351
|
Yang C, Pataskar A, Feng X, Montenegro Navarro J, Paniagua I, Jacobs JJL, Zaal EA, Berkers CR, Bleijerveld OB, Agami R. Arginine deprivation enriches lung cancer proteomes with cysteine by inducing arginine-to-cysteine substitutants. Mol Cell 2024; 84:1904-1916.e7. [PMID: 38759626 PMCID: PMC11129317 DOI: 10.1016/j.molcel.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.
Collapse
Affiliation(s)
- Chao Yang
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Inés Paniagua
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
352
|
Funkner K, Poehlein A, Jehmlich N, Egelkamp R, Daniel R, von Bergen M, Rother M. Proteomic and transcriptomic analysis of selenium utilization in Methanococcus maripaludis. mSystems 2024; 9:e0133823. [PMID: 38591896 PMCID: PMC11097638 DOI: 10.1128/msystems.01338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism's primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism's effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters. IMPORTANCE While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.
Collapse
Affiliation(s)
- Katrina Funkner
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Michael Rother
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
353
|
Peinado-Izaguerri J, Corbishley A, Zarzuela E, Pina-Beltrán B, Riva F, McKeegan DEF, Bain M, Muñoz J, Bhide M, McLaughlin M, Preston T. Effect of an immune challenge and two feed supplements on broiler chicken individual breast muscle protein synthesis rate. J Proteomics 2024; 299:105158. [PMID: 38484873 DOI: 10.1016/j.jprot.2024.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken's growth. Despite its importance, research on broiler chicken muscle protein dynamics has mostly been limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of citrus and cucumber extracts on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. Twenty-one day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analysed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein synthesis which could be essential for improving the efficiency of broiler chicken meat production. SIGNIFICANCE: The present study constitutes the first dynamic proteomics study conducted in a farm animal species which has characterized FSR in a large number of proteins, establishing a precedent for biomarker discovery and assessment of health and growth status. Moreover, it has been evidenced that the decrease in broiler chicken breast muscle protein following an immune challenge is a coordinated event which seems to be the main cause of the decreased growth observed in these animals.
Collapse
Affiliation(s)
- Jorge Peinado-Izaguerri
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom; University of Veterinary Medicine and Pharmacy in Košice, Laboratory of biomedical microbiology and immunology, Komenskeho 73, Košice 04001, Slovakia.
| | - Alexander Corbishley
- University of Edinburgh, Roslin Institute, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom.
| | - Eduardo Zarzuela
- Spanish National Cancer Research Center, Proteomics Unit, Calle de Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | - Blanca Pina-Beltrán
- Aix-Marseille Université, Marseille, Centre de Recherche en Cardiovasculaire et Nutrition, Bd Jean Moulin 27, Marseille 13385, France.
| | - Francesca Riva
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom; University of Zagreb, Clinic for Internal Diseases faculty of Veterinary Medicine, Heinzelova 55, Zagreb 10000, Croatia.
| | - Dorothy E F McKeegan
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Maureen Bain
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Javier Muñoz
- Spanish National Cancer Research Center, Proteomics Unit, Calle de Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Laboratory of biomedical microbiology and immunology, Komenskeho 73, Košice 04001, Slovakia.
| | - Mark McLaughlin
- University of Glasgow, School of Biodiversity, One Health and Veterinary Medicine, Ilay Road, Glasgow G61 1QH, United Kingdom.
| | - Tom Preston
- University of Glasgow, SUERC, Stable Isotope Biochemistry Laboratory, East Kilbride, Glasgow G75 0QF, United Kingdom.
| |
Collapse
|
354
|
Jones RT, Scholtes M, Goodspeed A, Akbarzadeh M, Mohapatra S, Feldman LE, Vekony H, Jean A, Tilton CB, Orman MV, Romal S, Deiter C, Kan TW, Xander N, Araki SP, Joshi M, Javaid M, Clambey ET, Layer R, Laajala TD, Parker SJ, Mahmoudi T, Zuiverloon TC, Theodorescu D, Costello JC. NPEPPS Is a Druggable Driver of Platinum Resistance. Cancer Res 2024; 84:1699-1718. [PMID: 38535994 PMCID: PMC11094426 DOI: 10.1158/0008-5472.can-23-1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/20/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable. Using the multiomic assessment of cisplatin-responsive and -resistant human bladder cancer cell lines and whole-genome CRISPR screens, we identified puromycin-sensitive aminopeptidase (NPEPPS) as a driver of cisplatin resistance. NPEPPS depletion sensitized resistant bladder cancer cells to cisplatin in vitro and in vivo. Conversely, overexpression of NPEPPS in sensitive cells increased cisplatin resistance. NPEPPS affected treatment response by regulating intracellular cisplatin concentrations. Patient-derived organoids (PDO) generated from bladder cancer samples before and after cisplatin-based treatment, and from patients who did not receive cisplatin, were evaluated for sensitivity to cisplatin, which was concordant with clinical response. In the PDOs, depletion or pharmacologic inhibition of NPEPPS increased cisplatin sensitivity, while NPEPPS overexpression conferred resistance. Our data present NPEPPS as a druggable driver of cisplatin resistance by regulating intracellular cisplatin concentrations. SIGNIFICANCE Targeting NPEPPS, which induces cisplatin resistance by controlling intracellular drug concentrations, is a potential strategy to improve patient responses to platinum-based therapies and lower treatment-associated toxicities.
Collapse
Affiliation(s)
- Robert T. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mathijs Scholtes
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maryam Akbarzadeh
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biochemistry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Saswat Mohapatra
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Lily Elizabeth Feldman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hedvig Vekony
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Annie Jean
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Charlene B. Tilton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael V. Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shahla Romal
- Department of Biochemistry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cailin Deiter
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tsung Wai Kan
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nathaniel Xander
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie P. Araki
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mahmood Javaid
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ryan Layer
- Computer Science Department, University of Colorado, Boulder, Colorado
- BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Sarah J. Parker
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biochemistry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tahlita C.M. Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
355
|
Shin S, Lee SY, Kang MG, Jang DG, Kim J, Rhee HW, Kim JS. Super-resolution proximity labeling with enhanced direct identification of biotinylation sites. Commun Biol 2024; 7:554. [PMID: 38724559 PMCID: PMC11082246 DOI: 10.1038/s42003-024-06112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
Promiscuous labeling enzymes, such as APEX2 or TurboID, are commonly used in in situ biotinylation studies of subcellular proteomes or protein-protein interactions. Although the conventional approach of enriching biotinylated proteins is widely implemented, in-depth identification of specific biotinylation sites remains challenging, and current approaches are technically demanding with low yields. A novel method to systematically identify specific biotinylation sites for LC-MS analysis followed by proximity labeling showed excellent performance compared with that of related approaches in terms of identification depth with high enrichment power. The systematic identification of biotinylation sites enabled a simpler and more efficient experimental design to identify subcellular localized proteins within membranous organelles. Applying this method to the processing body (PB), a non-membranous organelle, successfully allowed unbiased identification of PB core proteins, including novel candidates. We anticipate that our newly developed method will replace the conventional method for identifying biotinylated proteins labeled by promiscuous labeling enzymes.
Collapse
Affiliation(s)
- Sanghee Shin
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- The Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Dong-Gi Jang
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyun-Woo Rhee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
356
|
Forcella P, Ifflander N, Rolando C, Balta EA, Lampada A, Giachino C, Mukhtar T, Bock T, Taylor V. SAFB regulates hippocampal stem cell fate by targeting Drosha to destabilize Nfib mRNA. eLife 2024; 13:e74940. [PMID: 38722021 PMCID: PMC11149935 DOI: 10.7554/elife.74940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.
Collapse
Affiliation(s)
- Pascal Forcella
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | - Chiara Rolando
- Department of Biomedicine, University of BaselBaselSwitzerland
- Department of Biosciences, University of MilanMilanItaly
| | - Elli-Anna Balta
- Department of Biomedicine, University of BaselBaselSwitzerland
| | | | | | - Tanzila Mukhtar
- Department of Biomedicine, University of BaselBaselSwitzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of BaselBaselSwitzerland
| | - Verdon Taylor
- Department of Biomedicine, University of BaselBaselSwitzerland
| |
Collapse
|
357
|
Cruz-Mireles N, Osés-Ruiz M, Derbyshire P, Jégousse C, Ryder LS, Bautista MJA, Eseola A, Sklenar J, Tang B, Yan X, Ma W, Findlay KC, Were V, MacLean D, Talbot NJ, Menke FLH. The phosphorylation landscape of infection-related development by the rice blast fungus. Cell 2024; 187:2557-2573.e18. [PMID: 38729111 DOI: 10.1016/j.cell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.
Collapse
Affiliation(s)
- Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Miriam Osés-Ruiz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Jave A Bautista
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
358
|
Bredow C, Thery F, Wirth EK, Ochs S, Kespohl M, Kleinau G, Kelm N, Gimber N, Schmoranzer J, Voss M, Klingel K, Spranger J, Renko K, Ralser M, Mülleder M, Heuser A, Knobeloch KP, Scheerer P, Kirwan J, Brüning U, Berndt N, Impens F, Beling A. ISG15 blocks cardiac glycolysis and ensures sufficient mitochondrial energy production during Coxsackievirus B3 infection. Cardiovasc Res 2024; 120:644-657. [PMID: 38309955 PMCID: PMC11074791 DOI: 10.1093/cvr/cvae026] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 02/05/2024] Open
Abstract
AIMS Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signalling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modelling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced up-regulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modelling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSION Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/virology
- Coxsackievirus Infections/genetics
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Energy Metabolism
- Enterovirus B, Human/pathogenicity
- Enterovirus B, Human/metabolism
- Glycolysis
- Host-Pathogen Interactions
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/virology
- Myocytes, Cardiac/pathology
- Protein Processing, Post-Translational
- Signal Transduction
- Ubiquitins/metabolism
- Ubiquitins/genetics
Collapse
Affiliation(s)
- Clara Bredow
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Fabien Thery
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Eva Katrin Wirth
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Sarah Ochs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Meike Kespohl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, Germany
| | - Nicolas Kelm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Niclas Gimber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Advanced Medical Bioimaging Core Facility, Berlin, Germany
| | - Jan Schmoranzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Advanced Medical Bioimaging Core Facility, Berlin, Germany
| | - Martin Voss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Karin Klingel
- University of Tübingen, Cardiopathology, Institute for Pathology and Neuropathology, Tübingen, Germany
| | - Joachim Spranger
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility—High-Throughput Mass Spectrometry, Berlin, Germany
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility—High-Throughput Mass Spectrometry, Berlin, Germany
| | - Arnd Heuser
- Max-Delbrueck-Center (MDC) for Molecular Medicine, Animal Phenotyping Platform, Berlin, Germany
| | - Klaus-Peter Knobeloch
- University of Freiburg, Institute of Neuropathology, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Patrick Scheerer
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, Germany
| | - Jennifer Kirwan
- Berlin Institute of Health at Charité Universitätsmedizin, Metabolomics, Charitéplatz 1 Berlin 10117, Germany
| | - Ulrike Brüning
- Berlin Institute of Health at Charité Universitätsmedizin, Metabolomics, Charitéplatz 1 Berlin 10117, Germany
| | - Nikolaus Berndt
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Department of Molecular Toxicology, Nuthetal, Germany
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Antje Beling
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
| |
Collapse
|
359
|
Domingo G, Marsoni M, Davide E, Fortunato S, de Pinto MC, Bracale M, Molla G, Gehring C, Vannini C. The cAMP-dependent phosphorylation footprint in response to heat stress. PLANT CELL REPORTS 2024; 43:137. [PMID: 38713285 PMCID: PMC11076351 DOI: 10.1007/s00299-024-03213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
KEY MESSAGE cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Eleonora Davide
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari "Aldo Moro", Piazza Umberto I, 70121, Bari, Italy
| | | | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Gianluca Molla
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
360
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
361
|
Wiese C, Abele M, Al B, Altmann M, Steiner A, Kalbfuß N, Strohmayr A, Ravikumar R, Park CH, Brunschweiger B, Meng C, Facher E, Ehrhardt DW, Falter-Braun P, Wang ZY, Ludwig C, Assaad FF. Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis. J Cell Biol 2024; 223:e202311125. [PMID: 38558238 PMCID: PMC10983811 DOI: 10.1083/jcb.202311125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.
Collapse
Affiliation(s)
- Christian Wiese
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Miriam Abele
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin Al
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Melina Altmann
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Alexander Steiner
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nils Kalbfuß
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Strohmayr
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raksha Ravikumar
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Barbara Brunschweiger
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Farhah F. Assaad
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Botany, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
362
|
Gentry-Torfer D, Murillo E, Barrington CL, Nie S, Leeming MG, Suwanchaikasem P, Williamson NA, Roessner U, Boughton BA, Kopka J, Martinez-Seidel F. Streamlining Protein Fractional Synthesis Rates Using SP3 Beads and Stable Isotope Mass Spectrometry: A Case Study on the Plant Ribosome. Bio Protoc 2024; 14:e4981. [PMID: 38737506 PMCID: PMC11082790 DOI: 10.21769/bioprotoc.4981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Ribosomes are an archetypal ribonucleoprotein assembly. Due to ribosomal evolution and function, r-proteins share specific physicochemical similarities, making the riboproteome particularly suited for tailored proteome profiling methods. Moreover, the structural proteome of ribonucleoprotein assemblies reflects context-dependent functional features. Thus, characterizing the state of riboproteomes provides insights to uncover the context-dependent functionality of r-protein rearrangements, as they relate to what has been termed the ribosomal code, a concept that parallels that of the histone code, in which chromatin rearrangements influence gene expression. Compared to high-resolution ribosomal structures, omics methods lag when it comes to offering customized solutions to close the knowledge gap between structure and function that currently exists in riboproteomes. Purifying the riboproteome and subsequent shot-gun proteomics typically involves protein denaturation and digestion with proteases. The results are relative abundances of r-proteins at the ribosome population level. We have previously shown that, to gain insight into the stoichiometry of individual proteins, it is necessary to measure by proteomics bound r-proteins and normalize their intensities by the sum of r-protein abundances per ribosomal complex, i.e., 40S or 60S subunits. These calculations ensure that individual r-protein stoichiometries represent the fraction of each family/paralog relative to the complex, effectively revealing which r-proteins become substoichiometric in specific physiological scenarios. Here, we present an optimized method to profile the riboproteome of any organism as well as the synthesis rates of r-proteins determined by stable isotope-assisted mass spectrometry. Our method purifies the r-proteins in a reversibly denatured state, which offers the possibility for combined top-down and bottom-up proteomics. Our method offers a milder native denaturation of the r-proteome via a chaotropic GuHCl solution as compared with previous studies that use irreversible denaturation under highly acidic conditions to dissociate rRNA and r-proteins. As such, our method is better suited to conserve post-translational modifications (PTMs). Subsequently, our method carefully considers the amino acid composition of r-proteins to select an appropriate protease for digestion. We avoid non-specific protease cleavage by increasing the pH of our standardized r-proteome dilutions that enter the digestion pipeline and by using a digestion buffer that ensures an optimal pH for a reliable protease digestion process. Finally, we provide the R package ProtSynthesis to study the fractional synthesis rates of r-proteins. The package uses physiological parameters as input to determine peptide or protein fractional synthesis rates. Once the physiological parameters are measured, our equations allow a fair comparison between treatments that alter the biological equilibrium state of the system under study. Our equations correct peptide enrichment using enrichments in soluble amino acids, growth rates, and total protein accumulation. As a means of validation, our pipeline fails to find "false" enrichments in non-labeled samples while also filtering out proteins with multiple unique peptides that have different enrichment values, which are rare in our datasets. These two aspects reflect the accuracy of our tool. Our method offers the possibility of elucidating individual r-protein family/paralog abundances, PTM status, fractional synthesis rates, and dynamic assembly into ribosomal complexes if top-down and bottom-up proteomic approaches are used concomitantly, taking one step further into mapping the native and dynamic status of the r-proteome onto high-resolution ribosome structures. In addition, our method can be used to study the proteomes of all macromolecular assemblies that can be purified, although purification is the limiting step, and the efficacy and accuracy of the proteases may be limited depending on the digestion requirements. Key features • Efficient purification of the ribosomal proteome: streamlined procedure for the specific purification of the ribosomal proteome or complex Ome. • Accurate calculation of fractional synthesis rates: robust method for calculating fractional protein synthesis rates in macromolecular complexes under different physiological steady states. • Holistic ribosome methodology focused on plants: comprehensive approach that provides insights into the ribosomes and translational control of plants, demonstrated using cold acclimation [1]. • Tailored strategies for stable isotope labeling in plants: methodology focusing on materials and labeling considerations specific to free and proteinogenic amino acid analysis [2].
Collapse
Affiliation(s)
- Dione Gentry-Torfer
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of Biosciences, The University of Melbourne, Parkville, Australia
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Chloe L. Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
| | - Michael G. Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
- School of Chemistry, The University of Melbourne, Parkville, Australia
| | | | - Nicholas A. Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Australia
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Berin A. Boughton
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Joachim Kopka
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Federico Martinez-Seidel
- Applied Metabolome Analysis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of Biosciences, The University of Melbourne, Parkville, Australia
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
363
|
Gassner T, Chittilappilly C, Pirich T, Neuditschko B, Hackner K, Lind J, Aksoy O, Graichen U, Klee S, Herzog F, Wiesner C, Errhalt P, Pecherstorfer M, Podar K, Vallet S. Favorable impact of PD1/PD-L1 antagonists on bone remodeling: an exploratory prospective clinical study and ex vivo validation. J Immunother Cancer 2024; 12:e008669. [PMID: 38702145 PMCID: PMC11086513 DOI: 10.1136/jitc-2023-008669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.
Collapse
Affiliation(s)
- Tamara Gassner
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Christina Chittilappilly
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Theo Pirich
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Klaus Hackner
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Pneumology, University Hospital Krems, Krems an der Donau, Austria
| | - Judith Lind
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Osman Aksoy
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Uwe Graichen
- Department of General Health Studies, Division Biostatistics and Data Sciences, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Sascha Klee
- Department of General Health Studies, Division Biostatistics and Data Sciences, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Peter Errhalt
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Pneumology, University Hospital Krems, Krems an der Donau, Austria
| | - Martin Pecherstorfer
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
- Karl Landsteiner Institute of Supportive Cancer Therapy, Karl Landsteiner Gesellschaft, St. Poelten, Austria
| | - Klaus Podar
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
| | - Sonia Vallet
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
- Karl Landsteiner Institute of Supportive Cancer Therapy, Karl Landsteiner Gesellschaft, St. Poelten, Austria
| |
Collapse
|
364
|
Choi Y, Um B, Na Y, Kim J, Kim JS, Kim VN. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol Cell 2024; 84:1764-1782.e10. [PMID: 38593806 DOI: 10.1016/j.molcel.2024.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
mRNAs continually change their protein partners throughout their lifetimes, yet our understanding of mRNA-protein complex (mRNP) remodeling is limited by a lack of temporal data. Here, we present time-resolved mRNA interactome data by performing pulse metabolic labeling with photoactivatable ribonucleoside in human cells, UVA crosslinking, poly(A)+ RNA isolation, and mass spectrometry. This longitudinal approach allowed the quantification of over 700 RNA binding proteins (RBPs) across ten time points. Overall, the sequential order of mRNA binding aligns well with known functions, subcellular locations, and molecular interactions. However, we also observed RBPs with unexpected dynamics: the transcription-export (TREX) complex recruited posttranscriptionally after nuclear export factor 1 (NXF1) binding, challenging the current view of transcription-coupled mRNA export, and stress granule proteins prevalent in aged mRNPs, indicating roles in late stages of the mRNA life cycle. To systematically identify mRBPs with unknown functions, we employed machine learning to compare mRNA binding dynamics with Gene Ontology (GO) annotations. Our data can be explored at chronology.rna.snu.ac.kr.
Collapse
Affiliation(s)
- Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Buyeon Um
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
365
|
Paes Leme AF, Yokoo S, Normando AGC, Ormonde JVS, Domingues RR, Cruz FF, Silva PL, Souza BSF, Dos Santos CC, Castro-Faria-Neto H, Martins CM, Lopes-Pacheco M, Rocco PRM. Proteomics of serum-derived extracellular vesicles are associated with the severity and different clinical profiles of patients with COVID-19: An exploratory secondary analysis. Cytotherapy 2024; 26:444-455. [PMID: 38363248 DOI: 10.1016/j.jcyt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AIMS Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen β-chain were the most differentially expressed proteins between severity groups. CONCLUSION Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.
Collapse
Affiliation(s)
- Adriana F Paes Leme
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Sami Yokoo
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Ana Gabriela C Normando
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - João Vitor S Ormonde
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Romenia Ramos Domingues
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, São Paulo, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno S F Souza
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Bahia, Brazil; Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Bahia, Brazil
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Sciences and Interdepartmental Division of Critical Care, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
366
|
Lejeune C, Cornu D, Sago L, Redeker V, Virolle MJ. The stringent response is strongly activated in the antibiotic producing strain, Streptomyces coelicolor. Res Microbiol 2024; 175:104177. [PMID: 38159786 DOI: 10.1016/j.resmic.2023.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
S. lividans and S. coelicolor are phylogenetically closely related strains with different abilities to produce the same specialized metabolites. Previous studies revealed that the strong antibiotic producer, S. coelicolor, had a lower ability to assimilate nitrogen and phosphate than the weak producer, Streptomyces lividans, and this resulted into a lower growth rate. A comparative proteomic dataset was used to establish the consequences of these nutritional stresses on the abundance of proteins of the translational apparatus of these strains, grown in low and high phosphate availability. Our study revealed that most proteins of the translational apparatus were less abundant in S. coelicolor than in S. lividans whereas it was the opposite for ET-Tu 3 and a TrmA-like methyltransferase. The expression of the latter being known to be under the positive control of the stringent response whereas that of the other ribosomal proteins is under its negative control, this indicated the occurrence of a strong activation of the stringent response in S. coelicolor. Furthermore, in S. lividans, ribosomal proteins were more abundant in phosphate proficiency than in phosphate limitation suggesting that a limitation in phosphate, that was also shown to trigger RelA expression, contributes to the induction of the stringent response.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France; Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France.
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
| |
Collapse
|
367
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression. PLoS Pathog 2024; 20:e1012269. [PMID: 38814984 PMCID: PMC11166348 DOI: 10.1371/journal.ppat.1012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
368
|
Lamelas L, López-Hidalgo C, Valledor L, Meijón M, Cañal MJ. Like mother like son: Transgenerational memory and cross-tolerance from drought to heat stress are identified in chloroplast proteome and seed provisioning in Pinus radiata. PLANT, CELL & ENVIRONMENT 2024; 47:1640-1655. [PMID: 38282466 DOI: 10.1111/pce.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
How different stressors impact plant health and memory when they are imposed in different generations in wild ecosystems is still scarce. Here, we address how different environments shape heritable memory for the next generation in seeds and seedlings of Pinus radiata, a long-lived species with economic interest. The performance of the seedlings belonging to two wild clonal subpopulations (optimal fertirrigation vs. slightly stressful conditions) was tested under heat stress through physiological profiling and comparative time-series chloroplast proteomics. In addition, we explored the seeds conducting a physiological characterization and targeted transcriptomic profiling in both subpopulations. Our results showed differential responses between them, evidencing a cross-stress transgenerational memory. Seedlings belonging to the stressed subpopulation retained key proteins related to Photosystem II, chloroplast-to-nucleus signalling and osmoprotection which helped to overcome the applied heat stress. The seeds also showed a differential gene expression profile for targeted genes and microRNAs, as well as an increased content of starch and secondary metabolites, molecules which showed potential interest as biomarkers for early selection of primed plants. Thus, these finds not only delve into transgenerational cross-stress memory in trees, but also provide a new biotechnological tool for forest design.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Cristina López-Hidalgo
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
369
|
Murray HC, Miller K, Dun MD, Verrills NM. Pharmaco-phosphoproteomic analysis of cancer-associated KIT mutations D816V and V560G. Proteomics 2024; 24:e2300309. [PMID: 38334196 DOI: 10.1002/pmic.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/24/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
The CD117 mast/stem cell growth factor receptor tyrosine kinase (KIT) is critical for haematopoiesis, melanogenesis and stem cell maintenance. KIT is commonly activated by mutation in cancers including acute myeloid leukaemia, melanoma and gastrointestinal stromal tumours (GISTs). The kinase and the juxtamembrane domains of KIT are mutation hotspots; with the kinase domain mutation D816V common in leukaemia and the juxtamembrane domain mutation V560G common in GISTs. Given the importance of mutant KIT signalling in cancer, we have conducted a proteomic and phosphoproteomic analysis of myeloid progenitor cells expressing D816V- and V560G-KIT mutants, using an FDCP1 isogenic cell line model. Proteomic analysis revealed increased abundance of proteases and growth signalling proteins in KIT-mutant cells compared to empty vector (EV) controls. Pathway analysis identified increased oxidative phosphorylation in D816V- and V560G-mutant KIT cells, which was targetable using the inhibitor IACS010759. Dysregulation of RNA metabolism and cytoskeleton/adhesion pathways was identified in both the proteome and phosphoproteome of KIT-mutant cells. Phosphoproteome analysis further revealed active kinases such as EGFR, ERK and PKC, which were targetable using pharmacological inhibitors. This study provides a pharmaco-phosphoproteomic profile of D816V- and V560G-mutant KIT cells, which reveals novel therapeutic strategies that may be applicable to a range of cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
370
|
James C, Möller U, Spillner C, König S, Dybkov O, Urlaub H, Lenz C, Kehlenbach RH. Phosphorylation of ELYS promotes its interaction with VAPB at decondensing chromosomes during mitosis. EMBO Rep 2024; 25:2391-2417. [PMID: 38605278 PMCID: PMC11094025 DOI: 10.1038/s44319-024-00125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
ELYS is a nucleoporin that localizes to the nuclear side of the nuclear pore complex (NPC) in interphase cells. In mitosis, it serves as an assembly platform that interacts with chromatin and then with nucleoporin subcomplexes to initiate post-mitotic NPC assembly. Here we identify ELYS as a major binding partner of the membrane protein VAPB during mitosis. In mitosis, ELYS becomes phosphorylated at many sites, including a predicted FFAT (two phenylalanines in an acidic tract) motif, which mediates interaction with the MSP (major sperm protein)-domain of VAPB. Binding assays using recombinant proteins or cell lysates and co-immunoprecipitation experiments show that VAPB binds the FFAT motif of ELYS in a phosphorylation-dependent manner. In anaphase, the two proteins co-localize to the non-core region of the newly forming nuclear envelope. Depletion of VAPB results in prolonged mitosis, slow progression from meta- to anaphase and in chromosome segregation defects. Together, our results suggest a role of VAPB in mitosis upon recruitment to or release from ELYS at the non-core region of the chromatin in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Christina James
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ulrike Möller
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Christiane Spillner
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sabine König
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christof Lenz
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
371
|
Zhan T, Jacoby C, Jede M, Knapp B, Ferlaino S, Günter A, Drepper F, Müller M, Weber S, Boll M. Bacterial stigmasterol degradation involving radical flavin delta-24 desaturase and molybdenum-dependent C26 hydroxylase. J Biol Chem 2024; 300:107243. [PMID: 38556086 PMCID: PMC11061730 DOI: 10.1016/j.jbc.2024.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024] Open
Abstract
Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4β4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.
Collapse
Affiliation(s)
- Tingyi Zhan
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Christian Jacoby
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Martin Jede
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Bettina Knapp
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
| | - Sascha Ferlaino
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Andreas Günter
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
372
|
Lo Faro ML, Rozenberg K, Huang H, Maslau S, Bonham S, Fischer R, Kessler B, Leuvenink H, Sharples E, Lindeman JH, Ploeg R. Kidney Tissue Proteome Profiles in Short Versus Long Duration of Delayed Graft Function - A Pilot Study in Donation After Circulatory Death Donors. Kidney Int Rep 2024; 9:1473-1483. [PMID: 38707804 PMCID: PMC11068965 DOI: 10.1016/j.ekir.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Delayed graft function (DGF) is often defined as the need for dialysis treatment in the first week after a kidney transplantation. This definition, though readily applicable, is generic and unable to distinguish between "types" of DGF or time needed to recover function that may also significantly affect longer-term outcomes. We aimed to profile biological pathways in donation after circulatory death (DCD) kidney donors that correlate with DGF and different DGF durations. Methods A total of N = 30 DCD kidney biopsies were selected from the UK Quality in Organ Donation (QUOD) biobank and stratified according to DGF duration (immediate function, IF n = 10; "short-DGF" (1-6 days), SDGF n = 10; "long-DGF" (7-22 days), LDGF n = 10). Samples were matched for donor and recipient demographics and analyzed by label-free quantitative (LFQ) proteomics, yielding identification of N = 3378 proteins. Results Ingenuity pathway analysis (IPA) on differentially abundant proteins showed that SDGF kidneys presented upregulation of stress response pathways, whereas LDGF presented impaired response to stress, compared to IF. LDGF showed extensive metabolic deficits compared to IF and SDGF. Conclusion DCD kidneys requiring dialysis only in the first week posttransplant present acute cellular injury at donation, alongside repair pathways upregulation. In contrast, DCD kidneys requiring prolonged dialysis beyond 7 days present minimal metabolic and antioxidant responses, suggesting that current DGF definitions might not be adequate in distinguishing different patterns of injury in donor kidneys contributing to DGF.
Collapse
Affiliation(s)
- M. Letizia Lo Faro
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Biomedical Research Centre, Oxford, UK
| | - Kaithlyn Rozenberg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Biomedical Research Centre, Oxford, UK
| | - Honglei Huang
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Biomedical Research Centre, Oxford, UK
| | - Sergei Maslau
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Rutger Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Transplant Centre, Churchill Hospital, Oxford, UK
- Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
373
|
Scholtes C, Dufour CR, Pleynet E, Kamyabiazar S, Hutton P, Baby R, Guluzian C, Giguère V. Identification of a chromatin-bound ERRα interactome network in mouse liver. Mol Metab 2024; 83:101925. [PMID: 38537884 PMCID: PMC10990974 DOI: 10.1016/j.molmet.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVES Estrogen-related-receptor α (ERRα) plays a critical role in the transcriptional regulation of cellular bioenergetics and metabolism, and perturbations in its activity have been associated with metabolic diseases. While several coactivators and corepressors of ERRα have been identified to date, a knowledge gap remains in understanding the extent to which ERRα cooperates with coregulators in the control of gene expression. Herein, we mapped the primary chromatin-bound ERRα interactome in mouse liver. METHODS RIME (Rapid Immuno-precipitation Mass spectrometry of Endogenous proteins) analysis using mouse liver samples from two circadian time points was used to catalog ERRα-interacting proteins on chromatin. The genomic crosstalk between ERRα and its identified cofactors in the transcriptional control of precise gene programs was explored through cross-examination of genome-wide binding profiles from chromatin immunoprecipitation-sequencing (ChIP-seq) studies. The dynamic interplay between ERRα and its newly uncovered cofactor Host cell factor C1 (HCFC1) was further investigated by loss-of-function studies in hepatocytes. RESULTS Characterization of the hepatic ERRα chromatin interactome led to the identification of 48 transcriptional interactors of which 42 were previously unknown including HCFC1. Interrogation of available ChIP-seq binding profiles highlighted oxidative phosphorylation (OXPHOS) under the control of a complex regulatory network between ERRα and multiple cofactors. While ERRα and HCFC1 were found to bind to a large set of common genes, only a small fraction showed their colocalization, found predominately near the transcriptional start sites of genes particularly enriched for components of the mitochondrial respiratory chain. Knockdown studies demonstrated inverse regulatory actions of ERRα and HCFC1 on OXPHOS gene expression ultimately dictating the impact of their loss-of-function on mitochondrial respiration. CONCLUSIONS Our work unveils a repertoire of previously unknown transcriptional partners of ERRα comprised of chromatin modifiers and transcription factors thus advancing our knowledge of how ERRα regulates metabolic transcriptional programs.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | | | - Emma Pleynet
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | - Samaneh Kamyabiazar
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | - Phillipe Hutton
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Reeba Baby
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | - Christina Guluzian
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, H3G 1Y6, Canada.
| |
Collapse
|
374
|
Navarro-Carrasco E, Monte-Serrano E, Campos-Díaz A, Rolfs F, de Goeij-de Haas R, Pham TV, Piersma SR, González-Alonso P, Jiménez CR, Lazo PA. VRK1 Regulates Sensitivity to Oxidative Stress by Altering Histone Epigenetic Modifications and the Nuclear Phosphoproteome in Tumor Cells. Int J Mol Sci 2024; 25:4874. [PMID: 38732093 PMCID: PMC11084957 DOI: 10.3390/ijms25094874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of 8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation of DNA strand breaks detected by labeling free 3'-DNA ends. In addition, oxidative stress altered the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels. All these changes were induced by the oxidative stress in the epigenetic pattern of histones and impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome in response to oxidative stress detected an enrichment of the phosphorylated proteins associated with the chromosome organization and chromatin remodeling pathways, which were significantly decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phosphoproteome pathways in response to oxidative stress. The enzymes performing post-translational epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.
Collapse
Affiliation(s)
- Elena Navarro-Carrasco
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Eva Monte-Serrano
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Aurora Campos-Díaz
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Frank Rolfs
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Thang V. Pham
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Sander R. Piersma
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Paula González-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| | - Connie R. Jiménez
- OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (F.R.); (R.d.G.-d.H.); (T.V.P.); (S.R.P.); (C.R.J.)
| | - Pedro A. Lazo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, E-37007 Salamanca, Spain; (E.N.-C.); (E.M.-S.); (A.C.-D.); (P.G.-A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, E-37007 Salamanca, Spain
| |
Collapse
|
375
|
Menon T, Illing PT, Chaurasia P, McQuilten HA, Shepherd C, Rowntree LC, Petersen J, Littler DR, Khuu G, Huang Z, Allen LF, Rockman S, Crowe J, Flanagan KL, Wakim LM, Nguyen THO, Mifsud NA, Rossjohn J, Purcell AW, van de Sandt CE, Kedzierska K. CD8 + T-cell responses towards conserved influenza B virus epitopes across anatomical sites and age. Nat Commun 2024; 15:3387. [PMID: 38684663 PMCID: PMC11059233 DOI: 10.1038/s41467-024-47576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.
Collapse
Affiliation(s)
- Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T Illing
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Chloe Shepherd
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grace Khuu
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ziyi Huang
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- CSL Seqirus Ltd, Parkville, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
376
|
Galicia C, Guaitoli G, Fislage M, Gloeckner CJ, Versées W. Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. eLife 2024; 13:RP94503. [PMID: 38666771 PMCID: PMC11052575 DOI: 10.7554/elife.94503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.
Collapse
Affiliation(s)
- Christian Galicia
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Giambattista Guaitoli
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| |
Collapse
|
377
|
Ranji P, Jonasson E, Andersson L, Filges S, Luna Santamaría M, Vannas C, Dolatabadi S, Gustafsson A, Myklebost O, Håkansson J, Fagman H, Landberg G, Åman P, Ståhlberg A. Deciphering the role of FUS::DDIT3 expression and tumor microenvironment in myxoid liposarcoma development. J Transl Med 2024; 22:389. [PMID: 38671504 PMCID: PMC11046918 DOI: 10.1186/s12967-024-05211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.
Collapse
Affiliation(s)
- Parmida Ranji
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Christoffer Vannas
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Gustafsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Science, University of Bergen, Bergen, Norway
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, Faculty of Science at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
378
|
Gnimpieba E, Diing DM, Ailts J, Cucak A, Gakh O, Isaya G, Vitiello S, Wang S, Pierce P, Cooper A, Roux K, Rogers LK, Vitiello PF. Mapping Novel Frataxin Mitochondrial Networks Through Protein- Protein Interactions. RESEARCH SQUARE 2024:rs.3.rs-4259413. [PMID: 38746130 PMCID: PMC11092868 DOI: 10.21203/rs.3.rs-4259413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Friedreich's Ataxia (FRDA) is a neuromuscular degenerative disorder caused by trinucleotide expansions in the first intron of the frataxin (FXN) gene, resulting in insufficient levels of functional FNX protein. Deficits in FXN involve mitochondrial disruptions including iron-sulfur cluster synthesis and impaired energetics. These studies were to identify unique protein-protein interactions with FXN to better understand its function and design therapeutics. Two complementary approaches were employed, BioID and Co-IP, to identify protein interactions with FXN at the direct binding, indirect binding, and non-proximal levels. Forty-one novel protein interactions were identified by BioID and IP techniques. The FXN protein landscape was further analyzed incorporating both interaction type and functional pathways using a maximum path of 6 proteins with a potential direct interaction between FXN and NFS1. Probing the intersection between FXN-protein landscape and biological pathways associated with FRDA, we identified 41 proteins of interest. Peroxiredoxin 3 (Prdx3) was chosen for further analysis because of its role in mitochondrial oxidative injury. Our data has demonstrated the strengths of employing complementary methods to identify a unique interactome for FXN. Our data provides new insights into FXN function and regulation, a potential direct interaction between FXN and NFS1, and pathway interactions between FXN and Prdx3.
Collapse
Affiliation(s)
| | | | - Jared Ailts
- University of South Dakota Sanford School of Medicine
| | | | | | | | | | | | - Paul Pierce
- University of Oklahoma Health Sciences Center
| | - Alec Cooper
- University of Oklahoma Health Sciences Center
| | | | | | | |
Collapse
|
379
|
Raote I, Rosendahl AH, Häkkinen HM, Vibe C, Küçükaylak I, Sawant M, Keufgens L, Frommelt P, Halwas K, Broadbent K, Cunquero M, Castro G, Villemeur M, Nüchel J, Bornikoel A, Dam B, Zirmire RK, Kiran R, Carolis C, Andilla J, Loza-Alvarez P, Ruprecht V, Jamora C, Campelo F, Krüger M, Hammerschmidt M, Eckes B, Neundorf I, Krieg T, Malhotra V. TANGO1 inhibitors reduce collagen secretion and limit tissue scarring. Nat Commun 2024; 15:3302. [PMID: 38658535 PMCID: PMC11043333 DOI: 10.1038/s41467-024-47004-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.
Collapse
Affiliation(s)
- Ishier Raote
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain.
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| | - Ann-Helen Rosendahl
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Hanna-Maria Häkkinen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Carina Vibe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
- European Molecular Biology Laboratory, EMBL Barcelona, Dr. Aiguader 88, PRBB Building, Barcelona, Spain
| | - Ismail Küçükaylak
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Lena Keufgens
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pia Frommelt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kai Halwas
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Katrina Broadbent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Marina Cunquero
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gustavo Castro
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marie Villemeur
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Julian Nüchel
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Anna Bornikoel
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Binita Dam
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Ravindra K Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Ravi Kiran
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Carlo Carolis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg, Lluis Companys 23, Barcelona, Spain
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology, Biocenter Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany.
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg, Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
380
|
Kalamuddin M, Shakri AR, Wang C, Min H, Li X, Cui L, Miao J. MYST regulates DNA repair and forms a NuA4-like complex in the malaria parasite Plasmodium falciparum. mSphere 2024; 9:e0014024. [PMID: 38564734 PMCID: PMC11036802 DOI: 10.1128/msphere.00140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.
Collapse
Affiliation(s)
- Mohammad Kalamuddin
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Hui Min
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
381
|
Kliza KW, Song W, Pinzuti I, Schaubeck S, Kunzelmann S, Kuntin D, Fornili A, Pandini A, Hofmann K, Garnett JA, Stieglitz B, Husnjak K. N4BP1 functions as a dimerization-dependent linear ubiquitin reader which regulates TNF signalling. Cell Death Discov 2024; 10:183. [PMID: 38643192 PMCID: PMC11032371 DOI: 10.1038/s41420-024-01913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
Signalling through TNFR1 modulates proinflammatory gene transcription and programmed cell death, and its impairment causes autoimmune diseases and cancer. NEDD4-binding protein 1 (N4BP1) is a critical suppressor of proinflammatory cytokine production that acts as a regulator of innate immune signalling and inflammation. However, our current understanding about the molecular properties that enable N4BP1 to exert its suppressive potential remain limited. Here, we show that N4BP1 is a novel linear ubiquitin reader that negatively regulates NFκB signalling by its unique dimerization-dependent ubiquitin-binding module that we named LUBIN. Dimeric N4BP1 strategically positions two non-selective ubiquitin-binding domains to ensure preferential recognition of linear ubiquitin. Under proinflammatory conditions, N4BP1 is recruited to the nascent TNFR1 signalling complex, where it regulates duration of proinflammatory signalling in LUBIN-dependent manner. N4BP1 deficiency accelerates TNFα-induced cell death by increasing complex II assembly. Under proapoptotic conditions, caspase-8 mediates proteolytic processing of N4BP1, resulting in rapid degradation of N4BP1 by the 26 S proteasome, and acceleration of apoptosis. In summary, our findings demonstrate that N4BP1 dimerization creates a novel type of ubiquitin reader that selectively recognises linear ubiquitin which enables the timely and coordinated regulation of TNFR1-mediated inflammation and cell death.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| | - Wei Song
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Irene Pinzuti
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Simone Schaubeck
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - David Kuntin
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Arianna Fornili
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - Benjamin Stieglitz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
| |
Collapse
|
382
|
Hollingsworth LR, Veeraraghavan P, Paulo JA, Harper JW. Spatiotemporal proteomic profiling of cellular responses to NLRP3 agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590338. [PMID: 38659763 PMCID: PMC11042255 DOI: 10.1101/2024.04.19.590338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 3 (NLRP3) is an innate immune sensor that forms an inflammasome in response to various cellular stressors. Gain-of-function mutations in NLRP3 cause autoinflammatory diseases and NLRP3 signalling itself exacerbates the pathogenesis of many other human diseases. Despite considerable therapeutic interest, the primary drivers of NLRP3 activation remain controversial due to the diverse array of signals that are integrated through NLRP3. Here, we mapped subcellular proteome changes to lysosomes, mitochondrion, EEA1-positive endosomes, and Golgi caused by the NLRP3 inflammasome agonists nigericin and CL097. We identified several common disruptions to retrograde trafficking pathways, including COPI and Shiga toxin-related transport, in line with recent studies. We further characterized mouse NLRP3 trafficking throughout its activation using temporal proximity proteomics, which supports a recent model of NLRP3 recruitment to endosomes during inflammasome activation. Collectively, these findings provide additional granularity to our understanding of the molecular events driving NLRP3 activation and serve as a valuable resource for cell biological research. We have made our proteomics data accessible through an open-access Shiny browser to facilitate future research within the community, available at: https://harperlab.connect.hms.harvard.edu/inflame/. We will display anonymous peer review for this manuscript on pubpub.org (https://harperlab.pubpub.org/pub/nlrp3/) rather than a traditional journal. Moreover, we invite community feedback on the pubpub version of this manuscript, and we will address criticisms accordingly.
Collapse
Affiliation(s)
- L. Robert Hollingsworth
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| | | | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| |
Collapse
|
383
|
Kiseleva OI, Pyatnitskiy MA, Arzumanian VA, Kurbatov IY, Ilinsky VV, Ilgisonis EV, Plotnikova OA, Sharafetdinov KK, Tutelyan VA, Nikityuk DB, Ponomarenko EA, Poverennaya EV. Multiomics Picture of Obesity in Young Adults. BIOLOGY 2024; 13:272. [PMID: 38666884 PMCID: PMC11048234 DOI: 10.3390/biology13040272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Obesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications. By comparing the genetic, proteomic, and metabolomic profiles of individuals categorized as underweight, normal, overweight, and obese, we aimed to determine which omics layer most accurately reflects the phenotypic changes in an organism that result from obesity. We profiled blood plasma samples by employing three omics methodologies. The untargeted GC×GC-MS metabolomics approach identified 313 metabolites. To augment the metabolomic dataset, we integrated a label-free HPLC-MS/MS proteomics method, leading to the identification of 708 proteins. The genomic layer encompassed the genotyping of 647,250 SNPs. Utilizing omics data, we trained sparse Partial Least Squares models to predict body mass index. Molecular features exhibiting frequently non-zero coefficients were selected as potential biomarkers, and we further explored enriched biological pathways. Proteomics was the most effective in single-omics analyses, with a median absolute error (MAE) of 5.44 ± 0.31 kg/m2, incorporating an average of 24 proteins per model. Metabolomics showed slightly lower performance (MAE = 6.06 ± 0.33 kg/m2), followed by genomics (MAE = 6.20 ± 0.34 kg/m2). As expected, multiomic models demonstrated better accuracy, particularly the combination of proteomics and metabolomics (MAE = 4.77 ± 0.33 kg/m2), while including genomics data did not enhance the results. This manuscript is the first multiomics study of obesity in a gender-balanced cohort of young adults profiled by genomic, proteomic, and metabolomic methods. The comprehensive approach provides novel insights into the molecular mechanisms of obesity, opening avenues for more targeted interventions.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
| | - Mikhail A. Pyatnitskiy
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
- Faculty of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | | | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (O.I.K.)
| | | | | | - Oksana A. Plotnikova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
| | - Khaider K. Sharafetdinov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow 125993, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | - Victor A. Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | - Dmitry B. Nikityuk
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Russian Academy of Sciences, Moscow 109240, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow 119991, Russia
| | | | | |
Collapse
|
384
|
Muñoz-Gutierrez V, Cornejo FA, Schmidt K, Frese CK, Halte M, Erhardt M, Elsholz AKW, Turgay K, Charpentier E. Bacillus subtilis remains translationally active after CRISPRi-mediated replication initiation arrest. mSystems 2024; 9:e0022124. [PMID: 38546227 PMCID: PMC11019786 DOI: 10.1128/msystems.00221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Initiation of bacterial DNA replication takes place at the origin of replication (oriC), a region characterized by the presence of multiple DnaA boxes that serve as the binding sites for the master initiator protein DnaA. This process is tightly controlled by modulation of the availability or activity of DnaA and oriC during development or stress conditions. Here, we aimed to uncover the physiological and molecular consequences of stopping replication in the model bacterium Bacillus subtilis. We successfully arrested replication in B. subtilis by employing a clustered regularly interspaced short palindromic repeats interference (CRISPRi) approach to specifically target the key DnaA boxes 6 and 7, preventing DnaA binding to oriC. In this way, other functions of DnaA, such as a transcriptional regulator, were not significantly affected. When replication initiation was halted by this specific artificial and early blockage, we observed that non-replicating cells continued translation and cell growth, and the initial replication arrest did not induce global stress conditions such as the SOS response.IMPORTANCEAlthough bacteria constantly replicate under laboratory conditions, natural environments expose them to various stresses such as lack of nutrients, high salinity, and pH changes, which can trigger non-replicating states. These states can enable bacteria to (i) become tolerant to antibiotics (persisters), (ii) remain inactive in specific niches for an extended period (dormancy), and (iii) adjust to hostile environments. Non-replicating states have also been studied because of the possibility of repurposing energy for the production of additional metabolites or proteins. Using clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeting bacterial replication initiation sequences, we were able to successfully control replication initiation in Bacillus subtilis. This precise approach makes it possible to study non-replicating phenotypes, contributing to a better understanding of bacterial adaptive strategies.
Collapse
Affiliation(s)
- Vanessa Muñoz-Gutierrez
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | | | - Katja Schmidt
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Manuel Halte
- Humboldt-Universität zu Berlin, Institute of Biology – Molecular Microbiology, Berlin, Germany
| | - Marc Erhardt
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology – Molecular Microbiology, Berlin, Germany
| | | | - Kürşad Turgay
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
385
|
Koy C, Röwer C, Thiesen HJ, Neamtu A, Glocker MO. Intact Transition Epitope Mapping-Force Interferences by Variable Extensions (ITEM-FIVE). Biomolecules 2024; 14:454. [PMID: 38672470 PMCID: PMC11048379 DOI: 10.3390/biom14040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Investigations on binding strength differences of non-covalent protein complex components were performed by mass spectrometry. T4 fibritin foldon (T4Ff) is a well-studied miniprotein, which together with its biotinylated version served as model system to represent a compactly folded protein to which an Intrinsically Disordered Region (IDR) was attached. The apparent enthalpies of the gas phase dissociation reactions of the homo-trimeric foldon F-F-F and of the homo-trimeric triply biotinylated foldon bF-bF-bF have been determined to be rather similar (3.32 kJ/mol and 3.85 kJ/mol) but quite distinct from those of the singly and doubly biotinylated hetero-trimers F-F-bF and F-bF-bF (1.86 kJ/mol and 1.08 kJ/mol). Molecular dynamics simulations suggest that the ground states of the (biotinylated) T4Ff trimers are highly symmetric and well comparable to each other, indicating that the energy levels of all four (biotinylated) T4Ff trimer ground states are nearly indistinguishable. The experimentally determined differences and/or similarities in enthalpies of the complex dissociation reactions are explained by entropic spring effects, which are noticeable in the T4Ff hetero-trimers but not in the T4Ff homo-trimers. A lowering of the transition state energy levels of the T4Ff hetero-trimers seems likely because the biotin moieties, mimicking intrinsically disordered regions (IDRs), induced asymmetries in the transition states of the biotinylated T4Ff hetero-trimers. This transition state energy level lowering effect is absent in the T4Ff homo-trimer, as well as in the triply biotinylated T4Ff homo-trimer. In the latter, the IDR-associated entropic spring effects on complex stability cancel each other out. ITEM-FIVE enabled semi-quantitative determination of energy differences of complex dissociation reactions, whose differences were modulated by IDRs attached to compactly folded proteins.
Collapse
Affiliation(s)
- Cornelia Koy
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock Schillingallee 69, 18057 Rostock, Germany; (C.K.)
| | - Claudia Röwer
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock Schillingallee 69, 18057 Rostock, Germany; (C.K.)
| | - Hans-Jürgen Thiesen
- Institute for Immunology, Medical Faculty, University of Rostock, Schillingallee 70, 18057 Rostock, Germany;
| | - Andrei Neamtu
- Department of Physiology, “Gr. T. Popa” University of Medicine and Pharmacy, Str. Universitatii nr. 16, 700115 Iasi, Romania
- TRANSCEND Centre, Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot, Nr. 2–4, 700483 Iasi, Romania
| | - Michael O. Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock Schillingallee 69, 18057 Rostock, Germany; (C.K.)
| |
Collapse
|
386
|
Sadeghi S, Chen W, Wang Q, Wang Q, Fang F, Liu X, Sun L. Pilot Evaluation of the Long-Term Reproducibility of Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics of a Complex Proteome Sample. J Proteome Res 2024; 23:1399-1407. [PMID: 38417052 PMCID: PMC11002928 DOI: 10.1021/acs.jproteome.3c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
Mass spectrometry (MS)-based top-down proteomics (TDP) has revolutionized biological research by measuring intact proteoforms in cells, tissues, and biofluids. Capillary zone electrophoresis-tandem MS (CZE-MS/MS) is a valuable technique for TDP, offering a high peak capacity and sensitivity for proteoform separation and detection. However, the long-term reproducibility of CZE-MS/MS in TDP remains unstudied, which is a crucial aspect for large-scale studies. This work investigated the long-term qualitative and quantitative reproducibility of CZE-MS/MS for TDP for the first time, focusing on a yeast cell lysate. Over 1000 proteoforms were identified per run across 62 runs using one linear polyacrylamide (LPA)-coated separation capillary, highlighting the robustness of the CZE-MS/MS technique. However, substantial decreases in proteoform intensity and identification were observed after some initial runs due to proteoform adsorption onto the capillary inner wall. To address this issue, we developed an efficient capillary cleanup procedure using diluted ammonium hydroxide, achieving high qualitative and quantitative reproducibility for the yeast sample across at least 23 runs. The data underscore the capability of CZE-MS/MS for large-scale quantitative TDP of complex samples, signaling its readiness for deployment in broad biological applications. The MS RAW files were deposited in ProteomeXchange Consortium with the data set identifier of PXD046651.
Collapse
Affiliation(s)
- Seyed
Amirhossein Sadeghi
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Wenrong Chen
- Department
of BioHealth Informatics, Indiana University-Purdue
University Indianapolis, 535 W Michigan Street, Indianapolis, Indiana 46202, United States
| | - Qianyi Wang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianjie Wang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Fei Fang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Xiaowen Liu
- Deming
Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, Louisiana 70112, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
387
|
Kaiyrzhanov R, Rad A, Lin SJ, Bertoli-Avella A, Kallemeijn WW, Godwin A, Zaki MS, Huang K, Lau T, Petree C, Efthymiou S, Karimiani EG, Hempel M, Normand EA, Rudnik-Schöneborn S, Schatz UA, Baggelaar MP, Ilyas M, Sultan T, Alvi JR, Ganieva M, Fowler B, Aanicai R, Tayfun GA, Al Saman A, Alswaid A, Amiri N, Asilova N, Shotelersuk V, Yeetong P, Azam M, Babaei M, Monajemi GB, Mohammadi P, Samie S, Banu SH, Pinto Basto J, Kortüm F, Bauer M, Bauer P, Beetz C, Garshasbi M, Issa AH, Eyaid W, Ahmed H, Hashemi N, Hassanpour K, Herman I, Ibrohimov S, Abdul-Majeed BA, Imdad M, Isrofilov M, Kaiyal Q, Khan S, Kirmse B, Koster J, Lourenço CM, Mitani T, Moldovan O, Murphy D, Najafi M, Pehlivan D, Rocha ME, Salpietro V, Schmidts M, Shalata A, Mahroum M, Talbeya JK, Taylor RW, Vazquez D, Vetro A, Waterham HR, Zaman M, Schrader TA, Chung WK, Guerrini R, Lupski JR, Gleeson J, Suri M, Jamshidi Y, Bhatia KP, Vona B, Schrader M, Severino M, Guille M, Tate EW, Varshney GK, Houlden H, Maroofian R. Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders. Brain 2024; 147:1436-1456. [PMID: 37951597 PMCID: PMC10994533 DOI: 10.1093/brain/awad380] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.
Collapse
Affiliation(s)
- Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Aboulfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar 009851, Iran
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, Eberhard Karls University, 72076 Tübingen, Germany
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
- Chemical Biology and Therapeutic Discovery Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - Annie Godwin
- European Xenopus Resource Centre—XenMD, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Tracy Lau
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s University of London, London SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad 1696700, Iran
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | | | | - Ulrich A Schatz
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck 6020, Austria
- Institute of Human Genetics, Technical University of Munich, Munich, 81675, Germany
| | - Marc P Baggelaar
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
- Biomolecular Mass Spectrometry & Proteomics Group, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Muhammad Ilyas
- Department of BioEngineering, University of Engineering and Applied Sciences, 19130 Swat, Pakistan
- Centre for Omic Sciences, Islamia College University, 25000 Peshawar, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, Children Hospital, Lahore 54600, Pakistan
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Institute of Child Health, Children Hospital, Lahore 54600, Pakistan
| | - Manizha Ganieva
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Ben Fowler
- Imaging Core, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ruxandra Aanicai
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Gulsen Akay Tayfun
- Department of Pediatric Genetics, Marmara University Medical School, 34722 Istanbul, Turkey
| | - Abdulaziz Al Saman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, 49046 Riyadh, Saudi Arabia
| | - Abdulrahman Alswaid
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, King Abdullah Specialized Children’s Hospital, Riyadh 11461, Saudi Arabia
| | - Nafise Amiri
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Nilufar Asilova
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patra Yeetong
- Division of Human Genetics, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Matloob Azam
- Pediatrics and Child Neurology, Wah Medical College, 47000 Wah Cantt, Pakistan
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd 94149-74877, Iran
| | | | - Pouria Mohammadi
- Children’s Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran 1411944961, Iran
| | - Saeed Samie
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Selina Husna Banu
- Department of Paediatric Neurology and Development, Dr. M.R. Khan Shishu (Children) Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Jorge Pinto Basto
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mislen Bauer
- Division of Clinical Genetics and Metabolism, Nicklas Children's Hospital, Miami, FL 33155, USA
| | - Peter Bauer
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Christian Beetz
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Masoud Garshasbi
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran 1411944961, Iran
| | | | - Wafaa Eyaid
- Department of Genetics and Precision Medicine, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh 11426, Saudi Arabia
| | - Hind Ahmed
- Department of Genetics and Precision Medicine, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh 11426, Saudi Arabia
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, 13131–99137 Mashhad, Iran
| | - Kazem Hassanpour
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, 319 Sabzevar, Iran
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 68010, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Texas Children’s Hospital, Houston, TX 77030, USA
- Pediatric Neurology, Neurogenetics and Rare Diseases, Boys Town National Research Hospital, Boys Town, NE 68131, USA
| | - Sherozjon Ibrohimov
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Ban A Abdul-Majeed
- Molecular Pathology and Genetics, The Pioneer Molecular Pathology Lab, Baghdad 10044, Iraq
| | - Maria Imdad
- Centre for Human Genetics, Hazara University, 21300 Mansehra, Pakistan
| | - Maksudjon Isrofilov
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Qassem Kaiyal
- Department of Pediatric Neurology, Clalit Health Care, 2510500 Haifa, Israel
| | - Suliman Khan
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Brian Kirmse
- SOM-Peds-Genetics, University of Mississippi Medical Center, Jackson MS, 39216, USA
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers location AMC, 1100 DD Amsterdam, The Netherlands
| | - Charles Marques Lourenço
- Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, 14096-160 São Paulo, Brazil
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oana Moldovan
- Serviço de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisboa, Portugal
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Maryam Najafi
- Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, 79106 Freiburg, Germany
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 68010, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Miriam Schmidts
- Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, 79106 Freiburg, Germany
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Adel Shalata
- Pediatrics and Medical Genetics, the Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, 31048 Haifa, Israel
- Bruce Rappaport Faculty of Medicine, the Technion institution of Technology, 3200003 Haifa, Israel
| | - Mohammad Mahroum
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jawabreh Kassem Talbeya
- Pediatrics and Medical Genetics, the Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, 31048 Haifa, Israel
- Department of Radiology, The Bnai Zion Medical Center, Haifa 31048, Israel
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Dayana Vazquez
- Division of Clinical Genetics and Metabolism, Nicklas Children's Hospital, Miami, FL 33155, USA
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers location AMC, 1100 DD Amsterdam, The Netherlands
| | - Mashaya Zaman
- Department of Paediatric Neurology and Development, Dr. M.R. Khan Shishu (Children) Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Tina A Schrader
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Neuroscience, Pharmacology and Child Health Department, University of Florence, 50139 Florence, Italy
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Texas Children’s Hospital, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph Gleeson
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, San Diego, CA 92025, USA
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s University of London, London SW17 0RE, UK
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, OX3 7FZ, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Barbara Vona
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, Eberhard Karls University, 72076 Tübingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Schrader
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | | | - Matthew Guille
- European Xenopus Resource Centre—XenMD, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
- Chemical Biology and Therapeutic Discovery Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
388
|
Ballmer D, Akiyoshi B. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 2024; 13:RP93522. [PMID: 38564240 PMCID: PMC10987093 DOI: 10.7554/elife.93522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| | - Bungo Akiyoshi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| |
Collapse
|
389
|
Nilsson J, Eriksson P, Naguib MM, Jax E, Sihlbom C, Olsson BM, Lundkvist Å, Olsen B, Järhult JD, Larson G, Ellström P. Expression of influenza A virus glycan receptor candidates in mallard, chicken, and tufted duck. Glycobiology 2024; 34:cwad098. [PMID: 38127648 PMCID: PMC10987293 DOI: 10.1093/glycob/cwad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska University Hospital, Vita Stråket 12, Gothenburg SE-413 45, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, Gothenburg SE-413 45, Sweden
- Proteomics Core Facility, University of Gothenburg, Sahlgrenska Academy, Medicinaregatan 9E, Gothenburg SE-405 30, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| | - Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala, SE-75237, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, Baden-Württemberg DE-78315, Germany
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Sahlgrenska Academy, Medicinaregatan 9E, Gothenburg SE-405 30, Sweden
| | - Britt-Marie Olsson
- Proteomics Core Facility, University of Gothenburg, Sahlgrenska Academy, Medicinaregatan 9E, Gothenburg SE-405 30, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala, SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska University Hospital, Vita Stråket 12, Gothenburg SE-413 45, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, Gothenburg SE-413 45, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Husargatan 3, Uppsala University, Uppsala, SE-75185, Sweden
| |
Collapse
|
390
|
Rodríguez-Castro L, Durán RE, Méndez V, Dorochesi F, Zühlke D, Riedel K, Seeger M. The long-chain flavodoxin FldX1 improves the biodegradation of 4-hydroxyphenylacetate and 3-hydroxyphenylacetate and counteracts the oxidative stress associated to aromatic catabolism in Paraburkholderia xenovorans. Biol Res 2024; 57:12. [PMID: 38561836 PMCID: PMC10983741 DOI: 10.1186/s40659-024-00491-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Bacterial aromatic degradation may cause oxidative stress. The long-chain flavodoxin FldX1 of Paraburkholderia xenovorans LB400 counteracts reactive oxygen species (ROS). The aim of this study was to evaluate the protective role of FldX1 in P. xenovorans LB400 during the degradation of 4-hydroxyphenylacetate (4-HPA) and 3-hydroxyphenylacetate (3-HPA). METHODS The functionality of FldX1 was evaluated in P. xenovorans p2-fldX1 that overexpresses FldX1. The effects of FldX1 on P. xenovorans were studied measuring growth on hydroxyphenylacetates, degradation of 4-HPA and 3-HPA, and ROS formation. The effects of hydroxyphenylacetates (HPAs) on the proteome (LC-MS/MS) and gene expression (qRT-PCR) were quantified. Bioaugmentation with strain p2-fldX1 of 4-HPA-polluted soil was assessed, measuring aromatic degradation (HPLC), 4-HPA-degrading bacteria, and plasmid stability. RESULTS The exposure of P. xenovorans to 4-HPA increased the formation of ROS compared to 3-HPA or glucose. P. xenovorans p2-fldX1 showed an increased growth on 4-HPA and 3-HPA compared to the control strain WT-p2. Strain p2-fldX1 degraded faster 4-HPA and 3-HPA than strain WT-p2. Both WT-p2 and p2-fldX1 cells grown on 4-HPA displayed more changes in the proteome than cells grown on 3-HPA in comparison to glucose-grown cells. Several enzymes involved in ROS detoxification, including AhpC2, AhpF, AhpD3, KatA, Bcp, CpoF1, Prx1 and Prx2, were upregulated by hydroxyphenylacetates. Downregulation of organic hydroperoxide resistance (Ohr) and DpsA proteins was observed. A downregulation of the genes encoding scavenging enzymes (katE and sodB), and gstA and trxB was observed in p2-fldX1 cells, suggesting that FldX1 prevents the antioxidant response. More than 20 membrane proteins, including porins and transporters, showed changes in expression during the growth of both strains on hydroxyphenylacetates. An increased 4-HPA degradation by recombinant strain p2-fldX1 in soil microcosms was observed. In soil, the strain overexpressing the flavodoxin FldX1 showed a lower plasmid loss, compared to WT-p2 strain, suggesting that FldX1 contributes to bacterial fitness. Overall, these results suggest that recombinant strain p2-fldX1 is an attractive bacterium for its application in bioremediation processes of aromatic compounds. CONCLUSIONS The long-chain flavodoxin FldX1 improved the capability of P. xenovorans to degrade 4-HPA in liquid culture and soil microcosms by protecting cells against the degradation-associated oxidative stress.
Collapse
Affiliation(s)
- Laura Rodríguez-Castro
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123, Valparaíso, Chile
| | - Roberto E Durán
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Avenida España 1680, 2390123, Valparaíso, Chile
| | - Valentina Méndez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Avenida España 1680, 2390123, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123, Valparaíso, Chile
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123, Valparaíso, Chile.
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Avenida España 1680, 2390123, Valparaíso, Chile.
| |
Collapse
|
391
|
Mulhall JE, Trigg NA, Bernstein IR, Anderson AL, Murray HC, Sipilä P, Lord T, Schjenken JE, Nixon B, Skerrett-Byrne DA. Immortalized mouse caput epididymal epithelial (mECap18) cell line recapitulates the in-vivo environment. Proteomics 2024; 24:e2300253. [PMID: 37759396 DOI: 10.1002/pmic.202300253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Residing between the testes and the vas deferens, the epididymis is a highly convoluted tubule whose unique luminal microenvironment is crucial for the functional maturation of spermatozoa. This microenvironment is created by the combined secretory and resorptive activity of the lining epididymal epithelium, including the release of extracellular vesicles (epididymosomes), which encapsulate fertility modulating proteins and a myriad of small non-coding RNAs (sncRNAs) that are destined for delivery to recipient sperm cells. To enable investigation of this intercellular communication nexus, we have previously developed an immortalized mouse caput epididymal epithelial cell line (mECap18). Here, we describe the application of label-free mass spectrometry to characterize the mECap18 cell proteome and compare this to the proteome of native mouse caput epididymal epithelial cells. We report the identification of 5,313 mECap18 proteins, as many as 75.8% of which were also identified in caput epithelial cells wherein they mapped to broadly similar protein classification groupings. Furthermore, key pathways associated with protein synthesis (e.g., EIF2 signaling) and cellular protection in the male reproductive tract (e.g., sirtuin signaling) were enriched in both proteomes. This comparison supports the utility of the mECap18 cell line as a tractable in-vitro model for studying caput epididymal epithelial cell function.
Collapse
Affiliation(s)
- Jess E Mulhall
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, New South Wales, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Varsinais-Suomi, Finland
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| |
Collapse
|
392
|
Lin A, See D, Fondrie WE, Keich U, Noble WS. Target-decoy false discovery rate estimation using Crema. Proteomics 2024; 24:e2300084. [PMID: 38380501 DOI: 10.1002/pmic.202300084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Assigning statistical confidence estimates to discoveries produced by a tandem mass spectrometry proteomics experiment is critical to enabling principled interpretation of the results and assessing the cost/benefit ratio of experimental follow-up. The most common technique for computing such estimates is to use target-decoy competition (TDC), in which observed spectra are searched against a database of real (target) peptides and a database of shuffled or reversed (decoy) peptides. TDC procedures for estimating the false discovery rate (FDR) at a given score threshold have been developed for application at the level of spectra, peptides, or proteins. Although these techniques are relatively straightforward to implement, it is common in the literature to skip over the implementation details or even to make mistakes in how the TDC procedures are applied in practice. Here we present Crema, an open-source Python tool that implements several TDC methods of spectrum-, peptide- and protein-level FDR estimation. Crema is compatible with a variety of existing database search tools and provides a straightforward way to obtain robust FDR estimates.
Collapse
Affiliation(s)
- Andy Lin
- Chemical and Biological Signatures, Pacific Northwest National Laboratory, Seattle, Washington, USA
| | - Donavan See
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA
| | | | - Uri Keich
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - William Stafford Noble
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
393
|
Bories P, Rima J, Tranier S, Marcoux J, Grimoire Y, Tomaszczyk M, Launay A, Fata K, Marrakchi H, Burlet‐Schiltz O, Mourey L, Ducoux‐Petit M, Bardou F, Bon C, Quémard A. HadBD dehydratase from Mycobacterium tuberculosis fatty acid synthase type II: A singular structure for a unique function. Protein Sci 2024; 33:e4964. [PMID: 38501584 PMCID: PMC10949391 DOI: 10.1002/pro.4964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.
Collapse
Affiliation(s)
- Pascaline Bories
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Julie Rima
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Samuel Tranier
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Yasmina Grimoire
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Mathilde Tomaszczyk
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Anne Launay
- Service de TP de BiochimieUniversité de Toulouse, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Karine Fata
- Service de TP de BiochimieUniversité de Toulouse, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Odile Burlet‐Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Manuelle Ducoux‐Petit
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Fabienne Bardou
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Cécile Bon
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| |
Collapse
|
394
|
Hashimoto U, Fujitani N, Uehara Y, Okamoto H, Saitou A, Ito F, Ariki S, Shiratsuchi A, Hasegawa Y, Takahashi M. N-glycan on N262 of FGFR3 regulates the intracellular localization and phosphorylation of the receptor. Biochim Biophys Acta Gen Subj 2024; 1868:130565. [PMID: 38244702 DOI: 10.1016/j.bbagen.2024.130565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
N-glycosylation and proper processing of N-glycans are required for the function of membrane proteins including cell surface receptors. Fibroblast growth factor receptor (FGFR) is involved in a wide variety of biological processes including embryonic development, osteogenesis, angiogenesis, and cell proliferation. Human FGFR3 contains six potential N-glycosylation sites, however, the roles of glycosylation have not been elucidated. The site-specific profiles of N-glycans of the FGFR3 extracellular domain expressed and secreted by CHO-K1 cells were examined, and glycan occupancies and structures of four sites were determined. The results indicated that most sites were fully occupied by glycans, and the dominant populations were the complex type. By examining single N-glycan deletion mutants of FGFR3, it was found that N262Q mutation significantly increased the population with oligomannose-type N-glycans, which was localized in the endoplasmic reticulum. Protein stability assay suggested that fraction with oligomannose-type N-glycans in the N262Q mutant is more stable than those in the wild type and other mutants. Furthermore, it was found that ligand-independent phosphorylation was significantly upregulated in N262Q mutants with complex type N-glycans. The findings suggest that N-glycans on N262 of FGFR3 affect the intracellular localization and phosphorylation status of the receptor.
Collapse
Affiliation(s)
- Ukichiro Hashimoto
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Fujitani
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuaki Uehara
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromi Okamoto
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Saitou
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumie Ito
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Chemistry, Center for Medical Education, Sapporo Medical University, Japan
| | - Akiko Shiratsuchi
- Department of Chemistry, Center for Medical Education, Sapporo Medical University, Japan
| | - Yoshihiro Hasegawa
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
395
|
Koch C, Lenhard S, Räschle M, Prescianotto-Baschong C, Spang A, Herrmann JM. The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria. EMBO Rep 2024; 25:2071-2096. [PMID: 38565738 PMCID: PMC11014988 DOI: 10.1038/s44319-024-00113-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | |
Collapse
|
396
|
Mueller PA, Bergstrom P, Rosario S, Heard M, Pamir N. Fish Oil Supplementation Modifies the Proteome, Lipidome, and Function of High-Density Lipoprotein: Findings from a Trial in Young Healthy Adults. J Nutr 2024; 154:1130-1140. [PMID: 38237669 PMCID: PMC11007744 DOI: 10.1016/j.tjnut.2024.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Fish oil with the ω-3 fatty acids EPA and DHA is an FDA-approved treatment of patients with severe hypertriglyceridemia. Furthermore, EPA is an FDA-approved treatment of patients with high risk of cardiovascular disease (CVD); however, the cardioprotective mechanisms are unclear. OBJECTIVES We aimed to determine if fish oil supplementation is cardioprotective due to beneficial modifications in HDL particles. METHODS Seven fish oil naïve subjects without a history of CVD were recruited to take a regimen of fish oil (1125 mg EPA and 875 mg DHA daily) for 30 d, followed by a 30-d washout period wherein no fish oil supplements were taken. HDL isolated from fasting whole blood at each time point via 2-step ultracentrifugation (ucHDL) was assessed for proteome, lipidome, cholesterol efflux capacity (CEC), and anti-inflammatory capacity. RESULTS Following fish oil supplementation, the HDL-associated proteins immunoglobulin heavy constant γ1, immunoglobulin heavy constant α1, apolipoprotein D, and phospholipid transfer protein decreased compared to baseline (P < 0.05). The HDL-associated phospholipid families sphingomyelins, phosphatidylcholines, and phosphatidylserines increased after fish oil supplementation relative to baseline (P < 0.05). Compared to baseline, fish oil supplementation increased serum HDL's CEC (P = 0.002). Fish oil-induced changes (Post compared with Baseline) in serum HDL's CEC positively correlated with plasma EPA levels (R2 = 0.7256; P = 0.015). Similarly, fish oil-induced changes in ucHDL's CEC positively correlated with ucHDL's ability to reduce interleukin 10 (R2 = 0.7353; P = 0.014) and interleukin 6 mRNA expression (R2 = 0.6322; P =0.033) in a human macrophage cell line. CONCLUSIONS Overall, fish oil supplementation improved HDL's sterol efflux capacity through comprehensive modifications to its proteome and lipidome.
Collapse
Affiliation(s)
- Paul A Mueller
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| | - Paige Bergstrom
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sara Rosario
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Melissa Heard
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Nathalie Pamir
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
397
|
Chen Y, Roselli S, Panicker N, Brzozowski JS, Skerrett-Byrne DA, Murray HC, Verrills NM. Proteomic and phosphoproteomic characterisation of primary mouse embryonic fibroblasts. Proteomics 2024; 24:e2300267. [PMID: 37849217 DOI: 10.1002/pmic.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Fibroblasts are the most common cell type in stroma and function in the support and repair of most tissues. Mouse embryonic fibroblasts (MEFs) are amenable to isolation and rapid growth in culture. MEFs are therefore widely used as a standard model for functional characterisation of gene knockouts, and can also be used in co-cultures, commonly to support embryonic stem cell cultures. To facilitate their use as a research tool, we have performed a comprehensive proteomic and phosphoproteomic characterisation of wild-type primary MEFs from C57BL/6 mice. EIF2/4 and MTOR signalling pathways were abundant in both the proteome and phosphoproteome, along with extracellular matrix (ECM) and cytoskeleton associated pathways. Consistent with this, kinase enrichment analysis identified activation of P38A, P90RSK, P70S6K, and MTOR. Cell surface markers and matrisome proteins were also annotated. Data are available via ProteomeXchange with identifier PXD043244. This provides a comprehensive catalogue of the wild-type MEF proteome and phosphoproteome which can be utilised by the field to guide future work.
Collapse
Affiliation(s)
- Yanfang Chen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - Severine Roselli
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - Nikita Panicker
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Cancer Detection and Therapies Program, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - David A Skerrett-Byrne
- The Priority Research Centre for Reproductive Science, Hunter Medical Research Institute, The University of Newcastle; and the Infertility and Reproduction Research Program, Callaghan, New South Wales, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| |
Collapse
|
398
|
Filipović D, Novak B, Xiao J, Tadić P, Turck CW. Prefrontal cortical synaptoproteome profile combined with machine learning predicts resilience towards chronic social isolation in rats. J Psychiatr Res 2024; 172:221-228. [PMID: 38412784 DOI: 10.1016/j.jpsychires.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Chronic social isolation (CSIS) of rats serves as an animal model of depression and generates CSIS-resilient and CSIS-susceptible phenotypes. We aimed to investigate the prefrontal cortical synaptoproteome profile of CSIS-resilient, CSIS-susceptible, and control rats to delineate biochemical pathways and predictive biomarker proteins characteristic for the resilient phenotype. A sucrose preference test was performed to distinguish rat phenotypes. Class separation and machine learning (ML) algorithms support vector machine with greedy forward search and random forest were then used for discriminating CSIS-resilient from CSIS-susceptible and control rats. CSIS-resilient compared to CSIS-susceptible rat proteome analysis revealed, among other proteins, downregulated glycolysis intermediate fructose-bisphosphate aldolase C (Aldoc), and upregulated clathrin heavy chain 1 (Cltc), calcium/calmodulin-dependent protein kinase type II (Cam2a), synaptophysin (Syp) and fatty acid synthase (Fasn) that are involved in neuronal transmission, synaptic vesicular trafficking, and fatty acid synthesis. Comparison of CSIS-resilient and control rats identified downregulated mitochondrial proteins ATP synthase subunit beta (Atp5f1b) and citrate synthase (Cs), and upregulated protein kinase C gamma type (Prkcg), vesicular glutamate transporter 1 (Slc17a7), and synaptic vesicle glycoprotein 2 A (Sv2a) involved in signal transduction and synaptic trafficking. The combined protein differences make the rat groups linearly separable, and 100% validation accuracy is achieved by standard ML models. ML algorithms resulted in four panels of discriminative proteins. Proteomics-data-driven class separation and ML algorithms can provide a platform for accessing predictive features and insight into the molecular mechanisms underlying synaptic neurotransmission involved in stress resilience.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; National Resource Center for Non-human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| |
Collapse
|
399
|
Ostacolo K, de Lomana ALG, Larat C, Hjaltalin V, Holm KY, Hlynsdóttir SS, Soucheray M, Sooman L, Rolfsson O, Krogan NJ, Steingrimsson E, Swaney DL, Ogmundsdottir MH. ATG7(2) Interacts With Metabolic Proteins and Regulates Central Energy Metabolism. Traffic 2024; 25:e12933. [PMID: 38600522 PMCID: PMC11480896 DOI: 10.1111/tra.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.
Collapse
Affiliation(s)
- Kevin Ostacolo
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Adrián López García de Lomana
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Clémence Larat
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Valgerdur Hjaltalin
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kristrun Yr Holm
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sigríður S. Hlynsdóttir
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Margaret Soucheray
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Linda Sooman
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Danielle L. Swaney
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Margret H. Ogmundsdottir
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
400
|
Astapenko D, Vajrychova M, Fabrik I, Kupcik R, Pimkova K, Tambor V, Radochova V, Cerny V. Impact of anesthetics on rat hippocampus and neocortex: A comprehensive proteomic study based on label-free mass spectrometry. Heliyon 2024; 10:e27638. [PMID: 38509933 PMCID: PMC10950665 DOI: 10.1016/j.heliyon.2024.e27638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Anesthesia is regarded as an important milestone in medicine. However, the negative effect on memory and learning has been observed. In addition, the impact of anesthetics on postoperative cognitive functions is still discussed. In this work, in vivo experiment simulating a general anesthesia and ICU sedation was designed to assess the impact of two intravenous (midazolam, dexmedetomidine) and two inhalational (isoflurane, desflurane) agents on neuronal centers for cognition (neocortex), learning, and memory (hippocampus). More than 3600 proteins were quantified across both neocortex and hippocampus. Proteomic study revealed relatively mild effects of anesthetics, nevertheless, protein dysregulation uncovered possible different effect of isoflurane (and midazolam) compared to desflurane (and dexmedetomidine) to neocortical and hippocampal proteins. Isoflurane induced the upregulation of hippocampal NMDAR and other proteins of postsynaptic density and downregulation of GABA signaling, whereas desflurane and dexmedetomidine rather targeted mitochondrial VDAC isoforms and protein regulating apoptotic activity.
Collapse
Affiliation(s)
- David Astapenko
- Department of Anesthesiology and Intensive Care, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Faculty of Health Sciences, Technical University in Liberec, Liberec, Czech Republic
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rudolf Kupcik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Biocev, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Vojtech Tambor
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Vera Radochova
- Vivarium Department, Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic
| | - Vladimir Cerny
- Department of Anesthesiology and Intensive Care, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Dept. of Anesthesiology, Perioperative Medicine and Intensive Care, Hospital Bory, Bratislava, Slovak Republic
| |
Collapse
|