401
|
Murphy ME, Narasimhan A, Adrian A, Kumar A, Green CL, Soto-Palma C, Henpita C, Camell C, Morrow CS, Yeh CY, Richardson CE, Hill CM, Moore DL, Lamming DW, McGregor ER, Simmons HA, Pak HH, Bai H, Denu JM, Clark J, Simcox J, Chittimalli K, Dahlquist K, Lee KA, Calubag M, Bouska M, Yousefzadeh MJ, Sonsalla M, Babygirija R, Yuan R, Tsuji T, Rhoads T, Menon V, Jarajapu YP, Zhu Y. Metabolism in the Midwest: research from the Midwest Aging Consortium at the 49 th Annual Meeting of the American Aging Association. GeroScience 2022; 44:39-52. [PMID: 34714522 PMCID: PMC8554732 DOI: 10.1007/s11357-021-00479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Michaela E Murphy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alexis Adrian
- Department of Urology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- U54 George M. O'Brien Center for Benign Urology Research, Madison, WI, 53705, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Carolina Soto-Palma
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Chathurika Henpita
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina Camell
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Claire E Richardson
- Department of Genetics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Cristal M Hill
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70809, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Eric R McGregor
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53175, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John M Denu
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Korbyn Dahlquist
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Kyoo-A Lee
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Mariah Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew J Yousefzadeh
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Michelle Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rong Yuan
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| | - Tadataka Tsuji
- Section On Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Timothy Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Vinal Menon
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Yun Zhu
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA.
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA.
| |
Collapse
|
402
|
Lewińska A, Przybylski P, Adamczyk-Grochala J, Błoniarz D, Litwinienko G, Wnuk M. Senolysis-Based Elimination of Chemotherapy-Induced Senescent Breast Cancer Cells by Quercetin Derivative with Blocked Hydroxy Groups. Cancers (Basel) 2022; 14:cancers14030605. [PMID: 35158873 PMCID: PMC8833762 DOI: 10.3390/cancers14030605] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Cellular senescence may contribute to aging and age-related diseases, and the elimination of senescent cells is considered a promising anti-aging strategy. Drug-induced senescence in cancer cells during chemotherapy may also promote a number of adverse effects. Thus, in the present study, the usefulness of three quercetin derivatives as senolytic agents was studied upon stimulation of senescence program in breast cancer cells. We have shown that quercetin derivative with blocked hydroxy groups (QD3) sensitized etoposide-induced senescent breast cancer cells to apoptotic cell death that was accompanied by a decrease in proinflammatory and HSP70-based responses. We suggest that these prosenescent and senolytic activities can be combined to design a novel anti-cancer strategy, at least, against breast cancer cells. Abstract Drug-induced senescence program may be activated both in normal and cancer cells as a consequence of chemotherapeutic treatment, leading to some adverse side effects such as senescence-associated secretory phenotype (SASP), secondary senescence, and cancer promotion. Targeted elimination of senescent cells can be achieved by drugs with senolytic activity (senolytics), for example, the plant-derived natural compound quercetin, especially when co-treated with kinase inhibitor dasatinib. In the present study, three quercetin derivatives were synthesized and tested for improved senolytic action against etoposide-induced senescent human normal mammary epithelial cells and triple-negative breast cancer cells in vitro. Transformation of catechol moiety into diphenylmethylene ketal and addition of three acetyl groups to the quercetin molecule (QD3 derivative) promoted the clearance of senescent cancer cells as judged by increased apoptosis compared to etoposide-treated cells. A QD3-mediated senolytic effect was accompanied by decreased SA-beta galactosidase activity and the levels of p27, IL-1β, IL-8, and HSP70 in cancer cells. Similar effects were not observed in senescent normal cells. In conclusion, a novel senolytic agent QD3 was described as acting against etoposide-induced senescent breast cancer cells in vitro. Thus, a new one-two punch anti-cancer strategy based on combined action of a pro-senescence anti-cancer drug and a senolytic agent is proposed.
Collapse
Affiliation(s)
- Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (J.A.-G.); (D.B.)
- Correspondence: (A.L.); (M.W.)
| | - Paweł Przybylski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (P.P.); (G.L.)
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (J.A.-G.); (D.B.)
| | - Dominika Błoniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (J.A.-G.); (D.B.)
| | - Grzegorz Litwinienko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (P.P.); (G.L.)
| | - Maciej Wnuk
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
- Correspondence: (A.L.); (M.W.)
| |
Collapse
|
403
|
Elsallabi O, Patruno A, Pesce M, Cataldi A, Carradori S, Gallorini M. Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules 2022; 27:738. [PMID: 35164003 PMCID: PMC8839434 DOI: 10.3390/molecules27030738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological disorders-including Alzheimer's disease-age is one of the higher-risk factors. Since in many Western countries the average age is increasing, determining approaches for decreasing the effects of aging on brain function is taking on a new urgency. Neuroinflammation and oxidative stress are two convoluted key factors in brain aging and chronic neurodegenerative diseases. The diverseness of factors, causing an age-related decrease in brain functions, requires identifying small molecules that have multiple biological activities that can affect all these factors. One great source of these small molecules is related to polyphenolic flavonoids. Recently, 3,3',4',7-tetrahydroxyflavone (fisetin) has been reported as a potent senotherapeutic capable of extending lifespan by reducing peroxidation levels and enhancing antioxidant cell responses. The neuroprotective effects of fisetin have been shown in several in vitro and in vivo models of neurological disorders due to its actions on multiple pathways associated with different neurological disorders. The present work aims to collect the most recent achievements related to the antioxidant and neuroprotective effects of fisetin. Moreover, in silico pharmacokinetics, pharmacodynamics, and toxicity of fisetin are also comprehensively described along with emerging novel drug delivery strategies for the amelioration of this flavonol bioavailability and chemical stability.
Collapse
Affiliation(s)
- Osama Elsallabi
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
| | - Mirko Pesce
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| |
Collapse
|
404
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
405
|
Wang B, Wang L, Gasek NS, Zhou Y, Kim T, Guo C, Jellison ER, Haynes L, Yadav S, Tchkonia T, Kuchel GA, Kirkland JL, Xu M. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. NATURE AGING 2022; 1:962-973. [PMID: 35024619 DOI: 10.1038/s43587-021-00107-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The role of senescent cells has been implicated in various tissue dysfunction associated with aging, obesity, and other pathological conditions. Currently, most transgenic mouse models only target p16 Ink4a-highly-expressing (p16 high) cells. Here, we generated a p21-Cre mouse model, containing a p21 promoter driving inducible Cre, enabling us to examine p21 Cip1-highly-expressing (p21 high) cells, a previously unexplored cell population exhibiting several characteristics typical of senescent cells. By crossing p21-Cre mice with different floxed mice, we managed to monitor, sort, image, eliminate, or modulate p21 high cells in vivo. We showed p21 high cells can be induced by various conditions, and percentages of p21 high cells varied from 1.5 to 10% across different tissues in 23-month-old mice. Intermittent clearance of p21 high cells improved physical function in 23-month-old mice. Our study demonstrates that the p21-Cre mouse model is a valuable and powerful tool for studying p21 high cells to further understand the biology of senescent cells.
Collapse
Affiliation(s)
- Binsheng Wang
- UConn Center on Aging, UConn Health, Farmington, CT.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT.,These authors contributed equally
| | - Lichao Wang
- UConn Center on Aging, UConn Health, Farmington, CT.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT.,These authors contributed equally
| | - Nathan S Gasek
- UConn Center on Aging, UConn Health, Farmington, CT.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT.,These authors contributed equally
| | - Yueying Zhou
- Xiangya Stomatological Hospital, Central South University, Changsha, China.,Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT
| | - Taewan Kim
- UConn Center on Aging, UConn Health, Farmington, CT.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT.,Biomedical Science Graduate Program, UConn Health, Farmington, CT
| | - Chun Guo
- UConn Center on Aging, UConn Health, Farmington, CT
| | | | - Laura Haynes
- UConn Center on Aging, UConn Health, Farmington, CT.,Department of Immunology, UConn Health, Farmington, CT
| | - Sumit Yadav
- Division of Orthodontics, UConn Health, Farmington, CT
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | | | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT.,Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
406
|
DeVito LM, Barzilai N, Cuervo AM, Niedernhofer LJ, Milman S, Levine M, Promislow D, Ferrucci L, Kuchel GA, Mannick J, Justice J, Gonzales MM, Kirkland JL, Cohen P, Campisi J. Extending human healthspan and longevity: a symposium report. Ann N Y Acad Sci 2022; 1507:70-83. [PMID: 34498278 PMCID: PMC10231756 DOI: 10.1111/nyas.14681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
For many years, it was believed that the aging process was inevitable and that age-related diseases could not be prevented or reversed. The geroscience hypothesis, however, posits that aging is, in fact, malleable and, by targeting the hallmarks of biological aging, it is indeed possible to alleviate age-related diseases and dysfunction and extend longevity. This field of geroscience thus aims to prevent the development of multiple disorders with age, thereby extending healthspan, with the reduction of morbidity toward the end of life. Experts in the field have made remarkable advancements in understanding the mechanisms underlying biological aging and identified ways to target aging pathways using both novel agents and repurposed therapies. While geroscience researchers currently face significant barriers in bringing therapies through clinical development, proof-of-concept studies, as well as early-stage clinical trials, are underway to assess the feasibility of drug evaluation and lay a regulatory foundation for future FDA approvals in the future.
Collapse
Affiliation(s)
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Sofiya Milman
- Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - George A Kuchel
- University of Connecticut School of Medicine, Farmington, Connecticut
| | | | - Jamie Justice
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mitzi M Gonzales
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | | | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, Los Angeles, California
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, California
- Lawrence Berkeley National Laboratory, Berkley, California
| |
Collapse
|
407
|
Gonzales MM, Garbarino VR, Marques Zilli E, Petersen RC, Kirkland JL, Tchkonia T, Musi N, Seshadri S, Craft S, Orr ME. Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial. J Prev Alzheimers Dis 2022; 9:22-29. [PMID: 35098970 PMCID: PMC8612719 DOI: 10.14283/jpad.2021.62] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Preclinical studies indicate an age-associated accumulation of senescent cells across multiple organ systems. Emerging evidence suggests that tau protein accumulation, which closely correlates with cognitive decline in Alzheimer's disease and other tauopathies, drives cellular senescence in the brain. Pharmacologically clearing senescent cells in mouse models of tauopathy reduced brain pathogenesis. Compared to vehicle treated mice, intermittent senolytic administration reduced tau accumulation and neuroinflammation, preserved neuronal and synaptic density, restored aberrant cerebral blood flow, and reduced ventricular enlargement. Intermittent dosing of the senolytics, dasatinib plus quercetin, has shown an acceptable safety profile in clinical studies for other senescence-associated conditions. With these data, we proposed and herein describe the objectives and methods for a clinical vanguard study. This initial open-label clinical trial pilots an intermittent senolytic combination therapy of dasatinib plus quercetin in five older adults with early-stage Alzheimer's disease. The primary objective is to evaluate the central nervous system penetration of dasatinib and quercetin through analysis of cerebrospinal fluid collected at baseline and after 12 weeks of treatment. Further, through a series of secondary outcome measures to assess target engagement of the senolytic compounds and Alzheimer's disease-relevant cognitive, functional, and physical outcomes, we will collect preliminary data on safety, feasibility, and efficacy. The results of this study will be used to inform the development of a randomized, double-blind, placebo-controlled multicenter phase II trial to further explore of the safety, feasibility, and efficacy of senolytics for modulating the progression of Alzheimer's disease. Clinicaltrials.gov registration number and date: NCT04063124 (08/21/2019).
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - V. R. Garbarino
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - E. Marques Zilli
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | | | - J. L. Kirkland
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - T. Tchkonia
- Mayo Clinic, Robert and Arlene Kogod Center on Aging, Rochester, MN USA
| | - N. Musi
- University of Texas Health Science Center at San Antonio, Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric Research, Education and Clinical Center (GRECC), Department of Medicine, San Antonio, TX USA
| | - S. Seshadri
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, Department of Neurology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
- Boston University School of Medicine, Department of Neurology, Boston, MA USA
| | - S. Craft
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| | - Miranda E. Orr
- Wake Forest School of Medicine, Gerontology and Geriatric Medicine, 575 Patterson Avenue, Winston-Salem, NC 27101 USA
| |
Collapse
|
408
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
409
|
Raffaele M, Vinciguerra M. The costs and benefits of senotherapeutics for human health. THE LANCET. HEALTHY LONGEVITY 2022; 3:e67-e77. [PMID: 36098323 DOI: 10.1016/s2666-7568(21)00300-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
Cellular senescence is a major contributor to age-related diseases in humans; however, it also has a beneficial role in physiological and pathological processes, including wound healing, host immunity, and tumour suppression. Reducing the burden of cell senescence in animal models of cardiometabolic disorders, inflammatory conditions, neurodegenerative diseases, and cancer using pharmaceutical approaches that selectively target senescent cells (ie, senolytics) or that suppress senescence-associated secretory phenotype (ie, senomorphics) holds great promise for the management of chronic age-associated conditions. Although studies have provided evidence that senolytics or senomorphics are effective at decreasing the number of senescent cells in humans, the short-term and long-term side-effects of these therapies are largely unknown. In this Review, we systematically discuss the senolytics and senomorphics that have been investigated in clinical trials or have been used off-label, presenting their various adverse effects. Despite the potential of senotherapeutics to transform anti-ageing medicine, a cautionary approach regarding unwanted dose-dependent side-effects should be adopted.
Collapse
Affiliation(s)
- Marco Raffaele
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic; Division of Medicine, University College London, London, UK; Research Institute of the Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
410
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
411
|
Boyajian JL, Ghebretatios M, Schaly S, Islam P, Prakash S. Microbiome and Human Aging: Probiotic and Prebiotic Potentials in Longevity, Skin Health and Cellular Senescence. Nutrients 2021; 13:nu13124550. [PMID: 34960102 PMCID: PMC8705837 DOI: 10.3390/nu13124550] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The role of the microbiome in human aging is important: the microbiome directly impacts aging through the gastrointestinal system. However, the microbial impact on skin has yet to be fully understood. For example, cellular senescence is an intrinsic aging process that has been recently associated with microbial imbalance. With age, cells become senescent in response to stress wherein they undergo irreversible growth arrest while maintaining high metabolic activity. An accumulation of senescent cells has been linked to various aging and chronic pathologies due to an overexpression of the senescence-associated secretory phenotype (SASP) comprised of proinflammatory cytokines, chemokines, growth factors, proteases, lipids and extracellular matrix components. In particular, dermatological disorders may be promoted by senescence as the skin is a common site of accumulation. The gut microbiota influences cellular senescence and skin disruption through the gut-skin axis and secretion of microbial metabolites. Metabolomics can be used to identify and quantify metabolites involved in senescence. Moreover, novel anti-senescent therapeutics are warranted given the poor safety profiles of current pharmaceutical drugs. Probiotics and prebiotics may be effective alternatives, considering the relationship between the microbiome and healthy aging. However, further research on gut composition under a senescent status is needed to develop immunomodulatory therapies.
Collapse
|
412
|
Woo J, Shin S, Cho E, Ryu D, Garandeau D, Chajra H, Fréchet M, Park D, Jung E. Senotherapeutic-like effect of Silybum marianum flower extract revealed on human skin cells. PLoS One 2021; 16:e0260545. [PMID: 34914725 PMCID: PMC8675675 DOI: 10.1371/journal.pone.0260545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence causes irreversible growth arrest of cells. Prolonged accumulation of senescent cells in tissues leads to increased detrimental effects due to senescence associated secretory phenotype (SASP). Recent findings suggest that elimination of senescent cells has a beneficial effect on organismal aging and lifespan. In this study, using a validated replicative senescent human dermal fibroblasts (HDFs) model, we showed that elimination of senescent cells is possible through the activation of an apoptotic mechanism. We have shown in this replicative senescence model, that cell senescence is associated with DNA damage and cell cycle arrest (p21, p53 markers). We have shown that Silybum marianum flower extract (SMFE) is a safe and selective senolytic agent targeting only senescent cells. The elimination of the cells is induced through the activation of apoptotic pathway confirmed by annexin V/propidium iodide and caspase-3/PARP staining. Moreover, SMFE suppresses the expression of SASP factors such as IL-6 and MMP-1 in senescent HDFs. In a co-culture model of senescent and young fibroblasts, we demonstrated that senescent cells impaired the proliferative capacities of young cells. Interestingly, when the co-culture is treated with SMFE, the cell proliferation rate of young cells is increased due to the decrease of the senescent burden. Moreover, we demonstrated in vitro that senescent fibroblasts trigger senescent process in normal keratinocytes through a paracrine effect. Indeed, the conditioned medium of senescent HDFs treated with SMFE reduced the level of senescence-associated beta-galactosidase (SA-β-Gal), p16INK4A and SASP factors in keratinocytes compared with CM of senescent HDFs. These results indicate that SMFE can prevent premature aging due to senescence and even reprograms aged skin. Indeed, thanks to its senolytic and senomorphic properties SMFE is a candidate for anti-senescence strategies.
Collapse
Affiliation(s)
- Jieun Woo
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seoungwoo Shin
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eunae Cho
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dehun Ryu
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | - Deokhoon Park
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eunsun Jung
- BioSpectrum Life Science Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
413
|
Díaz-Vesga MC, Zúñiga-Cuevas Ú, Ramírez-Reyes A, Herrera-Zelada N, Palomo I, Bravo-Sagua R, Riquelme JA. Potential Therapies to Protect the Aging Heart Against Ischemia/Reperfusion Injury. Front Cardiovasc Med 2021; 8:770421. [PMID: 34869687 PMCID: PMC8639870 DOI: 10.3389/fcvm.2021.770421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Despite important advances in the treatment of myocardial infarction that have significantly reduced mortality, there is still an unmet need to limit the infarct size after reperfusion injury in order to prevent the onset and severity of heart failure. Multiple cardioprotective maneuvers, therapeutic targets, peptides and drugs have been developed to effectively protect the myocardium from reperfusion-induced cell death in preclinical studies. Nonetheless, the translation of these therapies from laboratory to clinical contexts has been quite challenging. Comorbidities, comedications or inadequate ischemia/reperfusion experimental models are clearly identified variables that need to be accounted for in order to achieve effective cardioprotection studies. The aging heart is characterized by altered proteostasis, DNA instability, epigenetic changes, among others. A vast number of studies has shown that multiple therapeutic strategies, such as ischemic conditioning phenomena and protective drugs are unable to protect the aged heart from myocardial infarction. In this Mini-Review, we will provide an updated state of the art concerning potential new cardioprotective strategies targeting the aging heart.
Collapse
Affiliation(s)
- Magda C Díaz-Vesga
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Cali, Colombia.,Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Úrsula Zúñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Ramírez-Reyes
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Nicolas Herrera-Zelada
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iván Palomo
- Thrombosis Research Center, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.,Interuniversity Center for Healthy Aging, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging, Chile.,Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Disease (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Interuniversity Center for Healthy Aging, Chile
| |
Collapse
|
414
|
Jordan B. [Senolytics against Covid-19?]. Med Sci (Paris) 2021; 37:1062-1065. [PMID: 34851287 DOI: 10.1051/medsci/2021161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The elimination of some senescent cells by « senolytic » compounds can greatly improve the health of aged mice and in some cases reverse the effects of aging. Using a microbial exposure system that closely models coronavirus infection, it is possible to largely protect old mice from the effects of viral infection. This immediately suggests clinical application of the approach, and is the aim of ongoing phase II clinical trials in Covid-19 patients.
Collapse
Affiliation(s)
- Bertrand Jordan
- ADÉS (Anthropologie bioculturelle, droit, éthique et santé) UMR CNRS 7268, Aix Marseille université, Établissement français du sang. CoReBio PACA, case 901, Parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
415
|
Sharma R. Bioactive food components for managing cellular senescence in aging and disease: A critical appraisal and perspectives. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
416
|
Wissler Gerdes EO, Misra A, Netto JME, Tchkonia T, Kirkland JL. Strategies for late phase preclinical and early clinical trials of senolytics. Mech Ageing Dev 2021; 200:111591. [PMID: 34699859 PMCID: PMC8627448 DOI: 10.1016/j.mad.2021.111591] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023]
Abstract
Cellular senescence and the hallmarks of aging contribute to age-related disease and dysfunction. The Unitary Theory of Fundamental Aging Mechanisms highlights the interdependence among the hallmarks of aging and suggests that by intervening in one fundamental aging process, most or all of the other processes could be impacted. Accumulation of senescent cells is associated with frailty, cardiovascular disease, obesity, diabetes, cognitive decline, and other age- and/or chronic disease-related disorders, suggesting that senescent cells are a target for intervention. Early preclinical data using senolytics, agents that target senescent cells, show promising results in several aging and disease models. The first in-human trials using the senolytic combination of Dasatinib and Quercetin indicated reduced senescent cell burden in adipose tissue of diabetic kidney disease patients and improved physical function in patients with idiopathic pulmonary fibrosis. Clinical trials with other senolytics, including the flavonoid Fisetin and BCL-xL inhibitors, are underway. These results from preclinical and early clinical trials illustrate the potential of senolytics to alleviate age-related dysfunction and diseases. However, multiple clinical trials across different aging and disease models are desperately needed. Parallel trials across institutions through the Translational Geroscience Network are facilitating testing to determine whether senolytics can be translated into clinical application.
Collapse
Affiliation(s)
| | - Avanish Misra
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | | | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States; Division of Geriatrics and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
417
|
Zhang L, Zhao J, Mu X, McGowan SJ, Angelini L, O'Kelly RD, Yousefzadeh MJ, Sakamoto A, Aversa Z, LeBrasseur NK, Suh Y, Huard J, Kamenecka TM, Niedernhofer LJ, Robbins PD. Novel small molecule inhibition of IKK/NF-κB activation reduces markers of senescence and improves healthspan in mouse models of aging. Aging Cell 2021; 20:e13486. [PMID: 34734460 PMCID: PMC8672781 DOI: 10.1111/acel.13486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
Constitutive NF-κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF-κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF-κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence-associated beta-galactosidase (SA-β-gal) activity in oxidative stress-induced senescent mouse embryonic fibroblasts as well as in etoposide-induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1-/∆ and Zmpste24-/- mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2-year-old WT mice. Taken together, these results demonstrate that IKK/NF-κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age-related diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jing Zhao
- Department of Molecular MedicineScripps ResearchJupiterFloridaUSA
| | - Xiaodong Mu
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
- Shandong First Medical University (Shandong Academy of Medical Sciences)JinanChina
| | - Sara J. McGowan
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Luise Angelini
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ryan D. O'Kelly
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew J. Yousefzadeh
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ayumi Sakamoto
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Zaira Aversa
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Nathan K. LeBrasseur
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on AgingRochesterMinnesotaUSA
| | - Yousin Suh
- Department of Genetics and DevelopmentColumbia UniversityNew YorkNew YorkUSA
| | - Johnny Huard
- Center for Regenerative Sports MedicineSteadman Philippon Research InstituteVailColoradoUSA
| | | | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and BiophysicsInstitute on the Biology of Aging and MetabolismUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
418
|
Lee S, Wang EY, Steinberg AB, Walton CC, Chinta SJ, Andersen JK. A guide to senolytic intervention in neurodegenerative disease. Mech Ageing Dev 2021; 200:111585. [PMID: 34627838 PMCID: PMC8627445 DOI: 10.1016/j.mad.2021.111585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Cellular senescence is a potential tumor-suppressive mechanism that generally results in an irreversible cell cycle arrest. Senescent cells accumulate with age and actively secrete soluble factors, collectively termed the 'senescence-associated secretory phenotype' (SASP), which has both beneficial and detrimental effects. Although the contribution of senescent cells to age-related pathologies has been well-established outside the brain, emerging evidence indicates that brain cells also undergo cellular senescence and contribute to neuronal loss in the context of age-related neurodegenerative diseases. Contribution of senescent cells in the pathogenesis of neurological disorders has led to the possibility of eliminating senescence cells via pharmacological compounds called senolytics. Recently several senolytics have been demonstrated to elicit improved cognitive performance and healthspan in mouse models of neurodegeneration. However, their translation for use in the clinic still holds several potential challenges. This review summarizes available senolytics, their purported mode of action, and possible off-target effects. We also discuss possible alternative strategies that may help minimize potential side-effects associated with the senolytics approach.
Collapse
Affiliation(s)
- Suckwon Lee
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Ellen Y Wang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Alexandra B Steinberg
- University of Wisconsin Department of Biochemistry, 433 Babcock Drive., Madison, WI, 53706, USA
| | - Chaska C Walton
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Shankar J Chinta
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA; Touro University California, College of Pharmacy, 1310 Club Dr., Vallejo, CA, 94592, USA.
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
419
|
Xu Q, Fu Q, Li Z, Liu H, Wang Y, Lin X, He R, Zhang X, Ju Z, Campisi J, Kirkland JL, Sun Y. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab 2021; 3:1706-1726. [PMID: 34873338 PMCID: PMC8688144 DOI: 10.1038/s42255-021-00491-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Ageing-associated functional decline of organs and increased risk for age-related chronic pathologies is driven in part by the accumulation of senescent cells, which develop the senescence-associated secretory phenotype (SASP). Here we show that procyanidin C1 (PCC1), a polyphenolic component of grape seed extract (GSE), increases the healthspan and lifespan of mice through its action on senescent cells. By screening a library of natural products, we find that GSE, and PCC1 as one of its active components, have specific effects on senescent cells. At low concentrations, PCC1 appears to inhibit SASP formation, whereas it selectively kills senescent cells at higher concentrations, possibly by promoting production of reactive oxygen species and mitochondrial dysfunction. In rodent models, PCC1 depletes senescent cells in a treatment-damaged tumour microenvironment and enhances therapeutic efficacy when co-administered with chemotherapy. Intermittent administration of PCC1 to either irradiated, senescent cell-implanted or naturally aged old mice alleviates physical dysfunction and prolongs survival. We identify PCC1 as a natural senotherapeutic agent with in vivo activity and high potential for further development as a clinical intervention to delay, alleviate or prevent age-related pathologies.
Collapse
Affiliation(s)
- Qixia Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Fu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
| | - Zi Li
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hanxin Liu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ruikun He
- Science & Technology Centre, By-Health Corp. Ltd., Guangzhou, China
| | - Xuguang Zhang
- Science & Technology Centre, By-Health Corp. Ltd., Guangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| |
Collapse
|
420
|
Salaami O, Kuo CL, Drake MT, Kuchel GA, Kirkland JL, Pignolo RJ. Antidiabetic Effects of the Senolytic Agent Dasatinib. Mayo Clin Proc 2021; 96:3021-3029. [PMID: 34772496 PMCID: PMC8648964 DOI: 10.1016/j.mayocp.2021.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the antidiabetic effects of the senolytic agent dasatinib in older patients with type 2 diabetes mellitus. METHODS This retrospective cohort study included enterprise-wide Mayo Clinic patients using Informatics for Integrating Biology at the Bedside from January 1994 through December 2019. The antidiabetic outcomes (change in hemoglobin A1c value, serum glucose concentration, and diabetic medications) after 1 year of a strongly senolytic tyrosine kinase inhibitor, dasatinib (n=16), was compared with a weakly senolytic tyrosine kinase inhibitor, imatinib (n=32). RESULTS Relative to imatinib, patients treated with dasatinib had a mean reduction of 43.7 mg/dL (P=.005) in serum glucose concentration (to convert glucose values to mmol/L, multiply by 0.0555) and required 28.8 fewer total daily insulin units (P=.08) in the setting of a 4.8-kg relative weight loss (5.3% of total body weight; P=.045). Linear regression analysis suggests that the relative difference in weight accounts for 8.4 mg/dL of the 43.7 mg/dL blood glucose value decrease, or 19.2%. Relative to imatinib, patients treated with dasatinib had a mean 0.80 absolute point (P=.05) reduction in hemoglobin A1c and required 18.2 fewer total daily insulin units (P=.16) in the setting of a 5.9-kg relative weight loss (6.3% of total body weight; P=.06). CONCLUSION Dasatinib may have antidiabetic effects comparable to contemporary diabetic treatments and may be considered for use as a novel diabetic therapy. Future studies are needed to determine whether these results are translatable to patients with type 2 diabetes mellitus without underlying malignant diseases and to determine whether the antidiabetic effects of dasatinib are due to its senolytic properties.
Collapse
Affiliation(s)
- Omid Salaami
- Department of Geriatric Medicine, Duke University, Durham, NC
| | - Chia-Ling Kuo
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT
| | - Matthew T Drake
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN; Department of Medicine and Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT
| | - James L Kirkland
- Department of Medicine and Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - Robert J Pignolo
- Department of Medicine and Kogod Center on Aging, Mayo Clinic, Rochester, MN; Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
421
|
Lynch SM, Guo G, Gibson DS, Bjourson AJ, Rai TS. Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells 2021; 10:3367. [PMID: 34943875 PMCID: PMC8699414 DOI: 10.3390/cells10123367] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic associated with substantial morbidity and mortality worldwide, with particular risk for severe disease and mortality in the elderly population. SARS-CoV-2 infection is driven by a pathological hyperinflammatory response which results in a dysregulated immune response. Current advancements in aging research indicates that aging pathways have fundamental roles in dictating healthspan in addition to lifespan. Our review discusses the aging immune system and highlights that senescence and aging together, play a central role in COVID-19 pathogenesis. In our review, we primarily focus on the immune system response to SARS-CoV-2 infection, the interconnection between severe COVID-19, immunosenescence, aging, vaccination, and the emerging problem of Long-COVID. We hope to highlight the importance of identifying specific senescent endotypes (or "sendotypes"), which can used as determinants of COVID-19 severity and mortality. Indeed, identified sendotypes could be therapeutically exploited for therapeutic intervention. We highlight that senolytics, which eliminate senescent cells, can target aging-associated pathways and therefore are proving attractive as potential therapeutic options to alleviate symptoms, prevent severe infection, and reduce mortality burden in COVID-19 and thus ultimately enhance healthspan.
Collapse
Affiliation(s)
| | | | | | | | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK; (S.M.L.); (G.G.); (D.S.G.); (A.J.B.)
| |
Collapse
|
422
|
Niklander SE, Lambert DW, Hunter KD. Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells 2021; 10:cells10123315. [PMID: 34943822 PMCID: PMC8699088 DOI: 10.3390/cells10123315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-(32)2845108
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Oral Biology and Pathology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
423
|
Liao Z, Yeo HL, Wong SW, Zhao Y. Cellular Senescence: Mechanisms and Therapeutic Potential. Biomedicines 2021; 9:1769. [PMID: 34944585 PMCID: PMC8698401 DOI: 10.3390/biomedicines9121769] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is a complex and multistep biological process which cells can undergo in response to different stresses. Referring to a highly stable cell cycle arrest, cellular senescence can influence a multitude of biological processes-both physiologically and pathologically. While phenotypically diverse, characteristics of senescence include the expression of the senescence-associated secretory phenotype, cell cycle arrest factors, senescence-associated β-galactosidase, morphogenesis, and chromatin remodelling. Persistent senescence is associated with pathologies such as aging, while transient senescence is associated with beneficial programmes, such as limb patterning. With these implications, senescence-based translational studies, namely senotherapy and pro-senescence therapy, are well underway to find the cure to complicated diseases such as cancer and atherosclerosis. Being a subject of major interest only in the recent decades, much remains to be studied, such as regarding the identification of unique biomarkers of senescent cells. This review attempts to provide a comprehensive understanding of the diverse literature on senescence, and discuss the knowledge we have on senescence thus far.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden
| | - Han Lin Yeo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Siaw Wen Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
424
|
Ziegler DV, Martin N, Bernard D. Cellular senescence links mitochondria-ER contacts and aging. Commun Biol 2021; 4:1323. [PMID: 34819602 PMCID: PMC8613202 DOI: 10.1038/s42003-021-02840-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane contact sites emerged in the last decade as key players in the integration, regulation and transmission of many signals within cells, with critical impact in multiple pathophysiological contexts. Numerous studies accordingly point to a role for mitochondria-endoplasmic reticulum contacts (MERCs) in modulating aging. Nonetheless, the driving cellular mechanisms behind this role remain unclear. Recent evidence unravelled that MERCs regulate cellular senescence, a state of permanent proliferation arrest associated with a pro-inflammatory secretome, which could mediate MERC impact on aging. Here we discuss this idea in light of recent advances supporting an interplay between MERCs, cellular senescence and aging.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
425
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
426
|
Tripathi U, Chaib S, Gerdes EOW, Hogan KA, Zhu Y. Development of a novel senolytic by precise disruption of FOXO4-p53 complex. EBioMedicine 2021; 74:103693. [PMID: 34768086 PMCID: PMC8601985 DOI: 10.1016/j.ebiom.2021.103693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Selim Chaib
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | - Kelly A Hogan
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Laboratory of Metabolism and Molecular Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
427
|
Mukherjee A, Epperly MW, Shields D, Hou W, Fisher R, Hamade D, Wang H, Saiful Huq M, Bao R, Tabib T, Monier D, Watkins S, Calderon M, Greenberger JS. Ionizing irradiation-induced Fgr in senescent cells mediates fibrosis. Cell Death Discov 2021; 7:349. [PMID: 34772919 PMCID: PMC8585734 DOI: 10.1038/s41420-021-00741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
The role of cellular senescence in radiation-induced pulmonary fibrosis (RIPF) and the underlying mechanisms are unknown. We isolated radiation-induced senescent tdTOMp16 positive mesenchymal stem cells, established their absence of cell division, then measured levels of irradiation-induced expression of biomarkers of senescence by RNA-seq analysis. We identified a Log2 6.17-fold upregulation of tyrosine kinase Fgr, which was a potent inducer of biomarkers of fibrosis in target cells in non-contact co-cultures. Inhibition of Fgr by shRNA knockdown did not block radiation-induced senescence in vitro; however, both shRNA knockdown, or addition of a specific small-molecule inhibitor of Fgr, TL02-59, abrogated senescent cell induction of profibrotic genes in transwell-separated target cells. Single-cell RNA-seq (scRNAseq) analysis of mouse lungs at day 150 after 20 Gy thoracic irradiation revealed upregulation of Fgr in senescent neutrophils, and macrophages before detection of lung fibrosis. Thus, upregulated Fgr in radiation-induced senescent cells mediates RIPF and is a potential therapeutic target for the prevention of this radiation late effect.
Collapse
Affiliation(s)
- Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Diala Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Riyue Bao
- Department of Hematology/Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Department of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daisy Monier
- Department of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Calderon
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
428
|
Banerjee P, Kotla S, Reddy Velatooru L, Abe RJ, Davis EA, Cooke JP, Schadler K, Deswal A, Herrmann J, Lin SH, Abe JI, Le NT. Senescence-Associated Secretory Phenotype as a Hinge Between Cardiovascular Diseases and Cancer. Front Cardiovasc Med 2021; 8:763930. [PMID: 34746270 PMCID: PMC8563837 DOI: 10.3389/fcvm.2021.763930] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Overlapping risks for cancer and cardiovascular diseases (CVD), the two leading causes of mortality worldwide, suggest a shared biology between these diseases. The role of senescence in the development of cancer and CVD has been established. However, its role as the intersection between these diseases remains unclear. Senescence was originally characterized by an irreversible cell cycle arrest after a high number of divisions, namely replicative senescence (RS). However, it is becoming clear that senescence can also be instigated by cellular stress, so-called stress-induced premature senescence (SIPS). Telomere shortening is a hallmark of RS. The contribution of telomere DNA damage and subsequent DNA damage response/repair to SIPS has also been suggested. Although cellular senescence can mediate cell cycle arrest, senescent cells can also remain metabolically active and secrete cytokines, chemokines, growth factors, and reactive oxygen species (ROS), so-called senescence-associated secretory phenotype (SASP). The involvement of SASP in both cancer and CVD has been established. In patients with cancer or CVD, SASP is induced by various stressors including cancer treatments, pro-inflammatory cytokines, and ROS. Therefore, SASP can be the intersection between cancer and CVD. Importantly, the conventional concept of senescence as the mediator of cell cycle arrest has been challenged, as it was recently reported that chemotherapy-induced senescence can reprogram senescent cancer cells to acquire “stemness” (SAS: senescence-associated stemness). SAS allows senescent cancer cells to escape cell cycle arrest with strongly enhanced clonogenic growth capacity. SAS supports senescent cells to promote both cancer and CVD, particularly in highly stressful conditions such as cancer treatments, myocardial infarction, and heart failure. As therapeutic advances have increased overlapping risk factors for cancer and CVD, to further understand their interaction may provide better prevention, earlier detection, and safer treatment. Thus, it is critical to study the mechanisms by which these senescence pathways (SAS/SASP) are induced and regulated in both cancer and CVD.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loka Reddy Velatooru
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Elizabeth A Davis
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joerg Herrmann
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
429
|
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910:174492. [PMID: 34516952 DOI: 10.1016/j.ejphar.2021.174492] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Rowan University, Graduate School of Biomedical Sciences, Stratford, New Jersey, USA
| | - Suraj Benerji Teegala
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India
| | - Shanker Kalakotla
- Department of Pharmacognosy & Phyto-Pharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jagadeesh Prasad Pasangulapati
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Treventis Corporation, Department of Pharmacology, Krembil Discovery Tower, 4th Floor, Suite 4KD472, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Venkatesan Perumal
- Irma Lerma Rangel College of Pharmacy, Health Science Centre, Texas A&M University (TAMU), Texas, 77843, USA
| | - Hemanth Kumar Boyina
- Department of Pharmacology, School of Pharmacy, Anurag University (formerly Anurag Group of Institutions), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India.
| |
Collapse
|
430
|
Saito Y, Miyajima M, Yamamoto S, Sato T, Miura N, Fujimiya M, Chikenji TS. Accumulation of Senescent Neural Cells in Murine Lupus With Depression-Like Behavior. Front Immunol 2021; 12:692321. [PMID: 34804003 PMCID: PMC8597709 DOI: 10.3389/fimmu.2021.692321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Neuropsychiatric manifestations targeting the central, peripheral, and autonomic nervous system are common in systemic lupus erythematosus (SLE); collectively, these symptoms are termed neuropsychiatric SLE (NPSLE). Among a wide variety of neuropsychiatric symptoms, depression is observed in about 24-39% of SLE patients. Several cytokines and chemokines have been identified as biomarkers or therapeutic targets of NPSLE; in particular, the levels of type 1 interferons, TNFs, and IL-6 are elevated in SLE patient's cerebrospinal fluid (CSF), and these factors contribute to the pathology of depression. Here, we show that senescent neural cells accumulate in the hippocampal cornu ammonis 3 (CA3) region in MRL/lpr SLE model mice with depressive behavior. Furthermore, oral administration of fisetin, a senolytic drug, reduced the number of senescent neural cells and reduced depressive behavior in the MRL/lpr mice. In addition, transcription of several senescence and senescence-associated secretory phenotype (SASP) factors in the hippocampal region also decreased after fisetin treatment in the MRL/lpr mice. These results indicate that the accumulation of senescent neural cells in the hippocampus plays a role in NPSLE pathogenesis, and therapies targeting senescent cells may represent a candidate approach to treat NPSLE.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Maki Miyajima
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Health Sciences, School of medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
431
|
Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T, Miwa S. How good is the evidence that cellular senescence causes skin ageing? Ageing Res Rev 2021; 71:101456. [PMID: 34487917 PMCID: PMC8524668 DOI: 10.1016/j.arr.2021.101456] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Skin is the largest organ of the body with important protective functions, which become compromised with time due to both intrinsic and extrinsic ageing processes. Cellular senescence is the primary ageing process at cell level, associated with loss of proliferative capacity, mitochondrial dysfunction and significantly altered patterns of expression and secretion of bioactive molecules. Intervention experiments have proven cell senescence as a relevant cause of ageing in many organs. In case of skin, accumulation of senescence in all major compartments with ageing is well documented and might be responsible for most, if not all, the molecular changes observed during ageing. Incorporation of senescent cells into in-vitro skin models (specifically 3D full thickness models) recapitulates changes typically associated with skin ageing. However, crucial evidence is still missing. A beneficial effect of senescent cell ablation on skin ageing has so far only been shown following rather unspecific interventions or in transgenic mouse models. We conclude that evidence for cellular senescence as a relevant cause of intrinsic skin ageing is highly suggestive but not yet completely conclusive.
Collapse
Affiliation(s)
- Evon Low
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Ghazaleh Alimohammadiha
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Lucy A Smith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Lydia F Costello
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Satomi Miwa
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
432
|
Wang Y, He Y, Rayman MP, Zhang J. Prospective Selective Mechanism of Emerging Senolytic Agents Derived from Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12418-12423. [PMID: 34662116 DOI: 10.1021/acs.jafc.1c04379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Senescent cells (SCs) are associated with the onset and development of multiple chronic diseases. Selective clearance of SCs by senolytic drugs is a potential therapeutic option for a number of age-related diseases. Among senolytic candidates, only dasatinib with quercetin and fisetin meet the rigorous criteria for senolytic drugs, according to a modified version of Koch's postulates. It is astonishing that two of the three agents, i.e., quercetin and fisetin, are flavonoids, although the mechanism by which they preferentially eliminate SCs is unclear. Herein, we propose a possible selective mechanism; prooxidant activities of quercetin or fisetin are inevitably involved in killing apoptosis-resistant SCs. Among the dietary flavonoids, quercetin is a potent redox-active flavonoid with strong prooxidant activities, and transition metals, such as copper and iron, hugely amplify its prooxidant activities. Fisetin, which has higher senolytic activities than quercetin, has higher prooxidant effects than quercetin in the absence or presence of copper. It appears that the prooxidant activity of flavonoids is an important consideration for screening senolytics. SCs accumulate high levels of copper and iron, and the selective mechanism of quercetin or fisetin is probably associated with copper/iron-promoted oxidative damage in SCs. Copper and iron dramatically enhanced the prooxidant effects of the flavonoid, epigallocatechin-3-gallate, having shown a depletion effect on SCs in rats and high therapeutic efficacy in patients with idiopathic pulmonary fibrosis, largely caused by SCs. Further investigation to evaluate whether epigallocatechin-3-gallate is a senolytic drug, according to Koch's postulates, is warranted.
Collapse
Affiliation(s)
- Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
433
|
Abstract
Obesity is a major risk factor for the development of comorbidities such as type 2 diabetes, neurodegenerative disorders, osteoarthritis, cancer, cardiovascular and renal diseases. The onset of obesity is linked to an increase of senescent cells within adipose tissue and other organs. Cellular senescence is a stress response that has been shown to be causally linked to aging and development of various age-related diseases such as obesity. The senescence-associated-secretory phenotype of senescent cells creates a chronic inflammatory milieu that leads to local and systemic dysfunction. The elimination of senescent cells using pharmacological approaches (i.e., senolytics) has been shown to delay, prevent, or alleviate obesity-related organ dysfunction.
Collapse
Affiliation(s)
- Selim Chaib
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
434
|
Kim SG, Sung JY, Kim JR, Choi HC. Fisetin-induced PTEN expression reverses cellular senescence by inhibiting the mTORC2-Akt Ser473 phosphorylation pathway in vascular smooth muscle cells. Exp Gerontol 2021; 156:111598. [PMID: 34695518 DOI: 10.1016/j.exger.2021.111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence is caused by a wide range of intracellular and extracellular stimuli and influences physiological functions, leading to the progression of age-related diseases. Many studies have shown that cellular senescence is related to phosphatase and tension homolog deleted on chromosome ten (PTEN) loss and mammalian target of rapamycin (mTOR) activation. Although it has been reported that mTOR complex 1 (mTORC1) is major anti-aging target in several cell types, the functions and mechanisms of mTOR complex 2 (mTORC2) during aging have not been elucidated in vascular smooth muscle cells (VSMCs). Therefore, the aim of this study was to reveal the relationship between PTEN and mTORC2 during VSMC senescence. We found adriamycin-induced VSMC senescence was accompanied by reduced PTEN protein expression and upregulation of the mTORC2-Akt (Ser 473) pathway and that fisetin treatment reduced VSMC senescence by increasing PTEN and decreasing mTORC2 protein levels. Furthermore, PTEN played a primary role in the anti-aging effect of fisetin, and fisetin-activated PTEN directly regulated the mTORC2-Akt (Ser 473) signaling pathway, and attenuated senescence phenotypes such as senescence-associated β-galactosidase (SA-β-gal) and the p53-p21 signaling pathway in VSMCs. In mouse aortas, fisetin delayed aging by regulating the PTEN-mTORC2-Akt (Ser473) signaling pathway. These results suggest PTEN and mTORC2 are associated with cellular senescence in VSMCs and that the mTORC2-Akt (Ser 473) signaling pathway be considered a new target for preventing senescence-related diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
435
|
Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Recent advances in the discovery of senolytics. Mech Ageing Dev 2021; 200:111587. [PMID: 34656616 DOI: 10.1016/j.mad.2021.111587] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
The demonstration in model organisms that cellular senescence drives aging and age-related diseases has led to widespread efforts to identify compounds able to selectively kill senescent cells, termed senolytics. Approaches used to identify senolytics include bioinformatic analysis of senescent cell anti-apoptotic pathways (SCAPs) for drug development and screening of drugs libraries on different senescent cell types in culture. Alternatively, cytotoxic compounds can be made specific to senescent cells through a prodrug strategy such as linking the compound to a galactose moiety where toxicity is activated by lysosomal β-galactosidase. Identified senolytics can then be optimized through medicinal chemistry or linking to E3 targeting moieties to facilitate proteolysis of their targets. This review will provide an overview of approaches to identify senolytics and an update of the classes of senolytics identified to date.
Collapse
Affiliation(s)
- Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Louise E Pitcher
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Vaishali Prahalad
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
436
|
Secci R, Hartmann A, Walter M, Grabe HJ, Van der Auwera-Palitschka S, Kowald A, Palmer D, Rimbach G, Fuellen G, Barrantes I. Biomarkers of geroprotection and cardiovascular health: An overview of omics studies and established clinical biomarkers in the context of diet. Crit Rev Food Sci Nutr 2021; 63:2426-2446. [PMID: 34648415 DOI: 10.1080/10408398.2021.1975638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The slowdown, inhibition, or reversal of age-related decline (as a composite of disease, dysfunction, and, ultimately, death) by diet or natural compounds can be defined as dietary geroprotection. While there is no single reliable biomarker to judge the effects of dietary geroprotection, biomarker signatures based on omics (epigenetics, gene expression, microbiome composition) are promising candidates. Recently, omic biomarkers started to supplement established clinical ones such as lipid profiles and inflammatory cytokines. In this review, we focus on human data. We first summarize the current take on genetic biomarkers based on epidemiological studies. However, most of the remaining biomarkers that we describe, whether omics-based or clinical, are related to intervention studies. Then, because of their promising potential in the context of dietary geroprotection, we focus on the effects of berry-based interventions, which up to now have been mostly described employing clinical markers. We provide an aggregation and tabulation of all the recent systematic reviews and meta-analyses that we could find related to this topic. Finally, we present evidence for the importance of the "nutribiography," that is, the influence that an individual's history of diet and natural compound consumption can have on the effects of dietary geroprotection.
Collapse
Affiliation(s)
- Riccardo Secci
- Junior Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Alexander Hartmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Michael Walter
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Rostock, University of Rostock, Rostock, Germany.,Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charite University Medical Center, Berlin, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera-Palitschka
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Axel Kowald
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Israel Barrantes
- Junior Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
437
|
Kowald A, Kirkwood TBL. Senolytics and the compression of late-life mortality. Exp Gerontol 2021; 155:111588. [PMID: 34637949 DOI: 10.1016/j.exger.2021.111588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
Senescent cells play an important role in mammalian ageing and in the etiology of age-related diseases. Treatment of mice with senolytics - drugs that selectively remove senescent cells - causes an extension of median lifespan but has little effect on maximum lifespan. Postponement of some mortality to later ages, without a corresponding increase in maximum mortality, can be termed 'compression of mortality'. When we fit the standard Gompertz mortality model to the survival data following senolytic treatment, we find an increase in the slope parameter, commonly described as the 'actuarial ageing rate'. These observations raise important questions about the actions of senolytic treatments and their effects on health and survival, which are not yet sufficiently understood. To explore how the survival data from senolytics experiments might be explained, we combine a recent exploration of the evolutionary basis of cellular senescence with theoretical consideration of the molecular processes that might be involved. We perform numerical simulations of senescent cell accumulation and senolytic treatment in an ageing population. The simulations suggest that while senolytics diminish the burden of senescent cells, they may also impair the general repair capacity of the organism, leading to a faster accumulation post-treatment of new senescent cells. Our results suggest a framework to address the benefits and possible side effects of senolytic therapies, with the potential to aid in the design of optimal treatment regimens.
Collapse
Affiliation(s)
- Axel Kowald
- UK National Innovation Centre for Ageing, The Catalyst, 3 Science Square, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany.
| | - Thomas B L Kirkwood
- UK National Innovation Centre for Ageing, The Catalyst, 3 Science Square, Newcastle University, Newcastle upon Tyne NE4 5TG, UK; Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
438
|
Saccon TD, Nagpal R, Yadav H, Cavalcante MB, Nunes ADDC, Schneider A, Gesing A, Hughes B, Yousefzadeh M, Tchkonia T, Kirkland JL, Niedernhofer LJ, Robbins PD, Masternak MM. Senolytic Combination of Dasatinib and Quercetin Alleviates Intestinal Senescence and Inflammation and Modulates the Gut Microbiome in Aged Mice. J Gerontol A Biol Sci Med Sci 2021; 76:1895-1905. [PMID: 33406219 PMCID: PMC8514064 DOI: 10.1093/gerona/glab002] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Cellular senescence contributes to age-related disorders including physical dysfunction, disabilities, and mortality caused by tissue inflammation and damage. Senescent cells accumulate in multiple tissues with aging and at etiological sites of multiple chronic disorders. The senolytic drug combination, Dasatinib plus Quercetin (D+Q), is known to reduce senescent cell abundance in aged mice. However, the effects of long-term D+Q treatment on intestinal senescent cell and inflammatory burden and microbiome composition in aged mice remain unknown. Here, we examine the effect of D+Q on senescence (p16Ink4a and p21Cip1) and inflammation (Cxcl1, Il1β, Il6, Mcp1, and Tnfα) markers in small (ileum) and large (caecum and colon) intestine in aged mice (n = 10) compared to age-matched placebo-treated mice (n = 10). Additionally, we examine microbial composition along the intestinal tract in these mice. D+Q-treated mice show significantly lower senescent cell (p16 and p21 expression) and inflammatory (Cxcl1, Il1β, Il6, Mcp1, and Tnfα expression) burden in small and large intestine compared with control mice. Further, we find specific microbial signatures in ileal, cecal, colonic, and fecal regions that are distinctly modulated by D+Q, with modulation being most prominent in small intestine. Further analyses reveal specific correlation of senescence and inflammation markers with specific microbial signatures. Together, these data demonstrate that the senolytic treatment reduces intestinal senescence and inflammation while altering specific microbiota signatures and suggest that the optimized senolytic regimens might improve health via reducing intestinal senescence, inflammation, and microbial dysbiosis in older subjects.
Collapse
Affiliation(s)
- Tatiana Dandolini Saccon
- Department of Nutrition, Federal University of Pelotas, Brazil
- Burnet School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Ravinder Nagpal
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hariom Yadav
- Division of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Marcelo Borges Cavalcante
- Burnet School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
- Department of Obstetrics and Gynecology, Fortaleza University, Brazil
| | | | | | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Poland
| | - Brian Hughes
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, USA
| | - Matthew Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, USA
| | - Michal M Masternak
- Burnet School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poland
| |
Collapse
|
439
|
Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci Rep 2021; 11:20358. [PMID: 34645909 PMCID: PMC8514501 DOI: 10.1038/s41598-021-99852-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
A wide range of diseases have been shown to be influenced by the accumulation of senescent cells, from fibrosis to diabetes, cancer, Alzheimer's and other age-related pathologies. Consistent with this, clearance of senescent cells can prolong healthspan and lifespan in in vivo models. This provided a rationale for developing a new class of drugs, called senolytics, designed to selectively eliminate senescent cells in human tissues. The senolytics tested so far lack specificity and have significant off-target effects, suggesting that a targeted approach could be more clinically relevant. Here, we propose to use an extracellular epitope of B2M, a recently identified membrane marker of senescence, as a target for the specific delivery of toxic drugs into senescent cells. We show that an antibody-drug conjugate (ADC) against B2M clears senescent cells by releasing duocarmycin into them, while an isotype control ADC was not toxic for these cells. This effect was dependent on p53 expression and therefore more evident in stress-induced senescence. Non-senescent cells were not affected by either antibody, confirming the specificity of the treatment. Our results provide a proof-of-principle assessment of a novel approach for the specific elimination of senescent cells using a second generation targeted senolytic against proteins of their surfaceome, which could have clinical applications in pathological ageing and associated diseases.
Collapse
|
440
|
Prasanna PG, Citrin DE, Hildesheim J, Ahmed MM, Venkatachalam S, Riscuta G, Xi D, Zheng G, van Deursen J, Goronzy J, Kron SJ, Anscher MS, Sharpless NE, Campisi J, Brown SL, Niedernhofer LJ, O’Loghlen A, Georgakilas AG, Paris F, Gius D, Gewirtz DA, Schmitt CA, Abazeed ME, Kirkland JL, Richmond A, Romesser PB, Lowe SW, Gil J, Mendonca MS, Burma S, Zhou D, Coleman CN. Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. J Natl Cancer Inst 2021; 113:1285-1298. [PMID: 33792717 PMCID: PMC8486333 DOI: 10.1093/jnci/djab064] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an essential tumor suppressive mechanism that prevents the propagation of oncogenically activated, genetically unstable, and/or damaged cells. Induction of tumor cell senescence is also one of the underlying mechanisms by which cancer therapies exert antitumor activity. However, an increasing body of evidence from preclinical studies demonstrates that radiation and chemotherapy cause accumulation of senescent cells (SnCs) both in tumor and normal tissue. SnCs in tumors can, paradoxically, promote tumor relapse, metastasis, and resistance to therapy, in part, through expression of the senescence-associated secretory phenotype. In addition, SnCs in normal tissue can contribute to certain radiation- and chemotherapy-induced side effects. Because of its multiple roles, cellular senescence could serve as an important target in the fight against cancer. This commentary provides a summary of the discussion at the National Cancer Institute Workshop on Radiation, Senescence, and Cancer (August 10-11, 2020, National Cancer Institute, Bethesda, MD) regarding the current status of senescence research, heterogeneity of therapy-induced senescence, current status of senotherapeutics and molecular biomarkers, a concept of "one-two punch" cancer therapy (consisting of therapeutics to induce tumor cell senescence followed by selective clearance of SnCs), and its integration with personalized adaptive tumor therapy. It also identifies key knowledge gaps and outlines future directions in this emerging field to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Xi
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Guangrong Zheng
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Jorg Goronzy
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ana O’Loghlen
- Epigenetics & Cellular Senescence Group; Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece
| | - Francois Paris
- Universite de Nantes, INSERM, CNRS, CRCINA, Nantes, France
| | - David Gius
- University of Texas Health Sciences Center, San Antonio, San Antonio, TX, USA
| | | | | | - Mohamed E Abazeed
- Johannes Kepler University, 4020, Linz, Austria
- Department of Radiation Oncology, Northwestern, Chicago, IL, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Ann Richmond
- Department of Pharmacology and Department of Veterans Affairs, Vanderbilt University, Nashville, TN, USA
| | - Paul B Romesser
- Translational Research Division, Department of Radiation Oncology and Early Drug Development Service, Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, and Howard Hughes Medical Institute, New York, NY, USA
| | - Jesus Gil
- MRC London Institute of Medical Sciences (LMS), and Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 ONN, UK
| | - Marc S Mendonca
- Departments of Radiation Oncology & Medical and Molecular Genetics, Indiana University School of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | - Sandeep Burma
- Departments of Neurosurgery and Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daohong Zhou
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
441
|
Fiard G, Stavrinides V, Chambers ES, Heavey S, Freeman A, Ball R, Akbar AN, Emberton M. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat Rev Urol 2021; 18:597-610. [PMID: 34294916 DOI: 10.1038/s41585-021-00496-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
Collapse
Affiliation(s)
- Gaelle Fiard
- UCL Division of Surgery & Interventional Science, University College London, London, UK.
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - Vasilis Stavrinides
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Susan Heavey
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Alex Freeman
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rhys Ball
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arne N Akbar
- Division of Medicine, The Rayne Building, University College London, London, UK
| | - Mark Emberton
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
442
|
Narasimhan A, Flores RR, Robbins PD, Niedernhofer LJ. Role of Cellular Senescence in Type II Diabetes. Endocrinology 2021; 162:6345039. [PMID: 34363464 PMCID: PMC8386762 DOI: 10.1210/endocr/bqab136] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a cell fate that occurs in response to numerous types of stress and can promote tissue repair or drive inflammation and disruption of tissue homeostasis depending on the context. Aging and obesity lead to an increase in the senescent cell burden in multiple organs. Senescent cells release a myriad of senescence-associated secretory phenotype factors that directly mediate pancreatic β-cell dysfunction, adipose tissue dysfunction, and insulin resistance in peripheral tissues, which promote the onset of type II diabetes mellitus. In addition, hyperglycemia and metabolic changes seen in diabetes promote cellular senescence. Diabetes-induced cellular senescence contributes to various diabetic complications. Thus, type II diabetes is both a cause and consequence of cellular senescence. This review summarizes recent studies on the link between aging, obesity, and diabetes, focusing on the role of cellular senescence in disease processes.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Rafael R Flores
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, 55455, USA
- Correspondence: Laura J. Niedernhofer, MD, PhD, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
443
|
Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for Targeting Senescent Cells in Human Disease. NATURE AGING 2021; 1:870-879. [PMID: 34841261 PMCID: PMC8612694 DOI: 10.1038/s43587-021-00121-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
Collapse
Affiliation(s)
- Nathan S. Gasek
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | | | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
444
|
Ren Q, Cheng L, Guo F, Tao S, Zhang C, Ma L, Fu P. Fisetin Improves Hyperuricemia-Induced Chronic Kidney Disease via Regulating Gut Microbiota-Mediated Tryptophan Metabolism and Aryl Hydrocarbon Receptor Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10932-10942. [PMID: 34505780 DOI: 10.1021/acs.jafc.1c03449] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intestinal flora serves a critical role in the development of hyperuricemia-induced chronic kidney disease (CKD). We previously found that natural flavonol fisetin exhibited nephroprotective effects in hyperuricemic mice. However, the mechanism remains largely unknown. To investigate the underlying mechanism of fisetin, mice were fed with potassium oxonate and adenine to introduce hyperuricemia-induced CKD. Fisetin improved kidney function, ameliorated renal fibrosis, and restored enteric dysbacteriosis in hyperuricemia-induced CKD mice. Meanwhile, gut microbiota-derived tryptophan metabolites, especially l-kynurenine, showed correlations with nephroprotective profiles of fisetin. Additionally, the kidney expression of the aryl hydrocarbon receptor (AHR), an endogenous receptor of l-kynurenine, was enhanced in hyperuricemic mice and further reduced in fisetin-treated mice. Finally, in vitro results showed that inhibition of AHR activation attenuated l-kynurenine-induced fibrosis. These results highlighted that fisetin protected against hyperuricemia-induced CKD via modulating gut microbiota-mediated tryptophan metabolism and AHR activation.
Collapse
Affiliation(s)
- Qian Ren
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lu Cheng
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fan Guo
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Sibei Tao
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunle Zhang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
445
|
Tripathi U, Nchioua R, Prata LGPL, Zhu Y, Gerdes EOW, Giorgadze N, Pirtskhalava T, Parker E, Xue A, Espindola-Netto JM, Stenger S, Robbins PD, Niedernhofer LJ, Dickinson SL, Allison DB, Kirchhoff F, Sparrer KMJ, Tchkonia T, Kirkland JL. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany NY) 2021; 13:21838-21854. [PMID: 34531331 PMCID: PMC8507266 DOI: 10.18632/aging.203560] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Senescent cells, which arise due to damage-associated signals, are apoptosis-resistant and can express a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). We recently reported that a component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface protein, S1, can amplify the SASP of senescent cultured human cells and that a related mouse β-coronavirus, mouse hepatitis virus (MHV), increases SASP factors and senescent cell burden in infected mice. Here, we show that SARS-CoV-2 induces senescence in human non-senescent cells and exacerbates the SASP in human senescent cells through Toll-like receptor-3 (TLR-3). TLR-3, which senses viral RNA, was increased in human senescent compared to non-senescent cells. Notably, genetically or pharmacologically inhibiting TLR-3 prevented senescence induction and SASP amplification by SARS-CoV-2 or Spike pseudotyped virus. While an artificial TLR-3 agonist alone was not sufficient to induce senescence, it amplified the SASP in senescent human cells. Consistent with these findings, lung p16INK4a+ senescent cell burden was higher in patients who died from acute SARS-CoV-2 infection than other causes. Our results suggest that induction of cellular senescence and SASP amplification through TLR-3 contribute to SARS-CoV-2 morbidity, indicating that clinical trials of senolytics and/or SASP/TLR-3 inhibitors for alleviating acute and long-term SARS-CoV-2 sequelae are warranted.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm 89081, Germany
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie L. Dickinson
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
446
|
Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 2021; 9:41. [PMID: 34508069 PMCID: PMC8433460 DOI: 10.1038/s41413-021-00164-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging insights into cellular senescence highlight the relevance of senescence in musculoskeletal disorders, which represent the leading global cause of disability. Cellular senescence was initially described by Hayflick et al. in 1961 as an irreversible nondividing state in in vitro cell culture studies. We now know that cellular senescence can occur in vivo in response to various stressors as a heterogeneous and tissue-specific cell state with a secretome phenotype acquired after the initial growth arrest. In the past two decades, compelling evidence from preclinical models and human data show an accumulation of senescent cells in many components of the musculoskeletal system. Cellular senescence is therefore a defining feature of age-related musculoskeletal disorders, and targeted elimination of these cells has emerged recently as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration of the skeleton and skeletal muscles. In this review, we summarize evidence of the role of senescent cells in the maintenance of bone homeostasis during childhood and their contribution to the pathogenesis of chronic musculoskeletal disorders, including osteoporosis, osteoarthritis, and sarcopenia. We highlight the diversity of the senescent cells in the microenvironment of bone, joint, and skeletal muscle tissue, as well as the mechanisms by which these senescent cells are involved in musculoskeletal diseases. In addition, we discuss how identifying and targeting senescent cells might positively affect pathologic progression and musculoskeletal system regeneration.
Collapse
|
447
|
Doolittle ML, Monroe DG, Farr JN, Khosla S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev 2021; 199:111565. [PMID: 34499959 DOI: 10.1016/j.mad.2021.111565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The skeletal system undergoes irreversible structural deterioration with aging, leading to increased fracture risk and detrimental changes in mobility, posture, and gait. This state of low bone mass and microarchitectural changes, diagnosed as osteoporosis, affects millions of individuals worldwide and has high clinical and economic burdens. Recently, pre-clinical studies have linked the onset of age-related bone loss with an accumulation of senescent cells in the bone microenvironment. These senescent cells appear to be causal to age-related bone loss, as targeted clearance of these cells leads to improved bone mass and microarchitecture in old mice. Additionally, other pathologies leading to bone loss that result from DNA damage, such as cancer treatments, have shown improvements after clearance of senescent cells. The development of new therapies that clear senescent cells, termed "senolytics", is currently underway and may allow for the modulation of bone loss that results from states of high senescent cell burden, such as aging.
Collapse
Affiliation(s)
- Madison L Doolittle
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - David G Monroe
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Joshua N Farr
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
448
|
Zhang XX, He SH, Liang X, Li W, Li TF, Li DF. Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis. Front Pharmacol 2021; 12:728100. [PMID: 34497523 PMCID: PMC8419276 DOI: 10.3389/fphar.2021.728100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, debilitating joint disease characterized by progressive destruction of articular cartilage. For a long time, OA has been considered as a degenerative disease, while recent observations indicate the mechanisms responsible for the pathogenesis of OA are multifaceted. Aging is a key factor in its development. Current treatments are palliative and no disease modifying anti-osteoarthritis drugs (DMOADs) are available. In addition to articular cartilage degradation, cellular senescence, synovial inflammation, and epigenetic alterations may all have a role in its formation. Accumulating data demonstrate a clear relationship between the senescence of articular chondrocytes and OA formation and progression. Inhibition of cell senescence may help identify new agents with the properties of DMOADs. Several anti-cellular senescence strategies have been proposed and these include sirtuin-activating compounds (STACs), senolytics, and senomorphics drugs. These agents may selectively remove senescent cells or ameliorate their harmful effects. The results from preclinical experiments and clinical trials are inspiring. However, more studies are warranted to confirm their efficacy, safety profiles and adverse effects of these agents.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
449
|
Tripathi U, Misra A, Tchkonia T, Kirkland JL. Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mech Ageing Dev 2021; 198:111548. [PMID: 34352325 PMCID: PMC8373827 DOI: 10.1016/j.mad.2021.111548] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, first observed and defined through cell culture studies, is a cell fate associated with essentially permanent cell cycle arrest and that can be triggered by a variety of inducers. Emerging evidence suggests senescence is a dynamic process with diverse functional characteristics. Depending on the tissue, type of inducer, and time since induction, senescent cells can promote tissue repair and re-modeling, prevent tumor development, or contribute to age-related disorders and chronic diseases, including cancers. Senescent cell characteristics appear to depend on multiple factors and be influenced by the milieu and other senescent cells locally and at a distance. We review diverse phenotypes of senescent cells originating from different cell types, senescence inducers over time since induction of senescence, and across conditions and diseases. This background is essential to inform further understanding about senescent cell subtypes and will point towards rational senescence-modulating strategies for achieving therapeutic benefit.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Avanish Misra
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
450
|
Zhang Y, Zhang J, Wang S. The Role of Rapamycin in Healthspan Extension via the Delay of Organ Aging. Ageing Res Rev 2021; 70:101376. [PMID: 34089901 DOI: 10.1016/j.arr.2021.101376] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022]
Abstract
Aging can not only shorten a healthy lifespan, but can also lead to multi-organ dysfunction and failure. Anti-aging is a complex and worldwide conundrum for eliminating the various pathologies of senility. The past decade has seen great progress in the understanding of the aging-associated signaling pathways and their application for developing anti-aging approaches. Currently, some drugs can improve quality of life. The activation of mammalian target of rapamycin (mTOR) signaling is one of the core and detrimental mechanisms related to aging; rapamycin can reduce the rate of aging, improve age-related diseases by inhibiting the mTOR pathway, and prolong lifespan and healthspan effectively. However, the current evidence for rapamycin in lifespan extension and organ aging is fragmented and scattered. In this review, we summarize the efficacy and safety of rapamycin in prolonging a healthy lifespan by systematically alleviating aging in multiple organ systems, i.e., the nervous, urinary, digestive, circulatory, motor, respiratory, endocrine, reproductive, integumentary and immune systems, to provide a theoretical basis for the future clinical application of rapamycin in anti-aging.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|