351
|
Abstract
PURPOSE OF REVIEW The angiopoietin-like proteins (ANGPTLs), consisting of ANGPTL3, ANGPTL4, and ANGPTL8, have gained significant interest for their role as inhibitors of lipoprotein lipase (LPL) and for their potential as therapeutic targets for correcting dyslipidemia. This review provides an overview of the most relevant new insights on the connection between ANGPTLs, plasma lipids, and coronary artery disease. RECENT FINDINGS Carriers of loss-of-function variants in ANGPTL3 have a reduced risk of coronary artery disease and reduced plasma levels of triglycerides and LDL-C, while carriers of loss-of-function variants in ANGPTL4 have a reduced risk of coronary artery disease and reduced plasma levels of triglycerides and increased HDL-C. There is evidence that carrier status of ANGPTL4 loss-of-function variants may also influence risk of type 2 diabetes. ANGPTL3 is produced in liver and is released as a complex with ANGPTL8 to suppress LPL activity in fat and muscle tissue. ANGPTL4 is produced by numerous tissues and likely mainly functions as a locally released LPL inhibitor. Both proteins inactivate LPL by catalyzing the unfolding of the hydrolase domain in LPL and by promoting the cleavage of LPL. Antisense oligonucleotide and monoclonal antibody-based inactivation of ANGPTL3 reduce plasma triglyceride and LDL-C levels in human volunteers and suppress atherosclerosis in mouse models. SUMMARY ANGPTL3/ANGPTL8 and ANGPTL4 together assure the appropriate distribution of plasma triglycerides across tissues during different physiological conditions. Large-scale genetic studies provide strong rationale for continued research efforts to pharmacologically inactivate ANGPTL3 and possibly ANGPTL4 to reduce plasma lipids and coronary artery disease risk.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
352
|
Hilton C, Neville MJ, Wittemans LBL, Todorcevic M, Pinnick KE, Pulit SL, Luan J, Kulyté A, Dahlman I, Wareham NJ, Lotta LA, Arner P, Lindgren CM, Langenberg C, Karpe F. MicroRNA-196a links human body fat distribution to adipose tissue extracellular matrix composition. EBioMedicine 2019; 44:467-475. [PMID: 31151930 PMCID: PMC6607082 DOI: 10.1016/j.ebiom.2019.05.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Abdominal fat mass is associated with metabolic risk whilst gluteal femoral fat is paradoxically protective. MicroRNAs are known to be necessary for adipose tissue formation and function but their role in regulating human fat distribution remains largely unexplored. METHODS An initial microarray screen of abdominal subcutaneous and gluteal adipose tissue, with validatory qPCR, identified microRNA-196a as being strongly differentially expressed between gluteal and abdominal subcutaneous adipose tissue. FINDINGS We found that rs11614913, a SNP within pre-miR-196a-2 at the HOXC locus, is an eQTL for miR-196a expression in abdominal subcutaneous adipose tissue (ASAT). Observations in large cohorts showed that rs11614913 increased waist-to-hip ratio, which was driven specifically by an expansion in ASAT. In further experiments, rs11614913 was associated with adipocyte size. Functional studies and transcriptomic profiling of miR-196a knock-down pre-adipocytes revealed a role for miR-196a in regulating pre-adipocyte proliferation and extracellular matrix pathways. INTERPRETATION These data identify a role for miR-196a in regulating human body fat distribution. FUND: This work was supported by the Medical Research Council and Novo Nordisk UK Research Foundation (G1001959) and Swedish Research Council. We acknowledge the OBB-NIHR Oxford Biomedical Research Centre and the British Heart Foundation (BHF) (RG/17/1/32663). Work performed at the MRC Epidemiology Unit was funded by the United Kingdom's Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Trust, Oxford OX3 7LE, UK.
| | - Laura B L Wittemans
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, UK; Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marijana Todorcevic
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Sara L Pulit
- Big Data Institute, University of Oxford, Oxford OX3 7FZ, UK; Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, UK; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jian'an Luan
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Agné Kulyté
- Department of Medicine (H7), Karolinska Institutet at Karolinska University Hospital - Huddinge, 141 86 Stockholm, Sweden
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institutet at Karolinska University Hospital - Huddinge, 141 86 Stockholm, Sweden
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Luca A Lotta
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet at Karolinska University Hospital - Huddinge, 141 86 Stockholm, Sweden
| | - Cecilia M Lindgren
- Big Data Institute, University of Oxford, Oxford OX3 7FZ, UK; Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, UK
| | - Claudia Langenberg
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Trust, Oxford OX3 7LE, UK.
| |
Collapse
|
353
|
Abstract
PURPOSE OF REVIEW Residual cardiovascular disease risk and increasing metabolic syndrome risk underscores a need for novel therapeutics targeting lipid metabolism in humans. Unbiased human genetic screens have proven powerful in identifying novel genomic loci, and this review discusses recent developments in such discovery. RECENT FINDINGS Recent human genome-wide association studies have been completed in incredibly large, detailed cohorts, allowing for the identification of more than 300 genomic loci that participate in the regulation of plasma lipid metabolism. However, the discovery of these loci has greatly outpaced the elucidation of the underlying functional mechanisms. The identification of novel roles for long noncoding RNAs, such as CHROME, LeXis, and MeXis, in lipid metabolism suggests that noncoding RNAs should be included in the functional translation of GWAS loci. SUMMARY Unbiased genetic studies appear to have unearthed a great deal of novel biology with respect to lipid metabolism, yet translation of these findings into actionable mechanisms has been slow. Increased focus on the translation, rather than the discovery, of these loci, with new attention paid to lncRNAs, can help spur the development of novel therapeutics targeting lipid metabolism.
Collapse
Affiliation(s)
- Elizabeth E. Ha
- Cardiometabolic Genomics Program, Division of Cardiology, Department of
Medicine, Columbia University, New York, NY, 10032
| | - Andrew G. Van Camp
- Cardiometabolic Genomics Program, Division of Cardiology, Department of
Medicine, Columbia University, New York, NY, 10032
| | - Robert C. Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of
Medicine, Columbia University, New York, NY, 10032
| |
Collapse
|
354
|
Regional fat depot masses are influenced by protein-coding gene variants. PLoS One 2019; 14:e0217644. [PMID: 31145760 PMCID: PMC6542527 DOI: 10.1371/journal.pone.0217644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Waist-to-hip ratio (WHR) is a prominent cardiometabolic risk factor that increases cardio-metabolic disease risk independently of BMI and for which multiple genetic loci have been identified. However, WHR is a relatively crude proxy for fat distribution and it does not capture all variation in fat distribution. We here present a study of the role of coding genetic variants on fat mass in 6 distinct regions of the body, based on dual-energy X-ray absorptiometry imaging on more than 17k participants. We find that the missense variant CCDC92S70C, previously associated with WHR, is associated specifically increased leg fat mass and reduced visceral but not subcutaneous central fat. The minor allele-carrying transcript of CCDC92 is constitutively more highly expressed in adipose tissue samples. In addition, we identify two coding variants in SPATA20 and UQCC1 that are associated with arm fat mass. SPATA20K422R is a low-frequency variant with a large effect on arm fat only, and UQCC1R51Q is a common variant reaching significance for arm but showing similar trends in other subcutaneous fat depots. Our findings support the notion that different fat compartments are regulated by distinct genetic factors.
Collapse
|
355
|
Abstract
Purpose of Review Apolipoprotein C-III (apoC-III) is known to inhibit lipoprotein lipase (LPL) and function as an important regulator of triglyceride metabolism. In addition, apoC-III has also more recently been identified as an important risk factor for cardiovascular disease. This review summarizes the mechanisms by which apoC-III induces hypertriglyceridemia and promotes atherogenesis, as well as the findings from recent clinical trials using novel strategies for lowering apoC-III. Recent Findings Genetic studies have identified subjects with heterozygote loss-of-function (LOF) mutations in APOC3, the gene coding for apoC-III. Clinical characterization of these individuals shows that the LOF variants associate with a low-risk lipoprotein profile, in particular reduced plasma triglycerides. Recent results also show that complete deficiency of apoC-III is not a lethal mutation and is associated with very rapid lipolysis of plasma triglyceride-rich lipoproteins (TRL). Ongoing trials based on emerging gene-silencing technologies show that intervention markedly lowers apoC-III levels and, consequently, plasma triglyceride. Unexpectedly, the evidence points to apoC-III not only inhibiting LPL activity but also suppressing removal of TRLs by LPL-independent pathways. Summary Available data clearly show that apoC-III is an important cardiovascular risk factor and that lifelong deficiency of apoC-III is cardioprotective. Novel therapies have been developed, and results from recent clinical trials indicate that effective reduction of plasma triglycerides by inhibition of apoC-III might be a promising strategy in management of severe hypertriglyceridemia and, more generally, a novel approach to CHD prevention in those with elevated plasma triglyceride.
Collapse
|
356
|
Abstract
PURPOSE OF REVIEW APOL1 nephropathy risk variants drive most of the excess risk of chronic kidney disease (CKD) seen in African Americans, but whether the same risk variants account for excess cardiovascular risk remains unclear. This mini-review highlights the controversies in the APOL1 cardiovascular field. RECENT FINDINGS In the past 10 years, our understanding of how APOL1 risk variants contribute to renal cytotoxicity has increased. Some of the proposed mechanisms for kidney disease are biologically plausible for cells and tissues relevant to cardiovascular disease (CVD), but cardiovascular studies published since 2014 have reported conflicting results regarding APOL1 risk variant association with cardiovascular outcomes. In the past year, several studies have also contributed conflicting results from different types of study populations. SUMMARY Heterogeneity in study population and study design has led to differing reports on the role of APOL1 nephropathy risk variants in CVD. Without consistently validated associations between these risk variants and CVD, mechanistic studies for APOL1's role in cardiovascular biology lag behind.
Collapse
|
357
|
Abstract
Lipoprotein lipase (LPL) plays a central role in triglyceride (TG) metabolism. By catalyzing the hydrolysis of TGs present in TG-rich lipoproteins (TRLs), LPL facilitates TG utilization and regulates circulating TG and TRL concentrations. Until very recently, structural information for LPL was limited to homology models, presumably due to the propensity of LPL to unfold and aggregate. By coexpressing LPL with a soluble variant of its accessory protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) and with its chaperone protein lipase maturation factor 1 (LMF1), we obtained a stable and homogenous LPL/GPIHBP1 complex that was suitable for structure determination. We report here X-ray crystal structures of human LPL in complex with human GPIHBP1 at 2.5-3.0 Å resolution, including a structure with a novel inhibitor bound to LPL. Binding of the inhibitor resulted in ordering of the LPL lid and lipid-binding regions and thus enabled determination of the first crystal structure of LPL that includes these important regions of the protein. It was assumed for many years that LPL was only active as a homodimer. The structures and additional biochemical data reported here are consistent with a new report that LPL, in complex with GPIHBP1, can be active as a monomeric 1:1 complex. The crystal structures illuminate the structural basis for LPL-mediated TRL lipolysis as well as LPL stabilization and transport by GPIHBP1.
Collapse
|
358
|
Kuller LH. Epidemiologists of the Future: Data Collectors or Scientists? Am J Epidemiol 2019; 188:890-895. [PMID: 30877293 DOI: 10.1093/aje/kwy221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Epidemiology is the study of epidemics. It is a biological science that includes expertise in many disciplines in social and behavioral sciences. Epidemiology is also a key component of preventive medicine and public health. Unfortunately, over recent years, academic epidemiology has lost its relationship with preventive medicine, as well as much of its focus on epidemics. The new "-omics" technologies to measure risk factors and phenotypes, and advances in genomics (e.g., host susceptibility) consistent with good epidemiology methods will likely enhance epidemiology research. There is a need based on these new technologies to modify training, especially for the first-level doctorate epidemiologist.
Collapse
Affiliation(s)
- Lewis H Kuller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
359
|
Bentley AR, Sung YJ, Brown MR, Winkler TW, Kraja AT, Ntalla I, Schwander K, Chasman DI, Lim E, Deng X, Guo X, Liu J, Lu Y, Cheng CY, Sim X, Vojinovic D, Huffman JE, Musani SK, Li C, Feitosa MF, Richard MA, Noordam R, Baker J, Chen G, Aschard H, Bartz TM, Ding J, Dorajoo R, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Zhao W, Graff M, Alver M, Boissel M, Chai JF, Chen X, Divers J, Evangelou E, Gao C, Goel A, Hagemeijer Y, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Hung YJ, Jackson AU, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lin KH, Luan J, Lyytikäinen LP, Matoba N, Nolte IM, Pietzner M, Prins B, Riaz M, Robino A, Said MA, Schupf N, Scott RA, Sofer T, Stancáková A, Takeuchi F, Tayo BO, van der Most PJ, Varga TV, Wang TD, Wang Y, Ware EB, Wen W, Xiang YB, Yanek LR, Zhang W, Zhao JH, Adeyemo A, Afaq S, Amin N, Amini M, Arking DE, Arzumanyan Z, Aung T, Ballantyne C, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Broeckel U, Brown M, Cade BE, Campbell A, Canouil M, Charumathi S, Chen YDI, Christensen K, et alBentley AR, Sung YJ, Brown MR, Winkler TW, Kraja AT, Ntalla I, Schwander K, Chasman DI, Lim E, Deng X, Guo X, Liu J, Lu Y, Cheng CY, Sim X, Vojinovic D, Huffman JE, Musani SK, Li C, Feitosa MF, Richard MA, Noordam R, Baker J, Chen G, Aschard H, Bartz TM, Ding J, Dorajoo R, Manning AK, Rankinen T, Smith AV, Tajuddin SM, Zhao W, Graff M, Alver M, Boissel M, Chai JF, Chen X, Divers J, Evangelou E, Gao C, Goel A, Hagemeijer Y, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Hung YJ, Jackson AU, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lin KH, Luan J, Lyytikäinen LP, Matoba N, Nolte IM, Pietzner M, Prins B, Riaz M, Robino A, Said MA, Schupf N, Scott RA, Sofer T, Stancáková A, Takeuchi F, Tayo BO, van der Most PJ, Varga TV, Wang TD, Wang Y, Ware EB, Wen W, Xiang YB, Yanek LR, Zhang W, Zhao JH, Adeyemo A, Afaq S, Amin N, Amini M, Arking DE, Arzumanyan Z, Aung T, Ballantyne C, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Broeckel U, Brown M, Cade BE, Campbell A, Canouil M, Charumathi S, Chen YDI, Christensen K, Concas MP, Connell JM, de las Fuentes L, de Silva HJ, de Vries PS, Doumatey A, Duan Q, Eaton CB, Eppinga RN, Faul JD, Floyd JS, Forouhi NG, Forrester T, Friedlander Y, Gandin I, Gao H, Ghanbari M, Gharib SA, Gigante B, Giulianini F, Grabe HJ, Gu CC, Harris TB, Heikkinen S, Heng CK, Hirata M, Hixson JE, Ikram MA, Jia Y, Joehanes R, Johnson C, Jonas JB, Justice AE, Katsuya T, Khor CC, Kilpeläinen TO, Koh WP, Kolcic I, Kooperberg C, Krieger JE, Kritchevsky SB, Kubo M, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lehne B, Lewis CE, Li Y, Liang J, Lin S, Liu CT, Liu J, Liu K, Loh M, Lohman KK, Louie T, Luzzi A, Mägi R, Mahajan A, Manichaikul AW, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mohlke KL, Momozawa Y, Morris AP, Murray AD, Nalls MA, Nauck M, Nelson CP, North KE, O'Connell JR, Palmer ND, Papanicolau GJ, Pedersen NL, Peters A, Peyser PA, Polasek O, Poulter N, Raitakari OT, Reiner AP, Renström F, Rice TK, Rich SS, Robinson JG, Rose LM, Rosendaal FR, Rudan I, Schmidt CO, Schreiner PJ, Scott WR, Sever P, Shi Y, Sidney S, Sims M, Smith JA, Snieder H, Starr JM, Strauch K, Stringham HM, Tan NYQ, Tang H, Taylor KD, Teo YY, Tham YC, Tiemeier H, Turner ST, Uitterlinden AG, van Heemst D, Waldenberger M, Wang H, Wang L, Wang L, Wei WB, Williams CA, Wilson G, Wojczynski MK, Yao J, Young K, Yu C, Yuan JM, Zhou J, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Cooper RS, de Faire U, Deary IJ, Elliott P, Esko T, Farrall M, Franks PW, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Juang JMJ, Kamatani Y, Kammerer CM, Kato N, Kooner JS, Laakso M, Laurie CC, Lee IT, Lehtimäki T, Magnusson PKE, Oldehinkel AJ, Penninx BWJH, Pereira AC, Rauramaa R, Redline S, Samani NJ, Scott J, Shu XO, van der Harst P, Wagenknecht LE, Wang JS, Wang YX, Wareham NJ, Watkins H, Weir DR, Wickremasinghe AR, Wu T, Zeggini E, Zheng W, Bouchard C, Evans MK, Gudnason V, Kardia SLR, Liu Y, Psaty BM, Ridker PM, van Dam RM, Mook-Kanamori DO, Fornage M, Province MA, Kelly TN, Fox ER, Hayward C, van Duijn CM, Tai ES, Wong TY, Loos RJF, Franceschini N, Rotter JI, Zhu X, Bierut LJ, Gauderman WJ, Rice K, Munroe PB, Morrison AC, Rao DC, Rotimi CN, Cupples LA. Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nat Genet 2019; 51:636-648. [PMID: 30926973 PMCID: PMC6467258 DOI: 10.1038/s41588-019-0378-y] [Show More Authors] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/07/2019] [Indexed: 12/08/2022]
Abstract
The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.
Collapse
Affiliation(s)
- Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA.
| | - Yun J Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Xuan Deng
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jingmin Liu
- Women's Health Initiative Clinical Coordinating Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yingchang Lu
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Centre for Quantitative Medicine, Academic Medicine Research Institute, Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jennifer E Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa A Richard
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raymond Noordam
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jenna Baker
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Hugues Aschard
- Centre de Bioinformatique, Biostatistique, et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Biostatistics, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jingzhong Ding
- Center on Diabetes, Obesity, and Metabolism, Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Baltimore, MD, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jasmin Divers
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yanick Hagemeijer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andrea R V R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yi-Jen Hung
- Endocrinology and Metabolism, Tri-Service General Hospital, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Pirjo Komulainen
- Foundation for Research in Health, Exercise, and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Karin Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Keng-Hung Lin
- Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jian'an Luan
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Technology, Tampere University, Tampere, Finland
| | - Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ilja M Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Maik Pietzner
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bram Prins
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Muhammad Riaz
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - M Abdullah Said
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Robert A Scott
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Alena Stancáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Peter J van der Most
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Tzung-Dau Wang
- Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yajuan Wang
- Department of Population Quantitative and Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yong-Bing Xiang
- SKLORG and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weihua Zhang
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing Hua Zhao
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Saima Afaq
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marzyeh Amini
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zorayr Arzumanyan
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, USA
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Departments of Pediatrics, Medicine, and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Morris Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Sabanayagam Charumathi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Centre for Quantitative Medicine, Academic Medicine Research Institute, Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kaare Christensen
- Danish Aging Research Center, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - John M Connell
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ayo Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ruben N Eppinga
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Terrence Forrester
- UWI Solutions for Developing Countries, University of the West Indies, Kingston, Jamaica
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ilaria Gandin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruna Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Bethesda, MD, USA
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - James E Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Roby Joehanes
- Hebrew SeniorLife, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Craig Johnson
- Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| | - Jost Bruno Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Capital Medical University, Beijing, China
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ivana Kolcic
- Department of Public Health, Department of Medicine, University of Split, Split, Croatia
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health, Exercise, and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Claudia Langenberg
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Lehne
- Institute of Clinical Sciences, Department of Molecular Sciences, Imperial College, London, UK
| | - Cora E Lewis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingjing Liang
- Department of Population Quantitative and Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shiow Lin
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kiang Liu
- Epidemiology, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marie Loh
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kurt K Lohman
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Anna Luzzi
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Colin A McKenzie
- Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Technische Universität München, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Alison D Murray
- Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Mike A Nalls
- Data Tecnica International, Glen Echo, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - George J Papanicolau
- Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Epidemiology, Faculty of Medicine, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig Maximilian University, Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polasek
- Department of Public Health, Department of Medicine, University of Split, Split, Croatia
- Psychiatric Hospital 'Sveti Ivan', Zagreb, Croatia
- Gen-info, Ltd, Zagreb, Croatia
| | - Neil Poulter
- School of Public Health, Imperial College, London, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jennifer G Robinson
- Department of Epidemiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Frits R Rosendaal
- Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - William R Scott
- Institute of Clinical Sciences, Department of Molecular Sciences, Imperial College, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College, London, UK
| | - Yuan Shi
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Konstantin Strauch
- Genetic Epidemiology, Faculty of Medicine, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig Maximilian University, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Y Q Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Diana van Heemst
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Heming Wang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Lan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Christine A Williams
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory Wilson
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, MS, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kristin Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Baltimore, MD, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
| | - Richard S Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Psychology, University of Edinburgh, Edinburgh, UK
| | - Paul Elliott
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Barry I Freedman
- Nephrology, Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College, London, UK
| | - Paolo Gasparini
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bernardo L Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Jyh-Ming Jimmy Juang
- National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jaspal S Kooner
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - I-Te Lee
- Endocrinology and Metabolism, Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Technology, Tampere University, Tampere, Finland
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Albertine J Oldehinkel
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, the Netherlands
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Rainer Rauramaa
- Foundation for Research in Health, Exercise, and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jun-Sing Wang
- Endocrinology and Metabolism, Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Capital Medical University, Beijing, China
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Eleftheria Zeggini
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Baltimore, MD, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dennis O Mook-Kanamori
- Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Ervin R Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiaofeng Zhu
- Department of Population Quantitative and Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Laura J Bierut
- Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - W James Gauderman
- Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA.
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Framingham Heart Study, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
360
|
Abstract
PURPOSE OF REVIEW To summarize recent findings regarding the characterization of lipoprotein disturbances in nonalcoholic fatty liver disease (NAFLD) and their relationship with cardiovascular disease (CVD) and make recommendations for the management of this situation. RECENT FINDINGS Advanced lipoprotein profile (using NMR spectroscopy) has shown profound lipoprotein derangements which are overlooked with conventional analyses: increased number and size of very low-density lipoproteins particles, increased number of low-density lipoprotein particles (especially small sized), smaller high-density lipoprotein particles, and an increase in the triglyceride content of all these lipoproteins. Other changes such as impaired functionality of high-density lipoprotein particles have also been observed. Beyond low-density lipoprotein-related parameters, the importance of triglyceride-rich lipoproteins in the pathogenesis of atherosclerosis has recently gained interest. Several studies suggest that these lipoproteins may have an independent role in CVD in NAFLD populations. Although outcome studies with lipid-lowering drugs in NAFLD are lacking, treatment with both statins, and especially, triglyceride-lowering drugs could be promising for these populations at high residual cardiovascular risk. SUMMARY In addition to being the main determinant of dyslipidemia, disturbances in triglyceride-rich lipoproteins are thought to be the key factor of increased CVD risk in NAFLD. Treatments specifically aimed at modifying these derangements warrant further study in this high-risk population.
Collapse
Affiliation(s)
- Antonio J Amor
- Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid
| | - Verónica Perea
- Endocrinology and Nutrition Department, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| |
Collapse
|
361
|
Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 2019; 7:313-324. [PMID: 30174213 DOI: 10.1016/s2213-8587(18)30154-2] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. In some patients with NAFLD, isolated steatosis can progress to advanced stages with non-alcoholic steatohepatitis (NASH) and fibrosis, increasing the risk of cirrhosis and hepatocellular carcinoma. Furthermore, NAFLD is believed to be involved in the pathogenesis of common disorders such as type 2 diabetes and cardiovascular disease. In this Review, we highlight novel concepts related to diagnosis, risk prediction, and treatment of NAFLD. First, because NAFLD is a heterogeneous disease, the advanced stages of which seem to be strongly affected by comorbidities such as insulin resistance and type 2 diabetes, early use of reliable, non-invasive diagnostic tools is needed, particularly in patients with insulin resistance or diabetes, to allow the identification of patients at different disease stages. Second, although the strongest genetic risk alleles for NAFLD (ie, the 148Met allele in PNPLA3 and the 167Lys allele in TM6SF2) are associated with increased liver fat content and progression to NASH and cirrhosis, these alleles are also unexpectedly associated with an apparent protection from cardiovascular disease. If consistent across diverse populations, this discordance in NAFLD-related risk prediction between hepatic and extrahepatic disease might need to be accounted for in the management of NAFLD. Third, drug treatments assessed in NAFLD seem to differ with respect to cardiometabolic and antifibrotic efficacy, suggesting the need to better identify and tailor the most appropriate treatment approach, or to use a combination of approaches. These emerging concepts could contribute to the development of a multidisciplinary approach for endocrinologists and hepatologists working together in the management of NAFLD.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany; German Centre for Diabetes Research, Tübingen, Germany.
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany; German Centre for Diabetes Research, Tübingen, Germany
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA; Division of Endocrinology, Malcom Randall Veterans Administration, Medical Center, Gainesville, FL, USA
| |
Collapse
|
362
|
Weissenkampen JD, Jiang Y, Eckert S, Jiang B, Li B, Liu DJ. Methods for the Analysis and Interpretation for Rare Variants Associated with Complex Traits. CURRENT PROTOCOLS IN HUMAN GENETICS 2019; 101:e83. [PMID: 30849219 PMCID: PMC6455968 DOI: 10.1002/cphg.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the advent of Next Generation Sequencing (NGS) technologies, whole genome and whole exome DNA sequencing has become affordable for routine genetic studies. Coupled with improved genotyping arrays and genotype imputation methodologies, it is increasingly feasible to obtain rare genetic variant information in large datasets. Such datasets allow researchers to gain a more complete understanding of the genetic architecture of complex traits caused by rare variants. State-of-the-art statistical methods for the statistical genetics analysis of sequence-based association, including efficient algorithms for association analysis in biobank-scale datasets, gene-association tests, meta-analysis, fine mapping methods that integrate functional genomic dataset, and phenome-wide association studies (PheWAS), are reviewed here. These methods are expected to be highly useful for next generation statistical genetics analysis in the era of precision medicine. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Yu Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| | - Scott Eckert
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Dajiang J. Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey PA
| |
Collapse
|
363
|
Ma Y, Wei P. FunSPU: A versatile and adaptive multiple functional annotation-based association test of whole-genome sequencing data. PLoS Genet 2019; 15:e1008081. [PMID: 31034468 PMCID: PMC6508749 DOI: 10.1371/journal.pgen.1008081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 05/09/2019] [Accepted: 03/11/2019] [Indexed: 11/19/2022] Open
Abstract
Despite ongoing large-scale population-based whole-genome sequencing (WGS) projects such as the NIH NHLBI TOPMed program and the NHGRI Genome Sequencing Program, WGS-based association analysis of complex traits remains a tremendous challenge due to the large number of rare variants, many of which are non-trait-associated neutral variants. External biological knowledge, such as functional annotations based on the ENCODE, Epigenomics Roadmap and GTEx projects, may be helpful in distinguishing causal rare variants from neutral ones; however, each functional annotation can only provide certain aspects of the biological functions. Our knowledge for selecting informative annotations a priori is limited, and incorporating non-informative annotations will introduce noise and lose power. We propose FunSPU, a versatile and adaptive test that incorporates multiple biological annotations and is adaptive at both the annotation and variant levels and thus maintains high power even in the presence of noninformative annotations. In addition to extensive simulations, we illustrate our proposed test using the TWINSUK cohort (n = 1,752) of UK10K WGS data based on six functional annotations: CADD, RegulomeDB, FunSeq, Funseq2, GERP++, and GenoSkyline. We identified genome-wide significant genetic loci on chromosome 19 near gene TOMM40 and APOC4-APOC2 associated with low-density lipoprotein (LDL), which are replicated in the UK10K ALSPAC cohort (n = 1,497). These replicated LDL-associated loci were missed by existing rare variant association tests that either ignore external biological information or rely on a single source of biological knowledge. We have implemented the proposed test in an R package "FunSPU".
Collapse
Affiliation(s)
- Yiding Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
364
|
Davis JP, Vadlamudi S, Roman TS, Zeynalzadeh M, Iyengar AK, Mohlke KL. Enhancer deletion and allelic effects define a regulatory molecular mechanism at the VLDLR cholesterol GWAS locus. Hum Mol Genet 2019; 28:888-895. [PMID: 30445632 PMCID: PMC6400044 DOI: 10.1093/hmg/ddy385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are heritable risk factors for cardiovascular disease, yet the molecular mechanisms underlying the majority of blood lipid-associated genome-wide association studies signals remain elusive. One association signal is located in intron 3 of VLDLR; rs3780181-A is a risk allele associated (P ≤ 2 × 10-9) with increased TC and LDL-C. We investigated variants, genes and mechanisms underlying this association signal. We used a functional genetic approach to show that the intronic region spanning rs3780181 exhibited 1.6-7.6-fold enhancer activity in human HepG2 hepatocyte, THP-1 monocyte and Simpson-Golabi-Behmel Syndrome (SGBS) preadipocyte cells and that the rs3780181-A risk allele showed significantly less enhancer activity compared with the G allele, consistent with the direction of an expression quantitative trait locus in liver. In addition, rs3780181 alleles showed differential binding to multiple nuclear proteins, including stronger IRF2 binding to the rs3780181 G allele. We used a CRISPR-cas9 approach to delete 475 and 663 bp of the putative enhancer element in HEK293T kidney cells; compared to expression of mock-edited cell lines, the homozygous enhancer deletion cell lines showed 1.2-fold significantly (P < 0.04) decreased expression of VLDLR, as well as 1.5-fold decreased expression of SMARCA2, located 388 kb away. Together, these results identify an enhancer of VLDLR expression and suggest that altered binding of one or more factors bound to rs3780181 alleles decreases enhancer activity and reduces at least VLDLR expression, leading to increased TC and LDL-C.
Collapse
Affiliation(s)
- James P Davis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Tamara S Roman
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Monica Zeynalzadeh
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Apoorva K Iyengar
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
365
|
Ference BA, Ray KK, Catapano AL, Ference TB, Burgess S, Neff DR, Oliver-Williams C, Wood AM, Butterworth AS, Di Angelantonio E, Danesh J, Kastelein JJP, Nicholls SJ. Mendelian Randomization Study of ACLY and Cardiovascular Disease. N Engl J Med 2019; 380:1033-1042. [PMID: 30865797 PMCID: PMC7612927 DOI: 10.1056/nejmoa1806747] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND ATP citrate lyase is an enzyme in the cholesterol-biosynthesis pathway upstream of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), the target of statins. Whether the genetic inhibition of ATP citrate lyase is associated with deleterious outcomes and whether it has the same effect, per unit decrease in the low-density lipoprotein (LDL) cholesterol level, as the genetic inhibition of HMGCR is unclear. METHODS We constructed genetic scores composed of independently inherited variants in the genes encoding ATP citrate lyase (ACLY) and HMGCR to create instruments that mimic the effect of ATP citrate lyase inhibitors and HMGCR inhibitors (statins), respectively. We then compared the associations of these genetic scores with plasma lipid levels, lipoprotein levels, and the risk of cardiovascular events and cancer. RESULTS A total of 654,783 participants, including 105,429 participants who had major cardiovascular events, were included in the study. The ACLY and HMGCR scores were associated with similar patterns of changes in plasma lipid and lipoprotein levels and with similar effects on the risk of cardiovascular events per decrease of 10 mg per deciliter in the LDL cholesterol level: odds ratio for cardiovascular events, 0.823 (95% confidence interval [CI], 0.78 to 0.87; P = 4.0×10-14) for the ACLY score and 0.836 (95% CI, 0.81 to 0.87; P = 3.9×10-19) for the HMGCR score. Neither lifelong genetic inhibition of ATP citrate lyase nor lifelong genetic inhibition of HMGCR was associated with an increased risk of cancer. CONCLUSIONS Genetic variants that mimic the effect of ATP citrate lyase inhibitors and statins appeared to lower plasma LDL cholesterol levels by the same mechanism of action and were associated with similar effects on the risk of cardiovascular disease per unit decrease in the LDL cholesterol level. (Funded by Esperion Therapeutics and others.).
Collapse
Affiliation(s)
- Brian A Ference
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Kausik K Ray
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Alberico L Catapano
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Thatcher B Ference
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Stephen Burgess
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - David R Neff
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Clare Oliver-Williams
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Angela M Wood
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Adam S Butterworth
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Emanuele Di Angelantonio
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - John Danesh
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - John J P Kastelein
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| | - Stephen J Nicholls
- From the Centre for Naturally Randomized Trials (B.A.F., T.B.F.), Medical Research Council, British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (B.A.F., S.B., C.O.-W., A.M.W., A.S.B., E.D.A., J.D.), Medical Research Council Biostatistics Unit (S.B.), and NIHR Blood and Transplant Research Unit in Donor Health and Genomics (A.S.B., E.D.A., J.D.), University of Cambridge, Cambridge, and Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London (K.K.R.) - all in the United Kingdom; the Department of Pharmacologic and Biomolecular Sciences, University of Milan and Multimedica IRCCS, Milan (A.L.C.); Michigan State University, East Lansing (D.R.N.); the Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam (J.J.P.K.); and Monash University, Clayton, VIC, Australia (S.J.N.)
| |
Collapse
|
366
|
Effects of Angiopoietin-Like 3 on Triglyceride Regulation, Glucose Homeostasis, and Diabetes. DISEASE MARKERS 2019; 2019:6578327. [PMID: 30944669 PMCID: PMC6421734 DOI: 10.1155/2019/6578327] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Angiopoietin-like 3 (ANGPTL3) is a regulator of plasma triglyceride (TRG) levels due to its inhibitory action on the activity of lipoprotein lipase (LPL). ANGPTL3 is proteolytically cleaved by proprotein convertases to generate an active N-terminal domain, which forms a complex with ANGPTL8 orchestrating LPL inhibition. ANGPTL3-4-8 mouse model studies indicate that these three ANGPTL family members play a significant role in partitioning the circulating TRG to specific tissues according to nutritional states. Recent data indicate a positive correlation of ANGPTL3 with plasma glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) in insulin-resistant states. The aim of this review is to critically present the metabolic effects of ANGPTL3, focusing on the possible mechanisms involved in the dysregulation of carbohydrate homeostasis by this protein. Heterozygous and homozygous carriers of ANGPTL3 loss-of-function mutations have reduced risk for type 2 diabetes mellitus. Suggested mechanisms for the implication of ANGPTL3 in carbohydrate metabolism include the (i) increment of free fatty acids (FFAs) owing to the enhancement of lipolysis in adipose tissue, which can induce peripheral as well as hepatic insulin resistance; (ii) promotion of FFA flux to white adipose tissue during feeding, leading to the attenuation of de novo lipogenesis and decreased glucose uptake and insulin sensitivity; (iii) induction of hypothalamic LPL activity in mice, which is highly expressed throughout the brain and is associated with enhanced brain lipid sensing, reduction of food intake, and inhibition of glucose production (however, the effects of ANGPTL3 on hypothalamic LPL in humans need more clarification); and (iv) upregulation of ANGPTL4 expression (owing to the plasma FFA increase), which possibly enhances insulin resistance due to the selective inhibition of LPL in white adipose tissue leading to ectopic lipid accumulation and insulin resistance. Future trials will reveal if ANGPTL3 inhibition could be considered an alternative therapeutic target for dyslipidemia and dysglycemia.
Collapse
|
367
|
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, et alJustice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, Hayward C, Heid IM, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Hung YJ, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jarvik GP, Jia Y, Jørgensen T, Jousilahti P, Justesen JM, Kahali B, Karaleftheri M, Kardia SLR, Karpe F, Kee F, Kitajima H, Komulainen P, Kooner JS, Kovacs P, Krämer BK, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange LA, Langenberg C, Larson EB, Lee NR, Lee WJ, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Luan J, Lyytikäinen LP, MacGregor S, Mägi R, Männistö S, Marenne G, Marten J, Masca NGD, McCarthy MI, Meidtner K, Mihailov E, Moilanen L, Moitry M, Mook-Kanamori DO, Morgan A, Morris AP, Müller-Nurasyid M, Munroe PB, Narisu N, Nelson CP, Neville M, Ntalla I, O'Connell JR, Owen KR, Pedersen O, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Ewing A, Polasek O, Raitakari OT, Rasheed A, Raulerson CK, Rauramaa R, Reilly DF, Reiner AP, Ridker PM, Rivas MA, Robertson NR, Robino A, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe M, Sim X, Slater AJ, Small KS, Smith BH, Smith JA, Southam L, Spector TD, Speliotes EK, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swart KMA, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Torres M, Tsafantakis E, Tuomilehto J, Uitterlinden AG, Uusitupa M, van Duijn CM, Vanhala M, Varma R, Vermeulen SH, Vestergaard H, Vitart V, Vogt TF, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Wood AR, Wu Y, Yaghootkar H, Yao J, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zheng H, Zhou W, Zillikens MC, Rivadeneira F, Borecki IB, Pospisilik JA, Deloukas P, Frayling TM, Lettre G, Mohlke KL, Rotter JI, Kutalik Z, Hirschhorn JN, Cupples LA, Loos RJF, North KE, Lindgren CM. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet 2019; 51:452-469. [PMID: 30778226 PMCID: PMC6560635 DOI: 10.1038/s41588-018-0334-2] [Show More Authors] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/17/2018] [Indexed: 02/02/2023]
Abstract
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valérie Turcot
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rebecca S Fine
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tõnu Esko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Sailaja Vedantam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Ayush Giri
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ken Sin Lo
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tamuno Alfred
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nancy L Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Suthesh Sivapalaratnam
- Massachusetts General Hospital, Boston, MA, USA
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dewan S Alam
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Canada
| | - Matthew Allison
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Philippe Amouyel
- INSERM U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
- U1167-RID-AGE, Universite de Lille - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Zorayr Arzumanyan
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Beverley Balkau
- INSERM U1018, Centre de recherche en Épidemiologie et Sante des Populations (CESP), Villejuif, France
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amber A Burt
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milano-Bicocca, Monza, Italy
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Daniel I Chasman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Amanda J Cox
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - David S Crosslin
- Department of Biomedical Infomatics and Medical Education, University of Washington, Seattle, WA, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul I W de Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon de Denus
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ellen W Demerath
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe G Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Fotios Drenos
- Institute of Cardiovascular Science, University College London, London, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Shuang Feng
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean Ferrieres
- Toulouse University School of Medicine, Toulouse, France
| | - Jose C Florez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wei Gan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ilaria Gandin
- Ilaria Gandin, Research Unit, AREA Science Park, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Harald Grallert
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Oddgeir L Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Kees Hovingh
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Yao Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Torben Jørgensen
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | | | - Johanne M Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bratati Kahali
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health Research, Queens University Belfast, Belfast, UK
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jaspal S Kooner
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Bernhard K Krämer
- University Medical Centre Mannheim, 5th Medical Department, University of Heidelberg, Mannheim, Germany
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Verge Genomics, San Fransico, CA, USA
| | - Leslie A Lange
- Division of Biomedical and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eric B Larson
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Nanette R Lee
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Li-An Lin
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Jaana Lindström
- National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Karina Meidtner
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | | | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Marie Moitry
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
- Department of Public Health, University Hospital of Strasbourg, Strasbourg, France
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Morgan
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universitat, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeffrey R O'Connell
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Craig E Pennell
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine (FIMM) and Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - James A Perry
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ailith Ewing
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Danish Saleheen
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Matthias B Schulze
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Marcelo Segura-Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Andrew J Slater
- Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC, USA
- OmicSoft a QIAGEN Company, Cary, NC, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Elizabeth K Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jean-Claude Tardif
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Betina H Thuesen
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | - Anke Tönjes
- Center for Pediatric Research, Department for Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Mina Torres
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Dasman Diabetes Institute, Dasman, Kuwait
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Mauno Vanhala
- Central Finland Central Hospital, Jyvaskyla, Finland
- University of Eastern Finland, Kuopio, Finland
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas F Vogt
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, UK
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Feijie Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carol A Wang
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | - Jennifer Wessel
- Departments of Epidemiology & Medicine, Diabetes Translational Research Center, Fairbanks School of Public Health & School of Medicine, Indiana University, Indiana, IN, USA
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Laura M Yerges-Armstrong
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- GlaxoSmithKline, King of Prussia, PA, USA
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- University of Glasgow, Glasgow, UK
| | | | - Xiaowei Zhan
- Department of Clinical Sciences, Quantitative Biomedical Research Center, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weihua Zhang
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Carola Zillikens
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Guillaume Lettre
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - L Adrienne Cupples
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
368
|
Remnant lipoproteins and atherosclerotic cardiovascular disease. Clin Chim Acta 2019; 490:1-5. [DOI: 10.1016/j.cca.2018.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 01/30/2023]
|
369
|
Abstract
PURPOSE OF REVIEW Lipoprotein lipase (LpL) is well known for its lipolytic action in blood lipoprotein triglyceride catabolism. This article summarizes the recent mechanistic and molecular studies on elucidating the 'unconventional' roles of LpL in mediating biological events related to immune cell response and lipid transport in the pathogenesis of cardiovascular disease (CVD) and tissue degenerative disorders. RECENT FINDINGS Several approaches to inactivate the inhibitors that block LpL enzymatic activity have reestablished the importance of systemic LpL activity in reducing CVD risk. On the other hand, increasing evidence suggests that focal arterial expression of LpL relates to aortic macrophage levels and inflammatory processes. In the hematopoietic origin, LpL also plays a role in modulating hematopoietic stem cell proliferation and circulating blood cell levels and phenotypes. Finally, building upon the strong genetic evidence on the association with assorted brain disorders, a new era in exploring the mechanistic insights into the functions and activity of LpL in brain that impacts central nerve systems has begun. SUMMARY A better understanding of the molecular action of LpL will help to devise novel strategies for intervention of a number of diseases, including blood cell or metabolic disorders, as well to inhibit pathways related to CVD and tissue degenerative processes.
Collapse
Affiliation(s)
- Chuchun L Chang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
370
|
Giardoglou P, Beis D. On Zebrafish Disease Models and Matters of the Heart. Biomedicines 2019; 7:E15. [PMID: 30823496 PMCID: PMC6466020 DOI: 10.3390/biomedicines7010015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease (CAD) is the leading form of cardiovascular disease (CVD), which is the primary cause of mortality worldwide. It is a complex disease with genetic and environmental risk factor contributions. Reports in human and mammalian models elucidate age-associated changes in cardiac function. The diverse mechanisms involved in cardiac diseases remain at the center of the research interest to identify novel strategies for prevention and therapy. Zebrafish (Danio rerio) have emerged as a valuable vertebrate model to study cardiovascular development over the last few decades. The facile genetic manipulation via forward and reverse genetic approaches combined with noninvasive, high-resolution imaging and phenotype-based screening has provided new insights to molecular pathways that orchestrate cardiac development. Zebrafish can recapitulate human cardiac pathophysiology due to gene and regulatory pathways conservation, similar heart rate and cardiac morphology and function. Thus, generations of zebrafish models utilize the functional analysis of genes involved in CAD, which are derived from large-scale human population analysis. Here, we highlight recent studies conducted on cardiovascular research focusing on the benefits of the combination of genome-wide association studies (GWAS) with functional genomic analysis in zebrafish. We further summarize the knowledge obtained from zebrafish studies that have demonstrated the architecture of the fundamental mechanisms underlying heart development, homeostasis and regeneration at the cellular and molecular levels.
Collapse
Affiliation(s)
- Panagiota Giardoglou
- Zebrafish Disease Models Lab, Center for Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece.
- School of Health Science and Education, Harokopio University, 17676 Athens, Greece.
| | - Dimitris Beis
- Zebrafish Disease Models Lab, Center for Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
371
|
Sliz E, Sebert S, Würtz P, Kangas AJ, Soininen P, Lehtimäki T, Kähönen M, Viikari J, Männikkö M, Ala-Korpela M, Raitakari OT, Kettunen J. NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects. Hum Mol Genet 2019; 27:2214-2223. [PMID: 29648650 PMCID: PMC5985737 DOI: 10.1093/hmg/ddy124] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Fatty liver has been associated with unfavourable metabolic changes in circulation. To provide insights in fatty liver-related metabolic deviations, we compared metabolic association profile of fatty liver versus metabolic association profiles of genotypes increasing the risk of non-alcoholic fatty liver disease (NAFLD). The cross-sectional associations of ultrasound-ascertained fatty liver with 123 metabolic measures were determined in 1810 (Nfatty liver = 338) individuals aged 34–49 years from The Cardiovascular Risk in Young Finns Study. The association profiles of NAFLD-risk alleles in PNPLA3, TM6SF2, GCKR, and LYPLAL1 with the corresponding metabolic measures were obtained from a publicly available metabolomics GWAS including up to 24 925 Europeans. The risk alleles showed different metabolic effects: PNPLA3 rs738409-G, the strongest genetic NAFLD risk factor, did not associate with metabolic changes. Metabolic effects of GCKR rs1260326-T were comparable in many respects to the fatty liver associations. Metabolic effects of LYPLAL1 rs12137855-C were similar, but statistically less robust, to the effects of GCKR rs1260326-T. TM6SF2 rs58542926-T displayed opposite metabolic effects when compared with the fatty liver associations. The metabolic effects of the risk alleles highlight heterogeneity of the molecular pathways leading to fatty liver and suggest that the fatty liver-related changes in the circulating lipids and metabolites may vary depending on the underlying pathophysiological mechanism. Despite the robust cross-sectional associations on population level, the present results showing neutral or cardioprotective metabolic effects for some of the NAFLD risk alleles advocate that hepatic lipid accumulation by itself may not increase the level of circulating lipids or other metabolites.
Collapse
Affiliation(s)
- Eeva Sliz
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sylvain Sebert
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Genomics of Complex Diseases, School of Public Health, Imperial College London, London, UK
| | - Peter Würtz
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Nightingale Health Ltd., Helsinki, Finland
| | | | - Pasi Soininen
- Nightingale Health Ltd., Helsinki, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Terho Lehtimäki
- Fimlab Laboratories, Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Jorma Viikari
- Division of Medicine, Department of Medicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Mika Ala-Korpela
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Population Health Science, Bristol Medical School, University of Bristol and Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Johannes Kettunen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Population Health Science, Bristol Medical School, University of Bristol and Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| |
Collapse
|
372
|
Brouwers MCGJ, Simons N, Stehouwer CDA, Koek GH, Schaper NC, Isaacs A. Relationship Between Nonalcoholic Fatty Liver Disease Susceptibility Genes and Coronary Artery Disease. Hepatol Commun 2019; 3:587-596. [PMID: 30976747 PMCID: PMC6442707 DOI: 10.1002/hep4.1319] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Coronary artery disease (CAD) is the principal cause of death in patients with nonalcoholic fatty liver disease (NAFLD). The aim of the present study was to investigate whether NAFLD is causally involved in the pathogenesis of CAD. For this, previously reported NAFLD susceptibility genes were clustered and tested for an association with CAD in the Coronary Artery Disease Genome‐Wide Replication and Meta‐Analysis plus the Coronary Artery Disease Genetics (CARDIoGRAMplusC4D) Consortium data set. The role of plasma lipids as a potential mediator was explored by using data from the Global Lipids Genetics Consortium. Statistical analyses revealed that the combination of 12 NAFLD genes was not associated with CAD in 60,801 CAD cases and 123,504 controls (odds ratio [OR] per NAFLD risk allele, 1.0; 95% confidence interval [CI], 0.99‐1.00). In a subsequent sensitivity analysis, a positive relationship was observed after exclusion of gene variants that are implicated in NAFLD through impaired very low‐density lipoprotein secretion (i.e., microsomal triglyceride transfer protein [MTTP], patatin‐like phospholipase domain containing 3 [PNPLA3], phosphatidylethanolamine N‐methyltransferase [PEMT], and transmembrane 6 superfamily member 2 [TM6SF2]) (OR, 1.01; 95% CI, 1.00‐1.02). Clustering of the excluded genes showed a significant negative relationship with CAD (OR, 0.97; 95% CI, 0.96‐0.99). A substantial proportion of the observed heterogeneity between the individual NAFLD genes in relation to CAD could be explained by plasma lipids, as reflected by a strong relationship between plasma lipids and CAD risk conferred by the NAFLD susceptibility genes (r = 0.76; P = 0.004 for low‐density lipoprotein cholesterol). Conclusion: NAFLD susceptibility genes do not cause CAD per se. The relationship between these genes and CAD appears to depend to a large extent on plasma lipids. These observations strongly suggest taking plasma lipids into account when designing a new drug to target NAFLD.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology Maastricht University Medical Center Maastricht the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands
| | - Nynke Simons
- Department of Internal Medicine, Division of Endocrinology Maastricht University Medical Center Maastricht the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands.,Department of Internal Medicine, Division of General Internal Medicine, Laboratory for Metabolism and Vascular Medicine Maastricht University Medical Center Maastricht the Netherlands
| | - Coen D A Stehouwer
- Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands.,Department of Internal Medicine, Division of General Internal Medicine Maastricht University Medical Center Maastricht the Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology Maastricht University Medical Center Maastricht the Netherlands.,School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands.,Department of Surgery, Klinikum Rheinisch-Westfälische Technische Hochschule Aachen Germany
| | - Nicolaas C Schaper
- Department of Internal Medicine, Division of Endocrinology Maastricht University Medical Center Maastricht the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands
| | - Aaron Isaacs
- Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands.,Maastricht Center for Systems Biology Maastricht University Maastricht the Netherlands.,Department of Biochemistry Maastricht University Maastricht the Netherlands
| |
Collapse
|
373
|
Safarova MS, Satterfield BA, Fan X, Austin EE, Ye Z, Bastarache L, Zheng N, Ritchie MD, Borthwick KM, Williams MS, Larson EB, Scrol A, Jarvik GP, Crosslin DR, Leppig K, Rasmussen-Torvik LJ, Pendergrass SA, Sturm AC, Namjou B, Shah AS, Carroll RJ, Chung WK, Wei WQ, Feng Q, Stein CM, Roden DM, Manolio TA, Schaid DJ, Denny JC, Hebbring SJ, de Andrade M, Kullo IJ. A phenome-wide association study to discover pleiotropic effects of PCSK9, APOB, and LDLR. NPJ Genom Med 2019; 4:3. [PMID: 30774981 PMCID: PMC6370860 DOI: 10.1038/s41525-019-0078-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023] Open
Abstract
We conducted an electronic health record (EHR)-based phenome-wide association study (PheWAS) to discover pleiotropic effects of variants in three lipoprotein metabolism genes PCSK9, APOB, and LDLR. Using high-density genotype data, we tested the associations of variants in the three genes with 1232 EHR-derived binary phecodes in 51,700 European-ancestry (EA) individuals and 585 phecodes in 10,276 African-ancestry (AA) individuals; 457 PCSK9, 730 APOB, and 720 LDLR variants were filtered by imputation quality (r 2 > 0.4), minor allele frequency (>1%), linkage disequilibrium (r 2 < 0.3), and association with LDL-C levels, yielding a set of two PCSK9, three APOB, and five LDLR variants in EA but no variants in AA. Cases and controls were defined for each phecode using the PheWAS package in R. Logistic regression assuming an additive genetic model was used with adjustment for age, sex, and the first two principal components. Significant associations were tested in additional cohorts from Vanderbilt University (n = 29,713), the Marshfield Clinic Personalized Medicine Research Project (n = 9562), and UK Biobank (n = 408,455). We identified one PCSK9, two APOB, and two LDLR variants significantly associated with an examined phecode. Only one of the variants was associated with a non-lipid disease phecode, ("myopia") but this association was not significant in the replication cohorts. In this large-scale PheWAS we did not find LDL-C-related variants in PCSK9, APOB, and LDLR to be associated with non-lipid-related phenotypes including diabetes, neurocognitive disorders, or cataracts.
Collapse
Affiliation(s)
- Maya S. Safarova
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Xiao Fan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Erin E. Austin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Zhan Ye
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI 54449 USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Neil Zheng
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Marylyn D. Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19111 USA
| | - Kenneth M. Borthwick
- Department of Biomedical and Translational Informatics, Geisinger, Danville, PA 17821 USA
| | | | | | - Aaron Scrol
- Group Health Research Institute, Seattle, WA 98101 USA
| | - Gail P. Jarvik
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA 98195 USA
| | - David R. Crosslin
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kathleen Leppig
- Genetic Services, Kaiser Permanente of Washington, Seattle, WA 98122 USA
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sarah A. Pendergrass
- Department of Biomedical and Translational Informatics, Geisinger, Danville, PA 17821 USA
| | - Amy C. Sturm
- Genomic Medicine Institute, Geisinger, Danville, PA 17822 USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229 USA
| | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229 USA
| | - Robert J. Carroll
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY 10032 USA
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - C. Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Teri A. Manolio
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD 20892 USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235 USA
| | - Scott J. Hebbring
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI 54449 USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
374
|
Tada H, Kawashiri MA. Genetic Variations, Triglycerides, and Atherosclerotic Disease. J Atheroscler Thromb 2019; 26:128-131. [PMID: 30078832 PMCID: PMC6365155 DOI: 10.5551/jat.ed102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Hayato Tada
- Division of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masa-aki Kawashiri
- Division of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
375
|
Abstract
PURPOSE OF REVIEW The liver is the central hub of lipoprotein metabolism. A complex relationship exists between dyslipidemia and chronic liver diseases (CLDs). Recent advances in the genetics of nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) exemplify the pivotal role of lipoprotein metabolism in the pathogenesis of CLD. We review these relationships in four quintessential forms of CLD: NAFLD, ALD, cholestatic liver disease and cirrhosis, with a focus on recent discoveries. RECENT FINDINGS An I148 M variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3) and an E167K variant in transmembrane 6 superfamily 2 (TM6SF2) are major genetic risk factors for the development and progression of NAFLD. These genetic variants also increase the risk of ALD. Both PNPLA3 and TM6SF2 are involved in the hepatic assembly of very low-density lipoprotein. The discovery of these two genetic variants highlights the risk of CLD when environmental factors are combined with functional modifications in the lipoprotein metabolism pathway. SUMMARY The relationship between CLD and lipoprotein metabolism is reciprocal. On the one hand, the progression of CLD impairs lipoprotein metabolism; on the other hand, modifications in lipoprotein metabolism can substantially increase the risk of CLD. These relationships are at play among the most common forms of CLD affecting a significant proportion of the population.
Collapse
Affiliation(s)
- Maria Camila Perez-Matos
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bynvant Sandhu
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alan Bonder
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenghui Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
376
|
Santos RD, Valenti L, Romeo S. Does nonalcoholic fatty liver disease cause cardiovascular disease? Current knowledge and gaps. Atherosclerosis 2019; 282:110-120. [PMID: 30731283 DOI: 10.1016/j.atherosclerosis.2019.01.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/22/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and includes a spectrum of abnormalities ranging from steatosis to cirrhosis. In this review, we address recent evidence and limitations of studies that evaluated the association of NAFLD with atherosclerotic cardiovascular disease. NAFLD is considered an ectopic fat deposit associated with metabolic (insulin resistance, hyperglycemia and dyslipidemia), inflammatory, coagulation and blood pressure disturbances. Prospective studies have associated NAFLD presence and severity, particularly steatohepatitis and fibrosis, with an increased risk of cardiovascular disease. However, these studies are limited by heterogeneity concerning NAFLD diagnostic criteria and disease severity stratification, as well as by the presence of confounding factors. In addition, genetic variants predisposing to NAFLD, such as the PNPLA3 I148M mutation, were not consistently associated with an increased risk of cardiovascular events. Therefore, currently, it is not possible to prove a causal relation between NAFLD and cardiovascular disease. Furthermore, there is presently no evidence that NAFLD diagnosis can be used as a tool to improve cardiovascular risk stratification and modify treatment. Specific treatments for NAFLD are being developed and must be tested prospectively in adequately designed trials to determine the potential of reducing both hepatic and cardiovascular diseases and to prove whether NAFLD is indeed a cause of atherosclerosis.
Collapse
Affiliation(s)
- Raul D Santos
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Lipid Clinic Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil.
| | - Luca Valenti
- Università Degli Studi Milano, Fondazione IRCCS Ca' Granda Pad Granelli, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
377
|
Ference BA, Kastelein JJP, Ray KK, Ginsberg HN, Chapman MJ, Packard CJ, Laufs U, Oliver-Williams C, Wood AM, Butterworth AS, Di Angelantonio E, Danesh J, Nicholls SJ, Bhatt DL, Sabatine MS, Catapano AL. Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease. JAMA 2019; 321:364-373. [PMID: 30694319 PMCID: PMC6439767 DOI: 10.1001/jama.2018.20045] [Citation(s) in RCA: 464] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE Triglycerides and cholesterol are both carried in plasma by apolipoprotein B (ApoB)-containing lipoprotein particles. It is unknown whether lowering plasma triglyceride levels reduces the risk of cardiovascular events to the same extent as lowering low-density lipoprotein cholesterol (LDL-C) levels. OBJECTIVE To compare the association of triglyceride-lowering variants in the lipoprotein lipase (LPL) gene and LDL-C-lowering variants in the LDL receptor gene (LDLR) with the risk of cardiovascular disease per unit change in ApoB. DESIGN, SETTING, AND PARTICIPANTS Mendelian randomization analyses evaluating the associations of genetic scores composed of triglyceride-lowering variants in the LPL gene and LDL-C-lowering variants in the LDLR gene, respectively, with the risk of cardiovascular events among participants enrolled in 63 cohort or case-control studies conducted in North America or Europe between 1948 and 2017. EXPOSURES Differences in plasma triglyceride, LDL-C, and ApoB levels associated with the LPL and LDLR genetic scores. MAIN OUTCOMES AND MEASURES Odds ratio (OR) for coronary heart disease (CHD)-defined as coronary death, myocardial infarction, or coronary revascularization-per 10-mg/dL lower concentration of ApoB-containing lipoproteins. RESULTS A total of 654 783 participants, including 91 129 cases of CHD, were included (mean age, 62.7 years; 51.4% women). For each 10-mg/dL lower level of ApoB-containing lipoproteins, the LPL score was associated with 69.9-mg/dL (95% CI, 68.1-71.6; P = 7.1 × 10-1363) lower triglyceride levels and 0.7-mg/dL (95% CI, 0.03-1.4; P = .04) higher LDL-C levels; while the LDLR score was associated with 14.2-mg/dL (95% CI, 13.6-14.8; P = 1.4 × 10-465) lower LDL-C and 1.9-mg/dL (95% CI, 0.1-3.9; P = .04) lower triglyceride levels. Despite these differences in associated lipid levels, the LPL and LDLR scores were associated with similar lower risk of CHD per 10-mg/dL lower level of ApoB-containing lipoproteins (OR, 0.771 [95% CI, 0.741-0.802], P = 3.9 × 10-38 and OR, 0.773 [95% CI, 0.747-0.801], P = 1.1 × 10-46, respectively). In multivariable mendelian randomization analyses, the associations between triglyceride and LDL-C levels with the risk of CHD became null after adjusting for differences in ApoB (triglycerides: OR, 1.014 [95% CI, 0.965-1.065], P = .19; LDL-C: OR, 1.010 [95% CI, 0.967-1.055], P = .19; ApoB: OR, 0.761 [95% CI, 0.723-0.798], P = 7.51 × 10-20). CONCLUSIONS AND RELEVANCE Triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants were associated with similar lower risk of CHD per unit difference in ApoB. Therefore, the clinical benefit of lowering triglyceride and LDL-C levels may be proportional to the absolute change in ApoB.
Collapse
Affiliation(s)
- Brian A. Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
- Institute for Advanced Studies, University of Bristol, Bristol, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kausik K. Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Henry N. Ginsberg
- Irving Institute for Clinical and Translational Research, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - M. John Chapman
- National Institute for Health and Medical Research (INSERM), Pitie-Salpetriere University Hospital, Paris, France
| | - Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ulrich Laufs
- Department of Cardiology, University of Leipzig, Leipzig, Germany
| | - Clare Oliver-Williams
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Angela M. Wood
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Adam S. Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Deepak L. Bhatt
- Thrombolysis in Myocardial Infarction Study Group, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marc S. Sabatine
- Thrombolysis in Myocardial Infarction Study Group, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Multimedica IRCCS, Milano, Italy
| |
Collapse
|
378
|
|
379
|
Kilpeläinen TO, Bentley AR, Noordam R, Sung YJ, Schwander K, Winkler TW, Jakupović H, Chasman DI, Manning A, Ntalla I, Aschard H, Brown MR, de las Fuentes L, Franceschini N, Guo X, Vojinovic D, Aslibekyan S, Feitosa MF, Kho M, Musani SK, Richard M, Wang H, Wang Z, Bartz TM, Bielak LF, Campbell A, Dorajoo R, Fisher V, Hartwig FP, Horimoto ARVR, Li C, Lohman KK, Marten J, Sim X, Smith AV, Tajuddin SM, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Evangelou E, Gao C, Graff M, Harris SE, He M, Hsu FC, Jackson AU, Zhao JH, Kraja AT, Kühnel B, Laguzzi F, Lyytikäinen LP, Nolte IM, Rauramaa R, Riaz M, Robino A, Rueedi R, Stringham HM, Takeuchi F, van der Most PJ, Varga TV, Verweij N, Ware EB, Wen W, Li X, Yanek LR, Amin N, Arnett DK, Boerwinkle E, Brumat M, Cade B, Canouil M, Chen YDI, Concas MP, Connell J, de Mutsert R, de Silva HJ, de Vries PS, Demirkan A, Ding J, Eaton CB, Faul JD, Friedlander Y, Gabriel KP, Ghanbari M, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt SC, Ikram MA, Jonas JB, Koh WP, Komulainen P, Krieger JE, et alKilpeläinen TO, Bentley AR, Noordam R, Sung YJ, Schwander K, Winkler TW, Jakupović H, Chasman DI, Manning A, Ntalla I, Aschard H, Brown MR, de las Fuentes L, Franceschini N, Guo X, Vojinovic D, Aslibekyan S, Feitosa MF, Kho M, Musani SK, Richard M, Wang H, Wang Z, Bartz TM, Bielak LF, Campbell A, Dorajoo R, Fisher V, Hartwig FP, Horimoto ARVR, Li C, Lohman KK, Marten J, Sim X, Smith AV, Tajuddin SM, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Evangelou E, Gao C, Graff M, Harris SE, He M, Hsu FC, Jackson AU, Zhao JH, Kraja AT, Kühnel B, Laguzzi F, Lyytikäinen LP, Nolte IM, Rauramaa R, Riaz M, Robino A, Rueedi R, Stringham HM, Takeuchi F, van der Most PJ, Varga TV, Verweij N, Ware EB, Wen W, Li X, Yanek LR, Amin N, Arnett DK, Boerwinkle E, Brumat M, Cade B, Canouil M, Chen YDI, Concas MP, Connell J, de Mutsert R, de Silva HJ, de Vries PS, Demirkan A, Ding J, Eaton CB, Faul JD, Friedlander Y, Gabriel KP, Ghanbari M, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt SC, Ikram MA, Jonas JB, Koh WP, Komulainen P, Krieger JE, Kritchevsky SB, Kutalik Z, Kuusisto J, Langefeld CD, Langenberg C, Launer LJ, Leander K, Lemaitre RN, Lewis CE, Liang J, Liu J, Mägi R, Manichaikul A, Meitinger T, Metspalu A, Milaneschi Y, Mohlke KL, Mosley TH, Murray AD, Nalls MA, Nang EEK, Nelson CP, Nona S, Norris JM, Nwuba CV, O'Connell J, Palmer ND, Papanicolau GJ, Pazoki R, Pedersen NL, Peters A, Peyser PA, Polasek O, Porteous DJ, Poveda A, Raitakari OT, Rich SS, Risch N, Robinson JG, Rose LM, Rudan I, Schreiner PJ, Scott RA, Sidney SS, Sims M, Smith JA, Snieder H, Sofer T, Starr JM, Sternfeld B, Strauch K, Tang H, Taylor KD, Tsai MY, Tuomilehto J, Uitterlinden AG, van der Ende MY, van Heemst D, Voortman T, Waldenberger M, Wennberg P, Wilson G, Xiang YB, Yao J, Yu C, Yuan JM, Zhao W, Zonderman AB, Becker DM, Boehnke M, Bowden DW, de Faire U, Deary IJ, Elliott P, Esko T, Freedman BI, Froguel P, Gasparini P, Gieger C, Kato N, Laakso M, Lakka TA, Lehtimäki T, Magnusson PKE, Oldehinkel AJ, Penninx BWJH, Samani NJ, Shu XO, van der Harst P, Van Vliet-Ostaptchouk JV, Vollenweider P, Wagenknecht LE, Wang YX, Wareham NJ, Weir DR, Wu T, Zheng W, Zhu X, Evans MK, Franks PW, Gudnason V, Hayward C, Horta BL, Kelly TN, Liu Y, North KE, Pereira AC, Ridker PM, Tai ES, van Dam RM, Fox ER, Kardia SLR, Liu CT, Mook-Kanamori DO, Province MA, Redline S, van Duijn CM, Rotter JI, Kooperberg CB, Gauderman WJ, Psaty BM, Rice K, Munroe PB, Fornage M, Cupples LA, Rotimi CN, Morrison AC, Rao DC, Loos RJF. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nat Commun 2019; 10:376. [PMID: 30670697 PMCID: PMC6342931 DOI: 10.1038/s41467-018-08008-w] [Show More Authors] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
Collapse
Affiliation(s)
- Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Raymond Noordam
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, 93051, Germany
| | - Hermina Jakupović
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Daniel I Chasman
- Preventive Medicine, Brigham and Women's Hospital, Boston, 02215, MA, USA
- Harvard Medical School, Boston, 02131, MA, USA
| | - Alisa Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, 02114, MA, USA
- Department of Medicine, Harvard Medical School, Boston, 02115, MA, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Instititute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, 02115, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, 75015, France
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, 63110, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, 63110, MO, USA
| | - Nora Franceschini
- Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, 27514, NC, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, 90502, CA, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, 35294, AL, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, 63108, MO, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, 39213, MS, USA
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, 02115, MA, USA
| | - Zhe Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, 98101, WA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
| | - Virginia Fisher
- Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Fernando P Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, 96020220, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Andrea R V R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, 01246903, SP, Brazil
| | - Changwei Li
- Epidemiology and Biostatistics, University of Giorgia at Athens College of Public Health, Athens, 30602, GA, USA
| | - Kurt K Lohman
- Public Health Sciences, Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, 27157, NC, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Albert V Smith
- Icelandic Heart Association, 201, Kopavogur, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Maris Alver
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Marzyeh Amini
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Jasmin Divers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Mariaelisa Graff
- Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, 27514, NC, USA
| | - Sarah E Harris
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, 63108, MO, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Federica Laguzzi
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Muhammad Riaz
- College of Medicine, Biological Sciences and Psychology, Health Sciences, The Infant Mortality and Morbidity Studies (TIMMS), Leicester, LE1 7RH, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, 20502, Sweden
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700 RB, The Netherlands
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 48104, MI, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, 37203, TN, USA
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, 40536, KY, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Marco Brumat
- Department of Medical Sciences, University of Trieste, Trieste, 34137, Italy
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, 02115, MA, USA
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, 90502, CA, USA
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34137, Italy
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Renée de Mutsert
- Clinical Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, Netherlands
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, 11600, Sri Lanka
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Ayşe Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Jingzhong Ding
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Alpert Medical School of Brown University, Providence, 02860, RI, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 48104, MI, USA
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Kelley P Gabriel
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Austin, Austin, 78712, TX, USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Franco Giulianini
- Preventive Medicine, Brigham and Women's Hospital, Boston, 02215, MA, USA
| | - Chi Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Dongfeng Gu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100006, China
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jiang He
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, 70112, LA, USA
- Medicine, Tulane University School of Medicine, New Orleans, 70112, LA, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, 70211, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, 119228, Singapore
| | - Steven C Hunt
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, 84132, UT, USA
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, 24144, Qatar
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, 68167, Germany
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, 01246903, SP, Brazil
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, 1010, Switzerland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Karin Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, 98101, WA, USA
| | - Cora E Lewis
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, 35294, AL, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, 22908, VA, USA
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Human Genetics, Technische Universität München, Munich, 80333, Germany
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 HV, The Netherlands
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, 27514, NC, USA
| | - Thomas H Mosley
- Geriatrics, Medicine, University of Mississippi, Jackson, 39216, MS, USA
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mike A Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, 20892, MD, USA
- Data Tecnica International, Glen Echo, 20812, MD, USA
| | - Ei-Ei Khaing Nang
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9PQ, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QD, UK
| | - Sotoodehnia Nona
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, 98101, WA, USA
| | - Jill M Norris
- Department of Epidemiology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - Chiamaka Vivian Nwuba
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - George J Papanicolau
- Epidemiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Raha Pazoki
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, 85764, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Ozren Polasek
- Department of Public Health, Department of Medicine, University of Split, Split, 21000, Croatia
- Psychiatric Hospital "Sveti Ivan", Zagreb, 10000, Croatia
- Gen-Info Ltd., 10000, Zagreb, Croatia
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, 20502, Sweden
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, 20521, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, 22908, VA, USA
| | - Neil Risch
- Institute for Human Genetics, Department of Epidemiology and Biostatistics, University of California, San Francisco, 94143, CA, USA
| | - Jennifer G Robinson
- Department of Epidemiology and Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Lynda M Rose
- Preventive Medicine, Brigham and Women's Hospital, Boston, 02215, MA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, 55454, MN, USA
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen S Sidney
- Kaiser Permanente Washington, Health Research Institute, Seattle, 98101, WA, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, 39213, MS, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 48104, MI, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, 02115, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, 02115, MA, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Barbara Sternfeld
- Kaiser Permanente Washington, Health Research Institute, Seattle, 98101, WA, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universitat Munchen, Munich, 81377, Germany
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, 94305, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, 90502, CA, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Jaakko Tuomilehto
- Public Health Solutions, National Institute for Health and Welfare, Helsinki, 00271, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - M Yldau van der Ende
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700 RB, The Netherlands
| | - Diana van Heemst
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Patrik Wennberg
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, 90185, Västerbotten, Sweden
| | - Gregory Wilson
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, 39213, MS, USA
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, 90502, CA, USA
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, 15261, PA, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, 15232, PA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Psychology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, 02142, MA, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, 59000, France
- Department of Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
| | - Paolo Gasparini
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, 34137, Italy
- Department of Medical Sciences, University of Trieste, Trieste, 34137, Italy
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, 85764, Germany
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, 70211, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70210, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33014, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33014, Finland
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, 17177, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, 1081 HV, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9PQ, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QD, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, 37203, TN, USA
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700 RB, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, 1105 AZ, The Netherlands
| | - Jana V Van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Peter Vollenweider
- Internal Medicine, Department of Medicine, Lausanne University Hospital, Lausanne, 1011, Switzerland
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, 27157, NC, USA
| | - Ya X Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | | | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, 48104, MI, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, 37203, TN, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, 20502, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, 90185, Västerbotten, Sweden
- Harvard T. H. Chan School of Public Health, Department of Nutrition, Harvard University, Boston, 02115, MA, USA
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, 96020220, RS, Brazil
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, 70112, LA, USA
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, 27157, NC, USA
| | - Kari E North
- Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, 27514, NC, USA
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, 01246903, SP, Brazil
| | - Paul M Ridker
- Preventive Medicine, Brigham and Women's Hospital, Boston, 02215, MA, USA
- Harvard Medical School, Boston, 02131, MA, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ervin R Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Dennis O Mook-Kanamori
- Clinical Epidemiology, Leiden University Medical Center, Leiden, 2300 RC, Netherlands
- Public Health and Primary Care, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, 63108, MO, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, 02115, MA, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Division of Genomic Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, 90502, CA, USA
| | - Charles B Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, 98109, WA, USA
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, 90032, CA, USA
| | - Bruce M Psaty
- Kaiser Permanente Washington, Health Research Institute, Seattle, 98101, WA, USA
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, 98101, WA, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, 98105, WA, USA
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Instititute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - L Adrienne Cupples
- Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
- NHLBI Framingham Heart Study, Framingham, 01702, MA, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, 63110, MO, USA.
| | - Ruth J F Loos
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, 10029, NY, USA.
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, 10029, NY, USA.
| |
Collapse
|
380
|
Emdin CA, Khera AV, Aragam K, Haas M, Chaffin M, Klarin D, Natarajan P, Bick A, Zekavat SM, Nomura A, Ardissino D, Wilson JG, Schunkert H, McPherson R, Watkins H, Elosua R, Bown MJ, Samani NJ, Baber U, Erdmann J, Gupta N, Danesh J, Saleheen D, Gabriel S, Kathiresan S. DNA Sequence Variation in ACVR1C Encoding the Activin Receptor-Like Kinase 7 Influences Body Fat Distribution and Protects Against Type 2 Diabetes. Diabetes 2019; 68:226-234. [PMID: 30389748 PMCID: PMC6302541 DOI: 10.2337/db18-0857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022]
Abstract
A genetic predisposition to higher waist-to-hip ratio adjusted for BMI (WHRadjBMI), a measure of body fat distribution, associates with increased risk for type 2 diabetes. We conducted an exome-wide association study of coding variation in UK Biobank (405,569 individuals) to identify variants that lower WHRadjBMI and protect against type 2 diabetes. We identified four variants in the gene ACVR1C (encoding the activin receptor-like kinase 7 receptor expressed on adipocytes and pancreatic β-cells), which independently associated with reduced WHRadjBMI: Asn150His (-0.09 SD, P = 3.4 × 10-17), Ile195Thr (-0.15 SD, P = 1.0 × 10-9), Ile482Val (-0.019 SD, P = 1.6 × 10-5), and rs72927479 (-0.035 SD, P = 2.6 × 10-12). Carriers of these variants exhibited reduced percent abdominal fat in DEXA imaging. Pooling across all four variants, a 0.2 SD decrease in WHRadjBMI through ACVR1C was associated with a 30% lower risk of type 2 diabetes (odds ratio [OR] 0.70, 95% CI 0.63, 0.77; P = 5.6 × 10-13). In an analysis of exome sequences from 55,516 individuals, carriers of predicted damaging variants in ACVR1C were at 54% lower risk of type 2 diabetes (OR 0.46, 95% CI 0.27, 0.81; P = 0.006). These findings indicate that variants predicted to lead to loss of ACVR1C gene function influence body fat distribution and protect from type 2 diabetes.
Collapse
Affiliation(s)
- Connor A Emdin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Krishna Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Mary Haas
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Alexander Bick
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Seyedeh M Zekavat
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Yale Medical School and Department of Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Akihiro Nomura
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- Associazione per lo Studio della Trombosi in Cardiologia, Pavia, Italy
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, and Deutsches Zentrum für Herz-Kreislauf-Forschung, München, Germany
| | - Ruth McPherson
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics, Hospital del Mar Medical Research Institute, Barcelona, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
- Facultat de Medicina, Universitat de Vic-Central de Cataluña, Vic, Spain
| | - Matthew J Bown
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Leicester, U.K
| | - Usman Baber
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research) partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, U.K
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge. Cambridge, U.K
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| |
Collapse
|
381
|
Heianza Y, Qi L. Impact of Genes and Environment on Obesity and Cardiovascular Disease. Endocrinology 2019; 160:81-100. [PMID: 30517623 PMCID: PMC6304107 DOI: 10.1210/en.2018-00591] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
Obesity and abdominal obesity have been closely related to cardiovascular outcomes, and recent evidence has indicated that environmental and genetic factors act in concert in determining the risks of these conditions. Improving adherence to healthy lifestyle habits and healthy dietary patterns can at least partly counteract genetic variations related to risks of obesity and cardiovascular disease (CVD). Other factors, such as epigenetic alterations, may also modulate a relationship between genetic susceptibility and these disorders. In this review, we highlight data from recent studies on gene and environmental risk factors for obesity and CVD, and describe how these findings might inform understanding of the complex roles of interactions between genes and environmental factors in the development of obesity and CVD.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
382
|
Abstract
A number of recent epidemiological studies have associated the clonal expansion of hematopoietic cells, a process referred to as clonal hematopoiesis, with increased mortality. Clonal hematopoiesis increases the risk of hematological cancer, but this overall risk cannot account for the increase in mortality in the general population. Surprisingly, these mutations have also been associated with higher rates of cardiovascular disease, suggesting a previously unrecognized link between somatic mutations in hematopoietic cells and chronic disease. Here, we review recent epidemiological and experimental studies on clonal hematopoiesis that relate to cardiovascular disease.
Collapse
Affiliation(s)
- Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| |
Collapse
|
383
|
A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs. Nat Commun 2018; 9:5199. [PMID: 30518757 PMCID: PMC6281617 DOI: 10.1038/s41467-018-07349-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/18/2018] [Indexed: 01/21/2023] Open
Abstract
Predicting the functional consequences of genetic variants in non-coding regions is a challenging problem. We propose here a semi-supervised approach, GenoNet, to jointly utilize experimentally confirmed regulatory variants (labeled variants), millions of unlabeled variants genome-wide, and more than a thousand cell/tissue type specific epigenetic annotations to predict functional consequences of non-coding variants. Through the application to several experimental datasets, we demonstrate that the proposed method significantly improves prediction accuracy compared to existing functional prediction methods at the tissue/cell type level, but especially so at the organism level. Importantly, we illustrate how the GenoNet scores can help in fine-mapping at GWAS loci, and in the discovery of disease associated genes in sequencing studies. As more comprehensive lists of experimentally validated variants become available over the next few years, semi-supervised methods like GenoNet can be used to provide increasingly accurate functional predictions for variants genome-wide and across a variety of cell/tissue types. Predicting the functional consequences of non-coding genetic variants is a challenge. Here, He et al. present GenoNet, a semi-supervised method that combines information from experimentally confirmed regulatory variants with cell type- and tissue specific annotation for function prediction.
Collapse
|
384
|
Imai N, Cohen DE. Trimming the Fat: Acetyl-CoA Carboxylase Inhibition for the Management of NAFLD. Hepatology 2018; 68:2062-2065. [PMID: 30076622 PMCID: PMC7888551 DOI: 10.1002/hep.30206] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Norihiro Imai
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
385
|
Ferkingstad E, Oddsson A, Gretarsdottir S, Benonisdottir S, Thorleifsson G, Deaton AM, Jonsson S, Stefansson OA, Norddahl GL, Zink F, Arnadottir GA, Gunnarsson B, Halldorsson GH, Helgadottir A, Jensson BO, Kristjansson RP, Sveinbjornsson G, Sverrisson DA, Masson G, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Holm H, Jonsdottir I, Olafsson S, Steingrimsdottir T, Rafnar T, Bjornsson ES, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat Commun 2018; 9:5101. [PMID: 30504769 PMCID: PMC6269469 DOI: 10.1038/s41467-018-07460-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
Gallstones are responsible for one of the most common diseases in the Western world and are commonly treated with cholecystectomy. We perform a meta-analysis of two genome-wide association studies of gallstone disease in Iceland and the UK, totaling 27,174 cases and 736,838 controls, uncovering 21 novel gallstone-associated variants at 20 loci. Two distinct low frequency missense variants in SLC10A2, encoding the apical sodium-dependent bile acid transporter (ASBT), associate with an increased risk of gallstone disease (Pro290Ser: OR = 1.36 [1.25-1.49], P = 2.1 × 10-12, MAF = 1%; Val98Ile: OR = 1.15 [1.10-1.20], P = 1.8 × 10-10, MAF = 4%). We demonstrate that lower bile acid transport by ASBT is accompanied by greater risk of gallstone disease and highlight the role of the intestinal compartment of the enterohepatic circulation of bile acids in gallstone disease susceptibility. Additionally, two low frequency missense variants in SERPINA1 and HNF4A and 17 common variants represent novel associations with gallstone disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Florian Zink
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | | | | | | | | | | | | | | | | | - Gisli Masson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspítali University Hospital, Reykjavik, 101, Iceland
| | | | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, 600, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Sigurdur Olafsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | | | - Einar S Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Patrick Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.
| |
Collapse
|
386
|
Mitrovič M, Patsopoulos NA, Beecham AH, Dankowski T, Goris A, Dubois B, D’hooghe MB, Lemmens R, Van Damme P, Søndergaard HB, Sellebjerg F, Sorensen PS, Ullum H, Thørner LW, Werge T, Saarela J, Cournu-Rebeix I, Damotte V, Fontaine B, Guillot-Noel L, Lathrop M, Vukusik S, Gourraud PA, Andlauer TF, Pongratz V, Buck D, Gasperi C, Bayas A, Heesen C, Kümpfel T, Linker R, Paul F, Stangel M, Tackenberg B, Bergh FT, Warnke C, Wiendl H, Wildemann B, Zettl U, Ziemann U, Tumani H, Gold R, Grummel V, Hemmer B, Knier B, Lill CM, Luessi F, Dardiotis E, Agliardi C, Barizzone N, Mascia E, Bernardinelli L, Comi G, Cusi D, Esposito F, Ferrè L, Comi C, Galimberti D, Leone MA, Sorosina M, Mescheriakova J, Hintzen R, van Duijn C, Teunissen CE, Bos SD, Myhr KM, Celius EG, Lie BA, Spurkland A, Comabella M, Montalban X, Alfredsson L, Stridh P, Hillert J, Jagodic M, Piehl F, Jelčić I, Martin R, Sospedra M, Ban M, Hawkins C, Hysi P, Kalra S, Karpe F, Khadake J, Lachance G, Neville M, Santaniello A, Caillier SJ, Calabresi PA, Cree BA, Cross A, Davis MF, Haines JL, de Bakker PI, Delgado S, Dembele M, Edwards K, Fitzgerald KC, Hakonarson H, et alMitrovič M, Patsopoulos NA, Beecham AH, Dankowski T, Goris A, Dubois B, D’hooghe MB, Lemmens R, Van Damme P, Søndergaard HB, Sellebjerg F, Sorensen PS, Ullum H, Thørner LW, Werge T, Saarela J, Cournu-Rebeix I, Damotte V, Fontaine B, Guillot-Noel L, Lathrop M, Vukusik S, Gourraud PA, Andlauer TF, Pongratz V, Buck D, Gasperi C, Bayas A, Heesen C, Kümpfel T, Linker R, Paul F, Stangel M, Tackenberg B, Bergh FT, Warnke C, Wiendl H, Wildemann B, Zettl U, Ziemann U, Tumani H, Gold R, Grummel V, Hemmer B, Knier B, Lill CM, Luessi F, Dardiotis E, Agliardi C, Barizzone N, Mascia E, Bernardinelli L, Comi G, Cusi D, Esposito F, Ferrè L, Comi C, Galimberti D, Leone MA, Sorosina M, Mescheriakova J, Hintzen R, van Duijn C, Teunissen CE, Bos SD, Myhr KM, Celius EG, Lie BA, Spurkland A, Comabella M, Montalban X, Alfredsson L, Stridh P, Hillert J, Jagodic M, Piehl F, Jelčić I, Martin R, Sospedra M, Ban M, Hawkins C, Hysi P, Kalra S, Karpe F, Khadake J, Lachance G, Neville M, Santaniello A, Caillier SJ, Calabresi PA, Cree BA, Cross A, Davis MF, Haines JL, de Bakker PI, Delgado S, Dembele M, Edwards K, Fitzgerald KC, Hakonarson H, Konidari I, Lathi E, Manrique CP, Pericak-Vance MA, Piccio L, Schaefer C, McCabe C, Weiner H, Goldstein J, Olsson T, Hadjigeorgiou G, Taylor B, Tajouri L, Charlesworth J, Booth DR, Harbo HF, Ivinson AJ, Hauser SL, Compston A, Stewart G, Zipp F, Barcellos LF, Baranzini SE, Martinelli-Boneschi F, D’Alfonso S, Ziegler A, Oturai A, McCauley JL, Sawcer SJ, Oksenberg JR, De Jager PL, Kockum I, Hafler DA, Cotsapas C. Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell 2018; 175:1679-1687.e7. [PMID: 30343897 PMCID: PMC6269166 DOI: 10.1016/j.cell.2018.09.049] [Show More Authors] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis is a complex neurological disease, with ∼20% of risk heritability attributable to common genetic variants, including >230 identified by genome-wide association studies. Multiple strands of evidence suggest that much of the remaining heritability is also due to additive effects of common variants rather than epistasis between these variants or mutations exclusive to individual families. Here, we show in 68,379 cases and controls that up to 5% of this heritability is explained by low-frequency variation in gene coding sequence. We identify four novel genes driving MS risk independently of common-variant signals, highlighting key pathogenic roles for regulatory T cell homeostasis and regulation, IFNγ biology, and NFκB signaling. As low-frequency variants do not show substantial linkage disequilibrium with other variants, and as coding variants are more interpretable and experimentally tractable than non-coding variation, our discoveries constitute a rich resource for dissecting the pathobiology of MS.
Collapse
|
387
|
Potential causal associations of serum 25-hydroxyvitamin D with lipids: a Mendelian randomization approach of the HUNT study. Eur J Epidemiol 2018; 34:57-66. [PMID: 30465296 DOI: 10.1007/s10654-018-0465-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
Abstract
Observational studies have shown consistent associations between higher circulating 25-hydroxyvitamin D [25(OH)D] levels and favorable serum lipids. We sought to investigate if such associations were causal. A Mendelian randomization (MR) study was conducted on a population-based cohort comprising 56,435 adults in Norway. A weighted 25(OH)D allele score was generated based on vitamin D-increasing alleles of rs2282679, rs12785878 and rs10741657. Linear regression analyses of serum lipid levels on the allele score were performed to assess the presence of causal associations of serum 25(OH)D with the lipids. To quantify the causal effects, the inverse-variance weighted method was used for calculating MR estimates based on summarized data of individual single-nucleotide polymorphisms. The MR estimate with 95% confidence interval (CI) represents percentage difference in the lipid level per genetically determined 25 nmol/L increase in 25(OH)D. The 25(OH)D allele score demonstrated a clear association with high-density lipoprotein (HDL) cholesterol (p = 0.007) but no association with total or non-HDL cholesterol or triglycerides (p ≥ 0.27). The MR estimate showed 2.52% (95% CI 0.79-4.25%) increase in HDL cholesterol per genetically determined 25 nmol/L increase in 25(OH)D, which was stronger than the corresponding estimate of 1.83% (95% CI 0.85-2.81%) from the observational analysis. The MR estimates for total cholesterol (0.60%, 95% CI - 0.73 to 1.94%), non-HDL cholesterol (0.04%, 95% CI - 1.79 to 1.88%) and triglycerides (- 2.74%, 95% CI - 6.16 to 0.67%) showed no associations. MR analysis of data from a population-based cohort suggested a causal and positive association between serum 25(OH)D and HDL cholesterol.
Collapse
|
388
|
Serum Triglycerides and Atherosclerotic Cardiovascular Disease: Insights from Clinical and Genetic Studies. Nutrients 2018; 10:nu10111789. [PMID: 30453617 PMCID: PMC6266080 DOI: 10.3390/nu10111789] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Lipoproteins are a major risk factor for atherosclerotic cardiovascular diseases (ASCVD). Among the lipoproteins, low-density lipoproteins (LDL) have been shown to be causally associated with ASCVD development. In contrast, triglycerides or triglyceride-rich lipoproteins receive less attention than LDL because there is little definite evidence from randomized controlled trials. A Mendelian randomization study has recently been published in which a causal association could be estimated with observational datasets. Using such Mendelian randomization studies, ranging from common to rare genetic variations, triglycerides seem to be causally associated with ASCVD outcomes independent of LDL. Although the “causal association” of serum triglycerides and ASCVD is difficult to assert, accumulated evidence from clinical and Mendelian randomization studies, using common and rare genetic variations, strongly supports such an association. In this article, we provide a summary of investigations focusing on important causal associations between serum triglycerides and ASCVD from the clinical point of view.
Collapse
|
389
|
Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci 2018; 59:AMD160-AMD181. [PMID: 30357336 PMCID: PMC6733535 DOI: 10.1167/iovs.18-24882] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AMD is a major cause of legal blindness in older adults approachable through multidisciplinary research involving human tissues and patients. AMD is a vascular-metabolic-inflammatory disease, in which two sets of extracellular deposits, soft drusen/basal linear deposit (BLinD) and subretinal drusenoid deposit (SDD), confer risk for end-stages of atrophy and neovascularization. Understanding how deposits form can lead to insights for new preventions and therapy. The topographic correspondence of BLinD and SDD with cones and rods, respectively, suggest newly realized exchange pathways among outer retinal cells and across Bruch's membrane and the subretinal space, in service of highly evolved, eye-specific physiology. This review focuses on soft drusen/BLinD, summarizing evidence that a major ultrastructural component is large apolipoprotein B,E-containing, cholesterol-rich lipoproteins secreted by the retinal pigment epithelium (RPE) that offload unneeded lipids of dietary and outer segment origin to create an atherosclerosis-like progression in the subRPE-basal lamina space. Clinical observations and an RPE cell culture system combine to suggest that soft drusen/BLinD form when secretions of functional RPE back up in the subRPE-basal lamina space by impaired egress across aged Bruch's membrane-choriocapillary endothelium. The soft drusen lifecycle includes growth, anterior migration of RPE atop drusen, then collapse, and atrophy. Proof-of-concept studies in humans and animal models suggest that targeting the “Oil Spill in Bruch's membrane” offers promise of treating a process in early AMD that underlies progression to both end-stages. A companion article addresses the antecedents of soft drusen within the biology of the macula.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
390
|
Curcio CA. Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. Invest Ophthalmol Vis Sci 2018; 59:AMD182-AMD194. [PMID: 30357337 PMCID: PMC6733529 DOI: 10.1167/iovs.18-24883] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AMD pathobiology was irreversibly changed by the recent discovery of extracellular cholesterol-containing deposits in the subretinal space, between the photoreceptors and retinal pigment epithelium (RPE), called subretinal drusenoid deposits (SDDs). SDDs strikingly mirror the topography of rod photoreceptors in human macula, raising the question of whether an equivalent process results in a deposition related to foveal cones. Herein we propose that AMD's pathognomonic lesion-soft drusen and basal linear deposit (BLinD, same material, diffusely distributed)-is the leading candidate. Epidemiologic, clinical, and histologic data suggest that these deposits are most abundant in the central macula, under the fovea. Strong evidence presented in a companion article supports the idea that the dominant ultrastructural component is large apolipoprotein B,E-containing lipoproteins, constitutively secreted by RPE. Lipoprotein fatty acids are dominated by linoleate (implicating diet) rather than docosahexaenoate (implicating photoreceptors); we seek within the retina cellular relationships and dietary drivers to explain soft druse topography. The delivery of xanthophyll pigments to highly evolved and numerous Müller cells in the human fovea, through RPE, is one strong candidate, because Müller cells are the main reservoir of these pigments, which replenish from diet. We propose that the evolution of neuroglial relations and xanthophyll delivery that underlie exquisite human foveal vision came with a price, that is, soft drusen and sequela, long after our reproductive years.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
391
|
Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso GM, Chaffin M, Small AM, Huang J, Tang H, Lynch JA, Ho YL, Liu DJ, Emdin CA, Li AH, Huffman JE, Lee JS, Natarajan P, Chowdhury R, Saleheen D, Vujkovic M, Baras A, Pyarajan S, Di Angelantonio E, Neale BM, Naheed A, Khera AV, Danesh J, Chang KM, Abecasis G, Willer C, Dewey FE, Carey DJ, Concato J, Gaziano JM, O'Donnell CJ, Tsao PS, Kathiresan S, Rader DJ, Wilson PWF, Assimes TL. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 2018; 50:1514-1523. [PMID: 30275531 PMCID: PMC6521726 DOI: 10.1038/s41588-018-0222-9] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
The Million Veteran Program (MVP) was established in 2011 as a national research initiative to determine how genetic variation influences the health of US military veterans. Here we genotyped 312,571 MVP participants using a custom biobank array and linked the genetic data to laboratory and clinical phenotypes extracted from electronic health records covering a median of 10.0 years of follow-up. Among 297,626 veterans with at least one blood lipid measurement, including 57,332 black and 24,743 Hispanic participants, we tested up to around 32 million variants for association with lipid levels and identified 118 novel genome-wide significant loci after meta-analysis with data from the Global Lipids Genetics Consortium (total n > 600,000). Through a focus on mutations predicted to result in a loss of gene function and a phenome-wide association study, we propose novel indications for pharmaceutical inhibitors targeting PCSK9 (abdominal aortic aneurysm), ANGPTL4 (type 2 diabetes) and PDE3B (triglycerides and coronary disease).
Collapse
Affiliation(s)
- Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Scott M Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - David R Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Scott L DuVall
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jin Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aeron M Small
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jie Huang
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts College of Nursing and Health Sciences, Boston, MA, USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Connor A Emdin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Jennifer S Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Danish Saleheen
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijana Vujkovic
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aliya Naheed
- Initiative for Noncommunicable Diseases, Health Systems and Population Studies Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyong-Mi Chang
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gonçalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - John Concato
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher J O'Donnell
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter W F Wilson
- Atlanta VA Medical Center, Decatur, GA, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
392
|
Abstract
Obesity prevalence continues to rise worldwide, posing a substantial burden on people's health. However, up to 45% of obese individuals do not suffer from cardiometabolic complications, also called the metabolically healthy obese (MHO). Concurrently, up to 30% of normal-weight individuals demonstrate cardiometabolic risk factors that are generally observed in obese individuals, the metabolically obese normal weight (MONW). Besides lifestyle, environmental factors and demographic factors, innate biological mechanisms are known to contribute to the aetiology of the MHO and MONW phenotypes, as well. Experimental studies in animal models have shown that adipose tissue expandability, fat distribution, adipogenesis, adipose tissue vascularization, inflammation and fibrosis, and mitochondrial function are the main mechanisms that uncouple adiposity from its cardiometabolic comorbidities. We reviewed current genetic association studies to expand insights into the biology of MHO/MONW phenotypes. At least four genetic loci were identified through genome-wide association studies for body fat percentage (BF%) of which the BF%-increasing allele was associated with a protective effect on glycemic and lipid outcomes. For some, this association was mediated through favourable effects on body fat distribution. Other studies that characterized the genetic susceptibility of insulin resistance found that a higher susceptibility was associated with lower overall adiposity due to less fat accumulation at hips and legs, suggesting that an impaired capacity to store fat subcutaneously or a preferential storage in the intra-abdominal cavity may be metabolically harmful. Clearly, more work remains to be done in this field, first through gene discovery and subsequently through functional follow-up of identified genes.
Collapse
Affiliation(s)
- R J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, Copenhagen, Denmark
| | - T O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
393
|
Yang X, Cheng Y, Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci Rep 2018; 38:BSR20180557. [PMID: 30049845 PMCID: PMC6137252 DOI: 10.1042/bsr20180557] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional cytokine regulating vascular permeability, angiogenesis, and inflammation. Dysregulations in these responses contribute to the pathogenesis of ischemic retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal vein occlusion, and sickle cell retinopathy (SCR). However, the role of ANGPTL4 in these diseases remains controversial. Here, we summarize the functional mechanisms of ANGPTL4 in several diseases. We highlight original studies that provide detailed data about the mechanisms of action for ANGPTL4, its applications as a diagnostic or prognostic biomarker, and its use as a potential therapeutic target. Taken together, the discussions in this review will help us gain a better understanding of the molecular mechanisms by which ANGPTL4 functions in eye disease and will provide directions for future research.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
394
|
Young EP, Stitziel NO. Capitalizing on Insights from Human Genetics to Identify Novel Therapeutic Targets for Coronary Artery Disease. Annu Rev Med 2018; 70:19-32. [PMID: 30355262 DOI: 10.1146/annurev-med-041717-085853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coronary artery disease (CAD) is a major cause of morbidity and mortality. Unfortunately, despite decades of research focused on disease pathogenesis, we still lack a sufficient pharmacopeia for preventing CAD. The failure of many novel cardiovascular drugs to improve clinical outcomes reflects the major substantial challenge of drug development: identifying causal mechanisms that can be therapeutically manipulated to lower disease risk. Identifying genetic variants that are associated with risk of CAD has emerged as a clear path toward improving our understanding of the underlying mechanisms that lead to disease and to the development of new therapies. Here, we review the potential utility and limitations of using human genetics to guide the identification of therapeutic targets for CAD.
Collapse
Affiliation(s)
- Erica P Young
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA; .,Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri 63108, USA;
| |
Collapse
|
395
|
Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, Hasan AA, Amar S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol 2018; 72:2071-2081. [PMID: 30336831 PMCID: PMC6196735 DOI: 10.1016/j.jacc.2018.08.1043] [Citation(s) in RCA: 406] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
Observations on human and experimental atherosclerosis, biomarker studies, and now a large-scale clinical trial support the operation of immune and inflammatory pathways in this disease. The factors that incite innate and adaptive immune responses implicated in atherogenesis and in lesion complication include traditional risk factors such as protein and lipid components of native and modified low-density lipoprotein, angiotensin II, smoking, visceral adipose tissue, and dysmetabolism. Infectious processes and products of the endogenous microbiome might also modulate atherosclerosis and its complications either directly, or indirectly by eliciting local and systemic responses that potentiate disease expression. Trials with antibiotics have not reduced recurrent cardiovascular events, nor have vaccination strategies yet achieved clinical translation. However, anti-inflammatory interventions such as anticytokine therapy and colchicine have begun to show efficacy in this regard. Thus, inflammatory and immune mechanisms can link traditional and emerging risk factors to atherosclerosis, and offer novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Joseph Loscalzo
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul M Ridker
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael E Farkouh
- Peter Munk Cardiac Centre and the Heart and Stroke Richard Lewar Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priscilla Y Hsue
- University of California, San Francisco General Hospital, San Francisco, California
| | | | - Ahmed A Hasan
- The National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Salomon Amar
- Departments of Pharmacology, Immunology and Microbiology, New York Medical College, Valhalla, New York
| |
Collapse
|
396
|
Yamada Y, Kato K, Oguri M, Horibe H, Fujimaki T, Yasukochi Y, Takeuchi I, Sakuma J. Identification of 12 novel loci that confer susceptibility to early-onset dyslipidemia. Int J Mol Med 2018; 43:57-82. [PMID: 30365130 PMCID: PMC6257857 DOI: 10.3892/ijmm.2018.3943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
The circulating concentrations of triglycerides, high density lipoprotein (HDL)-cholesterol, and low density lipoprotein (LDL)-cholesterol have a substantial genetic component, and the heritability of early-onset dyslipidemia might be expected to be higher compared with late-onset forms. In the present study, exome-wide association studies (EWASs) were performed for early-onset hypertriglyceridemia, hypo-HDL-cholesterolemia, and hyper-LDL-cholesterolemia, with the aim to identify genetic variants that confer susceptibility to these conditions in the Japanese population. A total of 8,073 individuals aged ≤65 years were enrolled in the study. The EWASs for hypertriglyceridemia (2,664 cases and 5,294 controls), hypo-HDL-cholesterolemia (974 cases and 7,085 controls), and hyper-LDL-cholesterolemia (2,911 cases and 5,111 controls) were performed with Illumina Human Exome-12 v1.2 DNA Analysis BeadChip or Infinium Exome-24 v1.0 BeadChip arrays. The association of allele frequencies for 31,198, 31,133, or 31,175 single nucleotide polymorphisms (SNPs) to hypertriglyceridemia, hypo-HDL-cholesterolemia, or hyper-LDL-cholesterolemia, respectively, was examined with Fisher’s exact test. To compensate for multiple comparisons of genotypes with each of the three conditions, Bonferroni’s correction was applied for statistical significance of association. The results demonstrated that 25, 28 and 65 SNPs were significantly associated with hypertriglyceridemia, hypo-HDL-cholesterolemia and hyper-LDL-cholesterolemia, respectively. Multivariable logistic regression analysis with adjustment for age and sex revealed that all 25, 28 and 65 of these SNPs were significantly associated with hypertriglyceridemia, hypo-HDL-cholesterolemia and hyper-LDL-cholesterolemia, respectively. Following examination of the association of the identified SNPs to serum concentrations of triglycerides, HDL-cholesterol, or LDL-cholesterol, linkage disequilibrium of the SNPs, and results of previous genome-wide association studies, we newly identified chromosomal region 19p12 as a susceptibility locus for hypertriglyceridemia, eight loci (MOB3C-TMOD4, LPGAT1, EHD3, COL6A3, ZNF860-CACNA1D, COL6A5, DCLRE1C, ZNF77) for hypo-HDL-cholesterolemia, and three loci (KIAA0319-FAM65B, UBD, LOC105375015) for hyper-LDL-cholesterolemia. The present study thus identified 12 novel loci that may confer susceptibility to early-onset dyslipidemia. Determination of genotypes for the SNPs at these loci may prove informative for assessment of genetic risk for hypertriglyceridemia, hypo-HDL-cholesterolemia, or hyper-LDL-cholesterolemia in the Japanese population.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507‑8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Northern Mie Medical Center Inabe General Hospital, Inabe, Mie 511‑0428, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| |
Collapse
|
397
|
Diogo D, Tian C, Franklin CS, Alanne-Kinnunen M, March M, Spencer CCA, Vangjeli C, Weale ME, Mattsson H, Kilpeläinen E, Sleiman PMA, Reilly DF, McElwee J, Maranville JC, Chatterjee AK, Bhandari A, Nguyen KDH, Estrada K, Reeve MP, Hutz J, Bing N, John S, MacArthur DG, Salomaa V, Ripatti S, Hakonarson H, Daly MJ, Palotie A, Hinds DA, Donnelly P, Fox CS, Day-Williams AG, Plenge RM, Runz H. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun 2018; 9:4285. [PMID: 30327483 PMCID: PMC6191429 DOI: 10.1038/s41467-018-06540-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Phenome-wide association studies (PheWAS) have been proposed as a possible aid in drug development through elucidating mechanisms of action, identifying alternative indications, or predicting adverse drug events (ADEs). Here, we select 25 single nucleotide polymorphisms (SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common disease indications. We interrogate these SNPs by PheWAS in four large cohorts with extensive health information (23andMe, UK Biobank, FINRISK, CHOP) for association with 1683 binary endpoints in up to 697,815 individuals and conduct meta-analyses for 145 mapped disease endpoints. Our analyses replicate 75% of known GWAS associations (P < 0.05) and identify nine study-wide significant novel associations (of 71 with FDR < 0.1). We describe associations that may predict ADEs, e.g., acne, high cholesterol, gout, and gallstones with rs738409 (p.I148M) in PNPLA3 and asthma with rs1990760 (p.T946A) in IFIH1. Our results demonstrate PheWAS as a powerful addition to the toolkit for drug discovery.
Collapse
Affiliation(s)
| | - Chao Tian
- 23andMe Inc, Mountain View, CA, 94041, USA
| | | | - Mervi Alanne-Kinnunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Michael March
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | | - Hannele Mattsson
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Patrick M A Sleiman
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Joshua McElwee
- Merck Sharp & Dohme, Boston, MA, 02115, USA
- Nimbus Therapeutics, Cambridge, MA, 02139, USA
| | - Joseph C Maranville
- Merck Sharp & Dohme, Boston, MA, 02115, USA
- Celgene, Cambridge, MA, 02140, USA
| | - Arnaub K Chatterjee
- Merck Sharp & Dohme, Boston, MA, 02115, USA
- McKinsey & Co., Boston, MA, 02210, USA
| | - Aman Bhandari
- Merck Sharp & Dohme, Boston, MA, 02115, USA
- Vertex Pharmaceuticals, Boston, MA, 02210, USA
| | | | - Karol Estrada
- Biogen, Research and Early Development, Cambridge, MA, 02142, USA
| | | | | | - Nan Bing
- Pfizer, Cambridge, MA, 02139, USA
| | - Sally John
- Biogen, Research and Early Development, Cambridge, MA, 02142, USA
| | - Daniel G MacArthur
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Hakon Hakonarson
- The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | | | | | - Aaron G Day-Williams
- Merck Sharp & Dohme, Boston, MA, 02115, USA
- Biogen, Research and Early Development, Cambridge, MA, 02142, USA
| | - Robert M Plenge
- Merck Sharp & Dohme, Boston, MA, 02115, USA
- Celgene, Cambridge, MA, 02140, USA
| | - Heiko Runz
- Merck Sharp & Dohme, Boston, MA, 02115, USA.
- Biogen, Research and Early Development, Cambridge, MA, 02142, USA.
| |
Collapse
|
398
|
Stanaway IB, Hall TO, Rosenthal EA, Palmer M, Naranbhai V, Knevel R, Namjou-Khales B, Carroll RJ, Kiryluk K, Gordon AS, Linder J, Howell KM, Mapes BM, Lin FTJ, Joo YY, Hayes MG, Gharavi AG, Pendergrass SA, Ritchie MD, de Andrade M, Croteau-Chonka DC, Raychaudhuri S, Weiss ST, Lebo M, Amr SS, Carrell D, Larson EB, Chute CG, Rasmussen-Torvik LJ, Roy-Puckelwartz MJ, Sleiman P, Hakonarson H, Li R, Karlson EW, Peterson JF, Kullo IJ, Chisholm R, Denny JC, Jarvik GP, Crosslin DR. The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype. Genet Epidemiol 2018; 43:63-81. [PMID: 30298529 PMCID: PMC6375696 DOI: 10.1002/gepi.22167] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022]
Abstract
The Electronic Medical Records and Genomics (eMERGE) network is a network of medical centers with electronic medical records linked to existing biorepository samples for genomic discovery and genomic medicine research. The network sought to unify the genetic results from 78 Illumina and Affymetrix genotype array batches from 12 contributing medical centers for joint association analysis of 83,717 human participants. In this report, we describe the imputation of eMERGE results and methods to create the unified imputed merged set of genome‐wide variant genotype data. We imputed the data using the Michigan Imputation Server, which provides a missing single‐nucleotide variant genotype imputation service using the minimac3 imputation algorithm with the Haplotype Reference Consortium genotype reference set. We describe the quality control and filtering steps used in the generation of this data set and suggest generalizable quality thresholds for imputation and phenotype association studies. To test the merged imputed genotype set, we replicated a previously reported chromosome 6 HLA‐B herpes zoster (shingles) association and discovered a novel zoster‐associated loci in an epigenetic binding site near the terminus of chromosome 3 (3p29).
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - Taryn O Hall
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | - Melody Palmer
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | - Vivek Naranbhai
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington.,Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rachel Knevel
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Bahram Namjou-Khales
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Robert J Carroll
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, Tennessee
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University, New York City, New York
| | - Adam S Gordon
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | - Jodell Linder
- Vanderbilt Institute for Clinical and Translational Research, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Kayla Marie Howell
- Vanderbilt Institute for Clinical and Translational Research, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Brandy M Mapes
- Vanderbilt Institute for Clinical and Translational Research, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Frederick T J Lin
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - M Geoffrey Hayes
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ali G Gharavi
- Department of Medicine, Columbia University, New York City, New York
| | | | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Soumya Raychaudhuri
- Harvard Medical School, Harvard University, Cambridge, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, Massachusetts
| | - Scott T Weiss
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Matt Lebo
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Sami S Amr
- Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - David Carrell
- Kaiser Permanente Washington Health Research Institute (Formerly Group Health Cooperative-Seattle), Kaiser Permanente, Seattle, Washington
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute (Formerly Group Health Cooperative-Seattle), Kaiser Permanente, Seattle, Washington
| | - Christopher G Chute
- Schools of Medicine, Public Health, and Nursing, Johns Hopkins University, Baltimore, Maryland
| | | | | | - Patrick Sleiman
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Rongling Li
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth W Karlson
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Josh F Peterson
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Rex Chisholm
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joshua Charles Denny
- Departments of Biomedical Informatics and Medicine, Vanderbilt University, Nashville, Tennessee
| | - Gail P Jarvik
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, Washington
| | -
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David R Crosslin
- Department of Biomedical Informatics Medical Education, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
399
|
Lotta LA, Stewart ID, Sharp SJ, Day FR, Burgess S, Luan J, Bowker N, Cai L, Li C, Wittemans LBL, Kerrison ND, Khaw KT, McCarthy MI, O’Rahilly S, Scott RA, Savage DB, Perry JRB, Langenberg C, Wareham NJ. Association of Genetically Enhanced Lipoprotein Lipase-Mediated Lipolysis and Low-Density Lipoprotein Cholesterol-Lowering Alleles With Risk of Coronary Disease and Type 2 Diabetes. JAMA Cardiol 2018; 3:957-966. [PMID: 30326043 PMCID: PMC6217943 DOI: 10.1001/jamacardio.2018.2866] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/26/2018] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Pharmacological enhancers of lipoprotein lipase (LPL) are in preclinical or early clinical development for cardiovascular prevention. Studying whether these agents will reduce cardiovascular events or diabetes risk when added to existing lipid-lowering drugs would require large outcome trials. Human genetics studies can help prioritize or deprioritize these resource-demanding endeavors. OBJECTIVE To investigate the independent and combined associations of genetically determined differences in LPL-mediated lipolysis and low-density lipoprotein cholesterol (LDL-C) metabolism with risk of coronary disease and diabetes. DESIGN, SETTING, AND PARTICIPANTS In this genetic association study, individual-level genetic data from 392 220 participants from 2 population-based cohort studies and 1 case-cohort study conducted in Europe were included. Data were collected from January 1991 to July 2018, and data were analyzed from July 2014 to July 2018. EXPOSURES Six conditionally independent triglyceride-lowering alleles in LPL, the p.Glu40Lys variant in ANGPTL4, rare loss-of-function variants in ANGPTL3, and LDL-C-lowering polymorphisms at 58 independent genomic regions, including HMGCR, NPC1L1, and PCSK9. MAIN OUTCOMES AND MEASURES Odds ratio for coronary artery disease and type 2 diabetes. RESULTS Of the 392 220 participants included, 211 915 (54.0%) were female, and the mean (SD) age was 57 (8) years. Triglyceride-lowering alleles in LPL were associated with protection from coronary disease (approximately 40% lower odds per SD of genetically lower triglycerides) and type 2 diabetes (approximately 30% lower odds) in people above or below the median of the population distribution of LDL-C-lowering alleles at 58 independent genomic regions, HMGCR, NPC1L1, or PCSK9. Associations with lower risk were consistent in quintiles of the distribution of LDL-C-lowering alleles and 2 × 2 factorial genetic analyses. The 40Lys variant in ANGPTL4 was associated with protection from coronary disease and type 2 diabetes in groups with genetically higher or lower LDL-C. For a genetic difference of 0.23 SDs in LDL-C, ANGPTL3 loss-of-function variants, which also have beneficial associations with LPL lipolysis, were associated with greater protection against coronary disease than other LDL-C-lowering genetic mechanisms (ANGPTL3 loss-of-function variants: odds ratio, 0.66; 95% CI, 0.52-0.83; 58 LDL-C-lowering variants: odds ratio, 0.90; 95% CI, 0.89-0.91; P for heterogeneity = .009). CONCLUSIONS AND RELEVANCE Triglyceride-lowering alleles in the LPL pathway are associated with lower risk of coronary disease and type 2 diabetes independently of LDL-C-lowering genetic mechanisms. These findings provide human genetics evidence to support the development of agents that enhance LPL-mediated lipolysis for further clinical benefit in addition to LDL-C-lowering therapy.
Collapse
Affiliation(s)
- Luca A. Lotta
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Isobel D. Stewart
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sharp
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Felix R. Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Bowker
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Lina Cai
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Chen Li
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Laura B. L. Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Nicola D. Kerrison
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Stephen O’Rahilly
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David B. Savage
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - John R. B. Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
400
|
Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci. THE PHARMACOGENOMICS JOURNAL 2018; 19:347-357. [DOI: 10.1038/s41397-018-0055-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/07/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
|