use of these markers for diagnosis and the aggressive prevention and management of a cytokine release syndrome is critical in determining the level of morbidity and fatality associated with COVID-19. The prophylaxis and the rapid treatment of cytokine storm by clinicians will significantly enhance the fight against the dreaded COVID-19 disease.
Collapse
Affiliation(s)
- Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | | | - Olukemi Onuh Adejoke
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Joyce Oloaigbe Ogidigo
- Bioresources Development Centre, Abuja, National Biotechnology Development Agency, Abuja, Nigeria
| | - Oluwakemi Hannah Oladipo
- Bioresources Development Centre, Ilorin, National Biotechnology Development Agency, Kwara State, Nigeria
| | - Amoge Chidinma Ogu
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Samson Olofinase
- Department of Genetics, Genomics, Bioinformatics, National Biotechnology Development Agency, Abuja, Nigeria
| | - Onyekachi Onyekwere
- Bioresources Development Centre, Ubulu-Uku, National Biotechnology Development Agency, Delta State, Nigeria
| | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, Gandaria, Dhaka, 1204, Bangladesh
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
225
|
Speciale A, Muscarà C, Molonia MS, Cimino F, Saija A, Giofrè SV. Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother Res 2021; 35:4616-4625. [PMID: 33822421 PMCID: PMC8251480 DOI: 10.1002/ptr.7107] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
The spread of SARS‐CoV‐2, along with the lack of targeted medicaments, encouraged research of existing drugs for repurposing. The rapid response to SARS‐CoV‐2 infection comprises a complex interaction of cytokine storm, endothelial dysfunction, inflammation, and pathologic coagulation. Thus, active molecules targeting multiple steps in SARS‐CoV‐2 lifecycle are highly wanted. Herein we explored the in silico capability of silibinin from Silybum marianum to interact with the SARS‐CoV‐2 main target proteins, and the in vitro effects against cytokine‐induced‐inflammation and dysfunction in human umbilical vein endothelial cells (HUVECs). Computational analysis revealed that silibinin forms a stable complex with SARS‐CoV‐2 spike protein RBD, has good negative binding affinity with Mpro, and interacts with many residues on the active site of Mpro, thus supporting its potentiality in inhibiting viral entry and replication. Moreover, HUVECs pretreatment with silibinin reduced TNF‐α‐induced gene expression of the proinflammatory genes IL‐6 and MCP‐1, as well as of PAI‐1, a critical factor in coagulopathy and thrombosis, and of ET‐1, a peptide involved in hemostatic vasoconstriction. Then, due to endothelium antiinflammatory and anticoagulant properties of silibinin and its capability to interact with SARS‐CoV‐2 main target proteins demonstrated herein, silibinin could be a strong candidate for COVID‐19 management from a multitarget perspective.
Collapse
Affiliation(s)
- Antonio Speciale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Claudia Muscarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Maria Sofia Molonia
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Francesco Cimino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonella Saija
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
226
|
Fricke-Galindo I, Falfán-Valencia R. Genetics Insight for COVID-19 Susceptibility and Severity: A Review. Front Immunol 2021; 12:622176. [PMID: 33868239 PMCID: PMC8047200 DOI: 10.3389/fimmu.2021.622176] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease (COVID-19) presents a broad spectrum of clinical manifestations ranging from an asymptomatic to a severe clinical course. The host genetic background influence on the susceptibility and outcome of multiples infectious diseases has been previously reported. Herein, we aimed to describe relevant identified genetic variants and those potentially related to the inter-individual variability of COVID-19 susceptibility and/or severity considering the physiopathological pathway of the disease The HLA-A*25:01, -B*15:27, -B*46:01, -C*01:02, and -C*07:29 alleles have been associated with COVID-19 susceptibility; while HLA-A*02:02, -B*15:03, and -C*12:03 have been identified as low-risk alleles. Variants in cytokine genes such as IL1B, IL1R1, IL1RN, IL6, IL17A, FCGR2A, and TNF could be related to disease susceptibility and cytokine storm, and/or COVID-19 complications (e.g., venous thrombosis). Several variants in ACE2 and TMPRSS2 affecting the expression of the receptors related to COVID-19 have been associated with the disease susceptibility and risk factors. Finally, two GWAS have identified the loci 3p21.31 (LZTFL1, SLC6A20, CCR9, FYCO1, CXCR6, and XCR1) and 9q34.2 (ABO) with COVID-19 severity. Heterogeneous results in the association of genetic variants with COVID-19 susceptibility and severity were observed. The mechanism of identified risk-genes and studies in different populations are still warranted.
Collapse
Affiliation(s)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
227
|
Wang X, He Z, Zhao X. Immunoregulatory therapy strategies that target cytokine storms in patients with COVID-19 (Review). Exp Ther Med 2021; 21:319. [PMID: 33732292 PMCID: PMC7903484 DOI: 10.3892/etm.2021.9750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
A cytokine storm is an uncontrolled, excessive immune response that contributes to the pathogenesis of coronavirus disease 2019 (COVID-19). Viral infections lead to the loss of negative feedback in immune regulation and an abnormal elevation of the levels of multiple cytokines. In COVID-19, this causes diffuse damage to alveolar functions and may culminate in multiple organ dysfunction. Immunoregulatory therapies target the cytokine storms induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, and include monoclonal antibodies, recombinant granulocyte-macrophage colony stimulating factor, interferon, mesenchymal stem cell-based therapy, thymosin, immunoglobulins and blood purification therapies. These approaches may be effective in the alleviation of COVID-19 symptoms. In this review, cytokine storms caused by SARS-CoV-2 infections are evaluated and discussed, and advances in immunoregulatory therapy strategies for patients with COVID-19 are reviewed.
Collapse
Affiliation(s)
- Xianyao Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhixu He
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xing Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
228
|
Huang F, Ma W, Zheng H, Ye Y, Chen H, Su N, Li X, Li X, Wang Y, Jin J, Yu Z, Li Y, Wang J. Early risk factors for extrapulmonary organ injury in adult COVID-19 patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:701. [PMID: 33987399 PMCID: PMC8106092 DOI: 10.21037/atm-21-1561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The novel 2019 coronavirus (COVID-19) has caused a global pandemic, and often leads to extrapulmonary organ injury. However, the risk factors for extrapulmonary organ injury are still unclear. We aim to explore the risk factors for extrapulmonary organ injury and the association between extrapulmonary organ injury and the prognosis in COVID-19 patients. Methods We implemented a single-center, retrospective, observational study, in which a total of 349 confirmed COVID-19 patients admitted to Tongji Hospital from January 25, 2020, to February 25, 2020, were enrolled. We collected demographic, clinical, laboratory, and treatment data from electronic medical records. Potential risk factors for extrapulmonary organ injury of COVID-19 patients were analyzed by a multivariable binary logistic model, and multivariable Cox proportional hazards regression model was used for survival analysis in the patients with extrapulmonary organ injury. Results The average age of the included patients was 61.73±14.64 years. In the final logistic model, variables including aged 60 or older [odds ratio (OR) 1.826, 95% confidence interval (CI): 1.060-3.142], acute respiratory distress syndrome (ARDS) (OR 2.748, 95% CI: 1.051-7.185), lymphocytes count lower than 1.1×109/L (OR 0.478, 95% CI: 0.240-0.949), level of interleukin-6 (IL-6) greater than 7 pg/mL (OR 1.664, 95% CI: 1.005-2.751) and D-Dimer greater than 0.5 μg/mL (OR 2.190, 95% CI: 1.176-4.084) were significantly associated with the extrapulmonary organ injury. Kaplan-Meier curve and log-rank test showed that the probabilities of survival for patients with extrapulmonary organ injury were significantly lower than those without extrapulmonary organ injury. Multivariate Cox proportional hazards model showed that only myocardial injury (P=0.000, HR: 5.068, 95% CI: 2.728-9.417) and circulatory system injury (P=0.000, HR: 4.076, 95% CI: 2.216-7.498) were the independent factors associated with COVID-19 patients' poor prognosis. Conclusions Older age, lymphocytopenia, high level of D-Dimer and IL-6, and the severity of lung injury were the high-risk factors of extrapulmonary organ injury in COVID-19 patients. Myocardial and circulatory system injury were the most important risk factors related to poor outcomes of COVID-19 patients. It may help clinicians to identify extrapulmonary organ injury early and initiate appropriate treatment.
Collapse
Affiliation(s)
- Fang Huang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenxia Ma
- Department of Quality Management, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Ye
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Chen
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Su
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Li
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyue Li
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuyu Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Jin
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
229
|
Fouladseresht H, Doroudchi M, Rokhtabnak N, Abdolrahimzadehfard H, Roudgari A, Sabetian G, Paydar S. Predictive monitoring and therapeutic immune biomarkers in the management of clinical complications of COVID-19. Cytokine Growth Factor Rev 2021; 58:32-48. [PMID: 33199179 PMCID: PMC7544568 DOI: 10.1016/j.cytogfr.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), appears with a wide spectrum of mild-to-critical clinical complications. Many clinical and experimental findings suggest the role of inflammatory mechanisms in the immunopathology of COVID-19. Hence, cellular and molecular mediators of the immune system can be potential targets for predicting, monitoring, and treating the progressive complications of COVID-19. In this review, we assess the latest cellular and molecular data on the immunopathology of COVID-19 according to the pathological evidence (e.g., mucus and surfactants), dysregulations of pro- and anti-inflammatory mediators (e.g., cytokines and chemokines), and impairments of innate and acquired immune system functions (e.g., mononuclear cells, neutrophils and antibodies). Furthermore, we determine the significance of immune biomarkers for predicting, monitoring, and treating the progressive complications of COVID-19. We also discuss the clinical importance of recent immune biomarkers in COVID-19, and at the end of each section, recent clinical trials in immune biomarkers for COVID-19 are mentioned.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Rokhtabnak
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossein Abdolrahimzadehfard
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Roudgari
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golnar Sabetian
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
230
|
Esmaeilzadeh A, Elahi R. Immunobiology and immunotherapy of COVID-19: A clinically updated overview. J Cell Physiol 2021; 236:2519-2543. [PMID: 33022076 PMCID: PMC7675260 DOI: 10.1002/jcp.30076] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new member of the coronavirus family that can cause coronavirus disease 2019 (COVID-19). COVID-9 has become a global pandemic with severe health issues around the world. Identifying the accurate immunopathogenesis of the COVID-19 and the immune response against SARS-CoV-2 is necessary for the development of therapeutic approaches and rational drug design. This paper aims to overview the updated clinical data on the immunopathogenesis of the COVID-19 and review the innate and adaptive immune response to SARS-CoV-2. Also, challenges of the immune response to SARS-CoV-2 leading to dysfunctional immune response and their contribution to the progression of the disease have been discussed. To achieve a more efficient immune response, multiple methods could be applied, including regulation of the immune response, augmentation of the immune system against the virus, inhibition of the dysfunctional immune checkpoints, and inhibition of the viral replication/infection. Based on the immune response against SARS-CoV-2 and its dysfunction, we introduce potential immunotherapies as well as reviewing recruiting/completed clinical trials of COVID-19.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of MedicineZanjan University of Medical SciencesZanjanIran
- Immunotherapy Research and Technology GroupZanjan University of Medical SciencesZanjanIran
- Cancer Gene Therapy Research CenterZanjan University of Medical SciencesZanjanIran
| | - Reza Elahi
- Zanjan University of Medical SciencesZanjanIran
| |
Collapse
|
231
|
Yamamoto R, Sasaki J, Shibusawa T, Nakada TA, Mayumi T, Takasu O, Matsuda K, Shimazui T, Otsubo H, Teshima Y, Nabeta M, Moriguchi T, Oda S. Accuracy for Mortality Prediction With Additive Biomarkers Including Interleukin-6 in Critically Ill Patients: A Multicenter Prospective Observational Study. Crit Care Explor 2021; 3:e0387. [PMID: 33928258 PMCID: PMC8078448 DOI: 10.1097/cce.0000000000000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Several inflammation markers have been reported to be associated with unfavorable clinical outcomes in critically ill patients. We aimed to elucidate whether serum interleukin-6 concentration considered with Sequential Organ Failure Assessment score can better predict mortality in critically ill patients. DESIGN A prospective observational study. SETTING Five university hospitals in 2016-2018. PATIENTS Critically ill adult patients who met greater than or equal to two systemic inflammatory response syndrome criteria at admission were included, and those who died or were discharged within 48 hours were excluded. INTERVENTIONS Inflammatory biomarkers including interleukin (interleukin)-6, -8, and -10; tumor necrosis factor-α; C-reactive protein; and procalcitonin were blindly measured daily for 3 days. Area under the receiver operating characteristic curve for Sequential Organ Failure Assessment score at day 2 according to 28-day mortality was calculated as baseline. Combination models of Sequential Organ Failure Assessment score and additional biomarkers were developed using logistic regression, and area under the receiver operating characteristic curve calculated in each model was compared with the baseline. MEASUREMENTS AND MAIN RESULTS Among 161 patients included in the study, 18 (11.2%) did not survive at day 28. Univariate analysis for each biomarker identified that the interleukin-6 (days 1-3), interleukin-8 (days 0-3), and interleukin-10 (days 1-3) were higher in nonsurvivors than in survivors. Analyses of 28-day mortality prediction by a single biomarker showed interleukin-6, -8, and -10 at days 1-3 had a significant discrimination power, and the interleukin-6 at day 3 had the highest area under the receiver operating characteristic curve (0.766 [0.656-0.876]). The baseline area under the receiver operating characteristic curve for Sequential Organ Failure Assessment score predicting 28-day mortality was 0.776 (0.672-0.880). The combination model using additional interleukin-6 at day 3 had higher area under the receiver operating characteristic curve than baseline (area under the receiver operating characteristic curve = 0.844, area under the receiver operating characteristic curve improvement = 0.068 [0.002-0.133]), whereas other biomarkers did not improve accuracy in predicting 28-day mortality. CONCLUSIONS Accuracy for 28-day mortality prediction was improved by adding serum interleukin-6 concentration to Sequential Organ Failure Assessment score.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Shibusawa
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshihiko Mayumi
- Department of Emergency Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Osamu Takasu
- Department of Emergency and Critical Care Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kenichi Matsuda
- Department of Emergency and Critical Care Medicine, University of Yamanashi, Faculty of Medicine, Yamanashi, Japan
| | - Takashi Shimazui
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroki Otsubo
- Department of Emergency Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuto Teshima
- Department of Emergency Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masakazu Nabeta
- Department of Emergency and Critical Care Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takeshi Moriguchi
- Department of Emergency and Critical Care Medicine, University of Yamanashi, Faculty of Medicine, Yamanashi, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
232
|
Gu Y, Wang D, Chen C, Lu W, Liu H, Lv T, Song Y, Zhang F. PaO 2/FiO 2 and IL-6 are risk factors of mortality for intensive care COVID-19 patients. Sci Rep 2021; 11:7334. [PMID: 33795768 PMCID: PMC8016870 DOI: 10.1038/s41598-021-86676-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/18/2021] [Indexed: 01/08/2023] Open
Abstract
To identify the risk factors of mortality for the coronavirus disease 19 (COVID-19) patients admitted to intensive care units (ICUs) through a retrospective analysis. The demographic, clinical, laboratory, and chest imaging data of patients admitted to the ICU of Huoshenshan Hospital from February 10 to April 10, 2020 were retrospectively analyzed. Student's t-test and Chi-square test were used to compare the continuous and categorical variables, respectively. The logistic regression model was employed to ascertain the risk factors of mortality. This retrospective study involved 123 patients, including 64 dead and 59 survivors. Among them, 57 people were tested for interleukin-6 (IL-6) (20 died and 37 survived). In all included patients, the oxygenation index (PaO2/FiO2) was identified as an independent risk factor (odd ratio [OR] = 0.96, 95% confidence interval [CI]: 0.928–0.994, p = 0.021). The area under the curve (AUC) was 0.895 (95% CI: 0.826–0.943, p < 0.0001). Among the patients tested for IL-6, the PaO2/FiO2 (OR = 0.955, 95%CI: 0.915–0.996, p = 0.032) and IL-6 (OR = 1.013, 95%CI: 1.001–1.025, p = 0.028) were identified as independent risk factors. The AUC was 0.9 (95% CI: 0.791–0.964, p < 0.0001) for IL-6 and 0.865 (95% CI: 0.748–0.941, p < 0.0001) for PaO2/FiO2. PaO2/FiO2 and IL-6 could potentially serve as independent risk factors for predicting death in COVID-19 patients requiring intensive care.
Collapse
Affiliation(s)
- Yanli Gu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Donghui Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, The First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China. .,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China. .,Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
233
|
Liu G, Wu Y, Jin S, Sun J, Wan BB, Zhang J, Wang Y, Gao ZQ, Chen D, Li S, Pang Q, Wang Z. Itaconate ameliorates methicillin-resistant Staphylococcus aureus-induced acute lung injury through the Nrf2/ARE pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:712. [PMID: 33987410 PMCID: PMC8106008 DOI: 10.21037/atm-21-1448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) are a critical predisposing factor of sepsis in the clinic. As a product of human energy metabolism and immune response, itaconate can effectively reduce inflammation in the body. This research employed 4-octyl itaconate (4-OI) to illustrate that itaconate exerted anti-inflammatory effects to protect the body from acute lung injury (ALI) induced by MRSA. Methods HE staining and immunohistochemistry are used to evaluate the MRSA-induced ALI in mice. WB and qPCR were used to verify the effect of 4-OI on inflammation and oxidative stress caused by MRSA. Molecular docking was used to verify the binding sites of 4-OI and Keap1. Results We demonstrated that 4-OI treatment increased the survival ratio, attenuated the pathological damage, inhibited neutrophil infiltration, and reduced lung bacterial burden in the mouse MRSA pneumonia model. 4-OI decreased the expression of inflammatory factors by stimulating the Nrf2 in vivo and in vitro. Furthermore, 4-OI exerted its effect by promoting nuclear transport of Nrf2 in vitro. The results of molecular docking indicated that 4-OI bound to the pocket of Keap1 and exerted a stable interaction. Both Nrf2 inhibitors (ML385) and Nrf2−/− mice abolished the protective effect of 4-OI on MRSA-induced inflammation both in vitro and in vivo. Conclusions 4-OI prevents lung damage caused by MRSA bacteremia via activating Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sihao Jin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiaojiao Sun
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bin-Bin Wan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yingying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhi-Qi Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiqiang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
234
|
Meanwatthana J, Majam T. Interleukin-6 Antagonists: Lessons From Cytokine Release Syndrome to the Therapeutic Application in Severe COVID-19 Infection. J Pharm Pract 2021; 35:752-761. [PMID: 33759631 DOI: 10.1177/08971900211000691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current retrospective data have found up to 20% of COVID-19 infection had developed into severe cases with hyperinflammatory pulmonary symptoms. Interleukin 6 (IL-6) is recognized as a key mediator of hyperinflammation previously mentioned in cytokine release syndrome. This leads to implementing IL-6 pathway inhibition in severe COVID-19. This review aimed to explore the clinical evidences of using IL-6 antagonists in COVID-19 infection based on most recent available data. Relevant studies were searched through PubMed, scopus, and ISI databases focusing on interleukin-6 antagonists in cytokine release syndrome and prospective data on COVID-19 infection. Only papers in English were included in the search. There were several studies conducted to evaluate the potential efficacy and safety of IL-6 antagonists and mostly with tocilizumab. After the search, we found that studies recruited patients with severe COVID-19 and elevated inflammatory mediators such as C-reactive protein (CRP), IL-6, or ferritin to receive tocilizumab, situximab or sarilumab in combination with other medications. Result showed that these agents may provide a clinical advantage as patients were able to refrain from invasive ventilation support after initiating IL-6 antagonists. In summary, IL-6 pathway inhibition in severe COVID-19 may be an emerging candidate to subside pulmonary complication. These agents may carry benefits in COVID-19 infection as well as safety risks such as bone marrow suppression. Current pharmacists' role is to provide most recent update information as well as intensive monitoring plan in patients who receive IL-6 inhibitor. However, robust clinical evidences are warranted to confirm efficacy and safety of IL-6 antagonists.
Collapse
Affiliation(s)
- Jennis Meanwatthana
- 68022Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Teerapat Majam
- 68022Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand.,School of Pharmacy, 68022Walailak University, Nakhonsithammarat, Thailand
| |
Collapse
|
235
|
Sun H, Jiang H, Eliaz A, Kellum JA, Peng Z, Eliaz I. Galectin-3 in septic acute kidney injury: a translational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:109. [PMID: 33736691 PMCID: PMC7977587 DOI: 10.1186/s13054-021-03538-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Galectin-3 (Gal-3) is a pleiotropic glycan-binding protein shown to be involved in sepsis and acute kidney injury (AKI). However, its role has never been elucidated in sepsis-associated AKI (S-AKI). We aimed to explore Gal-3's role and its potential utility as a therapeutic target in S-AKI. METHODS In 57 patients admitted to the intensive care unit (ICU) with sepsis, serum Gal-3 was examined as a predictor of ICU mortality and development of AKI. In a rat model of S-AKI induced by cecal ligation and puncture (CLP), 7-day mortality and serum Gal-3, Interleukin-6 (IL-6), and creatinine were examined at 2, 8, and 24 hours (h) post-CLP. Two experimental groups received the Gal-3 inhibitor modified citrus pectin (P-MCP) at 400 mg/kg/day and 1200 mg/kg/day, while the control group received water only (n = 18 in each group). RESULTS Among 57 patients, 27 developed AKI and 8 died in the ICU. Serum Gal-3 was an independent predictor of AKI (OR = 1.2 [95% CI 1.1-1.4], p = 0.01) and ICU mortality (OR = 1.4 [95% CI 1.1-2.2], p = 0.04) before and after controlling for age, AKI, and acute physiology and chronic health evaluation (APACHE II) score. In the CLP rat experiment, serum Gal-3 peaked earlier than IL-6. Serum Gal-3 was significantly lower in both P-MCP groups compared to control at 2 h post-CLP (400 mg: p = 0.003; 1200 mg: p = 0.002), and IL-6 was significantly lower in both P-MCP groups at all time points with a maximum difference at 24 h post-CLP (400 mg: p = 0.015; 1200 mg: p = 0.02). In the Gal-3 inhibitor groups, 7-day mortality was significantly reduced from 61% in the control group to 28% (400 mg P-MCP: p = 0.03) and 22% (1200 mg P-MCP: p = 0.001). Rates of AKI per RIFLE criteria were significantly reduced from 89% in the control group to 44% in both P-MCP groups (400 mg: p = 0.007; 1200 mg: p = 0.007). CONCLUSIONS This translational study demonstrates the importance of Gal-3 in the pathogenesis of S-AKI, and its potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Haibing Sun
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Huiping Jiang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Amity Eliaz
- School of Medicine, University of California, San Francisco, CA, USA
| | - John A Kellum
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China.
| | - Isaac Eliaz
- Amitabha Medical Center, Santa Rosa, CA, USA.
| |
Collapse
|
236
|
Jensen IJ, McGonagill PW, Butler NS, Harty JT, Griffith TS, Badovinac VP. NK Cell-Derived IL-10 Supports Host Survival during Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1171-1180. [PMID: 33514512 PMCID: PMC7946778 DOI: 10.4049/jimmunol.2001131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
The dysregulated sepsis-induced cytokine storm evoked during systemic infection consists of biphasic and interconnected pro- and anti-inflammatory responses. The contrasting inflammatory cytokine responses determine the severity of the septic event, lymphopenia, host survival, and the ensuing long-lasting immunoparalysis state. NK cells, because of their capacity to elaborate pro- (i.e., IFN-γ) and anti-inflammatory (i.e., IL-10) responses, exist at the inflection of sepsis-induced inflammatory responses. Thus, NK cell activity could be beneficial or detrimental during sepsis. In this study, we demonstrate that murine NK cells promote host survival during sepsis by limiting the scope and duration of the cytokine storm. Specifically, NK cell-derived IL-10, produced in response to IL-15, is relevant to clinical manifestations in septic patients and critical for survival during sepsis. This role of NK cells demonstrates that regulatory mechanisms of classical inflammatory cells are beneficial and critical for controlling systemic inflammation, a notion relevant for therapeutic interventions during dysregulated infection-induced inflammatory responses.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | | | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology PhD Program, University of Minnesota, Minneapolis, MN 55455
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242;
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
237
|
Hedetoft M, Garred P, Madsen MB, Hyldegaard O. Hyperbaric oxygen treatment is associated with a decrease in cytokine levels in patients with necrotizing soft-tissue infection. Physiol Rep 2021; 9:e14757. [PMID: 33719215 PMCID: PMC7957267 DOI: 10.14814/phy2.14757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The pathophysiological understanding of the inflammatory response in necrotizing soft-tissue infection (NSTI) and its impact on clinical progression and outcomes are not resolved. Hyperbaric oxygen (HBO2 ) treatment serves as an adjunctive treatment; however, its immunomodulatory effects in the treatment of NSTI remains unknown. Accordingly, we evaluated fluctuations in inflammatory markers during courses of HBO2 treatment and assessed the overall inflammatory response during the first 3 days after admission. METHODS In 242 patients with NSTI, we measured plasma TNF-α, IL-1β, IL-6, IL-10, and granulocyte colony-stimulating factor (G-CSF) upon admission and daily for three days, and before/after HBO2 in the 209 patients recieving HBO2 . We assessed the severity of disease by Simplified Acute Physiology Score (SAPS) II, SOFA score, and blood lactate. RESULTS In paired analyses, HBO2 treatment was associated with a decrease in IL-6 in patients with Group A-Streptococcus NSTI (first HBO2 treatment, median difference -29.5 pg/ml; second HBO2 treatment, median difference -7.6 pg/ml), and overall a decrease in G-CSF (first HBO2 treatment, median difference -22.5 pg/ml; 2- HBO2 treatment, median difference -20.4 pg/ml). Patients presenting with shock had significantly higher baseline cytokines values compared to non-shock patients (TNF-α: 51.9 vs. 23.6, IL-1β: 1.39 vs 0.61, IL-6: 542.9 vs. 57.5, IL-10: 21.7 vs. 3.3 and G-CSF: 246.3 vs. 11.8 pg/ml; all p < 0.001). Longitudinal analyses demonstrated higher concentrations in septic shock patients and those receiving renal-replacement therapy. All cytokines were significantly correlated to SAPS II, SOFA score, and blood lactate. In adjusted analysis, high baseline G-CSF was associated with 30-day mortality (OR 2.83, 95% CI: 1.01-8.00, p = 0.047). CONCLUSION In patients with NSTI, HBO2 treatment may induce immunomodulatory effects by decreasing plasma G-CSF and IL-6. High levels of inflammatory markers were associated with disease severity, whereas high baseline G-CSF was associated with increased 30-day mortality.
Collapse
Affiliation(s)
- Morten Hedetoft
- Department of Anaesthesia, Hyperbaric Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Bruun Madsen
- Department of Intensive Care, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Hyperbaric Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
238
|
Tawfik DM, Vachot L, Bocquet A, Venet F, Rimmelé T, Monneret G, Blein S, Montgomery JL, Hemmert AC, Pachot A, Moucadel V, Yugueros-Marcos J, Brengel-Pesce K, Mallet F, Textoris J. Immune Profiling Panel: A Proof-of-Concept Study of a New Multiplex Molecular Tool to Assess the Immune Status of Critically Ill Patients. J Infect Dis 2021; 222:S84-S95. [PMID: 32691839 PMCID: PMC7372218 DOI: 10.1093/infdis/jiaa248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Critical illness such as sepsis is a life-threatening syndrome defined as a dysregulated host response to infection and is characterized by patients exhibiting impaired immune response. In the field of diagnosis, a gap still remains in identifying the immune profile of critically ill patients in the intensive care unit (ICU). METHODS A new multiplex immune profiling panel (IPP) prototype was assessed for its ability to semiquantify messenger RNA immune-related markers directly from blood, using the FilmArray System, in less than an hour. Samples from 30 healthy volunteers were used for the technical assessment of the IPP tool. Then the tool was clinically assessed using samples from 10 healthy volunteers and 20 septic shock patients stratified using human leukocyte antigen-DR expression on monocytes (mHLA-DR). RESULTS The IPP prototype consists of 16 biomarkers that target the immune response. The majority of the assays had a linear expression with different RNA inputs and a coefficient of determination (R2) > 0.8. Results from the IPP pouch were comparable to standard quantitative polymerase chain reaction and the assays were within the limits of agreement in Bland-Altman analysis. Quantification cycle values of the target genes were normalized against reference genes and confirmed to account for the different cell count and technical variability. The clinical assessment of the IPP markers demonstrated various gene modulations that could distinctly differentiate 3 profiles: healthy volunteers, intermediate mHLA-DR septic shock patients, and low mHLA-DR septic shock patients. CONCLUSIONS The use of IPP showed great potential for the development of a fully automated, rapid, and easy-to-use immune profiling tool. The IPP tool may be used in the future to stratify critically ill patients in the ICU according to their immune status. Such stratification will enable personalized management of patients and guide treatments to avoid secondary infections and lower mortality.
Collapse
Affiliation(s)
- Dina M Tawfik
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - Laurence Vachot
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | | | - Fabienne Venet
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Anaesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Sophie Blein
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | | | | | - Alexandre Pachot
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - Virginie Moucadel
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | | | - Karen Brengel-Pesce
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - François Mallet
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France
| | - Julien Textoris
- EA7426 "Pathophysiology of Injury-Induced Immunosuppression," PI3, Université Claude Bernard Lyon-1 Hospices Civils de Lyon, bioMérieux, Lyon, France.,Open Innovation and Partnerships, bioMérieux, Lyon, France.,Anaesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
239
|
Zhu W, Zhang H, Li Y, Ding Z, Liu Z, Ruan Y, Feng H, Li G, Liu B, He F, Zhou N, Jiang J, Wen Z, Xu G, Zhao J, Zhang B, Wang D, Tang Z, Wang H, Liu J. Optimizing Management to Reduce the Mortality of COVID-19: Experience From a Designated Hospital for Severely and Critically Ill Patients in China. Front Med (Lausanne) 2021; 8:582764. [PMID: 33777967 PMCID: PMC7987780 DOI: 10.3389/fmed.2021.582764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) has swept through the world at a tremendous speed, and there is still limited data available on the treatment for COVID-19. The mortality of severely and critically ill COVID-19 patients in the Optical Valley Branch of Tongji Hospital was low. We aimed to analyze the available treatment strategies to reduce mortality. Methods: In this retrospective, single-center study, we included 1,106 COVID-19 patients admitted to the Optical Valley Branch of Tongji Hospital from February 9 to March 9, 2020. Cases were analyzed for demographic and clinical features, laboratory data, and treatment methods. Outcomes were followed up until March 29, 2020. Results: Inflammation-related indices (hs-CRP, ESR, serum ferritin, and procalcitonin) were significantly higher in severe and critically ill patients than those in moderate patients. The levels of cytokines, including IL-6, IL2R, IL-8, and TNF-α, were also higher in the critical patients. Incidence of acute respiratory distress syndrome (ARDS) in the severely and critically ill group was 23.0% (99/431). Sixty-one patients underwent invasive mechanical ventilation. The correlation between SpO2/FiO2 and PaO2/FiO2 was confirmed, and the cut-off value of SpO2/FiO2 related to survival was 134.43. The mortality of patients with low SpO2/FiO2 (<134.43) at intubation was higher than that of patients with high SpO2/FiO2 (>134.43) (72.7 vs. 33.3%). Among critical patients, the application rates of glucocorticoid therapy, continuous renal replacement therapy (CRRT), and anticoagulation treatment reached 55.2% (238/431), 7.2% (31/431), and 37.1% (160/431), respectively. Among the intubated patients, the application rates of glucocorticoid therapy, CRRT, and anticoagulation treatment were respectively 77.0% (47/61), 54.1% (33/61), and 98.4% (60/61). Conclusion: No vaccines or specific antiviral drugs for COVID-19 have been shown to be sufficiently safe and effective to date. Comprehensive treatment including ventilatory support, multiple organ function preservation, glucocorticoid use, renal replacement therapy, anticoagulation, and restrictive fluid management was the main treatment strategy. Early recognition and intervention, multidisciplinary collaboration, multi-organ function support, and personalized treatment might be the key for reducing mortality.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Li
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ganxun Li
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan He
- Department of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhou
- Department of Cardiology, Department of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangang Jiang
- Department of Cardiology, Department of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Wen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daowen Wang
- Department of Cardiology, Department of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
240
|
Autologous adoptive immune-cell therapy elicited a durable response with enhanced immune reaction signatures in patients with recurrent glioblastoma: An open label, phase I/IIa trial. PLoS One 2021; 16:e0247293. [PMID: 33690665 PMCID: PMC7946298 DOI: 10.1371/journal.pone.0247293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignancy classified by the World Health Organization as a grade IV glioma. Despite the availability of aggressive standard therapies, most patients experience recurrence, for which there are currently no effective treatments. We aimed to conduct a phase I/IIa clinical trial to investigate the safety and efficacy of adoptive, ex-vivo-expanded, and activated natural killer cells and T lymphocytes from peripheral blood mononuclear cells of patients with recurrent GBM. This study was a single-arm, open-label, investigator-initiated trial on 14 patients recruited between 2013 and 2017. The immune cells were administered via intravenous injection 24 times at 2-week intervals after surgical resection or biopsy. The safety and clinical efficacy of this therapy was examined by assessing adverse events and comparing 2-year overall survival (OS). Transcriptomic analysis of tumor tissues was performed using NanoString to identify the mechanism of therapeutic efficacy. No grade 4 or 5 severe adverse events were observed. The most common treatment-related adverse events were grade 1 or 2 in severity. The most severe adverse event was grade 3 fever. Median OS was 22.5 months, and the median progression-free survival was 10 months. Five patients were alive for over 2 years and showed durable response with enhanced immune reaction transcriptomic signatures without clinical decline until the last follow-up after completion of the therapy. In conclusion, autologous adoptive immune-cell therapy was safe and showed durable response in patients with enhanced immune reaction signatures. This therapy may be effective for recurrent GBM patients with high immune response in their tumor microenvironments. Trial registration: The Korea Clinical Research Information Service database: KCT0003815, Registered 18 April 2019, retrospectively registered.
Collapse
|
241
|
Frota LAA, Santos NC, Ferreira GP, da Silva FRP, Pereira ACTDC. What is the association between the IL6-174 G > C (rs1800795) polymorphism and the risk of dengue? Evidence from a meta-analysis. INFECTION GENETICS AND EVOLUTION 2021; 91:104778. [PMID: 33662586 DOI: 10.1016/j.meegid.2021.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
The association of polymorphisms in genes responsible for immunological mediators with dengue allows the identification of certain genetic alterations that increase or decrease the development risk of the disease. A few number of studies that correlate the interleukin 6-174 G > C (IL6-174 G > C) polymorphism (rs1800795) with dengue. However, there is an inconsistency on the polymorphism influence on the disease which motivated this meta-analysis. So, this study aimed to evaluate the rs1800795 polymorphism with protection or susceptibility for development of dengue. A search of the literature was performed for studies published before 05 September 2020 in various databases. Calculations of Odds Ratio (OR) with 95% of Confidence Intervals (CI) and heterogeneity (I2) were assessed and publication bias was done by Begg' and Egger's test. The value of P < 0.05 was considered as significant. As results, five case-control studies were identified and included in the results. The analysis showed that the heterozygous genotype has a protective role against dengue without warning signs (DWOS) (OR = 0.57, p = 0.001), as well as the polymorphic C allele (OR = 0.77, p = 0.04). When unifying the data from the included studies, the GG genotype was more prevalent among individuals with dengue with warning signs (DWWS) when compared to the control group (p = 0.0221). GC genotype was more prevalent in the control group than in the DWWS group (p = 0.0119). Therefore, in our study we observed that the GC genotype and the C allele have a protective role against DWOS. Since this polymorphism is associated with low IL-6 expression, thus it is expected that there will be a decreased pro-inflammatory response. However, more studies regarding this thematic are necessary to have a consensus about this polymorphism and dengue.
Collapse
Affiliation(s)
- Lineker Alberto Araújo Frota
- Laboratory of Biology of Microorganisms, Universidade Federal do Delta do Parnaíba, Campus Ministro Reis Velloso, Parnaíba, Piauí, Brazil
| | - Naiany Carvalho Santos
- Laboratory of Biology of Microorganisms, Universidade Federal do Delta do Parnaíba, Campus Ministro Reis Velloso, Parnaíba, Piauí, Brazil; Programa de Pós-graduação em Ciências Biomédicas da Universidade Federal do Delta do Parnaíba, Laboratório de Biologia de Microrganismos - BIOMIC, Av. São Sebastião, 2819, Bairro Reis Velloso, CEP 64202-020, Parnaíba - PI, Brasil
| | - Gustavo Portela Ferreira
- Laboratory of Biology of Microorganisms, Universidade Federal do Delta do Parnaíba, Campus Ministro Reis Velloso, Parnaíba, Piauí, Brazil; Programa de Pós-graduação em Ciências Biomédicas da Universidade Federal do Delta do Parnaíba, Laboratório de Biologia de Microrganismos - BIOMIC, Av. São Sebastião, 2819, Bairro Reis Velloso, CEP 64202-020, Parnaíba - PI, Brasil
| | | | - Anna Carolina Toledo da Cunha Pereira
- Laboratory of Biology of Microorganisms, Universidade Federal do Delta do Parnaíba, Campus Ministro Reis Velloso, Parnaíba, Piauí, Brazil; Programa de Pós-graduação em Ciências Biomédicas da Universidade Federal do Delta do Parnaíba, Laboratório de Biologia de Microrganismos - BIOMIC, Av. São Sebastião, 2819, Bairro Reis Velloso, CEP 64202-020, Parnaíba - PI, Brasil.
| |
Collapse
|
242
|
Malkova A, Kudlay D, Kudryavtsev I, Starshinova A, Yablonskiy P, Shoenfeld Y. Immunogenetic Predictors of Severe COVID-19. Vaccines (Basel) 2021; 9:211. [PMID: 33802310 PMCID: PMC8001669 DOI: 10.3390/vaccines9030211] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
According to an analysis of published data, only 20% of patients with the new coronavirus infection develop severe life-threatening complications. Currently, there are no known biomarkers, the determination of which before the onset of the disease would allow assessing the likelihood of its severe course. The purpose of this literature review was to analyze possible genetic factors characterizing the immune response to the new coronavirus infection that could be associated with the expression of angiotension-converting enzyme 2 (ACE-2) and related proteins as predictors of severe Corona virus disease 2019 (COVID-19). We analyzed original articles published in Medline, PubMed and Scopus databases from December 2019 to November 2020. For searching articles, we used the following keywords: New coronavirus infection, Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), COVID-19, severe course, complications, thrombosis, cytokine storm, ACE-2, biomarkers. In total, 3714 publications were selected using the keywords, of which 8 were in congruence with all the criteria. The literature analysis of the association of immunogenic characteristics and the expression of ACE-2 and related proteins with the development of severe COVID-19 revealed following genetic factors: HLA-B*46:01 genotype, CXCR6 gene hypoexpression, CCR9 gene expression, TLR7, rs150892504 mutations in the ERAP2 gene, overexpression of wild-type ACE-2, TMPRSS2 and its different polymorphisms. Genes, associated with the severe course, are more common among men. According to the analysis data, it can be assumed that there are population differences. However, the diagnostic significance of the markers described must be confirmed with additional clinical studies.
Collapse
Affiliation(s)
- Anna Malkova
- St. Petersburg State University, Saint Petersburg 199034, Russia; (P.Y.); (Y.S.)
| | - Dmitriy Kudlay
- Sechenov First Moscow State Medical University, Moscow 119435, Russia;
- NRC Institute of Immunology FMBA of Russia, Moscow 115478, Russia
| | - Igor Kudryavtsev
- FSBI Institute of Experimental Medicine, St. Petersburg 197376, Russia;
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Anna Starshinova
- FSBI V.A. Almazov National Medical Research Center, Ministry of Health of Russia, St. Petersburg 197241, Russia;
| | - Piotr Yablonskiy
- St. Petersburg State University, Saint Petersburg 199034, Russia; (P.Y.); (Y.S.)
- St. Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg 191036, Russia
| | - Yehuda Shoenfeld
- St. Petersburg State University, Saint Petersburg 199034, Russia; (P.Y.); (Y.S.)
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
243
|
Banji D, Alqahtani SS, Banji OJ, Machanchery S, Shoaib A. Calming the inflammatory storm in severe COVID-19 infections: Role of biologics- A narrative review. Saudi Pharm J 2021; 29:213-222. [PMID: 33850422 PMCID: PMC8030716 DOI: 10.1016/j.jsps.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/20/2021] [Indexed: 02/09/2023] Open
Abstract
The risk of Coronavirus infection continues, and the fear of resurgence indicates the lack of a successful therapeutic strategy. In severe COVID-19 infection, many immune cells and their products are involved, making management difficult. The abundant release of cytokines and chemokines in severe COVID-19 patients leads to profound hyper inflammation and the mobilization of immune cells, triggering the cytokine storm. The complications associated with the cytokine storm include severe respiratory distress, intravascular coagulation, multi-organ failure, and death. The enormous formation of interleukin (IL)-6 and hemopoietic factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF) are implicated in the severity of the infection. Moreover, these inflammatory cytokines and factors signal through the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway causing the activation of cytokine-related genes. The neutralization of these proteins could be of therapeutic help in COVID-19 patients and could mitigate the risk of mortality. IL-6 antagonist, IL-6 receptor antagonists, GM-CSF receptor inhibitors, and JAK-STAT inhibitors are being investigated to prevent intense lung injury in COVID-19 patients and increase the chances of survival. The review focuses the role of IL-6, GM-CSF, and JAK-STAT inhibitors in regulating the immune response in severely affected COVID-19 patients.
Collapse
Affiliation(s)
- David Banji
- Department of Clinical Pharmacy, Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Saudi Arabia
| | - Otilia J.F. Banji
- Department of Clinical Pharmacy, Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Saudi Arabia
| | - Shamna Machanchery
- Department of Clinical Pharmacy, Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Saudi Arabia
| |
Collapse
|
244
|
Bhardwaj A, Sapra L, Saini C, Azam Z, Mishra PK, Verma B, Mishra GC, Srivastava RK. COVID-19: Immunology, Immunopathogenesis and Potential Therapies. Int Rev Immunol 2021; 41:171-206. [PMID: 33641587 PMCID: PMC7919479 DOI: 10.1080/08830185.2021.1883600] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease-2019 (COVID-19) imposed public health emergency and affected millions of people around the globe. As of January 2021, 100 million confirmed cases of COVID-19 along with more than 2 million deaths were reported worldwide. SARS-CoV-2 infection causes excessive production of pro-inflammatory cytokines thereby leading to the development of "Cytokine Storm Syndrome." This condition results in uncontrollable inflammation that further imposes multiple-organ-failure eventually leading to death. SARS-CoV-2 induces unrestrained innate immune response and impairs adaptive immune responses thereby causing tissue damage. Thus, understanding the foremost features and evolution of innate and adaptive immunity to SARS-CoV-2 is crucial in anticipating COVID-19 outcomes and in developing effective strategies to control the viral spread. In the present review, we exhaustively discuss the sequential key immunological events that occur during SARS-CoV-2 infection and are involved in the immunopathogenesis of COVID-19. In addition to this, we also highlight various therapeutic options already in use such as immunosuppressive drugs, plasma therapy and intravenous immunoglobulins along with various novel potent therapeutic options that should be considered in managing COVID-19 infection such as traditional medicines and probiotics.
Collapse
Affiliation(s)
- Asha Bhardwaj
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Chaman Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Zaffar Azam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-NIREH, Nehru Hospital Building, Gandhi Medical College Campus, Bhopal, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan C. Mishra
- Lab # 1, National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
245
|
Hong R, Hu Y, Huang H. Biomarkers for Chimeric Antigen Receptor T Cell Therapy in Acute Lymphoblastic Leukemia: Prospects for Personalized Management and Prognostic Prediction. Front Immunol 2021; 12:627764. [PMID: 33717147 PMCID: PMC7947199 DOI: 10.3389/fimmu.2021.627764] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy represents a breakthrough in immunotherapy with the potential of ushering in a new era in cancer treatment. Remarkable therapeutic response and complete remission of this innovative management have been observed in patients with relapse/refractory acute lymphoblastic leukemia. With CAR-T cell therapy becoming widely used both in multicenter clinical trials and as a commercial treatment, therapeutic efficacy monitoring and management of toxicities will be indispensable for ensuring safety and improving overall survival. Biomarkers can act not only as effective indicators reflecting patients' baseline characteristics, CAR-T cell potency, and the immune microenvironment, but can also assess side effects during treatment. In this review, we will elaborate on a series of biomarkers associated with therapeutic response as well as treatment-related toxicities, and present their current condition and latent value with respect to the clinical utility. The combination of biomarker research and CAR-T cell therapy will contribute to establishing a safer and more powerful monitoring system and prolonging the event-free survival of patients.
Collapse
Affiliation(s)
- Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
246
|
Zarski LM, Giessler KS, Jacob SI, Weber PSD, McCauley AG, Lee Y, Soboll Hussey G. Identification of Host Factors Associated with the Development of Equine Herpesvirus Myeloencephalopathy by Transcriptomic Analysis of Peripheral Blood Mononuclear Cells from Horses. Viruses 2021; 13:v13030356. [PMID: 33668216 PMCID: PMC7995974 DOI: 10.3390/v13030356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Equine herpesvirus-1 is the cause of respiratory disease, abortion, and equine herpesvirus myeloencephalopathy (EHM) in horses worldwide. EHM affects as many as 14% of infected horses and a cell-associated viremia is thought to be central for EHM pathogenesis. While EHM is infrequent in younger horses, up to 70% of aged horses develop EHM. The aging immune system likely contributes to EHM pathogenesis; however, little is known about the host factors associated with clinical EHM. Here, we used the “old mare model” to induce EHM following EHV-1 infection. Peripheral blood mononuclear cells (PBMCs) of horses prior to infection and during viremia were collected and RNA sequencing with differential gene expression was used to compare the transcriptome of horses that did (EHM group) and did not (non-EHM group) develop clinical EHM. Interestingly, horses exhibiting EHM did not show respiratory disease, while non-EHM horses showed significant respiratory disease starting on day 2 post infection. Multiple immune pathways differed in EHM horses in response to EHV-1. These included an upregulation of IL-6 gene expression, a dysregulation of T-cell activation through AP-1 and responses skewed towards a T-helper 2 phenotype. Further, a dysregulation of coagulation and an upregulation of elements in the progesterone response were observed in EHM horses.
Collapse
Affiliation(s)
- Lila M. Zarski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Kim S. Giessler
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Sarah I. Jacob
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Patty Sue D. Weber
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Allison G. McCauley
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Yao Lee
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
- Correspondence:
| |
Collapse
|
247
|
Zhang X, Gao R, Zhou Z, Tang X, Lin J, Wang L, Zhou X, Shen T. A network pharmacology based approach for predicting active ingredients and potential mechanism of Lianhuaqingwen capsule in treating COVID-19. Int J Med Sci 2021; 18:1866-1876. [PMID: 33746604 PMCID: PMC7976588 DOI: 10.7150/ijms.53685] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of severe respiratory disease caused by SARS-CoV-2 has led to millions of infections and raised global health concerns. Lianhuaqingwen capsule (LHQW-C), a traditional Chinese medicine (TCM) formula widely used for respiratory diseases, shows therapeutic efficacy in the application of coronavirus disease 2019 (COVID-19). However, the active ingredients, drug targets, and the therapeutic mechanisms of LHQW-C in treating COVID-19 are poorly understood. In this study, an integrating network pharmacology approach including pharmacokinetic screening, target prediction (targets of the host and targets from the SARS-CoV-2), network analysis, GO enrichment analysis, KEGG pathway enrichment analysis, and virtual docking were conducted. Finally, 158 active ingredients in LHQW-C were screen out, and 49 targets were predicted. GO function analysis revealed that these targets were associated with inflammatory response, oxidative stress reaction, and other biological processes. KEGG enrichment analysis indicated that the targets of LHQW-C were highly enriched to several immune response-related and inflammation-related pathways, including the IL-17 signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, and Th17 cell differentiation. Moreover, four key components (quercetin, luteolin, wogonin, and kaempferol) showed a high binding affinity with SARS-CoV-2 3-chymotrypsin-like protease (3CL pro). The study indicates that some anti-inflammatory ingredients in LHQW-C probably modulate the inflammatory response in severely ill patients with COVID-19.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuehua Tang
- Academic Department, Zhuhai Ebang Pharmaceutical Co., Ltd. Zhuhai, China
| | - Jingjing Lin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
248
|
Que Y, Hu C, Wan K, Hu P, Wang R, Luo J, Li T, Ping R, Hu Q, Sun Y, Wu X, Tu L, Du Y, Chang C, Xu G. Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol 2021; 41:217-230. [PMID: 33616462 PMCID: PMC7919105 DOI: 10.1080/08830185.2021.1884248] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) erupted in Hubei Province of China in December 2019 and has become a pandemic. Severe COVID-19 patients who suffer from acute respiratory distress syndrome (ARDS) and multi-organ dysfunction have high mortality. Several studies have shown that this is closely related to the cytokine release syndrome (CRS), often loosely referred to as cytokine storm. IL-6 is one of the key factors and its level is positively correlated with the severity of the disease. The molecular mechanisms for CRS in COVID-19 are related to the effects of the S-protein and N-protein of the virus and its ability to trigger NF-κB activation by disabling the inhibitory component IκB. This leads to activation of immune cells and the secretion of proinflammatory cytokines such as IL-6 and TNF-α. Other mechanisms related to IL-6 include its interaction with GM-CSF and interferon responses. The pivotal role of IL-6 makes it a target for therapeutic agents and studies on tocilizumab are already ongoing. Other possible targets of treating CRS in COVID-19 include IL-1β and TNF-α. Recently, reports of a CRS like illness called multisystem inflammatory syndrome in children (MIS-C) in children have surfaced, with a variable presentation which in some cases resembles Kawasaki disease. It is likely that the immunological derangement and cytokine release occurring in COVID-19 cases is variable, or on a spectrum, that can potentially be governed by genetic factors. Currently, there are no approved biological modulators for the treatment of COVID-19, but the urgency of the pandemic has led to numerous clinical trials worldwide. Ultimately, there is great promise that an anti-inflammatory modulator targeting a cytokine storm effect may prove to be very beneficial in reducing morbidity and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Yifan Que
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Chao Hu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Kun Wan
- Medical Supplies Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Peng Hu
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Runsheng Wang
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jiang Luo
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Tianzhi Li
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Rongyu Ping
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qinyong Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Lei Tu
- Division of Gastroenterology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yingzhen Du
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Christopher Chang
- Division of Pediatric Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Hollywood, Florida, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Guogang Xu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
249
|
He Y, Zheng X, Li X, Jiang X. Key factors leading to fatal outcomes in COVID-19 patients with cardiac injury. Sci Rep 2021; 11:4144. [PMID: 33602949 PMCID: PMC7892550 DOI: 10.1038/s41598-021-82396-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiac injury among patients with COVID-19 has been reported and is associated with a high risk of mortality, but cardiac injury may not be the leading factor related to death. The factors related to poor prognosis among COVID-19 patients with myocardial injury are still unclear. This study aimed to explore the potential key factors leading to in-hospital death among COVID-19 patients with cardiac injury. This retrospective single-center study was conducted at Renmin Hospital of Wuhan University, from January 20, 2020 to April 10, 2020, in Wuhan, China. All inpatients with confirmed COVID-19 (≥ 18 years old) and cardiac injury who had died or were discharged by April 10, 2020 were included. Demographic data and clinical and laboratory findings were collected and compared between survivors and nonsurvivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with mortality in COVID-19 patients with cardiac injury. A total of 173 COVID-19 patients with cardiac injury were included in this study, 86 were discharged and 87 died in the hospital. Multivariable regression showed increased odds of in-hospital death were associated with advanced age (odds ratio 1.12, 95% CI 1.05-1.18, per year increase; p < 0.001), coagulopathy (2.54, 1.26-5.12; p = 0·009), acute respiratory distress syndrome (16.56, 6.66-41.2; p < 0.001), and elevated hypersensitive troponin I (4.54, 1.79-11.48; p = 0.001). A high risk of in-hospital death was observed among COVID-19 patients with cardiac injury in this study. The factors related to death include advanced age, coagulopathy, acute respiratory distress syndrome and elevated levels of hypersensitive troponin I.
Collapse
Affiliation(s)
- Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, PR China. .,Hubei Key Laboratory of Cardiology, Wuhan, PR China.
| |
Collapse
|
250
|
Santa Cruz A, Mendes-Frias A, Oliveira AI, Dias L, Matos AR, Carvalho A, Capela C, Pedrosa J, Castro AG, Silvestre R. Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol 2021; 12:613422. [PMID: 33679753 PMCID: PMC7930905 DOI: 10.3389/fimmu.2021.613422] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Hyper-inflammatory responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major cause of disease severity and death. Predictive prognosis biomarkers to guide therapeutics are critically lacking. Several studies have indicated a "cytokine storm" with the release of interleukin-1 (IL-1), IL-6, and IL-8, along with tumor necrosis factor alpha (TNFα) and other inflammatory mediators. Here, we proposed to assess the relationship between IL-6 and outcomes of patients with coronavirus disease 2019 (COVID-19). Our cohort consisted of 46 adult patients with PCR-proven SARS-CoV-2 infection admitted in a COVID-19 ward of the Hospital de Braga (HB) from April 7 to May 7, 2020, whose IL-6 levels were followed over time. We found that IL-6 levels were significantly different between the disease stages. Also, we found a significant negative correlation between IL-6 levels during stages IIb and III, peripheral oxygen saturation (SpO2), and partial pressure of oxygen in arterial blood (PaO2), showing that IL-6 correlates with respiratory failure. Compared to the inflammatory markers available in the clinic routine, we found a positive correlation between IL-6 and C-reactive protein (CRP). However, when we assessed the predictive value of these two markers, IL-6 behaves as a better predictor of disease progression. In a binary logistic regression, IL-6 level was the most significant predictor of the non-survivors group, when compared to age and CRP. Herein, we present IL-6 as a relevant tool for prognostic evaluation, mainly as a predictor of outcome.
Collapse
Affiliation(s)
- André Santa Cruz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | | | - Luís Dias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ana Rita Matos
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|