301
|
El-Toukhy SE, El-Daly SM, Kamel MM, Nabih HK. The diagnostic significance of circulating miRNAs and metabolite profiling in early prediction of breast cancer in Egyptian women. J Cancer Res Clin Oncol 2023; 149:5437-5451. [PMID: 36459290 PMCID: PMC10349790 DOI: 10.1007/s00432-022-04492-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Breast cancer (BC) is one of the most commonly diagnosed solid malignancies in women worldwide. PURPOSE Finding new non-invasive circulating diagnostic biomarkers will facilitate the early prediction of BC and provide valuable insight into disease progression and response to therapy using a safe and more accessible approach available every inspection time. Therefore, our present study aimed to investigate expression patterns of potentially circulating biomarkers that can differentiate well between benign, malignant, and healthy subjects. METHODS To achieve our target, quantitative analyses were performed for some circulating biomarkers which have a role in the proliferation and tumor growth, as well as, glutamic acid, and human epidermal growth receptor 2 (HER2) in blood samples of BC patients in comparison to healthy controls using qRT-PCR, liquid chromatography/mass spectrometry (LC/MS/MS), and ELISA. RESULTS Our findings showed that the two miRNAs (miRNA-145, miRNA-382) were expressed at lower levels in BC sera than healthy control group, while miRNA-21 was expressed at higher levels in BC patients than control subjects. Area under ROC curves of BC samples revealed that AUC of miRNA-145, miRNA-382, miRNA-21, and glutamic acid was evaluated to equal 0.99, 1.00, 1.00 and 1.00, respectively. Besides, there was a significantly positive correlation between miRNA-145 and miRNA-382 (r = 0.737), and a highly significant positive correlation between miRNA-21 and glutamic acid (r = 0.385). CONCLUSION Based on our results, we conclude that the detection of serum miRNA-145, -382 and -21 as a panel along with glutamic acid, and circulating HER2 concentrations could be useful as a non-invasive diagnostic profiling for early prediction of breast cancer in Egyptian patients. It can provide an insight into disease progression, discriminate between malignancy and healthy control, and overcome the use limitations (low sensitivity and specificity, repeated risky exposure, and high cost) of other detecting tools, including mammography, magnetic resonance imaging, and ultrasound.
Collapse
Affiliation(s)
- Safinaz E El-Toukhy
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mahmoud M Kamel
- Laboratory Department, Baheya Hospital for Early Detection and Treatment of Breast Cancer, National Cancer Institute, Cairo University, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
302
|
Wang W, Rong Z, Wang G, Hou Y, Yang F, Qiu M. Cancer metabolites: promising biomarkers for cancer liquid biopsy. Biomark Res 2023; 11:66. [PMID: 37391812 PMCID: PMC10311880 DOI: 10.1186/s40364-023-00507-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023] Open
Abstract
Cancer exerts a multitude of effects on metabolism, including the reprogramming of cellular metabolic pathways and alterations in metabolites that facilitate inappropriate proliferation of cancer cells and adaptation to the tumor microenvironment. There is a growing body of evidence suggesting that aberrant metabolites play pivotal roles in tumorigenesis and metastasis, and have the potential to serve as biomarkers for personalized cancer therapy. Importantly, high-throughput metabolomics detection techniques and machine learning approaches offer tremendous potential for clinical oncology by enabling the identification of cancer-specific metabolites. Emerging research indicates that circulating metabolites have great promise as noninvasive biomarkers for cancer detection. Therefore, this review summarizes reported abnormal cancer-related metabolites in the last decade and highlights the application of metabolomics in liquid biopsy, including detection specimens, technologies, methods, and challenges. The review provides insights into cancer metabolites as a promising tool for clinical applications.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China
| | - Zhiwei Rong
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Clinical Research Center, Peking University, Beijing, 100191, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China.
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Peking University People's Hospital Thoracic Oncology Institute, Beijing, 100044, China.
| |
Collapse
|
303
|
Guan R, Ma N, Liu G, Wu Q, Su S, Wang J, Geng Y. Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116385. [PMID: 36931413 DOI: 10.1016/j.jep.2023.116385] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis is a traditional natural medicine with various activities such as antioxidant and anti-inflammatory, immunomodulatory, anti-tumour, gastroenteritis treatment and prevention, anti-microbial and parasitic, as well as glucose regulation and anti-diabetes, and is expected to be an anti-diabetic candidate with few side effects, but the mechanism of action of propolis on type 2 diabetes mellitus (T2DM) has not been fully elucidated. AIM OF THE STUDY The purpose of this study was to investigate the mechanism of the effect of ethanol extract of propolis (EEP) on the regulation of blood glucose in T2DM mice. MATERIALS AND METHODS We studied the possible mechanism of EEP on T2DM using an animal model of T2DM induced by a combination of a high-fat diet and intraperitoneal injection of streptozotocin (STZ). The experiment was divided into four groups, namely, the normal group (HC), model group (T2DM), EEP and metformin group (MET). Biochemical indexes and cytokines were measured, and the differences of metabolites in the serum were compared by 1H-NMR. In addition, the diversity of intestinal flora in feces was studied by 16S rDNA amplicon sequencing. RESULTS The results showed that following treatment with EEP and MET, the weight-loss trend of mice was alleviated, and the fasting blood glucose, insulin secretion level, insulin resistance index, C peptide level and oral glucose tolerance level decreased, whereas the insulin sensitivity index increased, thereby EEP effectively alleviated the occurrence of T2DM and insulin resistance. Compared with the T2DM group, the concentrations of pro-inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) decreased significantly in EEP and MET groups, whereas the concentrations of anti-inflammatory cytokine interleukin-10 (IL-10) increased significantly. Metabolomics results revealed that EEP and MET regulate carbohydrate metabolism and restore amino acid and lipid metabolism. Correlation analysis of intestinal flora in mouse feces showed that compared with the HC group, harmful bacteria such as Bilophila, Eubacterium_ventriosum_group, Mucispirillum and Desulfovibrio were found in the T2DM group, whereas the abundance of beneficial bacteria such as Lactobacillus was significantly reduced. Parabacteroides, Akkermansia, Leuconostoc, and Alloprevotella were abundantly present in the EEP group; however, the MET group showed an increase in the genus Parasutterella, which could regulate energy metabolism and insulin sensitivity. CONCLUSIONS The results showed that EEP and MET reduce fasting blood glucose in T2DM mice, followed by alleviating insulin resistance, improving the inflammatory reaction of mice, regulating the metabolism of mice, and affecting the steady state of gut microbiota. However, the overall therapeutic effect of EEP is better than that of MET.
Collapse
Affiliation(s)
- Rui Guan
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Ning Ma
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Guolong Liu
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Qiu Wu
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Shufang Su
- Shandong Institute for Food and Drug Control, Jinan, 250014, PR China.
| | - Jun Wang
- Shandong Institute for Food and Drug Control, Jinan, 250014, PR China.
| | - Yue Geng
- Key Laboratory of Food Nutritional Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
304
|
Isidoro C, Teng Y. Editorial: Metabolome in gastrointestinal cancer. Front Oncol 2023; 13:1234242. [PMID: 37434972 PMCID: PMC10331834 DOI: 10.3389/fonc.2023.1234242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Affiliation(s)
- Ciro Isidoro
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, United States
| |
Collapse
|
305
|
Chen M, Cao Y, Ji G, Zhang L. Lean nonalcoholic fatty liver disease and sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1217249. [PMID: 37424859 PMCID: PMC10327437 DOI: 10.3389/fendo.2023.1217249] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in the world. The risk factor for NAFLD is often considered to be obesity, but it can also occur in people with lean type, which is defined as lean NAFLD. Lean NAFLD is commonly associated with sarcopenia, a progressive loss of muscle quantity and quality. The pathological features of lean NAFLD such as visceral obesity, insulin resistance, and metabolic inflammation are inducers of sarcopenia, whereas loss of muscle mass and function further exacerbates ectopic fat accumulation and lean NAFLD. Therefore, we discussed the association of sarcopenia and lean NAFLD, summarized the underlying pathological mechanisms, and proposed potential strategies to reduce the risks of lean NAFLD and sarcopenia in this review.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
306
|
Li M, Zhang W, Li X, Liang S, Zhang Y, Mo Y, Rao S, Zhang H, Huang Y, Zhu Y, Zhang Z, Yang W. Metabolic and Risk Profiles of Lean and Non-Lean Hepatic Steatosis among US Adults. Nutrients 2023; 15:2856. [PMID: 37447183 DOI: 10.3390/nu15132856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatic steatosis can occur in lean individuals, while its metabolic and risk profiles remain unclear. We aimed to characterize the clinical and risk profiles of lean and non-lean steatosis. This cross-sectional study included 1610 patients with transient elastography-assessed steatosis. The metabolic and risk profiles were compared. Compared to their non-lean counterparts, lean subjects with steatosis had a lower degree of fibrosis (F0-F1: 91.9% vs. 80.9%), had a lower prevalence of diabetes (27.9% vs. 32.8%), dyslipidemia (54.7% vs. 60.2%) and hypertension (50.0% vs. 51.3%), and had higher levels of high-density lipoprotein cholesterol while lower fasting insulin and homeostatic model assessment for insulin resistance (all p < 0.05). Of the 16 potential risk factors, being Hispanic was associated with higher odds of non-lean steatosis but not with lean steatosis (odds ratio (OR): 2.07 vs. 0.93), while excessive alcohol consumption had a different trend in the ratio (OR: 1.47 vs.6.65). Higher waist-to-hip ratio (OR: 7.48 vs. 2.45), and higher waist circumference (OR: 1.14 vs. 1.07) showed a stronger positive association with lean steatosis than with non-lean steatosis (all Pheterogeneity < 0.05). Although lean individuals with steatosis presented a healthier metabolic profile, both lean and non-lean steatosis had a significant proportion of metabolic derangements. In addition, the etiological heterogeneity between lean and non-lean steatosis may exist.
Collapse
Affiliation(s)
- Meiling Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Weiping Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiude Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shaoxian Liang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yaozong Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yufeng Mo
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Songxian Rao
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Honghua Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yong Huang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yu Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Zhuang Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
307
|
Li L, Dong Y, Liu X, Wang M. Mangiferin for the Management of Liver Diseases: A Review. Foods 2023; 12:2469. [PMID: 37444207 DOI: 10.3390/foods12132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is a digestive and metabolic organ, and several factors can induce liver damage, which is a severe threat to human health. As a natural polyphenolic compound, mangiferin belongs to xanthone glucoside and mainly exists in many plants, such as mango. It is notorious that mangiferin has remarkable pharmacological activities such as anti-inflammatory, anti-tumor, antioxidative stress, antiviral and so on. Emerging evidence indicates the therapeutic benefits of mangiferin against liver disease, including liver injury, nonalcoholic fatty liver disease, alcoholic liver disease, liver fibrosis, and hepatocellular carcinoma. This review aims to summarize the possible underlying signaling mediated by mangiferin in liver disease treatment and the available findings of mangiferin, which can be used to treat different liver diseases and may contribute to mangiferin as a therapeutic agent for liver disease in humans.
Collapse
Affiliation(s)
- Lisi Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yujia Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100086, China
| |
Collapse
|
308
|
Ren Q, Zhang G, Dong C, Li Z, Zhou D, Huang L, Li W, Huang G, Yan J. Parental Folate Deficiency Inhibits Proliferation and Increases Apoptosis of Neural Stem Cells in Rat Offspring: Aggravating Telomere Attrition as a Potential Mechanism. Nutrients 2023; 15:2843. [PMID: 37447170 DOI: 10.3390/nu15132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring's brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs.
Collapse
Affiliation(s)
- Qinghan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guoquan Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
309
|
Morales-Romero J, Ortíz-León MC, Hernández-Gutiérrez H, Bahena-Cerón RA, Miranda-Reza A, Marín-Carmona JA, Rodríguez-Romero E, Mora SI, García-Román J, Peréz-Carreón JI, Rivadeneyra-Domínguez E, Riande-Juárez G, García-Román R. [Risk factors for metabolic dysfunction-associated fatty liver disease in the Hispanic-Mexican population.]. Rev Esp Salud Publica 2023; 97:e202306053. [PMID: 37387209 PMCID: PMC10540909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/20/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated fatty liver disease (MAFLD) is a poor attended disease, which has gained attention due the elevated number of cases in countries as Mexico, where the incidence is the number 4th globally. MAFLD develops in obese or overweighted individuals and is characterized by triglycerides accumulation in the liver, this condition can develop to hepatocellular carcinoma. It has been observed that MAFLD depends on the genetics and lifestyle. Due to the high prevalence of this disease among Hispanic population, we focused on this study in the characteristics and prevalence of MAFLD in Mexican patients. METHODS In this study were included 572 overweighted and obese patients, who underwent a screening analysis using the fatty liver index (IHG), clinical parameters were analysed, demographic and comorbidities. Frequency of variables were obtained, and the data were analysed by Chi-square test or Fisher test, odd ratio (OR) and binary logistic regression. RESULTS A MALFD prevalence of 37% were obtained, where the history of familiar obesity, paracetamol usage, carbohydrate and fat intake are shown to be risk factors. It was found that high blood pressure, central obesity and hypertriglyceridemia were also associated to the MAFLD development. On the other hand, physical exercise was a protector factor. CONCLUSIONS Our results show the necessity to study the MAFLD causalities in Mexican patients, focused on the paracetamol intake.
Collapse
Affiliation(s)
- Jaime Morales-Romero
- Instituto de Salud Pública, Universidad Veracruzana.Universidad VeracruzanaXalapa (Veracruz)Mexico
| | | | | | - Roberto A. Bahena-Cerón
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana.Universidad VeracruzanaXalapa (Veracruz)Mexico
| | - Aidé Miranda-Reza
- Facultad de Estadística e Informática, Universidad Veracruzana.Universidad VeracruzanaXalapa (Veracruz)Mexico
| | - José A. Marín-Carmona
- Facultad de Biología, Universidad Veracruzana.Universidad VeracruzanaXalapa (Veracruz)Mexico
| | - Edit Rodríguez-Romero
- Instituto de Salud Pública, Universidad Veracruzana.Universidad VeracruzanaXalapa (Veracruz)Mexico
| | - Silvia I. Mora
- Unidad de Procedimientos Preparativos y de Acceso a Servicios de Proteómica (UPASPro), Instituto de Investigaciones Biomédicas UNAM.Instituto de Investigaciones Biomédicas UNAMCiudad de México.Mexico
| | - Jonathan García-Román
- Facultad de Medicina-Región Poza Rica-Tuxpan, Universidad Veracruzana.Universidad VeracruzanaPoza Rica (Veracruz)Mexico
| | - Julio I. Peréz-Carreón
- Laboratorio de Bioquímica y Estructura de Proteínas, Instituto Nacional de Medicina Genómica.Instituto Nacional de Medicina GenómicaCiudad de México.Mexico
| | | | - Gabriel Riande-Juárez
- Instituto de Salud Pública, Universidad Veracruzana.Universidad VeracruzanaXalapa (Veracruz)Mexico
| | - Rebeca García-Román
- Instituto de Salud Pública, Universidad Veracruzana.Universidad VeracruzanaXalapa (Veracruz)Mexico
| |
Collapse
|
310
|
Teymoori F, Asghari G, Hoseinpour S, Roosta S, Bordbar M, Mirmiran P, Sarbazi N, Azizi F. Dietary amino acids and anthropometric indices: Tehran Lipid and Glucose Study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000646. [PMID: 37364148 PMCID: PMC10661005 DOI: 10.20945/2359-3997000000646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/02/2021] [Indexed: 06/28/2023]
Abstract
Objective Recent studies investigated the role of amino acids (AAs) in weight management. We aimed to determine the association between AAs and three-year change of anthropometric indices and incident obesity. Materials and methods Height, weight, hip, and waist circumference (WC) were collected at baseline and follow up. Three-year changes in anthropometric indices and obesity incident according to body mass index (BMI) (overweight & obesity) and WC cutoffs (obesity-WC) were ascertained. Dietary intakes of AAs were collected at baseline, using a food frequency questionnaire. Data analyses were conducted on 4976 adult participants and two subsamples, including 1,570 and 2,918 subjects, for assessing the AAs relationship with 3-year changes on anthropometric indices and obesity incident. Results Lysine and aspartic acid were positively associated with higher weight change, whereas acidic AAs, cysteine, and glutamic acid showed a negative correlation with weight change. Furthermore, a weak positive correlation was shown for alkaline AAs, lysine, and valine with WC; however, acidic AAs, tryptophan, cysteine, and glutamic acid were negatively associated with WC. Aromatic and acidic AAs also demonstrated a weak negative relation with changes in BAI. Phenylalanine and Aromatic AAs showed a negative association with overweight &obesity incidence adjusting for potential confounders. Each quartile increases the dietary lysine, arginine, alanine, methionine, aspartic acid, and alkaline AAs related to a greater risk of obesity-WC, while tryptophan, glutamic acid, proline, and acidic AAs associated with lower obesity-WC risk. Conclusion Our results suggested that certain dietary AAs may potentially change anthropometric indices and risk of obesity incident.
Collapse
Affiliation(s)
- Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Hoseinpour
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sajjad Roosta
- Student Research Committee, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Bordbar
- Student Research Committee, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Narges Sarbazi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
311
|
Bifarin O, Sah S, Gaul DA, Moore SG, Chen R, Palaniappan M, Kim J, Matzuk MM, Fernández FM. Machine Learning Reveals Lipidome Remodeling Dynamics in a Mouse Model of Ovarian Cancer. J Proteome Res 2023; 22:2092-2108. [PMID: 37220064 PMCID: PMC10243112 DOI: 10.1021/acs.jproteome.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 05/25/2023]
Abstract
Ovarian cancer (OC) is one of the deadliest cancers affecting the female reproductive system. It may present little or no symptoms at the early stages and typically unspecific symptoms at later stages. High-grade serous ovarian cancer (HGSC) is the subtype responsible for most ovarian cancer deaths. However, very little is known about the metabolic course of this disease, particularly in its early stages. In this longitudinal study, we examined the temporal course of serum lipidome changes using a robust HGSC mouse model and machine learning data analysis. Early progression of HGSC was marked by increased levels of phosphatidylcholines and phosphatidylethanolamines. In contrast, later stages featured more diverse lipid alterations, including fatty acids and their derivatives, triglycerides, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, and phosphatidylinositols. These alterations underscored unique perturbations in cell membrane stability, proliferation, and survival during cancer development and progression, offering potential targets for early detection and prognosis of human ovarian cancer.
Collapse
Affiliation(s)
- Olatomiwa
O. Bifarin
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Samyukta Sah
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - David A. Gaul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Petit
Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- Petit
Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruihong Chen
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Murugesan Palaniappan
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jaeyeon Kim
- Department
of Biochemistry and Molecular Biology, Indiana University School of
Medicine, Indiana University Melvin and
Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Martin M. Matzuk
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Petit
Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
312
|
Chauhan S, Singh AP, Rana AC, Kumar S, Kumar R, Singh J, Jangra A, Kumar D. Natural activators of AMPK signaling: potential role in the management of type-2 diabetes. J Diabetes Metab Disord 2023; 22:47-59. [PMID: 37255783 PMCID: PMC10225395 DOI: 10.1007/s40200-022-01155-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase involved in the homeostasis of cellular energy. AMPK has developed as an appealing clinical target for the diagnosis of multiple metabolic diseases such as diabetes mellitus, obesity, inflammation, and cancer. Genetic and pharmacological studies indicate that AMPK is needed in response to glucose deficiency, dietary restriction, and increased physical activity for preserving glucose homeostasis. After activation, AMPK influences metabolic mechanisms contributing to enhanced ATP production, thus growing processes that absorb ATP simultaneously. In this review, several natural products have been discussed which enhance the sensitivity of AMPK and alleviate sub complications or different pathways by which such AMPK triggers can be addressed. AMPK Natural products as potential AMPK activators can be developed as alternate pharmacological intervention to reverse metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Sanyogita Chauhan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Aakash Partap Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Avtar Chand Rana
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Haryana 122502 Rewari, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031 Haryana India
| | - Jitender Singh
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, P.O. Mianpur, Ropar, 140108 Punjab India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
313
|
Chen JM, Wu TY, Wu YF, Kuo KL. Association of the serum calcium level with metabolic syndrome and its components among adults in Taiwan. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000632. [PMID: 37249460 PMCID: PMC10665046 DOI: 10.20945/2359-3997000000632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023]
Abstract
Objective An increasing amount of literature indicates that the serum calcium level may be related to metabolic syndrome (MetS) and obesity. This study aimed to examine the relationship between the serum calcium level and MetS in adults in Taiwan. Subjects and methods We conducted a crosssectional study and enrolled 1,580 participants (54.4% women; mean age, 33.28 ± 12.21 years) who underwent health examinations in northern Taiwan between 2012 and 2016. Logistic regression was performed to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of MetS and its components in groups of patients in the tertiles of the serum calcium level. Results In total, 167 participants (10.6%) had MetS. The odds of high systolic blood pressure (BP), blood glucose, and triglyceride (TG) levels significantly increased as the serum calcium level increased. Compared with the participants in the lowest tertile of the serum calcium level (tertile 1), those in the second tertile (OR = 1.47, 95% CI: 0.97-2.23) and third tertile (OR = 1.63, 95% CI: 1.06-2.53) had a significantly higher risk of MetS. Further analyses revealed a significant association between MetS and an increased serum calcium level in those in the overweight and obese groups. However, there was no association between the serum calcium levels and MetS in those in the normal weight group. Conclusion This study demonstrated that a higher serum calcium level is associated with an increased risk of MetS and its components in adults with overweight and obesity.
Collapse
Affiliation(s)
- Jer-Min Chen
- Department of Family Medicine, Renai Branch, Taipei City Hospital, Taipei, Taiwan,
- Department of Psychology and Counseling, University of Taipei, Taipei, Taiwan
| | - Tai-Yin Wu
- Department of Family Medicine, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Wu
- Department of Family Medicine, Renai Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Kuan-Liang Kuo
- Department of Family Medicine, Renai Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of BioMedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
314
|
Ścibior A, Llopis J, Dobrakowski PP, Męcik-Kronenberg T. CNS-Related Effects Caused by Vanadium at Realistic Exposure Levels in Humans: A Comprehensive Overview Supplemented with Selected Animal Studies. Int J Mol Sci 2023; 24:ijms24109004. [PMID: 37240351 DOI: 10.3390/ijms24109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative disorders, which are currently incurable diseases of the nervous system, are a constantly growing social concern. They are progressive and lead to gradual degeneration and/or death of nerve cells, resulting in cognitive deterioration or impaired motor functions. New therapies that would ensure better treatment results and contribute to a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Vanadium (V), which is an element with a wide range of impacts on the mammalian organism, is at the forefront among the different metals studied for their potential therapeutic use. On the other hand, it is a well-known environmental and occupational pollutant and can exert adverse effects on human health. As a strong pro-oxidant, it can generate oxidative stress involved in neurodegeneration. Although the detrimental effects of vanadium on the CNS are relatively well recognized, the role of this metal in the pathophysiology of various neurological disorders, at realistic exposure levels in humans, is not yet well characterized. Hence, the main goal of this review is to summarize data on the neurological side effects/neurobehavioral alterations in humans, in relation to vanadium exposure, with the focus on the levels of this metal in biological fluids/brain tissues of subjects with some neurodegenerative syndromes. Data collected in the present review indicate that vanadium cannot be excluded as a factor playing a pivotal role in the etiopathogenesis of neurodegenerative illnesses, and point to the need for additional extensive epidemiological studies that will provide more evidence supporting the relationship between vanadium exposure and neurodegeneration in humans. Simultaneously, the reviewed data, clearly showing the environmental impact of vanadium on health, suggest that more attention should be paid to chronic diseases related to vanadium and to the assessment of the dose-response relationship.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów St. 1J, 20-708 Lublin, Poland
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, 18016 Granada, Spain
| | - Paweł Piotr Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, Jana Kilińskiego St. 43, 41-200 Sosnowiec, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 3 Maja St. 13, 41-800 Zabrze, Poland
| |
Collapse
|
315
|
Wang D, Zhu J, Li N, Lu H, Gao Y, Zhuang L, Chen Z, Mao W. GC-MS-based untargeted metabolic profiling of malignant mesothelioma plasma. PeerJ 2023; 11:e15302. [PMID: 37220527 PMCID: PMC10200095 DOI: 10.7717/peerj.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/05/2023] [Indexed: 05/25/2023] Open
Abstract
Background Malignant mesothelioma (MM) is a cancer caused mainly by asbestos exposure, and is aggressive and incurable. This study aimed to identify differential metabolites and metabolic pathways involved in the pathogenesis and diagnosis of malignant mesothelioma. Methods By using gas chromatography-mass spectrometry (GC-MS), this study examined the plasma metabolic profile of human malignant mesothelioma. We performed univariate and multivariate analyses and pathway analyses to identify differential metabolites, enriched metabolism pathways, and potential metabolic targets. The area under the receiver-operating curve (AUC) criterion was used to identify possible plasma biomarkers. Results Using samples from MM (n = 19) and healthy control (n = 22) participants, 20 metabolites were annotated. Seven metabolic pathways were disrupted, involving alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; arginine and proline metabolism; butanoate and histidine metabolism; beta-alanine metabolism; and pentose phosphate metabolic pathway. The AUC was used to identify potential plasma biomarkers. Using a threshold of AUC = 0.9, five metabolites were identified, including xanthurenic acid, (s)-3,4-hydroxybutyric acid, D-arabinose, gluconic acid, and beta-d-glucopyranuronic acid. Conclusions To the best of our knowledge, this is the first report of a plasma metabolomics analysis using GC-MS analyses of Asian MM patients. Our identification of these metabolic abnormalities is critical for identifying plasma biomarkers in patients with MM. However, additional research using a larger population is needed to validate our findings.
Collapse
Affiliation(s)
- Ding Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Jing Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Na Li
- Shaoxing No. 2 Hospital Medical Community General Hospital, Shaoxing, China
| | - Hongyang Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Yun Gao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Lei Zhuang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Zhongjian Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Weimin Mao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| |
Collapse
|
316
|
Tong L, Tian M, Ma X, Bai L, Zhou J, Ding W. Metabolome Profiling and Pathway Analysis in Metabolically Healthy and Unhealthy Obesity among Chinese Adolescents Aged 11-18 Years. Metabolites 2023; 13:metabo13050641. [PMID: 37233682 DOI: 10.3390/metabo13050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The underlying mechanisms of the development of unhealthy metabolic phenotypes in obese children and adolescents remain unclear. We aimed to screen the metabolomes of individuals with the unhealthy obesity phenotype and identify the potential metabolic pathways that could regulate various metabolic profiles of obesity in Chinese adolescents. A total of 127 adolescents aged 11-18 years old from China were investigated using a cross-sectional study. The participants were classified as having metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the presence/absence of metabolic abnormalities defined by metabolic syndrome (MetS) and body mass index (BMI). Serum-based metabolomic profiling using gas chromatography-mass spectrometry (GC-MS) was undertaken on 67 MHO and 60 MUO individuals. ROC analyses showed that palmitic acid, stearic acid, and phosphate could predict MUO, and that glycolic acid, alanine, 3-hydroxypropionic acid, and 2-hydroxypentanoic acid could predict MHO (all p < 0.05) from selected samples. Five metabolites predicted MUO, 12 metabolites predicted MHO in boys, and only two metabolites predicted MUO in girls. Moreover, several metabolic pathways may be relevant in distinguishing the MHO and MUO groups, including the fatty acid biosynthesis, fatty acid elongation in mitochondria, propanoate metabolism, glyoxylate and dicarboxylate metabolism, and fatty acid metabolism pathways. Similar results were observed for boys except for phenylalanine, tyrosine and tryptophan biosynthesis, which had a high impact [0.098]. The identified metabolites and pathways could be efficacious for investigating the underlying mechanisms of the development of different metabolic phenotypes in obese Chinese adolescents.
Collapse
Affiliation(s)
- Lingling Tong
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Mei Tian
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoyan Ma
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Bai
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyu Zhou
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Wenqing Ding
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
317
|
Miao Y, Tao H. Association between remnant lipoprotein cholesterol levels and risk of non-alcoholic fatty liver disease in non-obese populations: a Chinese longitudinal prospective cohort study. BMJ Open 2023; 13:e069440. [PMID: 37147088 PMCID: PMC10163498 DOI: 10.1136/bmjopen-2022-069440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
OBJECTIVES The association between remnant lipoprotein cholesterol (RLP-C) levels and the incidence of non-alcoholic fatty liver disease (NAFLD) is unclear, especially in non-obese populations. SETTING We used data from a health assessment database. The assessment was conducted at the Wenzhou Medical Center from January 2010 to December 2014. The patients were divided into low, middle and high RLP-C groups according to tertiles of RLP-C, and baseline metabolic parameters were compared among the three groups. Kaplan-Meier analysis and Cox proportional hazards regression were used to evaluate the relationship between RLP-C and NAFLD incidence. Additionally, sex-specific associations between RLP-C and NAFLD were examined. PARTICIPANTS 16 173 non-obese participants from the longitudinal healthcare database. OUTCOME MEASURE NAFLD was diagnosed using abdominal ultrasonography and clinical history. RESULTS Participants with higher RLP-C levels tended to have higher blood pressure, liver metabolic index and lipid metabolism index than those with middle or low RLP-C (p<0.001). During the 5-year follow-up period, 2322 (14.4%) participants developed NAFLD. Participants with high and middle RLP-C levels were at a higher risk of developing NAFLD, even after adjusting for age, sex, body mass index and main metabolic parameters (HR 1.6, 95% CI 1.3, 1.9, p<0.001; and HR 1.3, 95% CI 1.1, 1.6, p=0.01, respectively). The effect was consistent in subgroups of different ages, systolic blood pressures and alanine aminotransferase levels, except for sex and direct bilirubin (DBIL). These correlations, beyond traditional cardiometabolic risk factors, were stronger in males than females (HR 1.3 (1.1, 1.6) and HR 1.7 (1.4, 2.0), p for interaction 0.014 for females and males, respectively). CONCLUSIONS In non-obese populations, higher RLP-C levels indicated a worse cardiovascular metabolic index. RLP-C was associated with the incidence of NAFLD, independent of the traditional risk factors of metabolism. This correlation was more substantial in the male and low DBIL subgroups.
Collapse
Affiliation(s)
- Yanju Miao
- Department of Endocrinology and Metabolism, Beijing Anzhen Hospital, Beijing, China
| | - Hong Tao
- Department of Endocrinology and Metabolism, Beijing Anzhen Hospital, Beijing, China
| |
Collapse
|
318
|
Chang M, Shao Z, Shen G. Association between triglyceride glucose-related markers and the risk of metabolic-associated fatty liver disease: a cross-sectional study in healthy Chinese participants. BMJ Open 2023; 13:e070189. [PMID: 37130686 PMCID: PMC10163481 DOI: 10.1136/bmjopen-2022-070189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVES This study aimed to evaluate the performance of the triglyceride glucose (TyG) index and its related markers in predicting metabolic-associated fatty liver disease (MAFLD) in healthy Chinese participants. DESIGN This was a cross-sectional study. SETTING The study was conducted at Health Management Department of the Affiliated Hospital of Xuzhou Medical University. PARTICIPANTS A total of 20 922 asymptomatic Chinese participants (56% men) were enrolled. OUTCOME MEASURES Hepatic ultrasonography was performed to diagnose MAFLD based on the latest diagnostic criteria. The TyG, TyG-body mass (TyG-BMI) and TyG-waist circumference indices were calculated and analysed. RESULTS Compared with the lowest quartile of the TyG-BMI, the adjusted ORs and 95% CIs for MAFLD were 20.76 (14.54 to 29.65), 92.33 (64.61 to 131.95) and 380.87 (263.25 to 551.05) in the second, third and fourth quartiles, respectively. According to the subgroup analysis, the TyG-BMI in the female and the lean groups (BMI<23 kg/m2) showed the strongest predictive value, with optimal cut-off values for MAFLD of 162.05 and 156.31, respectively. The areas under the receiver operating characteristic curves in female and lean groups were 0.933 (95% CI 0.927 to 0.938) and 0.928 (95% CI 0.914 to 0.943), respectively, with 90.7% sensitivity and 81.2% specificity in female participants with MAFLD and 87.2% sensitivity and 87.1% specificity in lean participants with MAFLD. The TyG-BMI index demonstrated superior predictive ability for MAFLD compared with other markers. CONCLUSIONS The TyG-BMI is an effective, simple and promising tool for predicting MAFLD, especially in lean and female participants.
Collapse
Affiliation(s)
- Mingxing Chang
- Health Management Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhihao Shao
- Health Management Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guifang Shen
- Health Management Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
319
|
Pei C, Wang Y, Ding Y, Li R, Shu W, Zeng Y, Yin X, Wan J. Designed Concave Octahedron Heterostructures Decode Distinct Metabolic Patterns of Epithelial Ovarian Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209083. [PMID: 36764026 DOI: 10.1002/adma.202209083] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/25/2023] [Indexed: 05/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn2 O3 /(Co,Mn)(Co,Mn)2 O4 (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS). The MO/CMO composites with multiple physical effects induce enhanced light absorption, preferred charge transfer, increased photothermal conversion, and selective trapping of small molecules. The MO/CMO shows ≈2-5-fold signal enhancement compared to mono- or dual-enhancement counterparts, and ≈10-48-fold compared to the commercialized products. Subsequently, serum metabolic fingerprints of ovarian tumors are revealed by MO/CMO-assisted LDI-MS, achieving high reproducibility of direct serum detection without treatment. Furthermore, machine learning of the metabolic fingerprints distinguishes malignant ovarian tumors from benign controls with the area under the curve value of 0.987. Finally, seven metabolites associated with the progression of ovarian tumors are screened as potential biomarkers. The approach guides the future depiction of the state-of-the-art matrix for intensive MS detection and accelerates the growth of nanomaterials-based platforms toward precision diagnosis scenarios.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Yajie Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yu Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xia Yin
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
320
|
DiStefano JK, Gerhard GS. Metabolic dysfunction and nonalcoholic fatty liver disease risk in individuals with a normal body mass index. Curr Opin Gastroenterol 2023; 39:156-162. [PMID: 37144532 PMCID: PMC10201924 DOI: 10.1097/mog.0000000000000920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, but is also common in individuals with a normal body mass index (BMI), who also experience the hepatic inflammation, fibrosis, and decompensated cirrhosis associated with NAFLD progression. The clinical evaluation and treatment of NAFLD in this patient population are challenging for the gastroenterologist. A better understanding of the epidemiology, natural history, and outcomes of NAFLD in individuals with normal BMI is emerging. This review examines the relationship between metabolic dysfunction and clinical characteristics associated with NAFLD in normal-weight individuals. RECENT FINDINGS Despite a more favorable metabolic profile, normal-weight NAFLD patients exhibit metabolic dysfunction. Visceral adiposity may be a critical risk factor for NAFLD in normal-weight individuals, and waist circumference may be better than BMI for assessing metabolic risk in these patients. Although screening for NAFLD is not presently recommended, recent guidelines may assist clinicians in the diagnosis, staging, and management of NAFLD in individuals with a normal BMI. SUMMARY Individuals with a normal BMI likely develop NAFLD as a result of different etiologies. Subclinical metabolic dysfunction may be a key component of NAFLD in these patients, and efforts to better understand this relationship in this patient population are needed.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Diabetes and Fibrotic Disease Research Unit, Translational Genomics Research Institute
| | - Glenn S. Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
321
|
Patel AH, Peddu D, Amin S, Elsaid MI, Minacapelli CD, Chandler TM, Catalano C, Rustgi VK. Nonalcoholic Fatty Liver Disease in Lean/Nonobese and Obese Individuals: A Comprehensive Review on Prevalence, Pathogenesis, Clinical Outcomes, and Treatment. J Clin Transl Hepatol 2023; 11:502-515. [PMID: 36643037 PMCID: PMC9817050 DOI: 10.14218/jcth.2022.00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, with an estimated prevalence of 25% globally. NAFLD is closely associated with metabolic syndrome, which are both becoming increasingly more common with increasing rates of insulin resistance, dyslipidemia, and hypertension. Although NAFLD is strongly associated with obesity, lean or nonobese NAFLD is a relatively new phenotype and occurs in patients without increased waist circumference and with or without visceral fat. Currently, there is limited literature comparing and illustrating the differences between lean/nonobese and obese NAFLD patients with regard to risk factors, pathophysiology, and clinical outcomes. In this review, we aim to define and further delineate different phenotypes of NAFLD and present a comprehensive review on the prevalence, incidence, risk factors, genetic predisposition, and pathophysiology. Furthermore, we discuss and compare the clinical outcomes, such as insulin resistance, dyslipidemia, hypertension, coronary artery disease, mortality, and progression to nonalcoholic steatohepatitis, among lean/nonobese and obese NAFLD patients. Finally, we summarize the most up to date current management of NAFLD, including lifestyle interventions, pharmacologic therapies, and surgical options.
Collapse
Affiliation(s)
- Ankoor H. Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Dhiraj Peddu
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sahil Amin
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mohamed I. Elsaid
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Secondary Data Core, Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Carlos D. Minacapelli
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Toni-Marie Chandler
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Carolyn Catalano
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vinod K. Rustgi
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
322
|
Auguet T, Bertran L, Capellades J, Abelló S, Aguilar C, Sabench F, del Castillo D, Correig X, Yanes O, Richart C. LC/MS-Based Untargeted Metabolomics Analysis in Women with Morbid Obesity and Associated Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:7761. [PMID: 37175468 PMCID: PMC10177925 DOI: 10.3390/ijms24097761] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is a chronic and complex disease, with an increasing incidence worldwide that is associated with metabolic disorders such as type 2 diabetes mellitus (T2DM). Thus, it is important to determine the differences between metabolically healthy obese individuals and those with metabolic disorders. The aim of this study was to perform an untargeted metabolomics assay in women with morbid obesity (MO) compared to a normal weight group, and to differentiate the metabolome of these women with MO who present with T2DM. We carried out a liquid chromatography-mass spectrometry-based untargeted metabolomics assay using serum samples of 209 Caucasian women: 73 with normal weight and 136 with MO, of which 71 had T2DM. First, we found increased levels of choline and acylglycerols and lower levels of bile acids, steroids, ceramides, glycosphingolipids, lysophosphatidylcholines, and lysophosphatidylethanolamines in MO women than in the control group. Then, in MO women with T2DM, we found increased levels of glutamate, propionyl-carnitine, bile acids, ceramides, lysophosphatidylcholine 14:0, phosphatidylinositols and phosphoethanolamines, and lower levels of Phe-Ile/Leu. Thus, we found metabolites with opposite trends of concentration in the two metabolomic analyses. These metabolites could be considered possible new factors of study in the pathogenesis of MO and associated T2DM in women.
Collapse
Affiliation(s)
- Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain;
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili (URV), IISPV, 43204 Reus, Spain
| | - Daniel del Castillo
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili (URV), IISPV, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 43204 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 43204 Madrid, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| |
Collapse
|
323
|
Durainayagam B, Mitchell CJ, Milan AM, Kruger MC, Roy NC, Fraser K, Cameron-Smith D. Plasma metabolomic response to high-carbohydrate meals of differing glycaemic load in overweight women. Eur J Nutr 2023:10.1007/s00394-023-03151-7. [PMID: 37085625 DOI: 10.1007/s00394-023-03151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Metabolomic dysregulation following a meal in overweight individuals with the Metabolic Syndrome (MetS) involves multiple pathways of nutrient storage and oxidation. OBJECTIVE The aim of the current study was to perform an acute cross-over intervention to examine the interactive actions of meal glycaemic load (GL) on the dynamic responses of the plasma metabolome in overweight females. METHODS Postmenopausal women [63 ± 1.23y; Healthy (n = 20) and MetS (n = 20)] ingested two differing high-carbohydrate test meals (73 g carbohydrate; 51% energy) composed of either low glycemic index (LGI) or high (HGI) foods in a randomised sequence. Plasma metabolome was analysed using liquid chromatography-mass spectrometry (LC-MS). RESULTS In the overweight women with MetS, there were suppressed postprandial responses for several amino acids (AAs), including phenylalanine, leucine, valine, and tryptophan, p < 0.05), irrespective of the meal type. Meal GL exerted a limited impact on the overall metabolomic response, although the postprandial levels of alanine were higher with the low GL meal and uric acid was greater following the high GL meal (p < 0.05). CONCLUSIONS MetS participants exhibited reduced differences in the concentrations of a small set of AAs and a limited group of metabolites implicated in energy metabolism following the meals. However, the manipulation of meal GL had minimal impact on the postprandial metabolome. This study suggests that the GL of a meal is not a major determinant of postprandial response, with a greater impact exerted by the metabolic health of the individual. Trial registration Australia New Zealand Clinical Trials Registry: ACTRN12615001108505 (21/10/2015).
Collapse
Affiliation(s)
- Brenan Durainayagam
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
| | - Cameron J Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Food & Bio-Based Products Group, AgResearch, Palmerston North, New Zealand
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- High-Value Nutrition, National Science Challenge, Auckland, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Karl Fraser
- Food & Bio-Based Products Group, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
- Colleges of Health, Medicine and Wellbeing, and Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
324
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
325
|
Otoki Y, Yu D, Shen Q, Sahlas DJ, Ramirez J, Gao F, Masellis M, Swartz RH, Chan PC, Pettersen JA, Kato S, Nakagawa K, Black SE, Swardfager W, Taha AY. Quantitative Lipidomic Analysis of Serum Phospholipids Reveals Dissociable Markers of Alzheimer's Disease and Subcortical Cerebrovascular Disease. J Alzheimers Dis 2023; 93:665-682. [PMID: 37092220 DOI: 10.3233/jad-220795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Circulating phospholipid species have been shown to predict Alzheimer's disease (AD) prognosis but the link between phospholipid disturbances and subcortical small vessel cerebrovascular disease (CeVD) common in AD patients is not known. OBJECTIVE This study used quantitative lipidomics to measure serum diacyl, alkenyl (ether), alkyl, and lyso phospholipid species in individuals with extensive CeVD (n = 29), AD with minimal CeVD (n = 16), and AD with extensive CeVD (n = 14), and compared them to age-matched controls (n = 27). Memory was assessed using the California Verbal Learning Test. 3.0T MRI was used to assess hippocampal volume, atrophy, and white matter hyperintensity (WMH) volumes as manifestations of CeVD. RESULTS AD was associated with significantly higher concentrations of choline plasmalogen 18:0_18:1 and alkyl-phosphocholine 18:1. CeVD was associated with significantly lower lysophospholipids containing 16:0. Phospholipids containing arachidonic acid (AA) were associated with poorer memory in controls, whereas docosahexaenoic acid (DHA)-containing phospholipids were associated with better memory in individuals with AD+CeVD. In controls, DHA-containing phospholipids were associated with more atrophy and phospholipids containing linoleic acid and AA were associated with less atrophy. Lysophospholipids containing 16:0, 18:0, and 18:1 were correlated with less atrophy in controls, and of these, alkyl-phosphocholine 18:1 was correlated with smaller WMH volumes. Conversely, 16:0_18:1 choline plasmalogen was correlated with greater WMH volumes in controls. CONCLUSION This study demonstrates discernable differences in circulating phospholipids in individuals with AD and CeVD, as well as new associations between phospholipid species with memory and brain structure that were specific to contexts of commonly comorbid vascular and neurodegenerative pathologies.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Di Yu
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
| | - Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Demetrios J Sahlas
- Department of Medicine (Neurology Division), McMaster University, Hamilton, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medicine (Neurology Division) and the Northern Medical Program, University of British Columbia, Vancouver, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Pak Cheung Chan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jacqueline A Pettersen
- Department of Medicine (Neurology Division) and the Northern Medical Program, University of British Columbia, Vancouver, Canada
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
- Department of Medicine (Neurology Division), University of Toronto, Toronto, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
- University Health Network Toronto Rehabilitation Institute, Toronto, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- West Coast Metabolomics Center, Genome Center, University of California - Davis, Davis, CA, USA
- Center for Neuroscience, University of California - Davis, Davis, CA, USA
| |
Collapse
|
326
|
Babić Leko M, Langer Horvat L, Španić Popovački E, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer's Disease. Biomedicines 2023; 11:1161. [PMID: 37189779 PMCID: PMC10136077 DOI: 10.3390/biomedicines11041161] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The role of metals in the pathogenesis of Alzheimer's disease (AD) is still debated. Although previous research has linked changes in essential metal homeostasis and exposure to environmental heavy metals to the pathogenesis of AD, more research is needed to determine the relationship between metals and AD. In this review, we included human studies that (1) compared the metal concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cerebrospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization (MR) to assess the potential metal contributions to AD risk. Although many studies have examined various metals in dementia patients, understanding the dynamics of metals in these patients remains difficult due to considerable inconsistencies among the results of individual studies. The most consistent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase in Cu levels in AD patients. However, several studies found no such relation. Because few studies have compared metal levels with biomarker levels in the CSF of AD patients, more research of this type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies that include participants from diverse ethnic backgrounds to assess the causal relationship between metals and AD risk are critical.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
327
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
328
|
Zhang B, Luo X, Han C, Liu J, Zhang L, Qi J, Gu J, Tan R, Gong P. Terminalia bellirica ethanol extract ameliorates nonalcoholic fatty liver disease in mice by amending the intestinal microbiota and faecal metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116082. [PMID: 36581163 DOI: 10.1016/j.jep.2022.116082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional Tibetan medicine used to treat hepatobiliary diseases. However, modern pharmacological evidence of the activities and potential mechanisms of TB against nonalcoholic fatty liver disease (NAFLD) are still unknown. AIM OF THE STUDY This study aimed to evaluate the anti-NAFLD effect of ethanol extract of TB (ETB) and investigate whether its ameliorative effects are associated with the regulation of intestinal microecology. MATERIALS AND METHODS In this study, the curative effects of ETB on NAFLD were evaluated in mice fed a choline-deficient, L-amino acid defined, high fat diet (CDAHFD). Biochemical markers and hepatic histological alterations were detected. Gut microbiota and faecal metabolites were analyzed by 16S rRNA gene sequencing and liquid chromatograph mass spectrometer (LC‒MS) profiling. RESULTS The results showed that oral treatment with middle- and high-dose ETB significantly improved features of NAFLD, reducing the levels of TG, LDL-C, ALT and AST, and increasing the level of HDL-C. Liver histopathologic examination demonstrated that ETB attenuated lipid accumulation and hepatocellular necrosis. ETB treatment restored the structural disturbances of gut microbiota induced by CDAHFD, reduced the levels of Intestinimonas, Lachnoclostridium, and Lachnospirace-ae_FCS020_group, and increased Akkermansia and Bifidobacterium. Moreover, untargeted metabolomics analysis revealed that ETB could restore the disrupted taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, and glutathione metabolism of the intestinal bacterial community in NAFLD mice. CONCLUSIONS ETB was effective in ameliorating the NAFLD, possibly by remodelling the gut microbiota composition and modulating the faecal metabolism metabolites of the host, highlighting the potential of TB as a resource for the development of anti-NAFLD drugs.
Collapse
Affiliation(s)
- Boyu Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaomin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Cairong Han
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Jingxian Liu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Le Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
329
|
Song G, Wang L, Tang J, Li H, Pang S, Li Y, Liu L, Hu J. Circulating metabolites as potential biomarkers for the early detection and prognosis surveillance of gastrointestinal cancers. Metabolomics 2023; 19:36. [PMID: 37014438 PMCID: PMC10073066 DOI: 10.1007/s11306-023-02002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND AND AIMS Two of the most lethal gastrointestinal (GI) cancers, gastric cancer (GC) and colon cancer (CC), are ranked in the top five cancers that cause deaths worldwide. Most GI cancer deaths can be reduced by earlier detection and more appropriate medical treatment. Unlike the current "gold standard" techniques, non-invasive and highly sensitive screening tests are required for GI cancer diagnosis. Here, we explored the potential of metabolomics for GI cancer detection and the classification of tissue-of-origin, and even the prognosis management. METHODS Plasma samples from 37 gastric cancer (GC), 17 colon cancer (CC), and 27 non-cancer (NC) patients were prepared for metabolomics and lipidomics analysis by three MS-based platforms. Univariate, multivariate, and clustering analyses were used for selecting significant metabolic features. ROC curve analysis was based on a series of different binary classifications as well as the true-positive rate (sensitivity) and the false-positive rate (1-specificity). RESULTS GI cancers exhibited obvious metabolic perturbation compared with benign diseases. The differentiated metabolites of gastric cancer (GC) and colon cancer (CC) were targeted to same pathways but with different degrees of cellular metabolism reprogramming. The cancer-specific metabolites distinguished the malignant and benign, and classified the cancer types. We also applied this test to before- and after-surgery samples, wherein surgical resection significantly altered the blood-metabolic patterns. There were 15 metabolites significantly altered in GC and CC patients who underwent surgical treatment, and partly returned to normal conditions. CONCLUSION Blood-based metabolomics analysis is an efficient strategy for GI cancer screening, especially for malignant and benign diagnoses. The cancer-specific metabolic patterns process the potential for classifying tissue-of-origin in multi-cancer screening. Besides, the circulating metabolites for prognosis management of GI cancer is a promising area of research.
Collapse
Affiliation(s)
- Guodong Song
- The Second Hospital of Tianjin Medical University, No 23. Pingjiang Road, Hexi District, 300211, Tianjin, China
| | - Li Wang
- The Second Hospital of Tianjin Medical University, No 23. Pingjiang Road, Hexi District, 300211, Tianjin, China
| | - Junlong Tang
- Metanotitia Inc, No 59. Gaoxin South 9Th Road, Yuehai Street, Nanshan District, Shenzhen, 518056, Guangdong, China
| | - Haohui Li
- Metanotitia Inc, No 59. Gaoxin South 9Th Road, Yuehai Street, Nanshan District, Shenzhen, 518056, Guangdong, China
| | - Shuyu Pang
- Metanotitia Inc, No 59. Gaoxin South 9Th Road, Yuehai Street, Nanshan District, Shenzhen, 518056, Guangdong, China
| | - Yan Li
- Metanotitia Inc, No 59. Gaoxin South 9Th Road, Yuehai Street, Nanshan District, Shenzhen, 518056, Guangdong, China
| | - Li Liu
- Metanotitia Inc, No 59. Gaoxin South 9Th Road, Yuehai Street, Nanshan District, Shenzhen, 518056, Guangdong, China.
| | - Junyuan Hu
- Metanotitia Inc, No 59. Gaoxin South 9Th Road, Yuehai Street, Nanshan District, Shenzhen, 518056, Guangdong, China.
| |
Collapse
|
330
|
Okut H, Lu Y, Palmer ND, Chen YDI, Taylor KD, Norris JM, Lorenzo C, Rotter JI, Langefeld CD, Wagenknecht LE, Bowden DW, Ng MCY. Metabolomic profiling of glucose homeostasis in African Americans: the Insulin Resistance Atherosclerosis Family Study (IRAS-FS). Metabolomics 2023; 19:35. [PMID: 37005925 PMCID: PMC10068644 DOI: 10.1007/s11306-023-01984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/04/2023] [Indexed: 04/04/2023]
Abstract
INTRODUCTION African Americans are at increased risk for type 2 diabetes. OBJECTIVES This work aimed to examine metabolomic signature of glucose homeostasis in African Americans. METHODS We used an untargeted liquid chromatography-mass spectrometry metabolomic approach to comprehensively profile 727 plasma metabolites among 571 African Americans from the Insulin Resistance Atherosclerosis Family Study (IRAS-FS) and investigate the associations between these metabolites and both the dynamic (SI, insulin sensitivity; AIR, acute insulin response; DI, disposition index; and SG, glucose effectiveness) and basal (HOMA-IR and HOMA-B) measures of glucose homeostasis using univariate and regularized regression models. We also compared the results with our previous findings in the IRAS-FS Mexican Americans. RESULTS We confirmed increased plasma metabolite levels of branched-chain amino acids and their metabolic derivatives, 2-aminoadipate, 2-hydroxybutyrate, glutamate, arginine and its metabolic derivatives, carbohydrate metabolites, and medium- and long-chain fatty acids were associated with insulin resistance, while increased plasma metabolite levels in the glycine, serine and threonine metabolic pathway were associated with insulin sensitivity. We also observed a differential ancestral effect of glutamate on glucose homeostasis with significantly stronger effects observed in African Americans than those previously observed in Mexican Americans. CONCLUSION We extended the observations that metabolites are useful biomarkers in the identification of prediabetes in individuals at risk of type 2 diabetes in African Americans. We revealed, for the first time, differential ancestral effect of certain metabolites (i.e., glutamate) on glucose homeostasis traits. Our study highlights the need for additional comprehensive metabolomic studies in well-characterized multiethnic cohorts.
Collapse
Affiliation(s)
- Hayrettin Okut
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Population Health, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| | - Yingchang Lu
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nicholette D Palmer
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jill M Norris
- Departments of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
331
|
Lalrinzuali S, Khushboo M, Dinata R, Bhanushree B, Nisa N, Bidanchi RM, Laskar SA, Manikandan B, Abinash G, Pori B, Roy VK, Gurusubramanian G. Long-term consumption of fermented pork fat-based diets differing in calorie, fat content, and fatty acid levels mediates oxidative stress, inflammation, redox imbalance, germ cell apoptosis, disruption of steroidogenesis, and testicular dysfunction in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52446-52471. [PMID: 36840878 DOI: 10.1007/s11356-023-26018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
There is a dearth of experimental evidence available as to whether the consumption of fermented pork fat (FPF) food has any harmful effects on metabolism and reproduction due to its excessive calories, high fat content, and fatty acid methyl ester (FAME) levels. We hypothesized that exposure to a FPF-diet with excessive calories, a high fat content, and high FAME levels alters testicular physiology and metabolism, leading to permanent damage to the testicular system and its function. Thirteen-week-old male rats (n = 20) were assigned to a high-calorie, high-fat diet (FPF-H, fat-60%, 23 kJ/g), a moderate-calorie, moderate-fat diet (FPF-M, fat-30%, 17.5 kJ/g), a low-calorie and low-fat diet (FPF-L, fat-15%, 14.21 kJ/g) compared to the standard diet (Control, fat-11%, 12.56 kJ/g) orally for 90 days. GC-MS analysis of the three FPF-diets showed high quantities of saturated fatty acids (SFAs) and polyunsaturated fatty acids-ω6 (PUFA-ω6) and low levels of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids-ω3 (PUFA-ω3) compared to the control diet. Consequently, the levels of serum FAMEs of the FPF-diet fed rats were significantly increased. In addition, a high level of n-6:n-3 PUFA towards PUFA-ω6 was observed in the serum of FPF-diet fed rats due to the high content of linoleic, γ-linolenic, and arachidonic acid. Long-term consumption of FPF-diets disturbed the anthropometrical, nutritional, physiological, and metabolic profiles. Furthermore, administration of FPF-diets generated metabolic syndrome (dyslipidemia, leptinemia, insulin resistance, obesity, hepato-renal disorder and function), increased the cardiovascular risk factors, and triggered serum and testis inflammatory markers (interleukin-1↑, interleukin-6↑, interleukin-10↓, leukotriene B4↑, prostaglandin↑, nitric oxide↑, myeloperoxidase↑, lactate dehydrogenase↑, and tumor necrosis factor-α↑). Activated testis oxidative stress (conjugated dienes↑, lipid hydroperoxides↑, malondialdehyde↑, protein carbonyl↑, and fragmented DNA↑) and depleted antioxidant reserve (catalase↓, superoxide dismutase↓, glutathione S-transferase↓, reduced glutathione↓, glutathione disulfide↑, and GSH:GSSG ratio↓) were observed in FPF-diet fed rats. Disrupted testis histoarchitecture, progressive deterioration of spermatogenesis, poor sperm quality and functional indices, significant alterations in the reproductive hormones (serum and testis testosterone↓, serum estradiol↑, serum luteinizing hormone↓, and follicle-stimulating hormone↑), were noted in rats fed with FPF diets than in the control diet. Severe steroidogenic impairment (steroidogenic acute regulatory protein, StAR↓; 3β-hydroxysteroid dehydrogenase, 3β-HSD↓; and luteinizing hormone receptor, LHR↓), deficiency in germ cells proliferation (proliferating cell nuclear antigen, PCNA↓), and abnormally enhanced testicular germ cell apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL assay↑; B-cell lymphoma-2, BCL-2↓; Bcl-2-associated X protein, BAX↑; and BAX/BCL-2 ratio↑) were remarked in the FPF-diet administered rats in comparison with the control diet. In conclusion, the long-term feeding of an FPF-diet with excessive calories, a high fat content, and high FAME levels induced oxidative stress, inflammation, and apoptosis, resulting in metabolic syndrome and hampering male reproductive system and functions. Therefore, the adoption of FPF diets correlates with irreversible changes in testis metabolism, steroidogenesis, germ cell proliferation, and apoptosis, which are related to permanent damage to the testicular system and function later in life.
Collapse
Affiliation(s)
- Sailo Lalrinzuali
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | | - Saeed-Ahmed Laskar
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India
| | | |
Collapse
|
332
|
Cortez-Navarrete M, Pérez-Rubio KG, Escobedo-Gutiérrez MDJ. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals (Basel) 2023; 16:ph16040515. [PMID: 37111272 PMCID: PMC10145167 DOI: 10.3390/ph16040515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease that has become a major global health concern. Given the efficacy of antidiabetic drugs, pharmacological therapy is considered the first-line treatment of T2DM; however, due to their potential side effects and high costs, new and cost-effective treatments with minimal side effects are needed. Medicinal plants have been used for centuries as part of traditional medicine to treat T2DM. Among these, fenugreek, cinnamon, Curcuma longa, berberine, and Momordica charantia have demonstrated different degrees of hypoglycemic activity in clinical studies and animal models. Therefore, the aim of this review is to synthesize the mechanisms of action of five medicinal plants, as well as the experimental and clinical evidence of their hypoglycemic activity from the published literature.
Collapse
Affiliation(s)
- Marisol Cortez-Navarrete
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Karina G. Pérez-Rubio
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Miriam de J. Escobedo-Gutiérrez
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
333
|
Cong F, Zhu L, Deng L, Xue Q, Wang J. Correlation between nonalcoholic fatty liver disease and left ventricular diastolic dysfunction in non-obese adults: a cross-sectional study. BMC Gastroenterol 2023; 23:90. [PMID: 36973654 PMCID: PMC10041784 DOI: 10.1186/s12876-023-02708-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is associated with a greater risk of developing cardiovascular disease and have adverse impacts on the cardiac structure and function. Little is known about the effect of non-obese NAFLD upon cardiac function. We aimed to compare the echocardiographic parameters of left ventricle (LV) between non-obese NAFLD group and control group, and explore the correlation of non-obese NAFLD with LV diastolic dysfunction. METHODS AND RESULTS In this cross-sectional study, 316 non-obese inpatients were enrolled, including 72 participants with NAFLD (non-obese NAFLD group) and 244 participants without NAFLD (control group). LV structural and functional indices of two groups were comparatively analyzed. LV diastolic disfunction was diagnosed and graded using the ratio of the peak velocity of the early filling (E) wave to the atrial contraction (A) wave and E value. Compared with control group, the non-obese NAFLD group had the lower E/A〔(0.80 ± 0.22) vs (0.88 ± 0.35), t = 2.528, p = 0.012〕and the smaller LV end-diastolic diameter〔(4.51 ± 0.42)cm vs (4.64 ± 0.43)cm, t = 2.182, p = 0.030〕. And the non-obese NAFLD group had a higher prevalence of E/A < 1 than control group (83.3% vs 68.9%, X2 = 5.802, p = 0.016) while two groups had similar proportions of LV diastolic dysfunction (58.3% vs 53.7%, X2 = 0.484, p = 0.487). Multivariate logistic regression analysis showed that non-obese NAFLD was associated with an increase in E/A < 1 (OR = 6.562, 95%CI 2.014, 21.373, p = 0.002). CONCLUSIONS Non-obese NAFLD was associated with decrease of E/A, while more research will be necessary to evaluate risk of non-obese NAFLD for LV diastolic dysfunction in future.
Collapse
Affiliation(s)
- Fangyuan Cong
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Luying Zhu
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Lihua Deng
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Qian Xue
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China
| | - Jingtong Wang
- Geriatric Department, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
334
|
Jo D, Yoon G, Lim Y, Kim Y, Song J. Profiling and Cellular Analyses of Obesity-Related circRNAs in Neurons and Glia under Obesity-like In Vitro Conditions. Int J Mol Sci 2023; 24:ijms24076235. [PMID: 37047207 PMCID: PMC10094513 DOI: 10.3390/ijms24076235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, is associated with metabolic disorders such as diabetes and obesity. Various circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems until now. Herein we profiled and analyzed diverse circRNAs in mouse brain cell lines (Neuro-2A neurons, BV-2 microglia, and C8-D1a astrocytes) exposed to obesity-related in vitro conditions (high glucose, high insulin, and high levels of tumor necrosis factor-alpha, interleukin 6, palmitic acid, linoleic acid, and cholesterol). We observed that various circRNAs were differentially expressed according to cell types with many of these circRNAs conserved in humans. After suppressing the expression of these circRNAs using siRNAs, we observed that these circRNAs regulate genes related to inflammatory responses, formation of synaptic vesicles, synaptic density, and fatty acid oxidation in neurons; scavenger receptors in microglia; and fatty acid signaling, inflammatory signaling cyto that may play important roles in metabolic disorders associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yeonghwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Youngkook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| |
Collapse
|
335
|
Jankovic-Karasoulos T, Smith MD, Leemaqz S, Williamson J, McCullough D, Arthurs AL, Jones LA, Bogias KJ, Mol BW, Dalton J, Dekker GA, Roberts CT. Elevated Maternal Folate Status and Changes in Maternal Prolactin, Placental Lactogen and Placental Growth Hormone Following Folic Acid Food Fortification: Evidence from Two Prospective Pregnancy Cohorts. Nutrients 2023; 15:1553. [PMID: 37049394 PMCID: PMC10097170 DOI: 10.3390/nu15071553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Folic acid (FA) food fortification in Australia has resulted in a higher-than-expected intake of FA during pregnancy. High FA intake is associated with increased insulin resistance and gestational diabetes. We aimed to establish whether maternal one-carbon metabolism and hormones that regulate glucose homeostasis change in healthy pregnancies post-FA food fortification. Circulating folate, B12, homocysteine, prolactin (PRL), human placental lactogen (hPL) and placental growth hormone (GH2) were measured in early pregnancy maternal blood in women with uncomplicated pregnancies prior to (SCOPE: N = 604) and post (STOP: N = 711)-FA food fortification. FA food fortification resulted in 63% higher maternal folate. STOP women had lower hPL (33%) and GH2 (43%) after 10 weeks of gestation, but they had higher PRL (29%) and hPL (28%) after 16 weeks. FA supplementation during pregnancy increased maternal folate and reduced homocysteine but only in the SCOPE group, and it was associated with 54% higher PRL in SCOPE but 28% lower PRL in STOP. FA food fortification increased maternal folate status, but supplements no longer had an effect, thereby calling into question their utility. An altered secretion of hormones that regulate glucose homeostasis in pregnancy could place women post-fortification at an increased risk of insulin resistance and gestational diabetes, particularly for older women and those with obesity.
Collapse
Affiliation(s)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Shalem Leemaqz
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Jessica Williamson
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Anya L. Arthurs
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | - Lauren A. Jones
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| | | | - Ben W. Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3800, Australia
| | - Julia Dalton
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
| | - Gustaaf A. Dekker
- Lyell McEwin Hospital, Adelaide, SA 5112, Australia
- Lyell McEwin Hospital, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Claire T. Roberts
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA 5000, Australia
| |
Collapse
|
336
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 293] [Impact Index Per Article: 146.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
337
|
Dong ZH, Wu T, Zhang C, Su KZ, Wu YT, Huang HF. Effect of Frozen-Thawed Embryo Transfer on the Metabolism of Children in Early Childhood. J Clin Med 2023; 12:jcm12062322. [PMID: 36983323 PMCID: PMC10057347 DOI: 10.3390/jcm12062322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Background: As a routine procedure in assisted reproductive technology (ART), it is crucial to assess the safety of frozen and thawed embryo transfer (FET). We aimed to investigate the metabolic profile of children conceived through FET in their early childhood. Method: A total of 147 children between the age of 1.5 and 4 years old, conceived through FET or naturally conceived (NC), were recruited. A total of 89 children, 65 in the FET group and 24 in the NC group (matched with the FET group based on children’s BMI) were included in the final statistical analysis of biochemical markers and metabolomics. Results: Children conceived through FET had a lower level of fasting insulin level and HORM-IR and a higher level of fasting glucose and APOE as compared to children naturally conceived. Metabolomics showed that there were 16 small differential metabolites, mainly including amino acids, carnitines, organic acids, butyric, and secondary bile acid between two groups, which enriched in Nitrogen metabolism, Butanoate metabolism, Phenylalanine metabolism, and D-Arginine and D-ornithine metabolism pathways. Conclusion: Although the FET group had a significantly higher level of APOE and fasting glucose, it cannot yet be considered that children in the FET group had an obvious disorder of glucose and lipid metabolism. However, the potentially more active intestinal flora and lower carnitine levels of children in the FET group suggested by metabolomics are worth further exploration.
Collapse
Affiliation(s)
- Ze-Han Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Ting Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Chen Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Kai-Zhen Su
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
| | - Yan-Ting Wu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Correspondence: (Y.-T.W.); (H.-F.H.); Tel.: +86-21-33189900 (Y.-T.W.); +86-21-64070434 (H.-F.H.)
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (Y.-T.W.); (H.-F.H.); Tel.: +86-21-33189900 (Y.-T.W.); +86-21-64070434 (H.-F.H.)
| |
Collapse
|
338
|
Thangaraj SV, Kachman M, Halloran KM, Sinclair KD, Lea R, Bellingham M, Evans NP, Padmanabhan V. Developmental programming: Preconceptional and gestational exposure of sheep to a real-life environmental chemical mixture alters maternal metabolome in a fetal sex-specific manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161054. [PMID: 36565874 PMCID: PMC10322214 DOI: 10.1016/j.scitotenv.2022.161054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Everyday, humans are exposed to a mixture of environmental chemicals some of which have endocrine and/or metabolism disrupting actions which may contribute to non-communicable diseases. The adverse health impacts of real-world chemical exposure, characterized by chronic low doses of a mixture of chemicals, are only recently emerging. Biosolids derived from human waste represent the environmental chemical mixtures humans are exposed to in real life. Prior studies in sheep have shown aberrant reproductive and metabolic phenotypes in offspring after maternal biosolids exposure. OBJECTIVE To determine if exposure to biosolids perturbs the maternal metabolic milieu of pregnant ewes, in a fetal sex-specific manner. METHODS Ewes were grazed on inorganic fertilizer (Control) or biosolids-treated pastures (BTP) from before mating and throughout gestation. Plasma from pregnant ewes (Control n = 15, BTP n = 15) obtained mid-gestation were analyzed by untargeted metabolomics. Metabolites were identified using Agilent MassHunter. Multivariate analyses were done using MetaboAnalyst 5.0 and confirmed using SIMCA. RESULTS Univariate and multivariate analysis of 2301 annotated metabolites identified 193 differentially abundant metabolites (DM) between control and BTP sheep. The DM primarily belonged to the super-class of lipids and organic acids. 15-HeTrE, oleamide, methionine, CAR(3:0(OH)) and pyroglutamic acid were the top DM and have been implicated in the regulation of fetal growth and development. Fetal sex further exacerbated differences in metabolite profiles in the BTP group. The organic acids class of metabolites was abundant in animals with male fetuses. Prenol lipid, sphingolipid, glycerolipid, alkaloid, polyketide and benzenoid classes showed fetal sex-specific responses to biosolids. DISCUSSION Our study illustrates that exposure to biosolids significantly alters the maternal metabolome in a fetal sex-specific manner. The altered metabolite profile indicates perturbations to fatty acid, arginine, branched chain amino acid and one‑carbon metabolism. These factors are consistent with, and likely contribute to, the adverse phenotypic outcomes reported in the offspring.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - M Kachman
- MM BRCF Metabolomics Core, University of Michigan, Ann Arbor, MI, USA
| | - K M Halloran
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - K D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - R Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
339
|
Li Z, Sun X, He J, Kong D, Wang J, Wang L. Identification of a Hypoxia-Related Signature as Candidate Detector for Schizophrenia Based on Genome-Wide Gene Expression. Hum Hered 2023; 88:18-28. [PMID: 36913932 PMCID: PMC10124753 DOI: 10.1159/000529902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
INTRODUCTION Schizophrenia (SCZ), a severe neuropsychiatric disorder with high genetic susceptibility, has high rates of misdiagnosis due to the unavoidably subjective factors and heterogeneous clinical presentations. Hypoxia has been identified as an importantly risk factor that participates in the development of SCZ. Therefore, development of a hypoxia-related biomarker for SCZ diagnosis is promising. Therefore, we dedicated to develop a biomarker that could contribute to distinguishing healthy controls and SCZ patients. METHODS GSE17612, GSE21935, and GSE53987 datasets, consisting of 97 control samples and 99 SCZ samples, were involved in our study. The hypoxia score was calculated based on the single-sample gene-set enrichment analysis using the hypoxia-related differentially expressed genes to quantify the expression levels of these genes for each SCZ patient. Patients in high-score groups were defined if their hypoxia score was in the upper half of all hypoxia scores and patients in low-score groups if their hypoxia score was in the lower half. GSEA was applied to detect the functional pathway of these differently expressed genes. CIBERSORT algorithm was utilized to evaluate the tumor-infiltrating immune cells of SCZ patients. RESULTS In this study, we developed and validated a biomarker consisting of 12 hypoxia-related genes that could distinguish healthy controls and SCZ patients robustly. We found that the metabolism reprogramming might be activated in the patient with high hypoxia score. Finally, CIBERSORT analysis illustrated that lower composition of naive B cells and higher composition of memory B cells might be observed in low-score groups of SCZ patients. CONCLUSION These findings revealed that the hypoxia-related signature was acceptable as a detector for SCZ, providing further insight into effective diagnosis and treatment strategies for SCZ.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Xinyu Sun
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Jia He
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Dongyan Kong
- Department of Psychiatry and Psychological Clinic, Affiliated Quanzhou First Hospital, Fujian Medical University, Quanzhou, China
| | - Jinyi Wang
- Department of Psychiatry, Quanzhou Third Hospital, Quanzhou, China
| | - Lili Wang
- Department of Psychiatry, Quanzhou Third Hospital, Quanzhou, China
| |
Collapse
|
340
|
Pilarski Ł, Pelczyńska M, Koperska A, Seraszek-Jaros A, Szulińska M, Bogdański P. Association of Serum Vaspin Concentration with Metabolic Disorders in Obese Individuals. Biomolecules 2023; 13:biom13030508. [PMID: 36979443 PMCID: PMC10046748 DOI: 10.3390/biom13030508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Vaspin, a molecule produced in visceral adipose tissue, seems to participate in the pathogenesis of metabolic disorders. The study aimed to determine the association of vaspin concentration with metabolic disorders in obese individuals. Forty obese patients and twenty normal-weight subjects underwent biochemical (fasting glucose, insulin, lipid profile, interleukin-6, hs-CRP, vaspin concentration), blood pressure, and anthropometric measurements. The HOMA-IR index was calculated. Serum vaspin concentrations in the obese group were significantly higher than in the control group (0.82 ± 0.62 vs. 0.43 ± 0.59; p < 0.001). Among the entire population, vaspin concentration was positively correlated with body weight, BMI, WHR, and the percentage and mass of adipose tissue. Positive correlations between vaspin concentration and triglyceride level, insulin concentration, and HOMA-IR value were found. Vaspin concentration was positively correlated with hs-CRP and IL-6 levels. In obese patients, positive correlations between vaspin concentration and the percentage of adipose tissue and hs-CRP level were demonstrated. Logistic regression analysis showed that increased BMI was the biggest factor stimulating vaspin concentrations (OR = 8.5; 95% CI: 1.18–61.35; p = 0.0338). An elevated vaspin level may imply its compensatory role against metabolic disorders in obese patients. Thus, vaspin appears to be a useful diagnostic parameter for new therapeutic approaches in obesity-related complications. Nevertheless, due to the small sample size, further studies are needed to confirm our results.
Collapse
Affiliation(s)
- Łukasz Pilarski
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
- Correspondence: ; Tel.: +48-693-049-981
| | - Anna Koperska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Bukowska 70 Street, 60-812 Poznań, Poland
| | - Monika Szulińska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| |
Collapse
|
341
|
Zhu XJ, Guo XN, Zhu KX. Effect of sorbitol on the in vitro starch digestibility in semi-dried black highland barley noodles. Int J Biol Macromol 2023; 236:123959. [PMID: 36898464 DOI: 10.1016/j.ijbiomac.2023.123959] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Sorbitol is commonly used in semi-dried noodles for holding water, thus extending the shelf life. This research analyzed the effect of sorbitol on the in vitro starch digestibility in semi-dried black highland barley noodles (SBHBN). In vitro starch digestion revealed that the hydrolysis extent and digestive rate decreased with increasing sorbitol addition, although its inhibition abated when added >2 %. Compared with the control, adding 2 % of sorbitol lowered the equilibrium hydrolysis (C∞) significantly (P < 0.05) from 75.18 to 66.57 % and decreased the kinetic coefficient (k) significantly (P < 0.05) by 20.29 %. Adding sorbitol increased the tightness of microstructure, relative crystallinity, V-type crystal, molecular structure order, and hydrogen bond strength of starch in cooked SBHBN. Meanwhile, gelatinization enthalpy change (ΔH) of starch in raw SBHBN was increased by adding sorbitol. In addition, the swelling power and amylose leaching in SBHBN added with sorbitol were reduced. Pearson correlations analysis observed significant (P < 0.05) correlations among short-range ordered structure, ΔH, and related in vitro starch digestion indexes of SBHBN after being added with sorbitol. These results revealed that sorbitol might form hydrogen bonds with starch, making it a potential additive to lower the eGI in starchy foods.
Collapse
Affiliation(s)
- Xue-Jing Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
342
|
Shen QM, Tan YT, Wang J, Fang J, Liu DK, Li HL, Xiang YB. Cross-sectional relationships between general and central adiposity and plasma amino acids in Chinese adults. Amino Acids 2023:10.1007/s00726-023-03258-5. [PMID: 36881189 DOI: 10.1007/s00726-023-03258-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Adiposity is an important determinant of blood metabolites, but little is known about the variations of blood amino acids according to general and central adiposity status among Chinese population. This study included 187 females and 322 males who were cancer-free subjects randomly selected from two cohorts in Shanghai, China. Participants' plasma concentrations of amino acids were measured by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Linear regression models were used to examine the cross-sectional correlations between general and central adiposity and amino acid levels. A total of 35 amino acids in plasma were measured in this study. In females, alanine, aspartic acid and pyroglutamic acid were positively correlated with general adiposity. In males, glutamic acid, aspartic acid, valine and pyroglutamic acid showed positive correlations, and glutamine, serine and glycine showed negative correlations with both general and central adiposity; phenylalanine, isoleucine and leucine were positively correlated and N-phenylacetylglutamine was negatively correlated with general adiposity; asparagine was negatively correlated with central adiposity. In summary, general adiposity and central adiposity were correlated with the concentrations of specific plasma amino acids among cancer-free female and male adults in China. Adiposity-metabolite characteristics and relationships should be considered when studying blood biomarkers for adiposity-related health outcomes.
Collapse
Affiliation(s)
- Qiu-Ming Shen
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25, Lane 2200, Xie Tu Road, Shanghai, 200032, China
| | - Yu-Ting Tan
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25, Lane 2200, Xie Tu Road, Shanghai, 200032, China
| | - Jing Wang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25, Lane 2200, Xie Tu Road, Shanghai, 200032, China
| | - Jie Fang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25, Lane 2200, Xie Tu Road, Shanghai, 200032, China
| | - Da-Ke Liu
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25, Lane 2200, Xie Tu Road, Shanghai, 200032, China
| | - Hong-Lan Li
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25, Lane 2200, Xie Tu Road, Shanghai, 200032, China
| | - Yong-Bing Xiang
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25, Lane 2200, Xie Tu Road, Shanghai, 200032, China.
| |
Collapse
|
343
|
Chaaba R, Bouaziz A, Ben Amor A, Mnif W, Hammami M, Mehri S. Fatty Acid Profile and Genetic Variants of Proteins Involved in Fatty Acid Metabolism Could Be Considered as Disease Predictor. Diagnostics (Basel) 2023; 13:979. [PMID: 36900123 PMCID: PMC10001328 DOI: 10.3390/diagnostics13050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.
Collapse
Affiliation(s)
- Raja Chaaba
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
| | - Aicha Bouaziz
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Bio-Resources, Integrative Biology & Valorization (BIOLIVAL, LR14ES06), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Asma Ben Amor
- Higher School of Health Sciences and Techniques, Sousse, University of Sousse, Sousse 4054, Tunisia
- Faculty of Medicine, “Ibn El Jazzar” University of Sousse, Sousse 4054, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Mohamed Hammami
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| | - Sounira Mehri
- Lab-NAFS “Nutrition-Functional Food & Health”, Faculty of Medicine, University of Monastir, Avicene Street, Monastir 5000, Tunisia
| |
Collapse
|
344
|
Yu J, Zhao J, Yang T, Feng R, Liu L. Metabolomics Reveals Novel Serum Metabolic Signatures in Gastric Cancer by a Mass Spectrometry Platform. J Proteome Res 2023; 22:706-717. [PMID: 36722497 DOI: 10.1021/acs.jproteome.2c00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gastric cancer (GAS) is one of the malignant tumors of the gastrointestinal system. Alterations in metabolite composition can reflect pathological processes of GAS and constitute a basis for diagnosis and treatment improvements. In this study, a total of 301 serum samples from 150 GAS patients at different tumor-node-metastasis (TNM) stages and 151 healthy controls were collected. Mass spectrometry platforms were performed to investigate the changes in GAS-related metabolites and explore the new potential serum biomarkers and the metabolic dysregulation associated with GAS progression. Twelve differential metabolites (ethyl 2,4-dimethyl-1,3-dioxolane-2-acetate, D-urobilinogen, 14-HDoHE, 13-hydroxy-9-methoxy-10-oxo-11-octadecenoic acid, 5,6-dihydroxyprostaglandin F1a, 9'-carboxy-gamma-tocotrienol, glutaric acid, alanine, tyrosine, C18:2(FFA), adipic acid, and suberic acid) were identified to establish the diagnosis model for GAS. The defined biomarker panel was also statistically significant for GAS progression with different TNM stages. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment revealed the metabolic dysregulation associated with GAS progression. In conclusion, a diagnostic panel was established and validated, which could be used to further stage the early and advanced GAS patients from healthy controls. These findings may provide useful information for explaining the GAS metabolic alterations and try to facilitate the characterization of GAS patients in the early stage.
Collapse
Affiliation(s)
- Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, P. R. China
| | - Jinhui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, P. R. China
| | - Tongshu Yang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin 150086, P. R. China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, P. R. China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, P. R. China
| |
Collapse
|
345
|
Hartanti D, Chatsumpun N, Kitphati W, Peungvicha P, Supharattanasitthi W. The standardized Jamu pahitan, an Indonesian antidiabetic formulation, stimulating the glucose uptake and insulin secretion in the in-vitro models. Heliyon 2023; 9:e14018. [PMID: 36873515 PMCID: PMC9982627 DOI: 10.1016/j.heliyon.2023.e14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Jamu pahitan is a polyherbal formulation commonly used for the traditional management of diabetes in Indonesia and is mainly prepared from Andrographis paniculata (Burm.f.) Nees. It is widely varied in herbal composition for every region has their own plant component addition to the formulation. A version of the formulation used in the greater Surakarta area contained five plant constituents. This study evaluated the in-vitro glucose uptake and insulin secretion stimulatory activities of Jamu pahitan to provide scientific evidence on its efficacy and safety of use. The water and ethanol extracts of three Jamu pahitan formulations were prepared. The total phenolic content (TPC) of the extracts was evaluated by the standard Folin-Ciocalteau method. Their effects on the viability of L6 skeletal muscle and RIN-m5F pancreatic cells were evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The glucose utilized by L6 myotubes treated with Jamu pahitan was assessed indirectly by the glucose oxidase method. The insulin secreted by RIN-m5F treated with the formulation extracts was analyzed by the enzyme-linked immunosorbent assay (ELISA). The correlation between TPC and the profile of safety and efficacy of the formulation was statistically evaluated. The water extracts of Jamu pahitan were safe and exerted significant glucose uptake and insulin secretion stimulatory activity in L6 and RIN-m5F, respectively. The ethanol extracts showed more potent effects than their water counterpart, albeit they exerted cytotoxic effects on the cells at the higher tested concentrations. The formulations at lower concentrations stimulated the proliferation of RIN-m5F. In addition, the TPC was strongly correlated with the glucose uptake and insulin secretion stimulatory activities and also the IC50 of the cells in positive manner. The present study supported the use of Jamu pahitan for the traditional management of diabetes in Indonesia by stimulating glucose uptake in the muscle cells and improving insulin secretion in β-cells.
Collapse
Affiliation(s)
- Dwi Hartanti
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.,Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto 53182, Indonesia
| | - Nutputsorn Chatsumpun
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Worawan Kitphati
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.,Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Penchom Peungvicha
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Wasu Supharattanasitthi
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.,Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
346
|
Kropp M, De Clerck E, Vo TTKS, Thumann G, Costigliola V, Golubnitschaja O. Short communication: unique metabolic signature of proliferative retinopathy in the tear fluid of diabetic patients with comorbidities - preliminary data for PPPM validation. EPMA J 2023; 14:43-51. [PMID: 36845280 PMCID: PMC9944425 DOI: 10.1007/s13167-023-00318-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes (T2DM) defined as the adult-onset type that is primarily not insulin-dependent, comprises over 95% of all diabetes mellitus (DM) cases. According to global records, 537 million adults aged 20-79 years are affected by DM that means at least 1 out of 15 persons. This number is projected to grow by 51% by the year 2045. One of the most common complications of T2DM is diabetic retinopathy (DR) with an overall prevalence over 30%. The total number of the DR-related visual impairments is on the rise, due to the growing T2DM population. Proliferative diabetic retinopathy (PDR) is the progressing DR and leading cause of preventable blindness in working-age adults. Moreover, PDR with characteristic systemic attributes including mitochondrial impairment, increased cell death and chronic inflammation, is an independent predictor of the cascading DM-complications such as ischemic stroke. Therefore, early DR is a reliable predictor appearing upstream of this "domino effect". Global screening, leading to timely identification of DM-related complications, is insufficiently implemented by currently applied reactive medicine. A personalised predictive approach and cost-effective targeted prevention shortly - predictive, preventive and personalised medicine (PPPM / 3PM) could make a good use of the accumulated knowledge, preventing blindness and other severe DM complications. In order to reach this goal, reliable stage- and disease-specific biomarker panels are needed characterised by an easy way of the sample collection, high sensitivity and specificity of analyses. In the current study, we tested the hypothesis that non-invasively collected tear fluid is a robust source for the analysis of ocular and systemic (DM-related complications) biomarker patterns suitable for differential diagnosis of stable DR versus PDR. Here, we report the first results of the comprehensive ongoing study, in which we correlate individualised patient profiles (healthy controls versus patients with stable D as well as patients with PDR with and without co-morbidities) with their metabolic profiles in the tear fluid. Comparative mass spectrometric analysis performed has identified following metabolic clusters which are differentially expressed in the groups of comparison: acylcarnitines, amino acid & related compounds, bile acids, ceramides, lysophosphatidyl-choline, nucleobases & related compounds, phosphatidyl-cholines, triglycerides, cholesterol esters, and fatty acids. Our preliminary data strongly support potential clinical utility of metabolic patterns in the tear fluid indicating a unique metabolic signature characteristic for the DR stages and PDR progression. This pilot study creates a platform for validating the tear fluid biomarker patterns to stratify T2DM-patients predisposed to the PDR. Moreover, since PDR is an independent predictor of severe T2DM-related complications such as ischemic stroke, our international project aims to create an analytical prototype for the "diagnostic tree" (yes/no) applicable to healthrisk assessment in diabetes care.
Collapse
Affiliation(s)
- Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Eline De Clerck
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Trong-Tin Kevin Steve Vo
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
347
|
Relevance of Indian traditional tisanes in the management of type 2 diabetes mellitus: a review. Saudi Pharm J 2023; 31:626-638. [PMID: 37181144 PMCID: PMC10172608 DOI: 10.1016/j.jsps.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Background Tisanes are a potential source of phytochemicals to reduce disease risk conditions and are used to protect from non-communicable diseases, globally. A few tisanes have gained more popularity than others depending on their chemical composition based on the geographical origin of the used herb. Several Indian tisanes have been claimed to have traits beneficial to people with or at a high risk of type 2 diabetes mellitus. Under the concept, the literature was reviewed and compiled into a document to highlight the chemical uniqueness of popular Indian traditional tisanes to be more informative and potent as per modern medicine to overcome type 2 diabetes mellitus. Methods An extensive literature survey was conducted using computerized database search engines, such as Google Scholar, PubMed, ScienceDirect, and EMBASE (Excerpta Medica database) for herbs that have been described for hyperglycemia, and involved reaction mechanism, in-vivo studies as well as clinical efficacies published since 2001 onwards using certain keywords. Compiled survey data used to make this review and all findings on Indian traditional antidiabetic tisanes are tabulated here. Results Tisanes render oxidative stress, counter the damage by overexposure of free radicals to the body, affect enzymatic activities, enhance insulin secretion, etc. The active molecules of tisanes also act as anti-allergic, antibacterial, anti-inflammatory, antioxidant, antithrombotic, antiviral, antimutagenicity, anti-carcinogenicity, antiaging effects, etc. WHO also has a strategy to capitalize on the use of herbals to keep populations healthy through effective and affordable alternative means with robust quality assurance and strict adherence to the product specification.
Collapse
|
348
|
Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:1041-1066. [PMID: 36479795 PMCID: PMC10576546 DOI: 10.1002/alz.12845] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
| | - Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - NandaKumar Navalpur Shanmugam
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alfred N Fonteh
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Huntington Medical Research Institutes, Pasadena, California, USA
| | - Michael G Harrington
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, White Plains, New York, USA
| | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jose A Luchsinger
- Department of Medicine and Epidemiology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Benedict C Albensi
- Nova Southeastern Univ. College of Pharmacy, Davie, Florida, USA
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rudolph Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Cécilia Samieri
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Gene L Bowman
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| |
Collapse
|
349
|
Santos ACC, Amaro LBR, Batista Jorge AH, Lelis SDF, Lelis DDF, Guimarães ALS, Santos SHS, Andrade JMO. Curcumin improves metabolic response and increases expression of thermogenesis-associated markers in adipose tissue of male offspring from obese dams. Mol Cell Endocrinol 2023; 563:111840. [PMID: 36592923 DOI: 10.1016/j.mce.2022.111840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Maternal obesity and dietary style in the pregnancy-lactation period may result in long-term effects on the metabolic health of the offspring, thus increasing the risk of diseases, such as obesity, diabetes, and cardiovascular diseases. Curcumin is a natural polyphenolic compound that has beneficial properties on metabolism. Accordingly, this study is intended to evaluate the effects of curcumin supplementation in pregnant and lactating female mice on the anthropometric, metabolic and molecular parameters of the offspring fed a hyperglycemic diet. The study was conducted with 24 male mice randomized into three groups: i) control group (SD) originating from dams fed a standard diet; ii) hyperglycemic group (HGD) originating from dams fed a hyperglycemic diet; iii) curcumin group (CUR) originating from dams fed a hyperglycemic diet and supplemented with curcumin in the pregnancy-lactation period. All offspring groups were fed a hyperglycemic diet for 12 weeks. Anthropometricand biochemical parameters were measured, as well as the expression of thermogenesis-associated markers in the interscapular brown and inguinal white adipose tissues. The results showed less weight gain in the CUR group, with a concomitant reduction in food consumption compared to the HGD group. Biochemical parameters indicated lower levels of total cholesterol, glucose, and insulin for the CUR group, in addition to improved glucose tolerance and insulin sensitivity. The molecular evaluation indicated increased mRNA expression levels of UCP1 and PRDM16 in the brown and white adipose tissues. It is concluded that curcumin supplementation in the pregnancy-lactation period in dams with diet-induced obesity may lead to improvements in the offspring's metabolic phenotype, even if they are submitted to an obesogenic environment, possibly via thermogenesis activation.
Collapse
Affiliation(s)
| | - Lílian Betânia Reis Amaro
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil
| | | | - Sarah de Farias Lelis
- Graduation Course in Medical Science, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil
| | | | - João Marcus Oliveira Andrade
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil; Department of Nursing. State University of Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
350
|
Heath H, Degreef K, Rosario R, Smith M, Mitchell I, Pilolla K, Phelan S, Brito A, La Frano MR. Identification of potential biomarkers and metabolic insights for gestational diabetes prevention: A review of evidence contrasting gestational diabetes versus weight loss studies that may direct future nutritional metabolomics studies. Nutrition 2023; 107:111898. [PMID: 36525799 DOI: 10.1016/j.nut.2022.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Gestational diabetes mellitus (GDM) significantly increases maternal health risks and adverse effects for the offspring. Observational studies suggest that weight loss before pregnancy may be a promising GDM prevention method. Still, biochemical pathways linking preconception weight changes with subsequent development of GDM among women who are overweight or obese remain unclear. Metabolomic assessment is a powerful approach for understanding the global biochemical pathways linking preconception weight changes and subsequent GDM. We hypothesize that many of the alterations of metabolite levels associated with GDM will change in one direction in GDM studies but will change in the opposite direction in studies focusing on lifestyle interventions for weight loss. The present review summarizes available evidence from 21 studies comparing women with GDM with healthy participants and 12 intervention studies that investigated metabolite changes that occurred during weight loss using caloric restriction and behavioral interventions. We discuss 15 metabolites, including amino acids, lipids, amines, carbohydrates, and carbohydrate derivatives. Of particular note are the altered levels of branched-chain amino acids, alanine, palmitoleic acid, lysophosphatidylcholine 18:1, and hypoxanthine because of their mechanistic links to insulin resistance and weight change. Mechanisms that may explain how these metabolite modifications contribute to GDM development in those who are overweight or obese are proposed, including insulin resistance pathways. Future nutritional metabolomics preconception intervention studies in overweight or obese are necessary to investigate whether weight loss through lifestyle intervention can reduce GDM occurrence in association with these metabolite alterations and to test the value of these metabolites as potential diagnostic biomarkers of GDM development.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Kelsey Degreef
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Rodrigo Rosario
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - MaryKate Smith
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Isabel Mitchell
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California
| | - Kari Pilolla
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Suzanne Phelan
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Health Care," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California; Center for Health Research, California Polytechnic State University, San Luis Obispo, California; Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|