201
|
Goldfine AB, Kulkarni RN. Modulation of β-cell function: a translational journey from the bench to the bedside. Diabetes Obes Metab 2012; 14 Suppl 3:152-60. [PMID: 22928576 DOI: 10.1111/j.1463-1326.2012.01647.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both decreased insulin secretion and action contribute to the pathogenesis of type 2 diabetes (T2D) in humans. The insulin receptor and insulin signalling proteins are present in the rodent and human β-cell and modulate cell growth and function. Insulin receptors and insulin signalling proteins in β-cells are critical for compensatory islet growth in response to insulin resistance. Rodents with tissue-specific knockout of the insulin receptor in the β-cell (βIRKO) show reduced first-phase glucose-stimulated insulin secretion (GSIS) and with aging develop glucose intolerance and diabetes, phenotypically similar to the process seen in human T2D. Expression of multiple insulin signalling proteins is reduced in islets of patients with T2D. Insulin potentiates GSIS in isolated human β-cells. Recent studies in humans in vivo show that pre-exposure to insulin increases GSIS, and this effect is diminished in persons with insulin resistance or T2D. β-Cell function correlates to whole-body insulin sensitivity. Together, these findings suggest that pancreatic β-cell dysfunction could be caused by a defect in insulin signalling within β-cell, and β-cell insulin resistance may lead to a loss of β-cell function and/or mass, contributing to the pathophysiology of T2D.
Collapse
Affiliation(s)
- A B Goldfine
- Section of Clinical Research, Joslin Diabetes Center, Boston, MA 02215, USA.
| | | |
Collapse
|
202
|
Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 2012; 23:477-87. [PMID: 22766318 DOI: 10.1016/j.tem.2012.06.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/02/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022]
Abstract
In pancreatic β cells, mitochondria play a central role in coupling glucose metabolism to insulin exocytosis, thereby ensuring strict control of glucose-stimulated insulin secretion. Defects in mitochondrial function impair this metabolic coupling, and ultimately promote apoptosis and β cell death. Various factors have been identified that may contribute to mitochondrial dysfunction. In this review we address the emerging concept of complex links between these factors. We also discuss the role of the mitochondrial genome and mutations associated with diabetes, the effect of oxidative stress and reactive oxygen species, the sensitivity of mitochondria to lipotoxicity, and the adaptive dynamics of mitochondrial morphology. Better comprehension of the molecular mechanisms contributing to mitochondrial dysfunction will help drive the development of effective therapeutic approaches.
Collapse
Affiliation(s)
- Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
203
|
Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 2012; 55:2096-108. [PMID: 22555472 DOI: 10.1007/s00125-012-2562-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 12/25/2022]
Abstract
Clarification of the molecular mechanisms of insulin secretion is crucial for understanding the pathogenesis and pathophysiology of diabetes and for development of novel therapeutic strategies for the disease. Insulin secretion is regulated by various intracellular signals generated by nutrients and hormonal and neural inputs. In addition, a variety of glucose-lowering drugs including sulfonylureas, glinide-derivatives, and incretin-related drugs such as dipeptidyl peptidase IV (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists are used for glycaemic control by targeting beta cell signalling for improved insulin secretion. There has been a remarkable increase in our understanding of the basis of beta cell signalling over the past two decades following the application of molecular biology, gene technology, electrophysiology and bioimaging to beta cell research. This review discusses cell signalling in insulin secretion, focusing on the molecular targets of ATP, cAMP and sulfonylurea, an essential metabolic signal in glucose-induced insulin secretion (GIIS), a critical signal in the potentiation of GIIS, and the commonly used glucose-lowering drug, respectively.
Collapse
Affiliation(s)
- S Seino
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
204
|
Lam AK, Silva PN, Altamentova SM, Rocheleau JV. Quantitative imaging of electron transfer flavoprotein autofluorescence reveals the dynamics of lipid partitioning in living pancreatic islets. Integr Biol (Camb) 2012; 4:838-46. [PMID: 22733276 DOI: 10.1039/c2ib20075a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pancreatic islet β-cells metabolically sense nutrients to maintain blood glucose homeostasis through the regulated secretion of insulin. Long-term exposure to a mixed supply of excess glucose and fatty acids induces β-cell dysfunction and type II diabetes in a process termed glucolipotoxicity. Despite a number of documented mechanisms for glucolipotoxicity, the interplay between glucose and fatty acid oxidation in islets remains debated. Here, we develop confocal imaging of electron transfer flavoprotein (ETF) autofluorescence to reveal the dynamics of fatty acid oxidation in living pancreatic islets. This method further integrates microfluidic devices to hold the islets stationary in flow, and thus achieve ETF imaging in the β-cells with high spatial and temporal resolution. Our data first confirm that ETF autofluorescence reflects electron transport chain (ETC) activity downstream of Complex I, consistent with a response directly related to fatty acid metabolism. Together with two-photon imaging of NAD(P)H and confocal imaging of lipoamide dehydrogenase (LipDH) autofluorescence, we show that the ETC predominantly draws electrons from LipDH/NADH-dependent Complex I rather than from ETF/FADH(2)-dependent ETF:CoQ oxidoreductase (ETF-QO). Islets stimulated with palmitate also show increased ETF redox state that is dose-dependently diminished by glucose (>10 mM). Furthermore, stimulation with a glucose bolus causes a two-tier drop in the ETF redox state at ∼5 and ∼20 min, suggesting glucose metabolism immediately increases ETC activity and later decreases fatty acid oxidation. Our results demonstrate the utility of ETF imaging in characterizing fatty acid-induced redox responses with high subcellular and temporal resolution. Our results further demonstrate a dominant role of glucose metabolism over fatty acid oxidation in β-cells even when presented with a mixed nutrient condition associated with glucolipotoxicity.
Collapse
Affiliation(s)
- Alan K Lam
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON Canada
| | | | | | | |
Collapse
|
205
|
Inflammation-Mediated Regulation of MicroRNA Expression in Transplanted Pancreatic Islets. J Transplant 2012; 2012:723614. [PMID: 22655170 PMCID: PMC3359768 DOI: 10.1155/2012/723614] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/09/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022] Open
Abstract
Nonspecific inflammation in the transplant microenvironment results in β-cell dysfunction and death influencing negatively graft outcome. MicroRNA (miRNA) expression and gene target regulation in transplanted islets are not yet well characterized. We evaluated the impact of inflammation on miRNA expression in transplanted rat islets. Islets exposed in vitro to proinflammatory cytokines and explanted syngeneic islet grafts were evaluated by miRNA arrays. A subset of 26 islet miRNAs was affected by inflammation both in vivo and in vitro. Induction of miRNAs was dependent on NF-κB, a pathway linked with cytokine-mediated islet cell death. RT-PCR confirmed expression of 8 miRNAs. The association between these miRNAs and mRNA target-predicting algorithms in genome-wide RNA studies of β-cell inflammation identified 238 potential miRNA gene targets. Several genes were ontologically associated with regulation of insulin signaling and secretion, diabetes, and islet physiology. One of the most activated miRNAs was miR-21. Overexpression of miR-21 in insulin-secreting MIN6 cells downregulated endogenous expression of the tumor suppressor Pdcd4 and of Pclo, a Ca2+ sensor protein involved in insulin secretion. Bioinformatics identified both as potential targets. The integrated analysis of miRNA and mRNA expression profiles revealed potential targets that may identify molecular targets for therapeutic interventions.
Collapse
|
206
|
Abstract
Defining the key metabolic pathways that are important for fuel-regulated insulin secretion is critical to providing a complete picture of how nutrients regulate insulin secretion. We have performed a detailed metabolomics study of the clonal β-cell line 832/13 using a gas chromatography-mass spectrometer (GC-MS) to investigate potential coupling factors that link metabolic pathways to insulin secretion. Mid-polar and polar metabolites, extracted from the 832/13 β-cells, were derivatized and then run on a GC/MS to identify and quantify metabolite concentrations. Three hundred fifty-five out of 527 chromatographic peaks could be identified as metabolites by our metabolomic platform. These identified metabolites allowed us to perform a systematic analysis of key pathways involved in glucose-stimulated insulin secretion (GSIS). Of these metabolites, 41 were consistently identified as biomarker for GSIS by orthogonal partial least-squares (OPLS). Most of the identified metabolites are from common metabolic pathways including glycolytic, sorbitol-aldose reductase pathway, pentose phosphate pathway, and the TCA cycle suggesting these pathways play an important role in GSIS. Lipids and related products were also shown to contribute to the clustering of high glucose sample groups. Amino acids lysine, tyrosine, alanine and serine were upregulated by glucose whereas aspartic acid was downregulated by glucose suggesting these amino acids might play a key role in GSIS. In summary, a coordinated signaling cascade elicited by glucose metabolism in pancreatic β-cells is revealed by our metabolomics platform providing a new conceptual framework for future research and/or drug discovery.
Collapse
|
207
|
Wiederkehr A, Wollheim CB. Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 2012; 353:128-37. [PMID: 21784130 DOI: 10.1016/j.mce.2011.07.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022]
Abstract
β-Cell nutrient sensing depends on mitochondrial function. Oxidation of nutrient-derived metabolites in the mitochondria leads to plasma membrane depolarization, Ca(2+) influx and insulin granule exocytosis. Subsequent mitochondrial Ca(2+) uptake further accelerates metabolism and oxidative phosphorylation. Nutrient activation also increases the mitochondrial matrix pH. This alkalinization is required to maintain elevated insulin secretion during prolonged nutrient stimulation. Together the mitochondrial Ca(2+) rise and matrix alkalinization assure optimal ATP synthesis necessary for efficient activation of the triggering pathway of insulin secretion. The sustained, amplifying pathway of insulin release also depends on mitochondrial Ca(2+) signals, which likely influence the generation of glucose-derived metabolites serving as coupling factors. Therefore, mitochondria are both recipients and generators of signals essential for metabolism-secretion coupling. Activation of these signaling pathways would be an attractive target for the improvement of β-cell function and the treatment of type 2 diabetes.
Collapse
|
208
|
Prentki M, Madiraju SRM. Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes. Mol Cell Endocrinol 2012; 353:88-100. [PMID: 22108437 DOI: 10.1016/j.mce.2011.11.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 12/16/2022]
Abstract
Pancreatic β-cells secrete insulin in response to fluctuations in blood fuel concentrations, in particular glucose and fatty acids. However, chronic fuel surfeit can overwhelm the metabolic, signaling and secretory capacity of the β-cell leading to its dysfunction and death - often referred to as glucolipotoxicity. In β-cells and many other cells, glucose and lipid metabolic pathways converge into a glycerolipid/free fatty acid (GL/FFA) cycle, which is driven by the substrates, glycerol-3-phosphate and fatty acyl-CoA, derived from glucose and fatty acids, respectively. Although the overall operation of GL/FFA cycle, consisting of lipolysis and lipogenesis, is "futile" in terms of energy expenditure, this metabolic cycle likely plays an indispensable role for various β-cell functions, in particular insulin secretion and excess fuel detoxification. In this review, we discuss the significance of GL/FFA cycle in the β-cell, its regulation and role in generating essential metabolic signals that participate in the lipid amplification arm of glucose stimulated insulin secretion and in β-cell growth. We propose the novel concept that the lipolytic segment of GL/FFA cycle is instrumental in producing signals for insulin secretion, whereas, the lipogenic segment generates signals relevant for β-cell survival/death and growth/proliferation.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Technopôle Angus, 2901, Montreal, Canada QC H1W 4A4.
| | | |
Collapse
|
209
|
Payeur AL, Lorenz MA, Kennedy RT. Analysis of fatty acid composition in insulin secreting cells by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:187-92. [PMID: 22456534 PMCID: PMC3322247 DOI: 10.1016/j.jchromb.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 11/28/2022]
Abstract
A comprehensive two-dimensional gas chromatography (GC×GC) time-of-flight mass spectrometry method was developed for determination of fatty acids (irrespective of origin, i.e., both free fatty acids and fatty acids bound in sources such as triglycerides) in cultured mammalian cells. The method was applied to INS-1 cells, an insulin-secreting cell line commonly used as a model in diabetes studies. In the method, lipids were extracted and transformed to fatty acid methyl esters for analysis. GC×GC analysis revealed the presence of 30 identifiable fatty acids in the extract. This result doubles the number of fatty acids previously identified in these cells. The method yielded linear calibrations and an average relative standard deviation of 8.4% for replicate injections of samples and 12.4% for replicate analysis of different samples. The method was used to demonstrate changes in fatty acid content as a function of glucose concentration on the cells. These results demonstrate the utility of this method for analysis of fatty acids in mammalian cell cultures.
Collapse
Affiliation(s)
- Amy L. Payeur
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew A. Lorenz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
210
|
Hang TC, Lauffenburger DA, Griffith LG, Stolz DB. Lipids promote survival, proliferation, and maintenance of differentiation of rat liver sinusoidal endothelial cells in vitro. Am J Physiol Gastrointest Liver Physiol 2012; 302:G375-88. [PMID: 22075778 PMCID: PMC3287397 DOI: 10.1152/ajpgi.00288.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary rat liver sinusoidal endothelial cells (LSEC) are difficult to maintain in a differentiated state in culture for scientific studies or technological applications. Relatively little is known about molecular regulatory processes that affect LSEC differentiation because of this inability to maintain cellular viability and proper phenotypic characteristics for extended times in vitro, given that LSEC typically undergo death and detachment around 48-72 h even when treated with VEGF. We demonstrate that particular lipid supplements added to serum-free, VEGF-containing medium increase primary rat liver LSEC viability and maintain differentiation. Addition of a defined lipid combination, or even oleic acid (OA) alone, promotes LSEC survival beyond 72 h and proliferation to confluency. Moreover, assessment of LSEC cultures for endocytic function, CD32b surface expression, and exhibition of fenestrae showed that these differentiation characteristics were maintained when lipids were included in the medium. With respect to the underlying regulatory pathways, we found lipid supplement-enhanced phosphatidylinositol 3-kinase and MAPK signaling to be critical for ensuring LSEC function in a temporally dependent manner. Inhibition of Akt activity before 72 h prevents growth of SEC, whereas MEK inhibition past 72 h prevents survival and proliferation. Our findings indicate that OA and lipids modulate Akt/PKB signaling early in culture to mediate survival, followed by a switch to a dependence on ERK signaling pathways to maintain viability and induce proliferation after 72 h. We conclude that free fatty acids can support maintenance of liver LSEC cultures in vitro; key regulatory pathways involved include early Akt signaling followed by ERK signaling.
Collapse
Affiliation(s)
- Ta-Chun Hang
- 1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Douglas A. Lauffenburger
- 1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Linda G. Griffith
- 1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Donna B. Stolz
- 2Department of Cell Biology & Physiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
211
|
Djoussé L, Biggs ML, Ix JH, Kizer JR, Lemaitre RN, Sotoodehnia N, Zieman SJ, Mozaffarian D, Tracy RP, Mukamal KJ, Siscovick DS. Nonesterified fatty acids and risk of sudden cardiac death in older adults. Circ Arrhythm Electrophysiol 2012; 5:273-8. [PMID: 22281952 DOI: 10.1161/circep.111.967661] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although nonesterified fatty acids (NEFA) have been positively associated with coronary heart disease risk factors, limited and inconsistent data are available on the relation between NEFA and sudden cardiac death. METHODS AND RESULTS Using a prospective design, we studied 4657 older men and women (mean age, 75 years) from the Cardiovascular Health Study (1992-2006) to evaluate the association between plasma NEFA and the risk of sudden cardiac death in older adults. Plasma concentrations of NEFA were measured using established enzymatic methods, and sudden death was adjudicated using medical records, death certificates, proxy interview, and autopsy reports. We used Cox proportional hazard models to estimate multivariable-adjusted relative risks. During a median follow-up of 10.0 years, 221 new cases of sudden cardiac death occurred. In a multivariable model adjusting for age, sex, race, clinic site, alcohol intake, smoking, prevalent coronary heart disease and heart failure, and self-reported health status, relative risks (95% confidence interval) for sudden cardiac death were 1.0 (ref), 1.15 (0.81-1.64), 1.06 (0.72-1.55), and 0.91 (0.60-1.38) across consecutive quartiles of NEFA concentration. In secondary analyses restricted to the first 5 years of follow-up, we also did not observe a statistically significant association between plasma NEFA and sudden cardiac death. CONCLUSIONS Our data do not provide evidence for an association between plasma NEFA measured late in life and the risk of sudden cardiac death in older adults.
Collapse
Affiliation(s)
- Luc Djoussé
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Boston Veterans Affairs Healthcare System, Boston, MA 02120, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol. PLoS One 2012; 7:e30200. [PMID: 22272304 PMCID: PMC3260220 DOI: 10.1371/journal.pone.0030200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022] Open
Abstract
Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS.
Collapse
|
213
|
Cheng L, Khoo MCK. Modeling the autonomic and metabolic effects of obstructive sleep apnea: a simulation study. Front Physiol 2012; 2:111. [PMID: 22291654 PMCID: PMC3250672 DOI: 10.3389/fphys.2011.00111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/09/2011] [Indexed: 01/12/2023] Open
Abstract
Long-term exposure to intermittent hypoxia and sleep fragmentation introduced by recurring obstructive sleep apnea (OSA) has been linked to subsequent cardiovascular disease and Type 2 diabetes. The underlying mechanisms remain unclear, but impairment of the normal interactions among the systems that regulate autonomic and metabolic function is likely involved. We have extended an existing integrative model of respiratory, cardiovascular, and sleep-wake state control, to incorporate a sub-model of glucose-insulin-fatty acid regulation. This computational model is capable of simulating the complex dynamics of cardiorespiratory control, chemoreflex and state-related control of breath-to-breath ventilation, state-related and chemoreflex control of upper airway potency, respiratory and circulatory mechanics, as well as the metabolic control of glucose-insulin dynamics and its interactions with the autonomic control. The interactions between autonomic and metabolic control include the circadian regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in glucose and free-fatty acid in plasma, metabolic coupling among tissues and organs provided by insulin and epinephrine, as well as the effect of insulin on peripheral vascular sympathetic activity. These model simulations provide insight into the relative importance of the various mechanisms that determine the acute and chronic physiological effects of sleep-disordered breathing. The model can also be used to investigate the effects of a variety of interventions, such as different glucose clamps, the intravenous glucose tolerance test, and the application of continuous positive airway pressure on OSA subjects. As such, this model provides the foundation on which future efforts to simulate disease progression and the long-term effects of pharmacological intervention can be based.
Collapse
Affiliation(s)
- Limei Cheng
- Biomedical Engineering Department, University of Southern California Los Angeles, CA, USA
| | | |
Collapse
|
214
|
Layden BT, Yalamanchi SK, Wolever TMS, Dunaif A, Lowe WL. Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes Metab Syndr Obes 2012; 5:49-55. [PMID: 22419881 PMCID: PMC3299553 DOI: 10.2147/dmso.s29244] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The composition of gut flora has been proposed as a cause of obesity, a major risk factor for type 2 diabetes. The objective of this study was to assess whether serum short chain fatty acids, a major by-product of fermentation in gut flora, are associated with obesity and/or diabetes-related traits (insulin sensitivity and secretion). METHODS The association of serum short chain fatty acids levels with measures of obesity was assessed using body mass index, computerized tomography scan, and dual photon X-ray absorptiometry scan. Insulin sensitivity and insulin secretion were both determined from an oral glucose tolerance test and insulin sensitivity was also determined from a hyperinsulinemic euglycemic clamp. RESULTS In this population of young, obese women, acetate was negatively associated with visceral adipose tissue determined by computerized tomography scan and dual photon X-ray absorptiometry scan, but not body mass index. The level of the short chain fatty acids acetate, but not propionate or butyrate, was also negatively associated with fasting serum insulin and 2 hour insulin levels in the oral glucose tolerance test. CONCLUSIONS In this population, serum acetate was negatively associated with visceral adipose tissue and insulin levels. Future studies need to verify these findings and expand on these observations in larger cohorts of subjects.
Collapse
Affiliation(s)
- Brian T Layden
- Division of Endocrinology, Metabolism and Molecular Medicine (BTL, SKY, AD, WLL), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Correspondence: BT Layden, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Tarry Building 15-760, 303 East Chicago, Avenue, Chicago, Illinois, 60611-3008, USA, Tel +1 312 503 1610, Fax +1 312 908 9032, Email
| | - Sudha K Yalamanchi
- Division of Endocrinology, Metabolism and Molecular Medicine (BTL, SKY, AD, WLL), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas MS Wolever
- Department of Nutritional Sciences (TMSW), University of Toronto, Toronto, Canada
| | - Andrea Dunaif
- Division of Endocrinology, Metabolism and Molecular Medicine (BTL, SKY, AD, WLL), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine (BTL, SKY, AD, WLL), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
215
|
Doliba NM, Qin W, Najafi H, Liu C, Buettger CW, Sotiris J, Collins HW, Li C, Stanley CA, Wilson DF, Grimsby J, Sarabu R, Naji A, Matschinsky FM. Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab 2012; 302:E87-E102. [PMID: 21952036 PMCID: PMC3328091 DOI: 10.1152/ajpendo.00218.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/20/2011] [Indexed: 12/31/2022]
Abstract
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison. Islets were exposed to a "staircase" glucose stimulus, whereas IR and Vo(2) were measured. Vo(2) of human islets from normals and diabetics increased sigmoidally from equal baselines of 0.25 nmol/100 islets/min as a function of glucose concentration. Maximal Vo(2) of normal islets at 24 mM glucose was 0.40 ± 0.02 nmol·min(-1)·100 islets(-1), and the glucose S(0.5) was 4.39 ± 0.10 mM. The glucose stimulation of respiration of islets from diabetics was lower, V(max) of 0.32 ± 0.01 nmol·min(-1)·100 islets(-1), and the S(0.5) shifted to 5.43 ± 0.13 mM. Glucose-stimulated IS and the rise of intracellular Ca(2+) were also reduced in diabetic islets. A clinically effective glucokinase activator normalized the defective Vo(2), IR, and free calcium responses during glucose stimulation in islets from type 2 diabetics. The body of data shows that there is a clear relationship between the pancreatic islet energy (ATP) production rate and IS. This relationship was similar for normal human, mouse, and rat islets and the data for all species fitted a single sigmoidal curve. The shared threshold rate for IS was ∼13 pmol·min(-1)·islet(-1). Exendin-4, a GLP-1 analog, shifted the ATP production-IS curve to the left and greatly potentiated IS with an ATP production rate threshold of ∼10 pmol·min(-1)·islet(-1). Our data suggest that impaired β-cell bioenergetics resulting in greatly reduced ATP production is critical in the molecular pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Nicolai M Doliba
- Department of Biochemistry and Biophysics, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104-6140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Guo Y, Xu M, Deng B, Frontera JR, Kover KL, Aires D, Ding H, Carlson SE, Turk J, Wang W, Zhu H. Beta-Cell Injury in Ncb5or-null Mice is Exacerbated by Consumption of a High-Fat Diet. EUR J LIPID SCI TECH 2011; 114:233-243. [PMID: 22582025 DOI: 10.1002/ejlt.201100309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NADH-cytochrome b5 oxidoreductase (Ncb5or) in endoplasmic reticulum (ER) is involved in fatty acid metabolism, and Ncb5or(-/-) mice fed standard chow (SC) are insulin-sensitive but weigh less than wild type (WT) littermates. Ncb5or(-/-) mice develop hyperglycemia at about age 7 weeks due to β-cell dysfunction and loss associated with saturated fatty acid accumulation and manifestations of ER and oxidative stress. Here we report that when Ncb5or(-/-) mice born to heterozygous mothers fed a high fat (HF) diet continue to ingest HF, they weigh as much as SC-fed WT at age 5 weeks. By age 7 weeks, diabetes mellitus develops in all HF-fed vs. 68% of SC-fed Ncb5or(-/-) mice. Islet β-cell content in age 5-week Ncb5or(-/-) mice fed HF for 7 days is lower (53%) than for those fed SC (63%), and both are lower than for WT (75%, SC, vs. 69%, HF). Islet transcript levels for markers of mitochondrial biogenesis (PGC-1α) and ER stress (ATF6α) are higher in Ncb5or(-/-) than WT mice but not significantly affected by diet. Consuming a HF diet exacerbates Ncb5or(-/-) β-cell accumulation of intracellular saturated fatty acids and increases the frequency of ER distention from 11% (SC) to 47% (HF), thus accelerates β-cell injury in Ncb5or(-/-) mice.
Collapse
Affiliation(s)
- Ying Guo
- Department of Endocrinology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China 510275
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Lopez X, Cypess A, Manning R, O'Shea S, Kulkarni RN, Goldfine AB. Exogenous insulin enhances glucose-stimulated insulin response in healthy humans independent of changes in free fatty acids. J Clin Endocrinol Metab 2011; 96:3811-21. [PMID: 21956413 PMCID: PMC3232618 DOI: 10.1210/jc.2011-0627] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Islet β-cells express both insulin receptors and insulin signaling proteins. Recent studies suggest insulin signaling is physiologically important for glucose sensing. OBJECTIVE Preexposure to insulin enhances glucose-stimulated insulin secretion (GSIS) in healthy humans. We evaluated whether the effect of insulin to potentiate GSIS is modulated through regulation of free fatty acids (FFA). DESIGN AND SETTING Subjects were studied on three occasions in this single-site study at an academic institution clinical research center. PATIENTS Subjects included nine healthy volunteers. INTERVENTIONS Glucose-induced insulin response was assessed on three occasions after 4 h saline (low insulin/sham) or isoglycemic-hyperinsulinemic (high insulin) clamps with or without intralipid and heparin infusion, using B28 Asp-insulin that could be distinguished from endogenous insulin immunologically. During the last 80 min of all three clamps, additional glucose was administered to stimulate insulin secretion (GSIS) with glucose concentrations maintained at similar concentrations during all studies. MAIN OUTCOME MEASURE β-Cell response to glucose stimulation was assessed. RESULTS Preexposure to exogenous insulin increased the endogenous insulin-secretory response to glucose by 32% compared with sham clamp (P = 0.001). This was accompanied by a drop in FFA during hyperinsulinemic clamp compared with the sham clamp (0.06 ± 0.02 vs. 0.60 ± 0.09 mEq/liter, respectively), which was prevented during the hyperinsulinemic clamp with intralipid/heparin infusion (1.27 ± 0.17 mEq/liter). After preexposure to insulin with intralipid/heparin infusion to maintain FFA concentration, GSIS was 21% higher compared with sham clamp (P < 0.04) and similar to preexposure to insulin without intralipid/heparin (P = 0.2). CONCLUSIONS Insulin potentiates glucose-stimulated insulin response independent of FFA concentrations in healthy humans.
Collapse
Affiliation(s)
- Ximena Lopez
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
218
|
Nifedipine protects INS-1 β-cell from high glucose-induced ER stress and apoptosis. Int J Mol Sci 2011; 12:7569-80. [PMID: 22174617 PMCID: PMC3233423 DOI: 10.3390/ijms12117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/19/2011] [Accepted: 10/31/2011] [Indexed: 01/14/2023] Open
Abstract
Sustained high concentration of glucose has been verified toxic to β-cells. Glucose augments Ca2+-stimulated insulin release in pancreatic β-cells, but chronic high concentration of glucose could induce a sustained level of Ca2+ in β-cells, which leads to cell apoptosis. However, the mechanism of high glucose-induced β-cell apoptosis remains unclear. In this study, we use a calcium channel blocker, nifedipine, to investigate whether the inhibition of intracellular Ca2+ concentration could protect β-cells from chronic high glucose-induced apoptosis. It was found that in a concentration of 33.3 mM, chronic stimulation of glucose could induce INS-1 β-cells apoptosis at least through the endoplasmic reticulum stress pathway and 10 μM nifedipine inhibited Ca2+ release to protect β-cells from high glucose-induced endoplasmic reticulum stress and apoptosis. These results indicated that inhibition of Ca2+ over-accumulation might provide benefit to attenuate islet β-cell decompensation in a high glucose environment.
Collapse
|
219
|
Mittendorfer B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr Opin Clin Nutr Metab Care 2011; 14:535-41. [PMID: 21849896 PMCID: PMC3711689 DOI: 10.1097/mco.0b013e32834ad8b6] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Obesity is associated with a number of serious medical complications that are risk factors for cardiovascular disease (e.g., insulin resistance, dyslipidemia, and liver fat accumulation). Alterations in fatty acid trafficking, both between tissues and within cells, represent a key feature in the pathophysiology of the metabolic complications in obese patients. The ways by which fatty acid 're-routing' may affect metabolic function are summarized in this article. RECENT FINDINGS Ectopic fat accumulation (i.e., fat accumulation in nonadipose tissues) appears to be a key feature distinguishing metabolically healthy from metabolically abnormal patients. This observation has led to the belief that an imbalance in fatty acid trafficking away from adipose tissue toward nonadipose tissues is a primary cause for the development of metabolic alterations in obese patients. More recently, however, it has become apparent that fatty acid trafficking within nonadipose tissues cells (i.e., toward storage - in the form of triglycerides - and oxidation) may be equally important in determining a person's risk for development of metabolic disease. SUMMARY The pathophysiology of the metabolic alterations associated with obesity is probably multifactorial within a complex network of coordinated physiological responses. Only through the integration of multiple concepts, will it be possible to further our understanding in this area and to help prevent the metabolic alterations associated with obesity.
Collapse
Affiliation(s)
- Bettina Mittendorfer
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
220
|
Zywert A, Szkudelska K, Szkudelski T. Effects of adenosine A(1) receptor antagonism on insulin secretion from rat pancreatic islets. Physiol Res 2011; 60:905-11. [PMID: 21995904 DOI: 10.33549/physiolres.932165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenosine is known to influence different kinds of cells, including beta-cells of the pancreas. However, the role of this nucleoside in the regulation of insulin secretion is not fully elucidated. In the present study, the effects of adenosine A(1) receptor antagonism on insulin secretion from isolated rat pancreatic islets were tested using DPCPX, a selective adenosine A(1) receptor antagonist. It was demonstrated that pancreatic islets stimulated with 6.7 and 16.7 mM glucose and exposed to DPCPX released significantly more insulin compared with islets incubated with glucose alone. The insulin-secretory response to glucose and low forskolin appeared to be substantially potentiated by DPCPX, but DPCPX was ineffective in the presence of glucose and high forskolin. Moreover, DPCPX failed to change insulin secretion stimulated by the combination of glucose and dibutyryl-cAMP, a non-hydrolysable cAMP analogue. Studies on pancreatic islets also revealed that the potentiating effect of DPCPX on glucose-induced insulin secretion was attenuated by H-89, a selective inhibitor of protein kinase A. It was also demonstrated that formazan formation, reflecting metabolic activity of cells, was enhanced in islets exposed to DPCPX. Moreover, DPCPX was found to increase islet cAMP content, whereas ATP was not significantly changed. These results indicate that adenosine A(1) receptor blockade in rat pancreatic islets potentiates insulin secretion induced by both physiological and supraphysiological glucose concentrations. This effect is proposed to be due to increased metabolic activity of cells and increased cAMP content.
Collapse
Affiliation(s)
- A Zywert
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | | | | |
Collapse
|
221
|
Watson ML, Macrae K, Marley AE, Hundal HS. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells. PLoS One 2011; 6:e25975. [PMID: 21998735 PMCID: PMC3187833 DOI: 10.1371/journal.pone.0025975] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively) and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. PRINCIPAL FINDINGS GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt). Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM) palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75%) in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. CONCLUSIONS Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.
Collapse
Affiliation(s)
- Maria L. Watson
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Katherine Macrae
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anna E. Marley
- AstraZeneca, CVGI, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Harinder S. Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
222
|
Gonzalez R, Perry RLS, Gao X, Gaidhu MP, Tsushima RG, Ceddia RB, Unniappan S. Nutrient responsive nesfatin-1 regulates energy balance and induces glucose-stimulated insulin secretion in rats. Endocrinology 2011; 152:3628-37. [PMID: 21828181 DOI: 10.1210/en.2010-1471] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nesfatin-1 is a recently discovered anorexigen, and we first reported nesfatin-like immunoreactivity in the pancreatic β-cells. The aim of this study was to characterize the effects of nesfatin-1 on whole-body energy homeostasis, insulin secretion, and glycemia. The in vivo effects of continuous peripheral delivery of nesfatin-1 using osmotic minipumps on food intake and substrate partitioning were examined in ad libitum-fed male Fischer 344 rats. The effects of nesfatin-1 on glucose-stimulated insulin secretion (GSIS) were examined in isolated pancreatic islets. L6 skeletal muscle cells and isolated rat adipocytes were used to assess the effects of nesfatin-1 on basal and insulin-mediated glucose uptake as well as on major steps of insulin signaling in these cells. Nesfatin-1 reduced cumulative food intake and increased spontaneous physical activity, whole-body fat oxidation, and carnitine palmitoyltransferase I mRNA expression in brown adipose tissue but did not affect uncoupling protein 1 mRNA in the brown adipose tissue. Nesfatin-1 significantly enhanced GSIS in vivo during an oral glucose tolerance test and improved insulin sensitivity. Although insulin-stimulated glucose uptake in L6 muscle cells was inhibited by nesfatin-1 pretreatment, basal and insulin-induced glucose uptake in adipocytes from nesfatin-1-treated rats was significantly increased. In agreement with our in vivo results, nesfatin-1 enhanced GSIS from isolated pancreatic islets at both normal (5.6 mM) and high (16.7 mM), but not at low (2 mM), glucose concentrations. Furthermore, nesfatin-1/nucleobindin 2 release from rat pancreatic islets was stimulated by glucose. Collectively, our data indicate that glucose-responsive nesfatin-1 regulates insulin secretion, glucose homeostasis, and whole-body energy balance in rats.
Collapse
Affiliation(s)
- R Gonzalez
- Laboratory of Integrative Neuroendocrinology, Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | |
Collapse
|
223
|
Rossi AP, Fantin F, Zamboni GA, Mazzali G, Rinaldi CA, Del Giglio M, Di Francesco V, Barillari M, Pozzi Mucelli R, Zamboni M. Predictors of ectopic fat accumulation in liver and pancreas in obese men and women. Obesity (Silver Spring) 2011; 19:1747-54. [PMID: 21593811 DOI: 10.1038/oby.2011.114] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The aim of the present study was to determine the relationship between body fat distribution, adipocytokines, inflammatory markers, fat intake and ectopic fat content of liver and pancreas in obese men and women. A total of 12 lean subjects (mean age 47.25 ± 14.88 years and mean BMI 22.85 ± 2), 38 obese subjects (18 men and 20 women) with mean age 49.1 ± 13.0 years and mean BMI 34.96 ± 4.21 kg/m2 were studied. MEASUREMENTS weight, height, BMI, waist circumference, as well as glucose, insulin, HOMA (homeostasis model assessment of insulin resistance), cholesterol, triglycerides, high-density lipoprotein cholesterol, high sensitivity C-reactive protein, daily energy intake, leptin, and adiponectin. Magnetic resonance was used to evaluate visceral, subcutaneous adipose tissue (SCAT) as well as liver and pancreas lipid content using in-phase and out-of-phase magnetic resonance imaging (MRI) sequence. Obese subjects had significantly higher weight, waist circumference, SCAT, deep SCAT, visceral adipose tissue (VAT), liver and pancreatic lipid content than lean subjects. Obese women had significantly lower VAT, liver and pancreas lipid content regardless of same BMI. In multiple regression analyses, the variance of liver lipid content explained by gender and VAT was 46%. When HOMA was added into a multiple regression, a small increase in the proportion of variance explained was observed. A 59.2% of the variance of pancreas lipid content was explained by gender and VAT. In conclusion, obese men show higher VAT and ectopic fat deposition in liver and pancreas than obese women despite same BMI. Independent of overall adiposity, insulin resistance, adiponectin and fat intake, VAT, measured with MRI, is the main predictor of ectopic fat deposition in both liver and pancreas.
Collapse
Affiliation(s)
- Andrea P Rossi
- Department of Biomedical and Surgical Science, Division of Geriatric Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Polakof S, Mommsen TP, Soengas JL. Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:123-49. [PMID: 21871969 DOI: 10.1016/j.cbpb.2011.07.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/16/2022]
Abstract
This review is focused on two topics related to glucose in vertebrates. In a first section devoted to glucose homeostasis we describe how glucose levels fluctuate and are regulated in different classes of vertebrates. The detection of these fluctuations is essential for homeostasis and for other physiological processes such as regulation of food intake. The capacity of that detection is known as glucosensing, and the different mechanisms through which it occurs are known as glucosensors. Different glucosensor mechanisms have been demonstrated in different tissues and organs of rodents and humans whereas the information obtained for other vertebrates is scarce. In the second section of the review we describe the present knowledge regarding glucosensor mechanisms in different groups of vertebrates, with special emphasis in fish.
Collapse
Affiliation(s)
- Sergio Polakof
- INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France.
| | | | | |
Collapse
|
225
|
Wang L, Zhao Y, Gui B, Fu R, Ma F, Yu J, Qu P, Dong L, Chen C. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet {alpha}-cells. J Endocrinol 2011; 210:173-9. [PMID: 21565851 DOI: 10.1530/joe-11-0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The role of free fatty acids (FFAs) in glucagon secretion has not been well established, and the involvement of FFA receptor GPR40 and its downstream signaling pathways in regulating glucagon secretion are rarely demonstrated. In this study, it was found that linoleic acid (LA) acutely stimulated glucagon secretion from primary cultured rat pancreatic islets. LA at 20 and 40 μmol/l dose-dependently increased glucagon secretion both at 3 mmol/l glucose and at 15 mmol/l glucose, although 15 mmol/l glucose reduced basal glucagon levels. LA induced an increase in cytoplasmic free calcium concentrations ([Ca(2)(+)](i)) in identified rat α-cells, which is reflected by increased Fluo-3 intensity under confocal microscopy recording. The increase in [Ca(2)(+)](i) was partly inhibited by removal of extracellular Ca(2)(+) and eliminated overall by further exhaustion of intracellular Ca(2)(+) stores using thapsigargin treatment, suggesting that both Ca(2)(+) release and Ca(2)(+) influx contributed to the LA-stimulated increase in [Ca(2)(+)](i) in α-cells. Double immunocytochemical stainings showed that GPR40 was expressed in glucagon-positive α-cells. LA-stimulated increase in [Ca(2)(+)](i) was blocked by inhibition of GPR40 expression in α-cells after GPR40-specific antisense treatment. The inhibition of phospholipase C activity by U73122 also blocked the increase in [Ca(2)(+)](i) by LA. It is concluded that LA activates GPR40 and phospholipase C (and downstream signaling pathways) to increase Ca(2)(+) release and associated Ca(2)(+) influx through Ca(2)(+) channels, resulting in increase in [Ca(2)(+)](i) and glucagon secretion.
Collapse
Affiliation(s)
- Li Wang
- The Second Affiliated Hospital of Medical School, Xi'an Jiao Tong University, Xi'an 710004, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Lee KTY, Karunakaran S, Ho MM, Clee SM. PWD/PhJ and WSB/EiJ mice are resistant to diet-induced obesity but have abnormal insulin secretion. Endocrinology 2011; 152:3005-17. [PMID: 21673102 DOI: 10.1210/en.2011-0060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, novel inbred mouse strains that are genetically distinct from the commonly used models have been developed from wild-caught mice. These wild-derived inbred strains have been included in many of the large-scale genomic projects, but their potential as models of altered obesity and diabetes susceptibility has not been assessed. We examined obesity and diabetes-related traits in response to high-fat feeding in two of these strains, PWD/PhJ (PWD) and WSB/EiJ (WSB), in comparison with C57BL/6J (B6). Young PWD mice displayed high fasting insulin levels, although they had normal insulin sensitivity. PWD mice subsequently developed a much milder and delayed-onset obesity compared with B6 mice but became as insulin resistant. PWD mice had a robust first-phase and increased second-phase glucose-stimulated insulin secretion in vivo, rendering them more glucose tolerant. WSB mice were remarkably resistant to diet-induced obesity and maintained very low fasting insulin throughout the study. WSB mice exhibited more rapid glucose clearance in response to an insulin challenge compared with B6 mice, consistent with their low percent body fat. Interestingly, in the absence of a measurable in vivo insulin secretion, glucose tolerance of WSB mice was better than B6 mice, likely due to their enhanced insulin sensitivity. Thus PWD and WSB are two obesity-resistant strains with unique insulin secretion phenotypes. PWD mice are an interesting model that dissociates hyperinsulinemia from obesity and insulin resistance, whereas WSB mice are a model of extraordinary resistance to a high-fat diet.
Collapse
Affiliation(s)
- Katie T Y Lee
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
227
|
Tuo Y, Wang D, Li S, Chen C. Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine 2011; 39:128-38. [PMID: 21161439 DOI: 10.1007/s12020-010-9432-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/05/2010] [Accepted: 11/11/2010] [Indexed: 01/07/2023]
Abstract
Obesity with excessive levels of circulating free fatty acids (FFAs) is tightly linked to the incidence of type 2 diabetes. Insulin resistance of peripheral tissues and pancreatic β-cell dysfunction are two major pathological changes in diabetes and both are facilitated by excessive levels of FFAs and/or glucose. To gain insight into the mitochondrial-mediated mechanisms by which long-term exposure of INS-1 cells to excess FFAs causes β-cell dysfunction, the effects of the unsaturated FFA linoleic acid (C 18:2, n-6) on rat insulinoma INS-1 β cells was investigated. INS-1 cells were incubated with 0, 50, 250 or 500 μM linoleic acid/0.5% (w/v) BSA for 48 h under culture conditions of normal (11.1 mM) or high (25 mM) glucose in serum-free RPMI-1640 medium. Cell viability, apoptosis, glucose-stimulated insulin secretion, Bcl-2, and Bax gene expression levels, mitochondrial membrane potential and cytochrome c release were examined. Linoleic acid 500 μM significantly suppressed cell viability and induced apoptosis when administered in 11.1 and 25 mM glucose culture medium. Compared with control, linoleic acid 500 μM significantly increased Bax expression in 25 mM glucose culture medium but not in 11.1 mM glucose culture medium. Linoleic acid also dose-dependently reduced mitochondrial membrane potential (ΔΨm) and significantly promoted cytochrome c release from mitochondria in both 11.1 mM glucose and 25 mM glucose culture medium, further reducing glucose-stimulated insulin secretion, which is dependent on normal mitochondrial function. With the increase in glucose levels in culture medium, INS-1 β-cell insulin secretion function was deteriorated further. The results of this study indicate that chronic exposure to linoleic acid-induced β-cell dysfunction and apoptosis, which involved a mitochondrial-mediated signal pathway, and increased glucose levels enhanced linoleic acid-induced β-cell dysfunction.
Collapse
Affiliation(s)
- Ya Tuo
- Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
228
|
Iggman D, Risérus U. Role of different dietary saturated fatty acids for cardiometabolic risk. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
229
|
Stefanovski D, Richey JM, Woolcott O, Lottati M, Zheng D, Harrison LN, Ionut V, Kim SP, Hsu I, Bergman RN. Consistency of the disposition index in the face of diet induced insulin resistance: potential role of FFA. PLoS One 2011; 6:e18134. [PMID: 21479217 PMCID: PMC3068147 DOI: 10.1371/journal.pone.0018134] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/25/2011] [Indexed: 12/20/2022] Open
Abstract
Objective Insulin resistance induces hyperinsulinemic compensation, which in turn maintains almost a constant disposition index. However, the signal that gives rise to the hyperinsulinemic compensation for insulin resistance remains unknown. Methods In a dog model of obesity we examined the possibility that potential early-week changes in plasma FFA, glucose, or both could be part of a cascade of signals that lead to compensatory hyperinsulinemia induced by insulin resistance. Results Hypercaloric high fat feeding in dogs resulted in modest weight gain, and an increase in adipose tissue with no change in the non-adipose tissue size. To compensate for the drop in insulin sensitivity, there was a significant rise in plasma insulin, which can be attributed in part to a decrease in the metabolic clearance rate of insulin and increased insulin secretion. In this study we observed complete compensation for high fat diet induced insulin resistance as measured by the disposition index. The compensatory hyperinsulinemia was coupled with significant changes in plasma FFAs and no change in plasma glucose. Conclusions We postulate that early in the development of diet induced insulin resistance, a change in plasma FFAs may directly, through signaling at the level of β-cell, or indirectly, by decreasing hepatic insulin clearance, result in the observed hyperinsulinemic compensation.
Collapse
Affiliation(s)
- Darko Stefanovski
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Repaci A, Gambineri A, Pasquali R. The role of low-grade inflammation in the polycystic ovary syndrome. Mol Cell Endocrinol 2011; 335:30-41. [PMID: 20708064 DOI: 10.1016/j.mce.2010.08.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 07/27/2010] [Accepted: 08/05/2010] [Indexed: 11/29/2022]
Abstract
PCOS is not only the most frequent cause of oligomenorrhea in young women, but also a metabolic disorder characterized by insulin resistance, glucose intolerance, dyslipidemia, and obesity, especially the visceral phenotype. PCOS represents a broad spectrum of endocrine and metabolic alterations which change with age and with increasing adiposity. In fact, during adolescence and youth the predominant clinical manifestations of PCOS are menstrual abnormalities, hirsutism and acne, whereas in peri-menopausal and post-menopausal periods metabolic disorders and an increased risk for cardiovascular diseases prevail. The pathogenetic links between PCOS and metabolic or cardiovascular complications are still debated. However, recent evidence has been focused on a condition of low-grade chronic inflammation as a potential cause of the long-term consequence of the syndrome. In this review we describe the state of low-grade inflammation observed in PCOS. In addition, we hypothesize the potential mechanisms responsible for the generation of this inflammatory state and the role played by low-grade inflammation in linking hyperandrogenism and insulin resistance with the metabolic and cardiovascular long-term complications of the syndrome.
Collapse
Affiliation(s)
- Andrea Repaci
- Division of Endocrinology, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, University Alma Mater Studiorum of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | | |
Collapse
|
231
|
Fang J, DuBois DC, He Y, Almon RR, Jusko WJ. Dynamic modeling of methylprednisolone effects on body weight and glucose regulation in rats. J Pharmacokinet Pharmacodyn 2011; 38:293-316. [PMID: 21394487 DOI: 10.1007/s10928-011-9194-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/14/2011] [Indexed: 12/21/2022]
Abstract
Influences of methylprednisolone (MPL) and food consumption on body weight (BW), and the effects of MPL on glycemic control including food consumption and the dynamic interactions among glucose, insulin, and free fatty acids (FFA) were evaluated in normal male Wistar rats. Six groups of animals received either saline or MPL via subcutaneous infusions at the rate of 0.03, 0.1, 0.2, 0.3 and 0.4 mg/kg/h for different treatment periods. BW and food consumption were measured twice a week. Plasma concentrations of MPL and corticosterone (CST) were determined at animal sacrifice. Plasma glucose, insulin, and FFA were measured at various times after infusion. Plasma MPL concentrations were simulated by a two-compartment model and used as the driving force in the pharmacodynamic (PD) analysis. All data were modeled using ADAPT 5. The MPL treatments caused reduction of food consumption and body weights in all dosing groups. The steroid also caused changes in plasma glucose, insulin, and FFA concentrations. Hyperinsulinemia was achieved rapidly at the first sampling time of 6 h; significant elevations of FFA were observed in all drug treatment groups; whereas only modest increases in plasma glucose were observed in the low dosing groups (0.03 and 0.1 mg/kg/h). Body weight changes were modeled by dual actions of MPL: inhibition of food consumption and stimulation of weight loss, with food consumption accounting for the input of energy for body weight. Dynamic models of glucose and insulin feedback interactions were extended to capture the major metabolic effects of FFA: stimulation of insulin secretion and inhibition of insulin-stimulated glucose utilization. These models of body weight and glucose regulation adequately captured the experimental data and reflect significant physiological interactions among glucose, insulin, and FFA. These mechanism-based PD models provide further insights into the multi-factor control of this essential metabolic system.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
232
|
Graciano MFR, Santos LRB, Curi R, Carpinelli AR. NAD(P)H oxidase participates in the palmitate-induced superoxide production and insulin secretion by rat pancreatic islets. J Cell Physiol 2011; 226:1110-7. [PMID: 20857410 DOI: 10.1002/jcp.22432] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI--diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate.
Collapse
Affiliation(s)
- Maria Fernanda R Graciano
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
233
|
García-Serrano S, Moreno-Santos I, Garrido-Sánchez L, Gutierrez-Repiso C, García-Almeida JM, García-Arnés J, Rivas-Marín J, Gallego-Perales JL, García-Escobar E, Rojo-Martinez G, Tinahones F, Soriguer F, Macias-Gonzalez M, García-Fuentes E. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Mol Med 2011; 17:273-80. [PMID: 21060977 PMCID: PMC3060976 DOI: 10.2119/molmed.2010.00078] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/04/2010] [Indexed: 11/06/2022] Open
Abstract
Animal studies have revealed the association between stearoyl-CoA desaturase 1 (SCD1) and obesity and insulin resistance. However, only a few studies have been undertaken in humans. We studied SCD1 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbidly obese patients and their association with insulin resistance, sterol regulatory element binding protein-1 (SREBP-1) and ATPase p97, proteins involved in SCD1 synthesis and degradation. The insulin resistance was calculated in 40 morbidly obese patients and 11 overweight controls. Measurements were made of VAT and SAT SCD1, SREBP-1 and ATPase p97 mRNA expression and protein levels. VAT and SAT SCD1 mRNA expression levels in the morbidly obese patients were significantly lower than in the controls (P = 0.006), whereas SCD1 protein levels were significantly higher (P < 0.001). In the morbidly obese patients, the VAT SCD1 protein levels were decreased in patients with higher insulin resistance (P = 0.007). However, SAT SCD1 protein levels were increased in morbidly obese patients with higher insulin resistance (P < 0.05). Multiple linear regressions in the morbidly obese patients showed that the variable associated with the SCD1 protein levels in VAT was insulin resistance, and the variables associated with SCD1 protein levels in SAT were body mass index (BMI) and ATPase p97. In conclusion, these data suggest that the regulation of SCD1 is altered in individuals with morbid obesity and that the SCD1 protein has a different regulation in the two adipose tissues, as well as being closely linked to the degree of insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | - Jose M García-Almeida
- Endocrinology and Nutrition Service, Virgen de la Victoria Clinical Hospital, Málaga, Spain
| | - Juan García-Arnés
- Endocrinology and Nutrition Service, Carlos Haya University Hospital, Málaga, Spain
| | - Jose Rivas-Marín
- Surgery Service, Virgen de la Victoria Clinical Hospital, Málaga, Spain
| | | | - Eva García-Escobar
- CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, Spain
| | - Gemma Rojo-Martinez
- CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, Spain
- IMABIS Foundation, Málaga, Spain
| | - Francisco Tinahones
- CIBER Physiopathology Obesity and Nutrition (CIBEROBN), ISCIII, Spain
- Endocrinology and Nutrition Service, Virgen de la Victoria Clinical Hospital, Málaga, Spain
| | - Federico Soriguer
- CIBER Diabetes and Associated Metabolic Disorders (CIBERDEM), ISCIII, Spain
- Endocrinology and Nutrition Service, Carlos Haya University Hospital, Málaga, Spain
| | - Manuel Macias-Gonzalez
- IMABIS Foundation, Málaga, Spain
- CIBER Physiopathology Obesity and Nutrition (CIBEROBN), ISCIII, Spain
| | - Eduardo García-Fuentes
- IMABIS Foundation, Málaga, Spain
- CIBER Physiopathology Obesity and Nutrition (CIBEROBN), ISCIII, Spain
- Endocrinology and Nutrition Service, Carlos Haya University Hospital, Málaga, Spain
| |
Collapse
|
234
|
Xiao C, Giacca A, Lewis GF. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 2011; 60:918-24. [PMID: 21270237 PMCID: PMC3046853 DOI: 10.2337/db10-1433] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/12/2010] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans. RESEARCH DESIGN AND METHODS Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (S(I)) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively. RESULTS Lipid infusion reduced S(I), which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × S(I)), indicating that PBA prevented lipid-induced β-cell dysfunction. CONCLUSIONS These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.
Collapse
Affiliation(s)
- Changting Xiao
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Gary F. Lewis
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
235
|
De Silva NMG, Freathy RM, Palmer TM, Donnelly LA, Luan J, Gaunt T, Langenberg C, Weedon MN, Shields B, Knight BA, Ward KJ, Sandhu MS, Harbord RM, McCarthy MI, Smith GD, Ebrahim S, Hattersley AT, Wareham N, Lawlor DA, Morris AD, Palmer CN, Frayling TM. Mendelian randomization studies do not support a role for raised circulating triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Diabetes 2011; 60:1008-18. [PMID: 21282362 PMCID: PMC3046819 DOI: 10.2337/db10-1317] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The causal nature of associations between circulating triglycerides, insulin resistance, and type 2 diabetes is unclear. We aimed to use Mendelian randomization to test the hypothesis that raised circulating triglyceride levels causally influence the risk of type 2 diabetes and raise normal fasting glucose levels and hepatic insulin resistance. RESEARCH DESIGN AND METHODS We tested 10 common genetic variants robustly associated with circulating triglyceride levels against the type 2 diabetes status in 5,637 case and 6,860 control subjects and four continuous outcomes (reflecting glycemia and hepatic insulin resistance) in 8,271 nondiabetic individuals from four studies. RESULTS Individuals carrying greater numbers of triglyceride-raising alleles had increased circulating triglyceride levels (SD 0.59 [95% CI 0.52-0.65] difference between the 20% of individuals with the most alleles and the 20% with the fewest alleles). There was no evidence that the carriers of greater numbers of triglyceride-raising alleles were at increased risk of type 2 diabetes (per weighted allele odds ratio [OR] 0.99 [95% CI 0.97-1.01]; P = 0.26). In nondiabetic individuals, there was no evidence that carriers of greater numbers of triglyceride-raising alleles had increased fasting insulin levels (SD 0.00 per weighted allele [95% CI -0.01 to 0.02]; P = 0.72) or increased fasting glucose levels (0.00 [-0.01 to 0.01]; P = 0.88). Instrumental variable analyses confirmed that genetically raised circulating triglyceride levels were not associated with increased diabetes risk, fasting glucose, or fasting insulin and, for diabetes, showed a trend toward a protective association (OR per 1-SD increase in log(10) triglycerides: 0.61 [95% CI 0.45-0.83]; P = 0.002). CONCLUSIONS Genetically raised circulating triglyceride levels do not increase the risk of type 2 diabetes or raise fasting glucose or fasting insulin levels in nondiabetic individuals. One explanation for our results is that raised circulating triglycerides are predominantly secondary to the diabetes disease process rather than causal.
Collapse
Affiliation(s)
- N. Maneka G. De Silva
- Genetics of Complex Traits, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, U.K
| | - Rachel M. Freathy
- Genetics of Complex Traits, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, U.K
| | - Tom M. Palmer
- Medical Research Council (MRC) Centre for Causal Analyses in Translational Epidemiology, School of Social
and Community Medicine, University of Bristol, Bristol, U.K
| | - Louise A. Donnelly
- Biomedical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Jian'an Luan
- MRC, Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Tom Gaunt
- Medical Research Council (MRC) Centre for Causal Analyses in Translational Epidemiology, School of Social
and Community Medicine, University of Bristol, Bristol, U.K
| | - Claudia Langenberg
- MRC, Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Michael N. Weedon
- Genetics of Complex Traits, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, U.K
| | - Beverley Shields
- Peninsula National Institute for Health Research (NIHR) Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, U.K
| | - Beatrice A. Knight
- Peninsula National Institute for Health Research (NIHR) Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, U.K
| | - Kirsten J. Ward
- Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital Campus, London, U.K
| | - Manjinder S. Sandhu
- MRC, Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, U.K
| | - Roger M. Harbord
- Medical Research Council (MRC) Centre for Causal Analyses in Translational Epidemiology, School of Social
and Community Medicine, University of Bristol, Bristol, U.K
- School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, U.K
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford NIHR, Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - George Davey Smith
- Medical Research Council (MRC) Centre for Causal Analyses in Translational Epidemiology, School of Social
and Community Medicine, University of Bristol, Bristol, U.K
| | - Shah Ebrahim
- Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital Campus, London, U.K
| | - Andrew T. Hattersley
- Peninsula National Institute for Health Research (NIHR) Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, U.K
| | - Nicholas Wareham
- MRC, Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Debbie A. Lawlor
- Medical Research Council (MRC) Centre for Causal Analyses in Translational Epidemiology, School of Social
and Community Medicine, University of Bristol, Bristol, U.K
| | - Andrew D. Morris
- Biomedical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Colin N.A. Palmer
- Biomedical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, U.K
| | - Timothy M. Frayling
- Genetics of Complex Traits, Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, U.K
- Corresponding author: Timothy M. Frayling,
| |
Collapse
|
236
|
Thörn K, Bergsten P. Fatty acid-induced oxidation and triglyceride formation is higher in insulin-producing MIN6 cells exposed to oleate compared to palmitate. J Cell Biochem 2011; 111:497-507. [PMID: 20524206 DOI: 10.1002/jcb.22734] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Palmitate negatively affects insulin secretion and apoptosis in the pancreatic β-cell. The detrimental effects are abolished by elongating and desaturating the fatty acid into oleate. To investigate mechanisms of how the two fatty acids differently affect β-cell function and apoptosis, lipid handling was determined in MIN6 cells cultured in the presence of the fatty acids palmitate (16:0) and oleate (18:1) and also corresponding monounsaturated fatty acid palmitoleate (16:1) and saturated fatty acid stearate (18:0). Insulin secretion was impaired and apoptosis accentuated in palmitate-, and to some extent, stearate-treated cells. Small or no changes in secretion or apoptosis were observed in cells exposed to palmitoleate or oleate. Expressions of genes associated with fatty acid esterification (SCD1, DGAT1, DGAT2, and FAS) were augmented in cells exposed to palmitate or stearate but only partially (DGAT2) in palmitoleate- or oleate-treated cells. Nevertheless, levels of triglycerides were highest in cells exposed to oleate. Similarly, fatty acid oxidation was most pronounced in oleate-treated cells despite comparable up-regulation of CPT1 after treatment of cells with the four different fatty acids. The difference in apoptosis between palmitate and stearate was paralleled by similar differences in levels of markers of endoplasmic reticulum (ER) stress in cells exposed to the two fatty acids. Palmitate-induced ER stress was not accounted for by ceramide de novo synthesis. In conclusion, although palmitate initiated stronger expression changes consistent with lipid accumulation and combustion in MIN6 cells, rise in triglyceride levels and fatty acid oxidation was favored specifically in cells exposed to oleate.
Collapse
Affiliation(s)
- Kristofer Thörn
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
237
|
Calegari VC, Torsoni AS, Vanzela EC, Araújo EP, Morari J, Zoppi CC, Sbragia L, Boschero AC, Velloso LA. Inflammation of the hypothalamus leads to defective pancreatic islet function. J Biol Chem 2011; 286:12870-80. [PMID: 21257748 DOI: 10.1074/jbc.m110.173021] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic β-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic β-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor α leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-γ coactivator Δα and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1α expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.
Collapse
Affiliation(s)
- Vivian C Calegari
- Laboratory of Cell Signaling, of Campinas, 13084-970 Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Best L, Jarman E, Brown PD. A dual action of saturated fatty acids on electrical activity in rat pancreatic β-cells. Role of volume-regulated anion channel and KATP channel currents. J Physiol 2011; 589:1307-16. [PMID: 21242256 DOI: 10.1113/jphysiol.2010.200741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Free fatty acids (FFAs) exert complex actions on pancreatic β-cells. Typically, an initial potentiation of insulin release is followed by a gradual impairment of β-cell function, the latter effect being of possible relevance to hyperlipidaemia in type 2 diabetes mellitus. The molecular actions of FFAs are poorly understood. The present study investigated the acute effects of saturated FFAs on electrophysiological responses of rat pancreatic β-cells. Membrane potential and KATP channel activity were recorded using the perforated patch technique. Volume-regulated anion channel (VRAC) activity was assessed from conventional whole-cell recordings. Cell volume regulation was measured using a video-imaging technique. Addition of octanoate caused a transient potentiation of glucose-induced electrical activity, followed by a gradual hyper-polarisation and a prolonged inhibition of electrical activity. Octanoate caused an initial increase in VRAC activity followed by a secondary inhibition coinciding with increased KATP channel activity. Similar effects were observed with palmitate and 2-bromopalmitate whereas butyrate was virtually ineffective. Octanoate and palmitate also exerted a dual effect on electrical activity evoked by tolbutamide. Octanoate significantly attenuated cell volume regulation in hypotonic solutions, consistent with VRAC inhibition. It is concluded that medium and long chain FFAs have a dual action on glucose-induced electrical activity in rat pancreatic β-cells: an initial stimulatory effect followed by a secondary inhibition. These effects appear to be the result of reciprocal actions on VRAC and KATP channel currents, and could contribute towards the stimulatory and inhibitory actions of FFAs on pancreatic β-cell function.
Collapse
Affiliation(s)
- L Best
- Schools of Biomedicine, University of Manchester, Manchester, UK.
| | | | | |
Collapse
|
239
|
Hornbak M, Banasik K, Justesen JM, Krarup NT, Sandholt CH, Andersson Å, Sandbæk A, Lauritzen T, Pisinger C, Witte DR, Sørensen TAA, Pedersen O, Hansen T. The minor C-allele of rs2014355 in ACADS is associated with reduced insulin release following an oral glucose load. BMC MEDICAL GENETICS 2011; 12:4. [PMID: 21211036 PMCID: PMC3022800 DOI: 10.1186/1471-2350-12-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 01/06/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) impair fatty acid β-oxidation. Chronic exposure to fatty acids due to an impaired β-oxidation may down-regulate the glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D). We aimed to investigate whether the two variants associate with altered insulin release following an oral glucose load or with T2D. METHODS The variants were genotyped using KASPar® PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT) in a random sample of middle-aged Danish individuals (nACADS = 4,324; nACADM = 4,337). The T2D-case-control study involved a total of ~8,300 Danish individuals (nACADS = 8,313; nACADM = 8,344). RESULTS In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS associated with reduced measures of serum insulin at 30 min following an oral glucose load (per allele effect (β) = -3.8% (-6.3%;-1.3%), P = 0.003), reduced incremental area under the insulin curve (β = -3.6% (-6.3%;-0.9%), P = 0.009), reduced acute insulin response (β = -2.2% (-4.2%;0.2%), P = 0.03), and with increased insulin sensitivity ISIMatsuda (β = 2.9% (0.5%;5.2%), P = 0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, P = 0.21). rs11161510 of ACADM did not associate with any indices of glucose-stimulated insulin release or with T2D. CONCLUSIONS In glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS was associated with reduced measures of glucose-stimulated insulin release during an OGTT, a finding which in part may be mediated through an impaired β-oxidation of fatty acids.
Collapse
Affiliation(s)
- Malene Hornbak
- Marie Krogh Center for Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Peyot ML, Pepin E, Lamontagne J, Latour MG, Zarrouki B, Lussier R, Pineda M, Jetton TL, Madiraju SRM, Joly E, Prentki M. Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 2010; 59:2178-87. [PMID: 20547980 PMCID: PMC2927940 DOI: 10.2337/db09-1452] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about beta-cell failure in these mice. RESEARCH DESIGN AND METHODS DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced beta-cell mass or function and studied islet metabolism and signaling. RESULTS HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced beta-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca(2+) was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS beta-Cell failure in HDR mice is not due to reduced beta-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca(2+) and lipid signaling, as well as free cholesterol deposition.
Collapse
Affiliation(s)
- Marie-Line Peyot
- Montreal Diabetes Research Center and CRCHUM, Montreal, QC, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Doliba NM, Qin W, Vinogradov SA, Wilson DF, Matschinsky FM. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets. Am J Physiol Endocrinol Metab 2010; 299:E475-85. [PMID: 20606076 PMCID: PMC2944283 DOI: 10.1152/ajpendo.00072.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca(2+), and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP(3) receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35-40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca(2+) release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 microM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca(2+), and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion.
Collapse
Affiliation(s)
- Nicolai M Doliba
- Department of Biochemistry and Biophysics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, 19104-6140, USA.
| | | | | | | | | |
Collapse
|
242
|
Pinnick K, Neville M, Clark A, Fielding B. Reversibility of metabolic and morphological changes associated with chronic exposure of pancreatic islet beta-cells to fatty acids. J Cell Biochem 2010; 109:683-92. [PMID: 20069570 DOI: 10.1002/jcb.22445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pancreatic beta-cells metabolise both lipid and glucose nutrients but chronic exposure (>24 h) to elevated fatty acid (FA) concentrations results in deleterious metabolic and morphological changes. The aims of this study were to assess the adaptive morphological, metabolic and secretory responses of islet beta-cells to exposure and removal of FA. Isolated mouse islets and INS-1 beta-cells were exposed to oleate or palmitate (0.5 mM) or a 1:1 mixture of both FA for 48 h prior to a 24 h period without FA. Subsequent changes in lipid storage and composition (triglycerides, TG and phospholipids, PL), gene expression, beta-cell morphology and glucose-stimulated insulin secretion (GSIS) were determined. Intracellular TG content increased during exposure to FA and was lower in cells subsequently incubated in FA-free media (P < 0.05); TG storage was visible as oil red O positive droplets (oleate) by light microscopy or 'splits' (palmitate) by electron microscopy. Significant desaturation of beta-cell FA occurred after exposure to oleate and palmitate. After incubation in FA-free media, there was differential handling of specific FA in TG, resulting in a profile that tended to revert to that of control cells. FA treatment resulted in elevated lipolysis of intracellular TG, increased FA oxidation and reduced GSIS. After incubation in FA-free media, oxidation remained elevated but inhibition of FA oxidation with etomoxir (10 microM) had no effect on the improvement in GSIS. The beta-cell demonstrates metabolic flexibility as an adaptive response to ambient concentrations of FA.
Collapse
Affiliation(s)
- Katherine Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | | | | | | |
Collapse
|
243
|
Faleck DM, Ali K, Roat R, Graham MJ, Crooke RM, Battisti R, Garcia E, Ahima RS, Imai Y. Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets. Am J Physiol Endocrinol Metab 2010; 299:E249-57. [PMID: 20484013 PMCID: PMC2928510 DOI: 10.1152/ajpendo.00646.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The excess accumulation of lipids in islets is thought to contribute to the development of diabetes in obesity by impairing beta-cell function. However, lipids also serve a nutrient function in islets, and fatty acids acutely increase insulin secretion. A better understanding of lipid metabolism in islets will shed light on complex effects of lipids on beta-cells. Adipose differentiation-related protein (ADFP) is localized on the surface of lipid droplets in a wide range of cells and plays an important role in intracellular lipid metabolism. We found that ADFP was highly expressed in murine beta-cells. Moreover, islet ADFP was increased in mice on a high-fat diet (3.5-fold of control) and after fasting (2.5-fold of control), revealing dynamic changes in ADFP in response to metabolic cues. ADFP expression was also increased by addition of fatty acids in human islets. The downregulation of ADFP in MIN6 cells by antisense oligonucleotide (ASO) suppressed the accumulation of triglycerides upon fatty acid loading (56% of control) along with a reduction in the mRNA levels of lipogenic genes such as diacylglycerol O-acyltransferase-2 and fatty acid synthase. Fatty acid uptake, oxidation, and lipolysis were also reduced by downregulation of ADFP. Moreover, the reduction of ADFP impaired the ability of palmitate to increase insulin secretion. These findings demonstrate that ADFP is important in regulation of lipid metabolism and insulin secretion in beta-cells.
Collapse
Affiliation(s)
- D. M. Faleck
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - K. Ali
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - R. Roat
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - M. J. Graham
- 2Isis Pharmaceuticals, Carlsbad, California; and
| | - R. M. Crooke
- 2Isis Pharmaceuticals, Carlsbad, California; and
| | - R. Battisti
- 3Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - E. Garcia
- 3Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - R. S. Ahima
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
| | - Y. Imai
- 1Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;
- 3Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
244
|
Yoder SM, Yang Q, Kindel TL, Tso P. Differential responses of the incretin hormones GIP and GLP-1 to increasing doses of dietary carbohydrate but not dietary protein in lean rats. Am J Physiol Gastrointest Liver Physiol 2010; 299:G476-85. [PMID: 20522638 PMCID: PMC2928540 DOI: 10.1152/ajpgi.00432.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that oral ingestion of nutrients stimulates secretion of the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1); however, it is unclear whether there is a dose-dependent response between the amount of nutrient ingested and the secretion of the hormones in vivo. Using our lymph fistula rat model, we previously demonstrated that both GIP and GLP-1 responded dose dependently to increasing amounts of infused dietary lipid and that the GLP-1-secreting cells were more sensitive to changes in intestinal lipid content. In the present study, we investigated the dose-dependent relationships between incretin secretion and the two remaining macronutrients, carbohydrate and protein. To accomplish this objective, the major mesenteric lymphatic duct of male Sprague-Dawley rats was cannulated. Each animal received a single bolus (3 ml) of saline, dextrin, whey protein, or casein hydrolysate (0.275, 0.55, 1.1, 2.2, 4.4 kcal) via a surgically inserted duodenal or ileal feeding tube. Lymph was continuously collected for 3 h and analyzed for GIP and GLP-1 content. Both GIP and GLP-1 outputs responded dose dependently to increasing amounts of dietary carbohydrate but not protein. Additionally, we found that the GIP-secreting cells were more sensitive than the GLP-1-secreting cells to changes in intestinal carbohydrate content.
Collapse
Affiliation(s)
- Stephanie M. Yoder
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Qing Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Tammy L. Kindel
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
245
|
Cammisotto PG, Levy E, Bukowiecki LJ, Bendayan M. Cross-talk between adipose and gastric leptins for the control of food intake and energy metabolism. ACTA ACUST UNITED AC 2010; 45:143-200. [PMID: 20621336 DOI: 10.1016/j.proghi.2010.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2010] [Indexed: 12/25/2022]
Abstract
The understanding of the regulation of food intake has become increasingly complex. More than 20 hormones, both orexigenic and anorexigenic, have been identified. After crossing the blood-brain barrier, they reach their main site of action located in several hypothalamic areas and interact to balance satiety and hunger. One of the most significant advances in this matter has been the discovery of leptin. This hormone plays fundamental roles in the control of appetite and in regulating energy expenditure. In accordance with the lipostatic theory stated by Kennedy in 1953, leptin was originally discovered in white adipose tissue. Its expression by other tissues was later established. Among them, the gastric mucosa has been shown to secrete large amounts of leptin. Both the adipose and the gastric tissues share similar characteristics in the synthesis and storage of leptin in granules, in the formation of a complex with the soluble receptor and a secretion modulated by hormones and energy substrates. However while adipose tissue secretes leptin in a slow constitutive endocrine way, the gastric mucosa releases leptin in a rapid regulated exocrine fashion into the gastric juice. Exocrine-secreted leptin survives the extreme hydrolytic conditions of the gastric juice and reach the duodenal lumen in an intact active form. Scrutiny into transport mechanisms revealed that a significant amount of the exocrine leptin crosses the intestinal wall by active transcytosis. Leptin receptors, expressed on the luminal and basal membrane of intestinal epithelial cells, are involved in the control of nutrient absorption by enterocytes, mucus secretion by goblet cells and motility, among other processes, and this control is indeed different depending upon luminal or basal stimulus. Gastric leptin after transcytosis reaches the central nervous system, to control food intake. Studies using the Caco-2, the human intestinal cell line, in vitro allowed analysis of the mechanisms of leptin actions on the intestinal mucosa, identification of the mechanisms of leptin transcytosis and understanding the modulation of leptin receptors by nutrients and hormones. Exocrine-secreted gastric leptin thus participates in a physiological axis independent in terms of time and regulation from that of adipose tissue to rapidly control food intake and nutrient absorption. Adipocytes and gastric epithelial cells are two cell types the metabolism of which is closely linked to food intake and energy storage. The coordinated secretion of adipose and gastric leptins ensures proper management of food processing and energy storage.
Collapse
Affiliation(s)
- Philippe G Cammisotto
- Department of Pathology and Cell Biology, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
246
|
El-Assaad W, Joly E, Barbeau A, Sladek R, Buteau J, Maestre I, Pepin E, Zhao S, Iglesias J, Roche E, Prentki M. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 2010; 151:3061-73. [PMID: 20444946 DOI: 10.1210/en.2009-1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated glucose and saturated fatty acids synergize in inducing apoptosis in INS832/13 cells and in human islet cells. In order to gain insight into the molecular mechanism(s) of glucolipotoxicity (Gltox), gene profiling and metabolic analyses were performed in INS832/13 cells cultured at 5 or 20 mm glucose in the absence or presence of palmitate. Expression changes were observed for transcripts involved in mitochondrial, lipid, and glucose metabolism. At 24 h after Gltox, increased expression of lipid partitioning genes suggested a promotion of fatty acid esterification and reduced lipid oxidation/detoxification, whereas changes in the expression of energy metabolism genes suggested mitochondrial dysfunction. These changes were associated with decreased glucose-induced insulin secretion, total insulin content, ATP levels, AMP-kinase activity, mitochondrial membrane potential and fat oxidation, unchanged de novo fatty acid synthesis, and increased reactive oxygen species, cholesterol, ceramide, and triglyceride levels. However, the synergy between elevated glucose and palmitate to cause ss-cell toxicity in term of apoptosis and reduced glucose-induced insulin secretion only correlated with triglyceride and ceramide depositions. Overexpression of endoplasmic reticulum glycerol-3-phosphate acyl transferase to enhance lipid esterification amplified Gltox at intermediate glucose (11 mm), whereas reducing acetyl-coenzyme A carboxylase 1 expression by small interfering RNA to shift lipid partitioning to fat oxidation reduced Gltox. The results suggest that Gltox entails alterations in lipid partitioning, sterol and ceramide accumulation, mitochondrial dysfunction, and reactive oxygen species production, all contributing to altering ss-cell function. The data also suggest that the early promotion of lipid esterification processes is instrumental in the Gltox process.
Collapse
Affiliation(s)
- Wissal El-Assaad
- Molecular Nutrition Unit and the Montreal Diabetes Research Center, the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada H1W 4A4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Kilimnik G, Kim A, Steiner DF, Friedman TC, Hara M. Intraislet production of GLP-1 by activation of prohormone convertase 1/3 in pancreatic α-cells in mouse models of ß-cell regeneration. Islets 2010; 2:149-55. [PMID: 20657753 PMCID: PMC2908328 DOI: 10.4161/isl.2.3.11396] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The islet of Langerhans is a highly vascularized micro-organ consisting of not only ß-cells but multiple cell types such as α-, delta-, pancreatic polypeptide- and epsilon-cells that work together to regulate glucose homeostatis. We have recently proposed a new model of the neonatal islet formation in mice by a process of fission following contiguous endocrine cell proliferation in the form of branched cord-like structures in embryos and newborns. There exist large stretches of interconnected islet structures along large blood vessels in the neonatal pancreas, which, upon further development, segregate into smaller fragments (i.e., islets) that eventually become more spherical by internal proliferation as seen in the adult pancreas. α-cells span these elongated islet-like structures in the developing pancreas, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. The α-cells express both prohormone convertase 2 and 1/3 (PC 2 and PC 1/3, respectively), which resulted in the processing of the proglucagon precursor into glucagon-like peptide 1, thereby leading to local production of this important ß-cell growth factor. Furthermore, while α-cells in the adult basically only express PC 2, significant activation of PC 1/3 is also observed in mouse models of insulin resistance such as pregnant, ob/ ob, db/db and prediabetic NOD mice, which may be a common mechanism in proliferating ß-cells. Our study suggests an important role of α-cells for ß-cell proliferation and further for the endocrine cell network within an islet.
Collapse
Affiliation(s)
- German Kilimnik
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | - Abraham Kim
- Department of Medicine; The University of Chicago; Chicago, IL USA
| | | | - Theodore C. Friedman
- Divison of Endocrinology; Department of Internal Medicine; Charles Drew University of Medicine & Sciences; Los Angeles, CA USA
| | - Manami Hara
- Department of Medicine; The University of Chicago; Chicago, IL USA
- Correspondence to: Manami Hara;
| |
Collapse
|
248
|
Morgan NG, Dhayal S. Unsaturated fatty acids as cytoprotective agents in the pancreatic beta-cell. Prostaglandins Leukot Essent Fatty Acids 2010; 82:231-6. [PMID: 20206490 DOI: 10.1016/j.plefa.2010.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It is widely accepted that, in type 2 diabetes, elevated levels of free fatty acids and glucose contribute to a state of glucolipotoxicity in which beta-cell function declines and, ultimately, cell viability is compromised. This suggests that beta-cells do not readily tolerate chronic elevations in fatty acid levels. In vitro studies suggest, however, that beta-cells respond differentially to long chain fatty acids, such that saturated species are lipotoxic whereas long chain mono-unsaturated fatty acids can provide cytoprotection. This difference does not appear to be mediated by a mutual metabolic antagonism between saturated and unsaturated species (although differential alterations in neutral lipid disposition may occur in response to these fatty acids) and the mechanisms remain unclear. This review summaries the current understanding of the actions of mono-unsaturated fatty acids in beta-cells and highlights areas of controversy as well as key unresolved issues which require to be addressed.
Collapse
Affiliation(s)
- Noel G Morgan
- Institute of Biomedical & Clinical Science, Peninsula Medical School (University of Exeter), Plymouth, UK.
| | | |
Collapse
|
249
|
López S, Bermúdez B, Abia R, Muriana FJG. The influence of major dietary fatty acids on insulin secretion and action. Curr Opin Lipidol 2010; 21:15-20. [PMID: 19915461 DOI: 10.1097/mol.0b013e3283346d39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW To briefly summarize recent advances towards understanding the influence of major dietary fatty acids on beta-cell function and evaluate their implications for insulin resistance. RECENT FINDINGS Studies in humans have shown that beta-cell function and insulin sensitivity improve progressively in the postprandial period as the proportion of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SFAs) in dietary fats increases. However, cell-culture experiments have revealed a dichotomy in the ability of fatty acids to moderate hyperactivity of, and induce lipotoxicity in, beta-cells. There are also some novel findings regarding the ability of HDL to protect beta-cells against oxidized LDL-induced apoptosis in vitro and of reconstituted HDL to attenuate insulin resistance in vivo. These findings raise new questions regarding the contribution of dietary fatty acids to insulin secretion and action. SUMMARY These new findings point to a critical role for major dietary fatty acids in the etiology and pathogenesis of diabetes, which appears to be of particular relevance during postprandial periods and mainly depends on the fatty acid type. This underscores the importance of dietary fatty acids in standard diabetes management.
Collapse
Affiliation(s)
- Sergio López
- Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain
| | | | | | | |
Collapse
|
250
|
Role of mitochondria in beta-cell function and dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:193-216. [PMID: 20217499 DOI: 10.1007/978-90-481-3271-3_9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pancreatic beta-cells are poised to sense glucose and other nutrient secretagogues to regulate insulin exocytosis, thereby maintaining glucose homeostasis. This process requires translation of metabolic substrates into intracellular messengers recognized by the exocytotic machinery. Central to this metabolism-secretion coupling, mitochondria integrate and generate metabolic signals, thereby connecting glucose recognition to insulin exocytosis. In response to a glucose rise, nucleotides and metabolites are generated by mitochondria and participate, together with cytosolic calcium, to the stimulation of insulin release. This review describes the mitochondrion-dependent pathways of regulated insulin secretion. Mitochondrial defects, such as mutations and reactive oxygen species production, are discussed in the context of beta-cell failure that may participate to the etiology of diabetes.
Collapse
|