301
|
Yao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy 2020; 50:1313-1324. [PMID: 32975865 PMCID: PMC7646264 DOI: 10.1111/cea.13746] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a rising international cause of morbidity and mortality. Angiotensin-converting enzyme 2 (ACE2) is identified as a key cell entry receptor for SARS-CoV-2 and suggested to be a limiting factor for viral entry at the initial infection stage. Recent studies have demonstrated that ACE2 expression is highly enriched in nasal epithelial cells and type II alveolar epithelial cells, highlighting the importance of respiratory tract as the primary target site of SARS-CoV-2. The expression of ACE2 in airway epithelial cells is tightly regulated by inflammatory milieu and environmental and internal stimuli. Very recently, ACE2 has been reported to have different expression levels in airways under distinct chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and allergic asthma, which may associate with the COVID-19 risk and affect the management of primary airway diseases. In this review, we focus on the cutting-edge progress in distribution, expression, and regulation of ACE2 in respiratory system in physiological and pathological conditions, and their implication for the development of COVID-19. We also discuss the management of airway diseases, including asthma, COPD, allergic rhinitis, and rhinosinusitis in the era of COVID-19.
Collapse
Affiliation(s)
- Yin Yao
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The University of Queensland Diamantina InstituteFaculty of MedicineThe University of QueenslandBrisbaneQldAustralia
| | - Hai Wang
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
302
|
Yang Y, Zhao Y, Zhang F, Zhang L, Li L. COVID-19 in Elderly Adults: Clinical Features, Molecular Mechanisms, and Proposed Strategies. Aging Dis 2020; 11:1481-1495. [PMID: 33269102 PMCID: PMC7673861 DOI: 10.14336/ad.2020.0903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is causing problems worldwide. Most people are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but elderly populations are more susceptible. Elevated susceptibility and death rates in elderly COVID-19 patients, especially those with age-related complications, are challenges for pandemic prevention and control. In this paper, we review the clinical features of elderly patients with COVID-19 and explore the related molecular mechanisms that are essential for the exploration of preventive and therapeutic strategies in the current pandemic. Furthermore, we analyze the feasibility of currently recommended potential novel methods against COVID-19 among elderly populations.
Collapse
Affiliation(s)
| | | | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
303
|
Ferrari D, Locatelli M, Briguglio M, Lombardi G. Is there a link between vitamin D status, SARS-CoV-2 infection risk and COVID-19 severity? Cell Biochem Funct 2020; 39:35-47. [PMID: 33137851 DOI: 10.1002/cbf.3597] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
The outbreak of COVID-19 emerged in December 2019 rapidly spread across the globe and has become pandemic. Little is known about the protective factors of this infection, which is equally distributed between genders and different ages while severe and poor prognosis cases are strongly associated to old males and the presence of comorbidities. Thus, preventive measures aiming at reducing the number of infection and/or their severity are strongly needed. Vitamin D has got great attention and has been claimed as potentially protective against the infection since it may be associated with immunocompetence, inflammation, aging, and those diseases involved in determining the outcomes of COVID-19. This narrative review aims at collecting the literature available on the involvement of the vitamin D status in the pathogenesis of COVID-19 and the putative utility of vitamin D supplementation in the therapeutics. It emerges that a poor vitamin D status seems to associate with an increased risk of infection whereas age, gender and comorbidities seem to play a more important role in COVID-19 severity and mortality. While randomized control trials are needed to better inquire into this topic, vitamin D supplementation may be useful beside its potential effects on SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
| | | | - Matteo Briguglio
- Scientific Direction, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
304
|
Zubiaur P, Koller D, Saiz‐Rodríguez M, Navares‐Gómez M, Abad‐Santos F. Important Pharmacogenetic Information for Drugs Prescribed During the SARS-CoV-2 Infection (COVID-19). Clin Transl Sci 2020; 13:1023-1033. [PMID: 32936528 PMCID: PMC7719396 DOI: 10.1111/cts.12866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
In December 2019, the severe acute respiratory syndrome virus-2 pandemic began, causing the coronavirus disease 2019. A vast variety of drugs is being used off-label as potential therapies. Many of the repurposed drugs have clinical pharmacogenetic guidelines available with therapeutic recommendations when prescribed as indicated on the drug label. The aim of this review is to provide a comprehensive summary of pharmacogenetic biomarkers available for these drugs, which may help to prescribe them more safely.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology DepartmentHospital Universitario de La PrincesaInstituto Teófilo HernandoUniversidad Autónoma de Madrid (UAM)Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
- UICEC Hospital Universitario de La PrincesaPlataforma SCReN (Spanish Clinical Research Network)Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Dora Koller
- Clinical Pharmacology DepartmentHospital Universitario de La PrincesaInstituto Teófilo HernandoUniversidad Autónoma de Madrid (UAM)Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Miriam Saiz‐Rodríguez
- Clinical Pharmacology DepartmentHospital Universitario de La PrincesaInstituto Teófilo HernandoUniversidad Autónoma de Madrid (UAM)Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
- Research UnitFundación Burgos por la Investigación de la SaludHospital Universitario de BurgosBurgosSpain
| | - Marcos Navares‐Gómez
- Clinical Pharmacology DepartmentHospital Universitario de La PrincesaInstituto Teófilo HernandoUniversidad Autónoma de Madrid (UAM)Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Francisco Abad‐Santos
- Clinical Pharmacology DepartmentHospital Universitario de La PrincesaInstituto Teófilo HernandoUniversidad Autónoma de Madrid (UAM)Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
- UICEC Hospital Universitario de La PrincesaPlataforma SCReN (Spanish Clinical Research Network)Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
305
|
Alnefaie A, Albogami S. Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective. Saudi Pharm J 2020; 28:1333-1352. [PMID: 32905015 PMCID: PMC7462599 DOI: 10.1016/j.jsps.2020.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organization (WHO) as a global pandemic on March 11, 2020. SARS-CoV-2 targets the respiratory system, resulting in symptoms such as fever, headache, dry cough, dyspnea, and dizziness. These symptoms vary from person to person, ranging from mild to hypoxia with acute respiratory distress syndrome (ARDS) and sometimes death. Although not confirmed, phylogenetic analysis suggests that SARS-CoV-2 may have originated from bats; the intermediary facilitating its transfer from bats to humans is unknown. Owing to the rapid spread of infection and high number of deaths caused by SARS-CoV-2, most countries have enacted strict curfews and the practice of social distancing while awaiting the availability of effective U.S. Food and Drug Administration (FDA)-approved medications and/or vaccines. This review offers an overview of the various types of coronaviruses (CoVs), their targeted hosts and cellular receptors, a timeline of their emergence, and the roles of key elements of the immune system in fighting pathogen attacks, while focusing on SARS-CoV-2 and its genomic structure and pathogenesis. Furthermore, we review drugs targeting COVID-19 that are under investigation and in clinical trials, in addition to progress using mesenchymal stem cells to treat COVID-19. We conclude by reviewing the latest updates on COVID-19 vaccine development. Understanding the molecular mechanisms of how SARS-CoV-2 interacts with host cells and stimulates the immune response is extremely important, especially as scientists look for new strategies to guide their development of specific COVID-19 therapies and vaccines.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AHFS, American Hospital Formula Service
- ANGII, angiotensin II
- APCs, antigen presenting cells
- ARDS, acute respiratory distress syndrome
- COVID-19, coronavirus disease
- CoVs, coronaviruses
- Coronavirus
- GVHD, graft versus host disease
- HCoVs, human coronoaviruses
- IBV, infectious bronchitis coronavirus
- IFN-γ, interferon-gamma
- ILCs, innate lymphoid cells
- Investigational medications
- MERS-CoV, Middle East respiratory syndrome
- NKs, natural killer cells
- ORFs, open reading frames
- PAMPs, pathogen-associated molecular patterns
- Pandemic
- Pathophysiology
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SLE, systemic lupus erythematosus
- TMPRSS2, transmembrane serine protease 2
- Viral immune response
- WHO, World Health Organization
- nsps, nonstructural proteins
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
306
|
Hrenak J, Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21218038. [PMID: 33126657 PMCID: PMC7663767 DOI: 10.3390/ijms21218038] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Collapse
Affiliation(s)
- Jaroslav Hrenak
- Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland;
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak
- Correspondence:
| |
Collapse
|
307
|
du Toit WL, Schutte AE, Gafane-Matemane LF, Kruger R, Mels CMC. The renin-angiotensin-system and left ventricular mass in young adults: the African-PREDICT study. Blood Press 2020; 30:98-107. [PMID: 33084438 DOI: 10.1080/08037051.2020.1831902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Raised blood pressure, with the renin-angiotensin system (RAS) as a central regulatory component, is one of the most important contributors to early development of left ventricular hypertrophy. Factors such as increased age, sex, black ethnicity and a low socio-economic status also contribute to left ventricular remodelling. To better understand early contributors to left ventricular mass, we investigated the relationship between left ventricular mass index (LVMi) and the components of the RAS in young healthy adults while considering ethnicity, sex and socio-economic status. MATERIALS AND METHODS Black and white women and men (N = 1186) between the ages of 20-30 years were included. By using standard echocardiography, we determined LVMi. Ultra-pressure-liquid chromatography tandem-mass spectrometry (LC-MS/MS) was used to measure the RAS-fingerprint®. RESULTS Components of the RAS such as plasma renin activity (PRA-S), angiotensin I (Ang I), angiotensin II (Ang II) and aldosterone were suppressed in the black compared to the white group (all p < 0.001). No associations between LVMi and the RAS were evident in the total, black or white groups. With additional grouping according to sex and socio-economic status, inverse associations between LVMi and PRA-S (β= -0.168; p = 0.017), Ang I (β= -0.155; p = 0.028) and Ang II (β= -0.172; p = 0.015) were found only in low socio-economic black women. CONCLUSION Despite a suppressed RAS in the black compared to the white group, components of the RAS were not associated with LVMi in this young cohort. The low socio-economic black women of this study population may be vulnerable to future RAS-related increases in left ventricular mass.
Collapse
Affiliation(s)
- Wessel L du Toit
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia.,The George Institute for Global Health, Sydney, Australia
| | - Lebo F Gafane-Matemane
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
308
|
Khan ATA, Khalid Z, Zahid H, Yousaf MA, Shakoori AR. A computational and bioinformatic analysis of ACE2: an elucidation of its dual role in COVID-19 pathology and finding its associated partners as potential therapeutic targets. J Biomol Struct Dyn 2020; 40:1813-1829. [PMID: 33073716 PMCID: PMC7596956 DOI: 10.1080/07391102.2020.1833760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the continued global spread of the current COVID-19 pandemic, the nonavailability of a vaccine or targeted drug against this disease is still prevailing. The most established mechanism of viral entry into the body is considered to be via angiotensin-converting enzyme 2 (ACE2) acting as a receptor for viral spike protein thereby facilitating its entry in the cell. However, ACE2 is also involved in providing the protection from severe pathological changes. This article provides a computational and bioinformatics-based analysis of ACE2 with an objective of providing further insight into the earnest efforts to determine its true position in COVID-19 pathology. The results of this study show that ACE2 has strikingly low expression in healthy human lung tissue and was absent from the list of differentially expressed genes. However, when transcription factors were analyzed, we found a significant upregulation of FOS and downregulation of FOXO4 and FOXP2. Moreover, the miRNA prediction analysis revealed that miR-1246, whose upregulation has been experimentally established to be a cause of acute respiratory distress syndrome (ARDS), was found to be targeting the coding DNA sequence (CDS) of ACE2. This study presents a wide range of potentially important transcription factors as well as miRNA targets associated with ACE2 which can be potentially used for drug designing amid this challenging pandemic situation. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
| | - Zumama Khalid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafsa Zahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
309
|
Sun M, Fang Y, Ma S, Gao X, Sun Y. The genetic polymorphisms of angiotensin converting enzyme insertion/deletion and glioma susceptibility: A meta-analysis. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320963939. [PMID: 33045911 PMCID: PMC7557697 DOI: 10.1177/1470320320963939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: The previous studies on angiotensin converting enzyme (ACE) insertion/deletion (I/D) genetic polymorphism and glioma risk were inconsistent. Therefore, we performed a meta-analysis to assess the association between ACE I/D polymorphisms and glioma risk. Methods and Results: In total, four populations (1110 cases and 1335 controls) on ACE I/D polymorphism were included. Overall, the meta-analysis demonstrated no significant association between ACE I/D polymorphism and glioma risk. In addition, the analysis of the association of ACE I/D polymorphism and clinical grade also showed no significant association. Conclusion: Our meta-analysis didn’t find a significant association between ACE I/D polymorphism glioma risk. However, further studies with larger sample size and more ethnic groups are required to confirm the results.
Collapse
Affiliation(s)
- Meili Sun
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Yuying Fang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Shuzhen Ma
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Ximei Gao
- Department of International Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| |
Collapse
|
310
|
Krishnamurthy A, Bhattacharya S, Lathia T, Kantroo V, Kalra S, Dutta D. Anticancer Medications and Sodium Dysmetabolism. EUROPEAN ENDOCRINOLOGY 2020; 16:122-130. [PMID: 33117443 DOI: 10.17925/ee.2020.16.2.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Therapeutic advances have revolutionised cancer treatment over the last two decades, but despite improved survival and outcomes, adverse effects to anticancer therapy such as dyselectrolytaemias do occur and need to be managed appropriately. This review explores essential aspects of sodium homeostasis in cancer with a focus on alterations arising from anticancer medications. Sodium and water balance are tightly regulated by close interplay of stimuli arising from hypothalamic osmoreceptors, arterial and atrial baroreceptors and the renal juxtaglomerular apparatus. This delicate balance can be disrupted by cancer itself, as well as the medications used to treat it. Some of the conventional chemotherapeutics, such as alkylating agents and platinum-based drugs, can cause hyponatraemia and, on rare occasions, hypernatraemia. Other conventional agents such as vinca alkaloids, as well as newer targeted cancer therapies including small molecule inhibitors and monoclonal antibodies, can cause hyponatraemia, usually as a result of inappropriate antidiuretic hormone secretion. Hyponatraemia can also sometimes occur secondarily to drug-induced hypocortisolism or salt-wasting syndromes. Another atypical but distinct mechanism for hyponatraemia is via pituitary dysfunction induced by immune checkpoint inhibitors. Hypernatraemia is uncommon and occasionally ensues as a result of drug-induced nephrogenic diabetes insipidus. Identification of the aetiology and appropriate management of these conditions, in addition to averting treatment-related problems, can be lifesaving in critical situations.
Collapse
Affiliation(s)
- Aishwarya Krishnamurthy
- Endocrinology Department, Max Super Speciality Hospital, Patparganj, New Delhi, Delhi, India
| | - Saptarshi Bhattacharya
- Endocrinology Department, Max Super Speciality Hospital, Patparganj, New Delhi, Delhi, India
| | - Tejal Lathia
- Endocrinology Department, Fortis Hospital, Vashi, Navi Mumbai, Maharashtra, India
| | - Viny Kantroo
- Respiratory Department, Critical Care and Sleep Medicine, Apollo Hospitals, Sarita Vihar, New Delhi, Delhi, India
| | - Sanjay Kalra
- Endocrinology Department, Bharti Hospital, Karnal, Haryana, India
| | - Deep Dutta
- CEDAR Superspeciality Clinics, Dwarka, New Delhi, Delhi, India
| |
Collapse
|
311
|
Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms. Life Sci 2020; 259:118352. [DOI: 10.1016/j.lfs.2020.118352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
|
312
|
Cadegiani FA, Goren A, Wambier CG. Spironolactone may provide protection from SARS-CoV-2: Targeting androgens, angiotensin converting enzyme 2 (ACE2), and renin-angiotensin-aldosterone system (RAAS). Med Hypotheses 2020; 143:110112. [PMID: 32721806 PMCID: PMC7363620 DOI: 10.1016/j.mehy.2020.110112] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
In coronavirus disease-19 (COVID-19), four major factors have been correlated with worse prognosis: aging, hypertension, obesity, and exposure to androgen hormones. Angiotensin-converting enzyme-2 (ACE2) receptor, regulation of the renin-angiotensin-aldosterone system (RAAS), and transmembrane serine protease 2 (TMPRSS2) action are critical for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cell entry and infectivity. ACE2 expression and RAAS are abnormal in hypertension and obesity, while TMPRSS2 is overexpressed when exposed to androgens, which may justify why these factors are overrepresented in COVID-19. Among therapeutic targets for SARS-CoV-2, we hypothesized that spironolactone, a long used and safe mineralocorticoid and androgen receptors antagonist, with effective anti-hypertensive, cardioprotective, nephroprotective, and anti-androgenic properties may offer pleiotropic actions in different sites to protect from COVID-19. Current data shows that spironolactone may concurrently mitigate abnormal ACE2 expression, correct the balances membrane-attached and free circulating ACE2 and between angiotensin II and Angiotensin-(1-7) (Ang-(1-7)), suppress androgen-mediated TMPRSS2 activity, and inhibit obesity-related RAAS dysfunctions, with consequent decrease of viral priming. Hence, spironolactone may provide protection from SARS-CoV-2, and has sufficient plausibility to be clinically tested, particularly in the early stages of COVID-19.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Department of Endocrinology, Federal University of São Paulo, SP, Brazil.
| | - Andy Goren
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Carlos G Wambier
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
313
|
Aleksova A, Ferro F, Gagno G, Cappelletto C, Santon D, Rossi M, Ippolito G, Zumla A, Beltrami AP, Sinagra G. COVID-19 and renin-angiotensin system inhibition: role of angiotensin converting enzyme 2 (ACE2) - Is there any scientific evidence for controversy? J Intern Med 2020; 288:410-421. [PMID: 32459372 PMCID: PMC7283873 DOI: 10.1111/joim.13101] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Renin-angiotensin system (RAS) blockers are extensively used worldwide to treat many cardiovascular disorders, where they are effective in reducing both mortality and morbidity. These drugs are known to induce an increased expression of angiotensin-converting enzyme 2 (ACE2). ACE2 acts as receptor for the novel SARS coronavirus-2 (SARS-CoV-2) which raising the important issue of possible detrimental effects that RAS blockers could exert on the natural history and pathogenesis of the coronavirus disease-19 (COVID-19) and associated excessive inflammation, myocarditis and cardiac arrhythmias. We review the current knowledge on the interaction between SARS-CoV-2 infection and RAS blockers and suggest a scientific rationale for continuing RAS blockers therapy in patients with COVID-19 infection.
Collapse
Affiliation(s)
- A Aleksova
- From the, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - F Ferro
- From the, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - G Gagno
- From the, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - C Cappelletto
- From the, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - D Santon
- From the, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - M Rossi
- From the, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - G Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Rome, Italy
| | - A Zumla
- Division of Infection and Immunity, University College London, London, UK.,National Institute of Health Research, Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - G Sinagra
- From the, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| |
Collapse
|
314
|
Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS. Stabilizing Cellular Barriers: Raising the Shields Against COVID-19. Front Endocrinol (Lausanne) 2020; 11:583006. [PMID: 33101215 PMCID: PMC7554589 DOI: 10.3389/fendo.2020.583006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its clinical manifestation (COVID-19; coronavirus disease 2019) have caused a worldwide health crisis. Disruption of epithelial and endothelial barriers is a key clinical turning point that differentiates patients who are likely to develop severe COVID-19 outcomes: it marks a significant escalation in respiratory symptoms, loss of viral containment and a progression toward multi-organ dysfunction. These barrier mechanisms are independently compromised by known COVID-19 risk factors, including diabetes, obesity and aging: thus, a synergism between these underlying conditions and SARS-CoV-2 mechanisms may explain why these risk factors correlate with more severe outcomes. This review examines the key cellular mechanisms that SARS-CoV-2 and its underlying risk factors utilize to disrupt barrier function. As an outlook, we propose that glucagon-like peptide 1 (GLP-1) may be a therapeutic intervention that can slow COVID-19 progression and improve clinical outcome following SARS-CoV-2 infection. GLP-1 signaling activates barrier-promoting processes that directly oppose the pro-inflammatory mechanisms commandeered by SARS-CoV-2 and its underlying risk factors.
Collapse
Affiliation(s)
- Julia Hanchard
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | | | | | - Darcy Lidington
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
315
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
316
|
Angiotensin Inhibition, TGF-β and EMT in Cancer. Cancers (Basel) 2020; 12:cancers12102785. [PMID: 32998363 PMCID: PMC7601465 DOI: 10.3390/cancers12102785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Angiotensin inhibitors are standard drugs in cardiovascular and renal diseases that have antihypertensive and antifibrotic properties. These drugs also exert their antifibrotic effects in cancer by reducing collagen and hyaluronan deposition in the tumor stroma, thus enhancing drug delivery. Angiotensin II signaling interferes with the secretion of the cytokine TGF-β-a known driver of malignancy. TGF-β stimulates matrix production in cancer-associated fibroblasts, and thus drives desmoplasia. The effect of TGF-β on cancer cells itself is stage-dependent and changes during malignant progression from inhibitory to stimulatory. The intracellular signaling for the TGF-β family can be divided into an SMAD-dependent canonical pathway and an SMAD-independent noncanonical pathway. These capabilities have made TGF-β an interesting target for numerous drug developments. TGF-β is also an inducer of epithelial-mesenchymal transition (EMT). EMT is a highly complex spatiotemporal-limited process controlled by a plethora of factors. EMT is a hallmark of metastatic cancer, and with its reversal, an important step in the metastatic cascade is characterized by a loss of epithelial characteristics and/or the gain of mesenchymal traits.
Collapse
|
317
|
Goldin CJ, Vázquez R, Polack FP, Alvarez-Paggi D. Identifying pathophysiological bases of disease in COVID-19. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:15. [PMID: 32984543 PMCID: PMC7506209 DOI: 10.1186/s41231-020-00067-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/15/2020] [Indexed: 05/14/2023]
Abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus that can affect lung physiology encompassing a wide spectrum of severities, ranging from asymptomatic and mild symptoms to severe and fatal cases; the latter including massive neutrophil infiltration, stroke and multiple organ failure. Despite many recents findings, a clear mechanistic description underlying symptomatology is lacking. In this article, we thoroughly review the available data involving risk factors, age, gender, comorbidities, symptoms of disease, cellular and molecular mechanisms and the details behind host/pathogen interaction that hints at the existence of different pathophysiological mechanisms of disease. There is clear evidence that, by targeting the angiotensin-converting enzyme II (ACE2) -its natural receptor-, SARS-CoV-2 would mainly affect the renin-angiotensin-aldosterone system (RAAS), whose imbalance triggers diverse symptomatology-associated pathological processes. Downstream actors of the RAAS cascade are identified, and their interaction with risk factors and comorbidities are presented, rationalizing why a specific subgroup of individuals that present already lower ACE2 levels is particularly more susceptible to severe forms of disease. Finally, the notion of endotype discovery in the context of COVID-19 is introduced. We hypothesize that COVID-19, and its associated spectrum of severities, is an umbrella term covering different pathophysiological mechanisms (endotypes). This approach should dramatically accelerate our understanding and treatment of disease(s), enabling further discovery of pathophysiological mechanisms and leading to the identification of specific groups of patients that may benefit from personalized treatments.
Collapse
Affiliation(s)
- Carla J. Goldin
- INFANT Foundation, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Ramiro Vázquez
- Early Drug Development Group (E2DG), Boulogne-Billancourt, France
- Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | | | | |
Collapse
|
318
|
Costa LB, Perez LG, Palmeira VA, Macedo e Cordeiro T, Ribeiro VT, Lanza K, Simões e Silva AC. Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System. Front Cell Dev Biol 2020; 8:559841. [PMID: 33042994 PMCID: PMC7525006 DOI: 10.3389/fcell.2020.559841] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of SARS-CoV-2/human/Wuhan/X1/2019, a virus belonging to the species Severe acute respiratory syndrome-related coronavirus, and the recognition of Coronavirus Disease 2019 (COVID-19) as a pandemic have highly increased the scientific research regarding the pathogenesis of COVID-19. The Renin Angiotensin System (RAS) seems to be involved in COVID-19 natural course, since studies suggest the membrane-bound Angiotensin-converting enzyme 2 (ACE2) works as SARS-CoV-2 cellular receptor. Besides the efforts of the scientific community to understand the virus' molecular interactions with human cells, few studies summarize what has been so far discovered about SARS-CoV-2 signaling mechanisms and its interactions with RAS molecules. This review aims to discuss possible SARS-CoV-2 intracellular signaling pathways, cell entry mechanism and the possible consequences of the interaction with RAS components, including Angiotensin II (Ang II), Angiotensin-(1-7) [Ang-(1-7)], Angiotensin-converting enzyme (ACE), ACE2, Angiotensin II receptor type-1 (AT1), and Mas Receptor. We also discuss ongoing clinical trials and treatment based on RAS cascade intervention. Data were obtained independently by the two authors who carried out a search in the PubMed, Embase, LILACS, Cochrane, Scopus, SciELO and the National Institute of Health databases using Medical Subject Heading terms as "SARS-CoV-2," "COVID-19," "Renin Angiotensin System," "ACE2," "Angiotensin II," "Angiotensin-(1-7)," and "AT1 receptor." Similarly to other members of Coronaviridae family, the molecular interactions between the pathogen and the membrane-bound ACE2 are based on the cleavage of the spike glycoprotein (S) in two subunits. Following the binding of the S1 receptor-binding domain (RBD) to ACE2, transmembrane protease/serine subfamily 2 (TMPRSS2) cleaves the S2 domain to facilitate membrane fusion. It is very likely that SARS-CoV-2 cell entry results in downregulation of membrane-bound ACE2, an enzyme that converts Ang II into Ang-(1-7). This mechanism can result in lung injury and vasoconstriction. In addition, Ang II activates pro-inflammatory cascades when binding to the AT1 Receptor. On the other hand, Ang-(1-7) promotes anti-inflammatory effects through its interactions with the Mas Receptor. These molecules might be possible therapeutic targets for treating COVID-19. Thus, the understanding of SARS-CoV-2 intracellular pathways and interactions with the RAS may clarify COVID-19 physiopathology and open perspectives for new treatments and strategies.
Collapse
|
319
|
Zhang J, Wang M, Ding W, Wan J. The interaction of RAAS inhibitors with COVID-19: Current progress, perspective and future. Life Sci 2020; 257:118142. [PMID: 32712300 PMCID: PMC7377983 DOI: 10.1016/j.lfs.2020.118142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently defined as the worst pandemic disease. SARS-CoV-2 infects human cells via the binding of its S protein to the receptor angiotensin-converting enzyme (ACE2). The use of ACEIs/ARBs (RAAS inhibitors) regulates the renin-angiotensin-aldosterone system (RAAS) and may increase ACE2 expression. Considering the large use of ACEIs/ARBs in hypertensive patients, some professional groups are concerned about whether the use of RAAS inhibitors affects the risk of SARS-CoV-2 infection or the risk of severe illness and mortality in COVID-19 patients. In this review, we summarize preclinical and clinical studies to investigate whether the use of ACEIs/ARBs increases ACE2 expression in animals or patients. We also analyzed whether the use of these drugs affects the risk of SARS-CoV-2 infection, severe illness or mortality based on recent studies. Finally, the review suggests that current evidence does not support the concerns.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
320
|
Elrashdy F, Redwan EM, Uversky VN. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules 2020; 10:E1312. [PMID: 32933047 PMCID: PMC7565143 DOI: 10.3390/biom10091312] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
321
|
The Efficacy of the Mineralcorticoid Receptor Antagonist Canrenone in COVID-19 Patients. J Clin Med 2020; 9:jcm9092943. [PMID: 32933039 PMCID: PMC7564548 DOI: 10.3390/jcm9092943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Background: In COVID-19 patients, aldosterone via angiotensin-converting enzyme-2 deregulation may be responsible for systemic and pulmonary vasoconstriction, inflammation, and oxidative organ damage. Aim: To verify retrospectively the impact of the mineralcorticoid receptor antagonist canrenone i.v. on the need of invasive ventilatory support and/or all-cause in-hospital mortality. Methods: Sixty-nine consecutive COVID-19 patients, hospitalized for moderate to severe respiratory failure at Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico of Milan, received two different therapeutic approaches in usual care according to the personal skills and pharmacological management experience of the referral medical team. Group A (n = 39) were given vasodilator agents or renin–angiotensin–aldosterone system (RAAS) inhibitors and group B (n = 30) were given canrenone i.v. Results: Among the 69 consecutive COVID-19 patients, those not receiving canrenone i.v. (group A) had an event-free rate of 51% and a survival rate of 64%. Group B (given a mean dose of 200 mg/q.d. of canrenone for at least two days of continuous administration) showed an event-free rate of 80% with a survival rate of 87%. Kaplan–Meier analysis for composite outcomes and mortality showed log rank statistics of 0.0004 and 0.0052, respectively. Conclusions: The novelty of our observation relies on the independent positive impact of canrenone on the all-cause mortality and clinical improvement of COVID-19 patients ranging from moderate to severe diseases.
Collapse
|
322
|
Rico-Mesa JS, White A, Ahmadian-Tehrani A, Anderson AS. Mineralocorticoid Receptor Antagonists: a Comprehensive Review of Finerenone. Curr Cardiol Rep 2020; 22:140. [PMID: 32910349 DOI: 10.1007/s11886-020-01399-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We aim to review the mechanism of action and safety profile of mineralocorticoid receptor antagonists (MRAs) and discuss the differences between selective and non-selective MRAs. More specifically, finerenone is a new medication that is currently under investigation for its promising cardiovascular and nephrological effects. RECENT FINDINGS MRAs are well known for their utility in treating heart failure, refractory hypertension, and diverse nephropathies, namely, diabetic nephropathy. As their name denotes, MRAs inhibit the action of aldosterone at the mineralocorticoid receptor, preventing receptor activation. This prevents remodeling, decreases inflammation, and improves proteinuria. There are not significant differences in outcomes between selective and non-selective MRAs. A new selective MRA named finerenone (originally BAY 94-8862) has shown promising results in several trials (ARTS-HF and ARTS-DN) and smaller studies. Finerenone may have a dose-dependent benefit over older MRAs, decreasing rates of albuminuria and levels of BNP and NT-ProBNP without causing a significant increase in serum potassium levels. This medication is not yet approved as it is still in phase 3 clinical trials (FIGARO-DKD and FIDELIO-DKD trials). MRAs are beneficial in several disease states. Newer medications, such as finerenone, should be considered in patients with heart failure and diabetic nephropathy who may benefit from a reduction in albuminuria and BNP/NT-ProBNP. Data surrounding finerenone are limited to date. However, results from ongoing clinical trials, as well as new trials to evaluate use in other pathologies, could validate the implementation of this medication in daily practice.
Collapse
Affiliation(s)
- Juan Simon Rico-Mesa
- Department of Medicine, Division of Internal Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Averi White
- Department of Medicine, Division of Internal Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ashkan Ahmadian-Tehrani
- Department of Medicine, Division of Internal Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Allen S Anderson
- Department of Medicine, Division of Cardiovascular Diseases, University of Texas Health San Antonio, 7703 Floyd Curl Drive, MC 7872, San Antonio, TX, 78229, USA.
| |
Collapse
|
323
|
Liang W, He X, Xue R, Wei F, Dong B, Wu Z, Owusu-Agyeman M, Wu Y, Zhou Y, Dong Y, Liu C. Association of hyponatraemia and renal function in type 1 cardiorenal syndrome. Eur J Clin Invest 2020; 50:e13269. [PMID: 32415981 DOI: 10.1111/eci.13269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/29/2020] [Accepted: 05/09/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hyponatraemia predicts type 1 cardiorenal syndrome in acute decompensated heart failure patients, which associates with poor outcome. Recovery from hyponatraemia has been found to associate with better outcome in acute decompensated heart failure patients, but its prognostic value regarding renal function remains unknown. METHODS We performed a secondary analysis of CARRESS-HF trial, and all patients included had worsening renal function (≥0.3 mg/dL increase in serum creatinine than the nadir). The serum sodium levels of patients were evaluated at baseline and day 4 and day 7 after randomization. Patients were grouped according to the status of hyponatraemia: recovery from hyponatraemia; no hyponatraemia; persistent hyponatraemia; and new-onset hyponatraemia. Their associations with persistent worsening renal function (serum creatinine ≥ 0.3 mg/dL higher than the nadir at discharge) were explored. RESULTS A total of 118 patients suffered from persistent worsening renal function. Baseline hyponatraemia was not associated with persistent worsening renal function (odds ratio = 0.495, P = .086). Patients in the recovery from hyponatraemia group had a lowest risk of persistent worsening renal function among the study population. Further, baseline serum sodium level was not associated with the risk of persistent worsening renal function (odds ratio = 1.055, P = .233), while the increases in serum sodium level at day 4 (odds ratio = 0.858, P = .003) and at day 7 (odds ratio = 0.821, P < .001) significantly predicted a lower risk of persistent worsening renal function. CONCLUSIONS Recovery from hyponatraemia associates with a lower risk of persistent worsening renal function, suggesting that hyponatraemia correction may improve renal outcomes in acute decompensated heart failure patients with type 1 cardiorenal syndrome.
Collapse
Affiliation(s)
- Weihao Liang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xin He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ruicong Xue
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Fangfei Wei
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Bin Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zexuan Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Marvin Owusu-Agyeman
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuzhong Wu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuanyuan Zhou
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| |
Collapse
|
324
|
Impact of calculated plasma volume status on all-cause and cardiovascular mortality: 4-year nationwide community-based prospective cohort study. PLoS One 2020; 15:e0237601. [PMID: 32817643 PMCID: PMC7446862 DOI: 10.1371/journal.pone.0237601] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
Background Plasma volume status (PVS), a marker of plasma volume expansion and contraction, is gaining attention in the field of cardiovascular disease because of its role in the prevention and of the management of heart failure. However, it remains undetermined whether an abnormal PVS is a risk for all-cause and cardiovascular mortality in the general population. Methods and results We used a nationwide database of 230,882 subjects (age 40–75 years) who participated in the annual “Specific Health Check and Guidance in Japan” check-up between 2008 and 2011. There were 586 cardiovascular deaths, 2,552 non-cardiovascular deaths, and 3,138 all-cause deaths during the follow-up period of four years. Abnormally high and low PVS were identified from the results of 80% of all subjects (high and low PVS ≥ 7 and < -13.3, respectively). Multivariate Cox proportional hazard regression analysis demonstrated that high PVS was an independent risk factor for all-cause, cardiovascular and non-cardiovascular deaths. Although low PVS was a positive risk factor for cardiovascular deaths as well, it was a negative risk factor for non-cardiovascular deaths. The addition of PVS to cardiovascular risk factors significantly improved the C-statistic, net reclassification, and integrated discrimination indexes. Conclusions This is the first prospective report to reveal the impact of PVS on all-cause and cardiovascular mortality. PVS could be an additional risk factor for all-cause and cardiovascular mortality in the general population.
Collapse
|
325
|
Stanciu GD, Ababei DC, Bild V, Bild W, Paduraru L, Gutu MM, Tamba BI. Renal Contributions in the Pathophysiology and Neuropathological Substrates Shared by Chronic Kidney Disease and Alzheimer's Disease. Brain Sci 2020; 10:E563. [PMID: 32824404 PMCID: PMC7464898 DOI: 10.3390/brainsci10080563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease and Alzheimer's disease are chronic conditions highly prevalent in elderly communities and societies, and a diagnosis of them is devastating and life changing. Demanding therapies and changes, such as non-compliance, cognitive impairment, and non-cognitive anomalies, may lead to supplementary symptoms and subsequent worsening of well-being and quality of life, impacting the socio-economic status of both patient and family. In recent decades, additional hypotheses have attempted to clarify the connection between these two diseases, multifactorial in their nature, but even so, the mechanisms behind this link are still elusive. In this paper, we sought to highlight the current understanding of the mechanisms for cognitive decline in patients with these concurrent pathologies and provide insight into the relationship between markers related to these disease entities and whether the potential biomarkers for renal function may be used for the diagnosis of Alzheimer's disease. Exploring detailed knowledge of etiologies, heterogeneity of risk factors, and neuropathological processes associated with these conditions opens opportunities for the development of new therapies and biomarkers to delay or slow their progression and validation of whether the setting of chronic kidney disease could be a potential determinant for cognitive damage in Alzheimer's disease.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania;
| | - Veronica Bild
- Pharmacodynamics and Clinical Pharmacy Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania;
| | - Walther Bild
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania;
| | - Luminita Paduraru
- Department Mother & Child Care, Division Neonatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania
| | - Mihai Marius Gutu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania;
| | - Bogdan-Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania; (G.D.S.); (B.-I.T.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii street, 700115 Iasi, Romania
| |
Collapse
|
326
|
Bargagli E, Refini RM, d’Alessandro M, Bergantini L, Cameli P, Vantaggiato L, Bini L, Landi C. Metabolic Dysregulation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21165663. [PMID: 32784632 PMCID: PMC7461042 DOI: 10.3390/ijms21165663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder limited to the lung. New findings, starting from our proteomics studies on IPF, suggest that systemic involvement with altered molecular mechanisms and metabolic disorder is an underlying cause of fibrosis. The role of metabolic dysregulation in the pathogenesis of IPF has not been extensively studied, despite a recent surge of interest. In particular, our studies on bronchoalveolar lavage fluid have shown that the renin–angiotensin–aldosterone system (RAAS), the hypoxia/oxidative stress response, and changes in iron and lipid metabolism are involved in onset of IPF. These processes appear to interact in an intricate manner and to be related to different fibrosing pathologies not directly linked to the lung environment. The disordered metabolism of carbohydrates, lipids, proteins and hormones has been documented in lung, liver, and kidney fibrosis. Correcting these metabolic alterations may offer a new strategy for treating fibrosis. This paper focuses on the role of metabolic dysregulation in the pathogenesis of IPF and is a continuation of our previous studies, investigating metabolic dysregulation as a new target for fibrosis therapy.
Collapse
Affiliation(s)
- Elena Bargagli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Miriana d’Alessandro
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Luca Bini
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Claudia Landi
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
- Correspondence: ; Tel.: +39-0577-234-937
| |
Collapse
|
327
|
Rohilla S. Designing therapeutic strategies to combat severe acute respiratory syndrome coronavirus-2 disease: COVID-19. Drug Dev Res 2020; 82:12-26. [PMID: 33216381 DOI: 10.1002/ddr.21720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
A highly contagious coronavirus disease COVID-19 caused by a recently identified severe acute respiratory syndrome CoV-2 (SARS-CoV-2) initially detected in Wuhan, China has spread worldwide and become a major health crisis in the absence of specific vaccine or antiviral drugs. SARS-CoV-2 infection has resulted in overwhelming number of reported deaths. Unfortunately it is still spreading uncontrollably despite implementing stringent protective measures. Rapid development of effective therapeutic strategies for treatment and prevention of infection is crucially required. Although genomic characterization has assisted in unfolding various aspects of SARS-CoV-2 but development of specific antiviral drugs and vaccine against COVID-19 is still a worldwide challenge. Understanding the disease pathological course underlying the clinical manifestations of COVID-19 is imperative to identify the vital targets for drug development. SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) receptor to enter the host cell and primarily target type II alveolar cells. COVID-19 disease progression is associated with distressed immune functions and hyper active inflammatory system leading to development of cytokine storm which is a vital factor involved in disease advancement. The current review elucidates the disease pathology and summarizes the possible therapeutic options to battle against COVID-19 on the basis of current state of understanding about SARS-CoV-2 pathogenic pathways and knowledge gained from previous SARS and MERS-CoV epidemics. Therapeutic strategies to treat and prevent infection as well as to suppress the disease progression to reduce severity and mortality rate is discussed. Drug candidates currently under consideration and undergoing clinical trials for COVID-19 treatment are highlighted.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, India
| |
Collapse
|
328
|
Cadegiani FA, Wambier CG, Goren A. Spironolactone: An Anti-androgenic and Anti-hypertensive Drug That May Provide Protection Against the Novel Coronavirus (SARS-CoV-2) Induced Acute Respiratory Distress Syndrome (ARDS) in COVID-19. Front Med (Lausanne) 2020; 7:453. [PMID: 32850920 PMCID: PMC7399048 DOI: 10.3389/fmed.2020.00453] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Flavio A Cadegiani
- Department of Endocrinology, Federal University of São Paulo, São Paulo, Brazil.,Corpometria Institute, Brasília, Brazil
| | - Carlos G Wambier
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Andy Goren
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Applied Biology Inc., Irvine, CA, United States
| |
Collapse
|
329
|
Machado AS, Oliveira JR, Lelis DDF, de Paula AMB, Guimarães ALS, Andrade JMO, Brandi IV, Santos SHS. Oral Probiotic Bifidobacterium Longum Supplementation Improves Metabolic Parameters and Alters the Expression of the Renin-Angiotensin System in Obese Mice Liver. Biol Res Nurs 2020; 23:100-108. [PMID: 32700545 DOI: 10.1177/1099800420942942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obesity and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Bifidobacterium longum (BL), a common member of the human gut microbiota, has important health benefits through several mechanisms. OBJECTIVES We evaluated the BL supplementation effects on body metabolism and renin-angiotensin components hepatic expression in mice fed a high-fat diet. METHODS Thirty-two male mice were divided into four groups: standard diet + placebo (ST), standard diet + Bifidobacterium longum (ST + BL), high-fat diet + placebo (HFD) and high-fat diet + Bifidobacterium longum (HFD + BL). Following the obesity induction period, the ST + BL and HFD + BL groups were supplemented with Bifidobacterium longum for 4 weeks. Then, body, biochemical, histological and molecular parameters were evaluated. RESULTS HFD + BL mice had a significant decrease in adipose tissue mass and blood glucose levels, as well as a significant reduction in blood glucose during an intraperitoneal glucose tolerance test. The treatment also resulted in reduced levels of total cholesterol and hepatic fat accumulation. Moreover, we observed an increase in angiotensin converting enzyme 2 (ACE2) and Mas receptor (MASR) expression levels in BL-treated obese mice. CONCLUSIONS These data demonstrate that BL may have the potential to prevent obesity and NAFLD by modulating the mRNA expression of renin-angiotensin system components.
Collapse
Affiliation(s)
- Amanda S Machado
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Janaína R Oliveira
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Deborah de F Lelis
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Alfredo M B de Paula
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - André L S Guimarães
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - João M O Andrade
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences, Food Engineering, 28114Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio H S Santos
- Laboratory of Health Science, Postgraduation Program in Health Sciences, 153595Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil.,Institute of Agricultural Sciences, Food Engineering, 28114Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
330
|
Villard O, Morquin D, Molinari N, Raingeard I, Nagot N, Cristol JP, Jung B, Roubille C, Foulongne V, Fesler P, Lamure S, Taourel P, Konate A, Maria ATJ, Makinson A, Bertchansky I, Larcher R, Klouche K, Le Moing V, Renard E, Guilpain P. The Plasmatic Aldosterone and C-Reactive Protein Levels, and the Severity of Covid-19: The Dyhor-19 Study. J Clin Med 2020; 9:jcm9072315. [PMID: 32708205 PMCID: PMC7408691 DOI: 10.3390/jcm9072315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
Background. The new coronavirus SARS-CoV-2, responsible for the Covid-19 pandemic, uses the angiotensin converting enzyme type 2 (ACE2), a physiological inhibitor of the renin angiotensin aldosterone system (RAAS), as a cellular receptor to infect cells. Since the RAAS can induce and modulate pro-inflammatory responses, it could play a key role in the pathophysiology of Covid-19. Thus, we aimed to determine the levels of plasma renin and aldosterone as indicators of RAAS activation in a series of consecutively admitted patients for Covid-19 in our clinic. Methods. Plasma renin and aldosterone levels were measured, among the miscellaneous investigations needed for Covid-19 management, early after admission in our clinic. Disease severity was assessed using a seven-category ordinal scale. Primary outcome of interest was the severity of patients’ clinical courses. Results. Forty-four patients were included. At inclusion, 12 patients had mild clinical status, 25 moderate clinical status and 7 severe clinical status. In univariate analyses, aldosterone and C-reactive protein (CRP) levels at inclusion were significantly higher in patients with severe clinical course as compared to those with mild or moderate course (p < 0.01 and p = 0.03, respectively). In multivariate analyses, only aldosterone and CRP levels remained positively associated with severity. We also observed a positive significant correlation between aldosterone and CRP levels among patients with an aldosterone level greater than 102.5 pmol/L. Conclusions. Both plasmatic aldosterone and CRP levels at inclusion are associated with the clinical course of Covid-19. Our findings may open new perspectives in the understanding of the possible role of RAAS for Covid-19 outcome.
Collapse
Affiliation(s)
- Orianne Villard
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Endocrinology, Diabetes, Nutrition, and INSERM 1411 Clinical Investigation Centre, Montpellier University Hospital, INSERM, 34000 Montpellier, France;
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, 34000 Montpellier, France
| | - David Morquin
- Department of Infectious and Tropical Diseases, Montpellier University Hospital, 34000 Montpellier, France;
| | - Nicolas Molinari
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- IMAG, CNRS, University of Montpellier, Montpellier University Hospital, 34000 Montpellier, France
| | - Isabelle Raingeard
- Department of Endocrinology, Diabetes, Nutrition, and INSERM 1411 Clinical Investigation Centre, Montpellier University Hospital, INSERM, 34000 Montpellier, France;
| | - Nicolas Nagot
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- IMAG, CNRS, University of Montpellier, Montpellier University Hospital, 34000 Montpellier, France
| | - Jean-Paul Cristol
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Laboratory of Biochemistry, Montpellier University Hospital, 34000 Montpellier, France
| | - Boris Jung
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Intensive Care Medicine, Montpellier University Hospital, 34000 Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34000 Montpellier, France
| | - Camille Roubille
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34000 Montpellier, France
| | - Vincent Foulongne
- Laboratory of Virology, Montpellier University Hospital, 34000 Montpellier, France;
| | - Pierre Fesler
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34000 Montpellier, France
| | - Sylvain Lamure
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Infectious and Tropical Diseases, Montpellier University Hospital, 34000 Montpellier, France;
| | - Patrice Taourel
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Radiology, Montpellier University Hospital, 34000 Montpellier, France
| | - Amadou Konate
- Department of Internal Medicine—Multi-Organ Diseases, Local Referral Center for Auto-Immune Diseases, Montpellier University Hospital, 34000 Montpellier, France; (A.K.); (I.B.)
- Department of Internal Medicine—‘DIAGORA Unit’, Montpellier University Hospital, 34000 Montpellier, France
| | - Alexandre Thibault Jacques Maria
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Internal Medicine—Multi-Organ Diseases, Local Referral Center for Auto-Immune Diseases, Montpellier University Hospital, 34000 Montpellier, France; (A.K.); (I.B.)
- IRMB, INSERM U1183, Montpellier University Hospital, 34000 Montpellier, France
| | - Alain Makinson
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Infectious and Tropical Diseases, Montpellier University Hospital, 34000 Montpellier, France;
| | - Ivan Bertchansky
- Department of Internal Medicine—Multi-Organ Diseases, Local Referral Center for Auto-Immune Diseases, Montpellier University Hospital, 34000 Montpellier, France; (A.K.); (I.B.)
- Department of Internal Medicine—‘DIAGORA Unit’, Montpellier University Hospital, 34000 Montpellier, France
| | - Romaric Larcher
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Intensive Care Medicine, Montpellier University Hospital, 34000 Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34000 Montpellier, France
| | - Kada Klouche
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Intensive Care Medicine, Montpellier University Hospital, 34000 Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34000 Montpellier, France
| | - Vincent Le Moing
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Infectious and Tropical Diseases, Montpellier University Hospital, 34000 Montpellier, France;
| | - Eric Renard
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Endocrinology, Diabetes, Nutrition, and INSERM 1411 Clinical Investigation Centre, Montpellier University Hospital, INSERM, 34000 Montpellier, France;
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, 34000 Montpellier, France
| | - Philippe Guilpain
- Montpellier School of Medicine, University of Montpellier, 34000 Montpellier, France; (O.V.); (N.M.); (N.N.); (J.-P.C.); (B.J.); (C.R.); (P.F.); (S.L.); (P.T.); (A.T.J.M.); (A.M.); (R.L.); (K.K.); (V.L.M.); (E.R.)
- Department of Internal Medicine—Multi-Organ Diseases, Local Referral Center for Auto-Immune Diseases, Montpellier University Hospital, 34000 Montpellier, France; (A.K.); (I.B.)
- IRMB, INSERM U1183, Montpellier University Hospital, 34000 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-73-32; Fax: +33-4-67-33-72-91
| |
Collapse
|
331
|
Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, Hou C, Wang H, Liu J, Yang D, Xu Y, Cao Z, Gao Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24:422. [PMID: 32660650 PMCID: PMC7356137 DOI: 10.1186/s13054-020-03120-0] [Citation(s) in RCA: 668] [Impact Index Per Article: 167.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
An outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that started in Wuhan, China, at the end of 2019 has become a global pandemic. Both SARS-CoV-2 and SARS-CoV enter host cells via the angiotensin-converting enzyme 2 (ACE2) receptor, which is expressed in various human organs. We have reviewed previously published studies on SARS and recent studies on SARS-CoV-2 infection, named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), confirming that many other organs besides the lungs are vulnerable to the virus. ACE2 catalyzes angiotensin II conversion to angiotensin-(1-7), and the ACE2/angiotensin-(1-7)/MAS axis counteracts the negative effects of the renin-angiotensin system (RAS), which plays important roles in maintaining the physiological and pathophysiological balance of the body. In addition to the direct viral effects and inflammatory and immune factors associated with COVID-19 pathogenesis, ACE2 downregulation and the imbalance between the RAS and ACE2/angiotensin-(1-7)/MAS after infection may also contribute to multiple organ injury in COVID-19. The SARS-CoV-2 spike glycoprotein, which binds to ACE2, is a potential target for developing specific drugs, antibodies, and vaccines. Restoring the balance between the RAS and ACE2/angiotensin-(1-7)/MAS may help attenuate organ injuries. SARS-CoV-2 enters lung cells via the ACE2 receptor. The cell-free and macrophage-phagocytosed virus can spread to other organs and infect ACE2-expressing cells at local sites, causing multi-organ injury.
Collapse
Affiliation(s)
- Wentao Ni
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiuwen Yang
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deqing Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Bao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Ran Li
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yongjiu Xiao
- Department of Emergency, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Chang Hou
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Haibin Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Liu
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Donghong Yang
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yu Xu
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China.
| | - Zhaolong Cao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China.
| | - Zhancheng Gao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
332
|
Michaud V, Deodhar M, Arwood M, Al Rihani SB, Dow P, Turgeon J. ACE2 as a Therapeutic Target for COVID-19; its Role in Infectious Processes and Regulation by Modulators of the RAAS System. J Clin Med 2020; 9:E2096. [PMID: 32635289 PMCID: PMC7408699 DOI: 10.3390/jcm9072096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is the recognized host cell receptor responsiblefor mediating infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2bound to tissue facilitates infectivity of SARS-CoV-2; thus, one could argue that decreasing ACE2tissue expression would be beneficial. However, ACE2 catalytic activity towards angiotensin I (AngI) and II (Ang II) mitigates deleterious effects associated with activation of the renin-angiotensinaldosteronesystem (RAAS) on several organs, including a pro-inflammatory status. At the tissuelevel, SARS-CoV-2 (a) binds to ACE2, leading to its internalization, and (b) favors ACE2 cleavage toform soluble ACE2: these actions result in decreased ACE2 tissue levels. Preserving tissue ACE2activity while preventing ACE2 shredding is expected to circumvent unrestrained inflammatoryresponse. Concerns have been raised around RAAS modulators and their effects on ACE2expression or catalytic activity. Various cellular and animal models report conflicting results invarious tissues. However, recent data from observational and meta-analysis studies in SARS-CoV-2-infected patients have concluded that RAAS modulators do not increase plasma ACE2 levels orsusceptibility to infection and are not associated with more severe diseases. This review presentsour current but evolving knowledge of the complex interplay between SARS-CoV-2 infection, ACE2levels, modulators of RAAS activity and the effects of RAAS modulators on ACE2 expression.
Collapse
Affiliation(s)
- Veronique Michaud
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Malavika Deodhar
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Meghan Arwood
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Sweilem B Al Rihani
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Pamela Dow
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
333
|
Wu J, Yuan X, Wang B, Gu R, Li W, Xiang X, Tang L, Sun H. Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Front Microbiol 2020; 11:1576. [PMID: 32719672 PMCID: PMC7347906 DOI: 10.3389/fmicb.2020.01576] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging respiratory virus with high morbidity, which was named coronavirus disease 2019 (COVID-19) by World Health Organization (WHO). COVID-19 has triggered a series of threats to global public health. Even worse, new cases of COVID-19 infection are still increasing rapidly. Therefore, it is imperative that various effective vaccines and drugs should be developed to prevent and treat COVID-19 and reduce the serious impact on human beings. For this purpose, detailed information about the pathogenesis of COVID-19 at the cellular and molecular levels is urgently needed. In this review, we summarized the current understanding on gene structure, protein function, and pathogenic mechanisms of SARS-CoV-2. Based on the above, we refined the correlations among gene structure, protein function, and pathogenic mechanisms of SARS-CoV-2. Importantly, we further discussed potential therapeutic targets, aiming to accelerate the advanced design and development of vaccines and therapeutic drugs against COVID-19.
Collapse
Affiliation(s)
- Jun Wu
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiaohui Yuan
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Bing Wang
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Rui Gu
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
| | - Wei Li
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
| | - Xuemei Xiang
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
| | - Lijun Tang
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hongyu Sun
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
334
|
Kirchner S, Reuter S, Westphal A, Mrowka R. Decipher the complexity of cis-regulatory regions by a modified Cas9. PLoS One 2020; 15:e0235530. [PMID: 32614871 PMCID: PMC7332081 DOI: 10.1371/journal.pone.0235530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/18/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Understanding complex mechanisms of human transcriptional regulation remains a major challenge. Classical reporter studies already enabled the discovery of cis-regulatory elements within the non-coding DNA; however, the influence of genomic context and potential interactions are still largely unknown. Using a modified Cas9 activation complex we explore the complexity of renin transcription in its native genomic context. METHODS With the help of genomic editing, we stably tagged the native renin on chromosome 1 with the firefly luciferase and stably integrated a programmable modified Cas9 based trans-activation complex (SAM-complex) by lentiviral transduction into human cells. By delivering five specific guide-RNA homologous to specific promoter regions of renin we were able to guide this SAM-complex to these regions of interest. We measured gene expression and generated and compared computational models. RESULTS SAM complexes induced activation of renin in our cells after renin specific guide-RNA had been provided. All possible combinations of the five guides were subjected to model analysis in linear models. Quantifying the prediction error and the calculation of an estimator of the relative quality of the statistical models for our given set of data revealed that a model incorporating interactions in the proximal promoter is the superior model for explanation of the data. CONCLUSION By applying our combined experimental and modelling approach we can show that interactions occur within the selected sequences of the proximal renin promoter region. This combined approach might potentially be useful to investigate other genomic regions. Our findings may help to better understand the transcriptional regulation of human renin.
Collapse
Affiliation(s)
- Steven Kirchner
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Stefanie Reuter
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Anika Westphal
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| | - Ralf Mrowka
- Experimental Nephrology Group, KIM III, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
335
|
Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020; 157:104833. [PMID: 32302706 PMCID: PMC7194807 DOI: 10.1016/j.phrs.2020.104833] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) is crucial for the physiology and pathology of all the organs. Angiotensin-converting enzyme 2 (ACE2) maintains the homeostasis of RAS as a negative regulator. Recently, ACE2 was identified as the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus that is causing the pandemic of Coronavirus disease 2019 (COVID-19). Since SARS-CoV-2 must bind with ACE2 before entering the host cells in humans, the distribution and expression of ACE2 may be critical for the target organ of the SARS-CoV-2 infection. Moreover, accumulating evidence has demonstrated the implication of ACE2 in the pathological progression in tissue injury and several chronic diseases, ACE2 may also be essential in the progression and clinical outcomes of COVID-19. Therefore, we summarized the expression and activity of ACE2 in various physiological and pathological conditions, and discussed its potential implication in the susceptibility of SARS-CoV-2 infection and the progression and prognosis of COVID-19 patients in the current review.
Collapse
Affiliation(s)
- Yanwei Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China; School of Medicine, Southeast University, Nanjing, 210000, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Li Yang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Ran You
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
336
|
Polina I, Domondon M, Fox R, Sudarikova AV, Troncoso M, Vasileva VY, Kashyrina Y, Gooz MB, Schibalski RS, DeLeon-Pennell KY, Fitzgibbon WR, Ilatovskaya DV. Differential effects of low-dose sacubitril and/or valsartan on renal disease in salt-sensitive hypertension. Am J Physiol Renal Physiol 2020; 319:F63-F75. [PMID: 32463726 PMCID: PMC7468826 DOI: 10.1152/ajprenal.00125.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Diuretics and renin-angiotensin system blockers are often insufficient to control the blood pressure (BP) in salt-sensitive (SS) subjects. Abundant data support the proposal that the level of atrial natriuretic peptide may correlate with the pathogenesis of SS hypertension. We hypothesized here that increasing atrial natriuretic peptide levels with sacubitril, combined with renin-angiotensin system blockage by valsartan, can be beneficial for alleviation of renal damage in a model of SS hypertension, the Dahl SS rat. To induce a BP increase, rats were challenged with a high-salt 4% NaCl diet for 21 days, and chronic administration of vehicle or low-dose sacubitril and/or valsartan (75 μg/day each) was performed. Urine flow, Na+ excretion, and water consumption were increased on the high-salt diet compared with the starting point (0.4% NaCl) in all groups but remained similar among the groups at the end of the protocol. Upon salt challenge, we observed a mild decrease in systolic BP and urinary neutrophil gelatinase-associated lipocalin levels (indicative of alleviated tubular damage) in the valsartan-treated groups. Sacubitril, as well as sacubitril/valsartan, attenuated the glomerular filtration rate decline induced by salt. Alleviation of protein cast formation and lower renal medullary fibrosis were observed in the sacubitril/valsartan- and valsartan-treated groups, but not when sacubitril alone was administered. Interestingly, proteinuria was mildly mitigated only in rats that received sacubitril/valsartan. Further studies of the effects of sacubitril/valsartan in the setting of SS hypertension, perhaps involving a higher dose of the drug, are warranted to determine if it can interfere with the progression of the disease.
Collapse
Affiliation(s)
- Iuliia Polina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Mark Domondon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca Fox
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Anastasia V Sudarikova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Miguel Troncoso
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Valeriia Y Vasileva
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuliia Kashyrina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Beck Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Ryan S Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
337
|
Song T, Lv M, Sun B, Zheng L, Zhao M. Tripeptides Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) Regulate the Proliferation and Migration of Vascular Smooth Muscle Cells by Interfering Ang II-Induced Human Umbilical Vein Endothelial Cells Derived EVs Delivering RNAs to VSMCs in the Co-culture Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6628-6637. [PMID: 32407109 DOI: 10.1021/acs.jafc.0c02060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Angiotensin II (Ang II), a vasoactive factor in the renin-angiotensin-aldosterone system (RAAS), can regulate vasoconstriction and promote multiple vascular diseases. In this study, the effects of potent antihypertensive peptide Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) on the proliferation and migration of vascular smooth muscle cells (VSMCs) by extracellular vesicles (EVs) from vascular endothelial cells (VECs) were studied using a cell co-culture model. The VEC-derived EVs were isolated, characterized, and investigated. The present study demonstrated that the EVs from Ang II-induced VECs could promote proliferation, migration, and inflammatory factors (IL-6 increased to 40.75 ± 4.33 pg/mL and IL-1β increased to 28.62 ± 5.42 pg/mL) generation of VSMCs, VPP and IPP exerted discrepant inhibitory effects on this pathway. The EVs with RNase treatment lost the effects on VSMCs, indicating that the RNAs packed into vesicles may be a critical component. These results implied that VPP and IPP could alleviate Ang II-induced vascular dysfunction by modulating the EV-mediated transmission of RNAs between VECs and VSMCs.
Collapse
Affiliation(s)
- Tianyuan Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Miao Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
338
|
He LH, Ren LF, Li JF, Wu YN, Li X, Zhang L. Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection. Front Microbiol 2020; 11:1388. [PMID: 32582138 PMCID: PMC7295895 DOI: 10.3389/fmicb.2020.01388] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly worldwide, seriously endangering human health. In addition to the typical symptoms of pulmonary infection, patients with COVID-19 have been reported to have gastrointestinal symptoms and/or intestinal flora dysbiosis. It is known that a healthy intestinal flora is closely related to the maintenance of pulmonary and systemic health by regulating the host immune homeostasis. Role of the “gut-lung axis” has also been well-articulated. This review provides a novel suggestion that intestinal flora may be one of the mediators of the gastrointestinal responses and abnormal immune responses in hosts caused by SARS-CoV-2; improving the composition of intestinal flora and the proportion of its metabolites through probiotics, and personalized diet could be a potential strategy to prevent and treat COVID-19. More clinical and evidence-based medical trials may be initiated to determine the strategy.
Collapse
Affiliation(s)
- Li-Hong He
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Jun-Feng Li
- The Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Na Wu
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou, China
| |
Collapse
|
339
|
Bezerra KRV, Tanaka SCSV, Silva VRS, Paschoinni MC, Grecco RLDS, Soardi FC, Balarin MAS. Contribution of rs1799998 polymorphism in CYP11B2 gene in susceptibility to preeclampsia. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2020. [DOI: 10.1590/1806-93042020000200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Objectives: the present study aimed to evaluate the association between the rs1799998 polymorphism of the CYP11B2 gene and the susceptibility to preeclampsia (PE) in a Brazilian population. Methods: the study group comprised 61 women who were diagnosed with PE. The control group included 116 women who did not show changes in their blood pressure levels during their pregnancies. The rs1799998 polymorphism of the CYP11B2 gene was amplified by allele-specific polymerase chain reaction (PCR). A multiple logistic regression analysis was performed using the SNPStat program to evaluate the risk of the CYP11B2 gene rs1799998 polymorphism contributing to PE. Results: the PE group had the following genotypes: 1.64% CC, 91.80% CT, and 6.56% TT. In the control group, the observed genotypic frequencies were: 11% CC, 73% CT, and 16% TT. The genotypic frequency distribution did not fit the Hardy Weinberg Equilibrium (HWE) in either study group. The multiple logistic regression analysis showed a statistically significant difference for the rs1799998 polymorphism in the recessive model. Conclusion: the results suggest an association between the recessive model of C/C genotype of the rs1799998 polymorphism of the CYP11B2 gene and susceptibility to PE.
Collapse
|
340
|
Tseng Y, Yang R, Lu T. Two hits to the renin-angiotensin system may play a key role in severe COVID-19. Kaohsiung J Med Sci 2020; 36:389-392. [PMID: 32492292 PMCID: PMC7300771 DOI: 10.1002/kjm2.12237] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The spike glycoprotein on the virion surface docking onto the angiotensin-converting enzyme (ACE) 2 dimer is an essential step in the process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in human cells-involves downregulation of ACE2 expression with systemic renin-angiotensin system (RAS) imbalance and promotion of multi-organ damage. In general, the RAS induces vasoconstriction, hypertension, inflammation, fibrosis, and proliferation via the ACE/Ang II/Ang II type 1 receptor (AT1R) axis and induces the opposite effects via the ACE2/Ang (1-7)/Mas axis. The RAS may be activated by chronic inflammation in hypertension, diabetes, obesity, and cancer. SARS-CoV-2 induces the ACE2 internalization and shedding, leading to the inactivation of the ACE2/Ang (1-7)/Mas axis. Therefore, we hypothesize that two hits to the RAS drives COVID-19 progression. In brief, the first hit originates from chronic inflammation activating the ACE/Ang II/AT1R axis, and the second originates from the COVID-19 infection inactivating the ACE2/Ang (1-7)/Mas axis. Moreover, the two hits to the RAS may be the primary reason for increased mortality in patients with COVID-19 who have comorbidities and may serve as a therapeutic target for COVID-19 treatment.
Collapse
Affiliation(s)
- Yu‐Hsin Tseng
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Rei‐Cheng Yang
- Department of PediatricsKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Tzong‐Shi Lu
- Department of Medicine, Renal DivisionBrigham and Women's HospitalBostonMassachusettsUSA
| |
Collapse
|
341
|
Massaro M, Scoditti E, Carluccio MA, Calabriso N, Santarpino G, Verri T, De Caterina R. Effects of Olive Oil on Blood Pressure: Epidemiological, Clinical, and Mechanistic Evidence. Nutrients 2020; 12:E1548. [PMID: 32466599 PMCID: PMC7352724 DOI: 10.3390/nu12061548] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
The increasing access to antihypertensive medications has improved longevity and quality of life in hypertensive patients. Nevertheless, hypertension still remains a major risk factor for stroke and myocardial infarction, suggesting the need to implement management of pre- and hypertensive patients. In addition to antihypertensive medications, lifestyle changes, including healthier dietary patterns, such as the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean diet, have been shown to favorably affect blood pressure and are now recommended as integrative tools in hypertension management. An analysis of the effects of nutritional components of the Mediterranean diet(s) on blood pressure has therefore become mandatory. After a literature review of the impact of Mediterranean diet(s) on cardiovascular risk factors, we here analyze the effects of olive oil and its major components on blood pressure in healthy and cardiovascular disease individuals and examine underlying mechanisms of action. Both experimental and human studies agree in showing anti-hypertensive effects of olive oil. We conclude that due to its high oleic acid and antioxidant polyphenol content, the consumption of olive oil may be advised as the optimal fat choice in the management protocols for hypertension in both healthy and cardiovascular disease patients.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology, 73100 Lecce, Italy; (E.S.); (M.A.C.); (N.C.)
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Giuseppe Santarpino
- Cardiovascular Center, Paracelsus Medical University, 90471 Nuremberg, Germany;
- GVM Care & Research, Città di Lecce Hospital, 73100 Lecce, Italy
- Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | | |
Collapse
|
342
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
343
|
Tribulova N, Kurahara LH, Hlivak P, Hirano K, Szeiffova Bacova B. Pro-Arrhythmic Signaling of Thyroid Hormones and Its Relevance in Subclinical Hyperthyroidism. Int J Mol Sci 2020; 21:E2844. [PMID: 32325836 PMCID: PMC7215427 DOI: 10.3390/ijms21082844] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
A perennial task is to prevent the occurrence and/or recurrence of most frequent or life-threatening cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF). VF may be lethal in cases without an implantable cardioverter defibrillator or with failure of this device. Incidences of AF, even the asymptomatic ones, jeopardize the patient's life due to its complication, notably the high risk of embolic stroke. Therefore, there has been a growing interest in subclinical AF screening and searching for novel electrophysiological and molecular markers. Considering the worldwide increase in cases of thyroid dysfunction and diseases, including thyroid carcinoma, we aimed to explore the implication of thyroid hormones in pro-arrhythmic signaling in the pathophysiological setting. The present review provides updated information about the impact of altered thyroid status on both the occurrence and recurrence of cardiac arrhythmias, predominantly AF. Moreover, it emphasizes the importance of both thyroid status monitoring and AF screening in the general population, as well as in patients with thyroid dysfunction and malignancies. Real-world data on early AF identification in relation to thyroid function are scarce. Even though symptomatic AF is rare in patients with thyroid malignancies, who are under thyroid suppressive therapy, clinicians should be aware of potential interaction with asymptomatic AF. It may prevent adverse consequences and improve the quality of life. This issue may be challenging for an updated registry of AF in clinical practice. Thyroid hormones should be considered a biomarker for cardiac arrhythmias screening and their tailored management because of their multifaceted cellular actions.
Collapse
Affiliation(s)
- Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 76 0793, Japan; (L.H.K.); (K.H.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa 76 0793, Japan; (L.H.K.); (K.H.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia
| |
Collapse
|
344
|
Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab 2020; 22 Suppl 1:16-31. [PMID: 32267077 DOI: 10.1111/dom.13969] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease around the globe and is one of the main complications in patients with type 1 and 2 diabetes. The standard treatment for DKD is drugs controlling hyperglycemia and high blood pressure. Renin angiotensin aldosterone system blockade and sodium glucose cotransporter 2 (SGLT2) inhibition have yielded promising results in DKD, but many diabetic patients on such treatments nevertheless continue to develop DKD, leading to kidney failure and cardiovascular comorbidities. New therapeutic options are urgently required. We review here the promising therapeutic avenues based on insights into the mechanisms of DKD that have recently emerged, including mineralocorticoid receptor antagonists, SGLT2 inhibitors, glucagon-like peptide-1 receptor agonist, endothelin receptor A inhibition, anti-inflammatory agents, autophagy activators and epigenetic remodelling. The involvement of several molecular mechanisms in DKD pathogenesis, together with the genetic and epigenetic variability of this condition, makes it difficult to target this heterogeneous patient population with a single drug. Personalized medicine, taking into account the genetic and mechanistic variability, may therefore improve renal and cardiovascular protection in diabetic patients with DKD.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frédéric Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
- INSERM U1116, Clinical Investigation Centre, Lorraine University, Vandoeuvre-lès-Nancy, France
- INI-CRCT (Cardiovascular and Renal Clinical Trialists) F-CRIN Network, Nancy, France
| |
Collapse
|
345
|
Wang K, Zhu H, Zhao H, Zhang K, Tian Y. Application of carbamyl in structural optimization. Bioorg Chem 2020; 98:103757. [PMID: 32217370 DOI: 10.1016/j.bioorg.2020.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Carbamyl is considered a privileged structure in medicinal chemistry. It has a wide range of biological activities such as antimicrobial, anticancer, anti-epilepsy, for which the best evidence is a number of marketed carbamyl-containing drugs. Carbamyl is formed of primary amine and carbonyl moieties that act as hydrogen bond donors and hydrogen acceptors with residues of targets respectively, which are benefit for improving pharmacological activities. In other cases, the introduced carbamyl improves drug-like properties including oral bioavailability. In this review, we introduce the carbamyl-containing drugs and the application of carbamyl in structural optimization as a result of enhancing activities or/and drug-like properties.
Collapse
Affiliation(s)
- Kuanglei Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Hongxi Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hongqian Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yongshou Tian
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
346
|
Gideon A, Sauter C, Fieres J, Berger T, Renner B, Wirtz PH. Kinetics and Interrelations of the Renin Aldosterone Response to Acute Psychosocial Stress: A Neglected Stress System. J Clin Endocrinol Metab 2020; 105:5618777. [PMID: 31711229 PMCID: PMC7034950 DOI: 10.1210/clinem/dgz190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
CONTEXT The renin-angiotensin-aldosterone system (RAAS) plays an important role in cardiovascular homeostasis and its dysfunction relates to negative health consequences. Acute psychosocial stress seems to activate the RAAS in humans, but stress kinetics and interrelations of RAAS parameters compared with a nonstress control group remain inconclusive. OBJECTIVE We systematically investigated in a randomized placebo-controlled design stress kinetics and interrelations of the reactivity of RAAS parameters measured in plasma and saliva to standardized acute psychosocial stress induction. METHODS 58 healthy young men were assigned to either a stress or a placebo control group. The stress group underwent the Trier Social Stress Test (TSST), while the control group underwent the placebo TSST. We repeatedly assessed plasma renin, and plasma and salivary aldosterone before and up to 3 hours after stress/placebo. We simultaneously assessed salivary cortisol to validate successful stress induction and to test for interrelations. RESULTS Acute psychosocial stress induced significant increases in all endocrine measures compared with placebo-stress (all P ≤ .041). Highest renin levels were observed 1 minute after stress, and highest aldosterone and cortisol levels 10 and 20 minutes after stress, with salivary aldosterone starting earlier at 1 minute after stress. Renin completed recovery at 10 minutes, cortisol at 60 minutes, salivary aldosterone at 90 minutes, and plasma aldosterone at 180 minutes after stress. Stress increase scores of all endocrine measures related to each other, as did renin and cortisol areas under the curve with respect to increase (AUCi) and salivary and plasma aldosterone AUCi (all P ≤ .047). CONCLUSIONS Our findings suggest that in humans acute psychosocial stress induces a differential and interrelated RAAS parameter activation pattern. Potential implications for stress-related cardiovascular risk remain to be elucidated.
Collapse
Affiliation(s)
- Angelina Gideon
- Biological Work and Health Psychology, University of Konstanz, Germany
| | - Christine Sauter
- Biological Work and Health Psychology, University of Konstanz, Germany
| | - Judy Fieres
- Biological Work and Health Psychology, University of Konstanz, Germany
| | - Thilo Berger
- Biological Work and Health Psychology, University of Konstanz, Germany
| | - Britta Renner
- Health Psychology, University of Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Germany
| | - Petra H Wirtz
- Biological Work and Health Psychology, University of Konstanz, Germany
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, Germany
- Correspondence and Reprint Requests: Petra H. Wirtz, PhD, Biological Work and Health Psychology, University of Konstanz Universitaetsstrasse 10, 78457 Konstanz, Germany. E-mail:
| |
Collapse
|
347
|
Associations Between Polymorphisms of Endothelial Nitric Oxide Synthase, Matrix Metalloproteinase 3, Angiotensinogen, and Angiotensin II Type 1 Receptor and Risk of Restenosis After Percutaneous Coronary Intervention: A Meta-analysis. Clin Ther 2020; 42:458-474. [DOI: 10.1016/j.clinthera.2020.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 01/21/2023]
|
348
|
De Oliveira TV, Guimarães AP, Bressan GC, Maia ER, Coimbra JSDR, Polêto MD, De Oliveira EB. Structural and molecular bases of angiotensin-converting enzyme inhibition by bovine casein-derived peptides: an in silico molecular dynamics approach. J Biomol Struct Dyn 2020; 39:1386-1403. [PMID: 32066337 DOI: 10.1080/07391102.2020.1730243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The angiotensin-converting enzyme (ACE) plays a key role in blood pressure regulation process, and its inhibition is one of the main drug targets for the treatment of hypertension. Though various peptides from milk proteins are well-known for their ACE-inhibitory capacity, research devoted to understand the molecular bases of such property remain scarce, specifically for such peptides. Therefore, in this work, computational molecular docking and molecular dynamics calculations were performed to enlighten the intermolecular interactions involved in ACE inhibition by six different casein-derived peptides (FFVAPFPEVFGK, FALPQYLK, ALNEINQFYQK, YLGYLEQLLR, HQGLPQEVLNENLLR and NAVPITPTLNR). Two top ranked docking poses for each peptide (one with N- and the other C-terminal peptide extremity oriented towards the ACE active site) were selected for dynamic simulations (50 ns; GROMOS53A6 force field), and the results were correlated to in vitro ACE inhibition capacity. Two molecular features appeared to be essential for peptides to present high ACE inhibition capacity in vitro: i) to interact with the S1 active site residues (Ala354, Glu384, and Tyr523) by hydrogen bonds; ii) to interact with Zn2+ coordinated residues (His383, His387, and Glu411) by short-lenght hydrogen bonds, as observed in the cases of ALNEINQFYQK (IACE = 80.7%), NAVPITPTLNR (IACE = 80.7%), and FALPQYLK (IACE = 79.0%). Regardless of the temporal stability of these strong interactions, they promoted some disruption of Zn2+ tetrahedral coordination during the molecular dynamics trajectories, and were pointed as the main reason for the greatest ACE inhibition by these peptides. On the other hand, peptides with intermediate inhibition capacity (50% < IACE < 45%) interacted mainly by weaker interactions (e.g.: electrostatic and hydrophobic) with the Zn2+ coordinated residues, and were not able to change significantly its tetrahedral coordination structure. These findings may: i) assist the discrimination in silico of "good" and "bad" ACE-inhibitory peptides from other food sources, and/or ii) aid in designing de novo new molecules with ACE-inhibitory capacity. Communicated by Ramaswamy Sarma.
Collapse
Affiliation(s)
| | - Ana Paula Guimarães
- Departamento de Química (DEQ), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular (DBB), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Elaine Rose Maia
- Laboratório de Estudos Estruturais Moleculares (LEEM), Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Marcelo Depólo Polêto
- Departamento de Biologia Geral (DBG), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | |
Collapse
|
349
|
Heart failure with preserved ejection fraction: present status and future directions. Exp Mol Med 2019; 51:1-9. [PMID: 31857581 PMCID: PMC6923411 DOI: 10.1038/s12276-019-0323-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The clinical importance of heart failure with preserved ejection fraction (HFpEF) has recently become apparent. HFpEF refers to heart failure (HF) symptoms with normal or near-normal cardiac function on echocardiography. Common clinical features of HFpEF include diastolic dysfunction, reduced compliance, and ventricular hypokinesia. HFpEF differs from the better-known HF with reduced ejection fraction (HFrEF). Despite having a "preserved ejection fraction," patients with HFpEF have symptoms such as shortness of breath, excessive tiredness, and limited exercise capability. Furthermore, the mortality rate and cumulative survival rate are as severe in HFpEF as they are in HFrEF. While beta-blockers and renin-angiotensin-aldosterone system modulators can improve the survival rate in HFrEF, no known therapeutic agents show similar effectiveness in HFpEF. Researchers have examined molecular events in the development of HFpEF using small and middle-sized animal models. This review discusses HFpEF with regard to etiology and clinical features and introduces the use of mouse and other animal models of human HFpEF.
Collapse
|
350
|
Gomolka RS, Ciritsis A, Meier A, Rossi C. Quantification of sodium T1 in abdominal tissues at 3 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:439-446. [DOI: 10.1007/s10334-019-00786-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/10/2019] [Accepted: 10/04/2019] [Indexed: 02/02/2023]
|