401
|
Saglietti L, Dequidt C, Kamieniarz K, Rousset MC, Valnegri P, Thoumine O, Beretta F, Fagni L, Choquet D, Sala C, Sheng M, Passafaro M. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 2007; 54:461-77. [PMID: 17481398 DOI: 10.1016/j.neuron.2007.04.012] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 02/13/2007] [Accepted: 04/16/2007] [Indexed: 12/16/2022]
Abstract
Via its extracellular N-terminal domain (NTD), the AMPA receptor subunit GluR2 promotes the formation and growth of dendritic spines in cultured hippocampal neurons. Here we show that the first N-terminal 92 amino acids of the extracellular domain are necessary and sufficient for GluR2's spine-promoting activity. Moreover, overexpression of this extracellular domain increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Biochemically, the NTD of GluR2 can interact directly with the cell adhesion molecule N-cadherin, in cis or in trans. N-cadherin-coated beads recruit GluR2 on the surface of hippocampal neurons, and N-cadherin immobilization decreases GluR2 lateral diffusion on the neuronal surface. RNAi knockdown of N-cadherin prevents the enhancing effect of GluR2 on spine morphogenesis and mEPSC frequency. Our data indicate that in hippocampal neurons N-cadherin and GluR2 form a synaptic complex that stimulates presynaptic development and function as well as promoting dendritic spine formation.
Collapse
Affiliation(s)
- Laura Saglietti
- DTI Dulbecco Telethon Institute, CNR Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Jaubert PJ, Golub MS, Lo YY, Germann SL, Dehoff MH, Worley PF, Kang SH, Schwarz MK, Seeburg PH, Berman RF. Complex, multimodal behavioral profile of the Homer1 knockout mouse. GENES BRAIN AND BEHAVIOR 2007; 6:141-54. [PMID: 16734773 DOI: 10.1111/j.1601-183x.2006.00240.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins of the Homer1 immediate early gene family have been associated with synaptogenesis and synaptic plasticity suggesting broad behavioral consequences of loss of function. This study examined the behavior of male Homer1 knockout (KO) mice compared with wild-type (WT) and heterozygous mice using a battery of 10 behavioral tests probing sensory, motor, social, emotional and learning/memory functions. KO mice showed mild somatic growth retardation, poor motor coordination, enhanced sensory reactivity and learning deficits. Heterozygous mice showed increased aggression in social interactions with conspecifics. The distribution of mGluR5 and N-methyl-D-aspartate receptors (NMDA) receptors appeared to be unaltered in the hippocampus (HIP) of Homer1 KO mice. The results indicate an extensive range of disrupted behaviors that should contribute to the understanding of the Homer1 gene in brain development and behavior.
Collapse
Affiliation(s)
- P J Jaubert
- Children's Center for Environmental Health & Department of Neurological Surgery, University of California Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Okabe S. Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 2007; 34:503-18. [PMID: 17321751 DOI: 10.1016/j.mcn.2007.01.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022] Open
Abstract
The postsynaptic density (PSD) is a structure composed of both membranous and cytoplasmic proteins localized at the postsynaptic plasma membrane of excitatory synapses. Biochemical and molecular biological studies have identified a number of proteins present in the PSD. Glutamate receptors are important constituents of the PSD and membrane proteins involved in synaptic signal transduction and cell adhesion are also essential components. Scaffolding proteins containing multiple protein interaction motifs are thought to provide the framework of the PSD through their interactions with both membrane proteins and the cytoplasmic proteins. Among the cytoplasmic signaling molecules, calcium-calmodulin-dependent protein kinase II stands out as a major component of the PSD and its dynamic translocation to the PSD in response to neuronal activity is crucial in synaptic signal transduction. Recent advancements in molecular biological, structural and electrophysiological techniques have enabled us to directly measure the number, distribution and interactions of PSD molecules with high sensitivity and precision. In this review, I describe the structure and molecular composition of the PSD as well as the molecular interactions between the major constituents. This information will be combined with recent quantitative analyses of the PSD protein contents per synapse, in order to provide a current view of the PSD molecular architecture and its dynamics.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
404
|
Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F, Sala C, Padovani A, Di Luca M. Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci 2007; 27:1682-91. [PMID: 17301176 PMCID: PMC6673742 DOI: 10.1523/jneurosci.3439-06.2007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder caused by a combination of events impairing normal neuronal function. Here we found a molecular bridge between key elements of primary and secondary pathogenic events in AD, namely the elements of the amyloid cascade and synaptic dysfunction associated with the glutamatergic system. In fact, we report that synapse-associated protein-97 (SAP97), a protein involved in dynamic trafficking of proteins to the excitatory synapse, is responsible for driving ADAM10 (a disintegrin and metalloproteinase 10, the most accredited candidate for alpha-secretase) to the postsynaptic membrane, by a direct interaction through its Src homology 3 domain. NMDA receptor activation mediates this event and positively modulates alpha-secretase activity. Furthermore, perturbing ADAM10/SAP97 association in vivo by cell-permeable peptides impairs ADAM10 localization in postsynaptic membranes and consequently decreases the physiological amyloid precursor protein (APP) metabolism. Our findings indicate that glutamatergic synapse activation through NMDA receptor promotes the non-amyloidogenic APP cleavage, strengthening the correlation between APP metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Elena Marcello
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Daniela Mauceri
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Stefano Romorini
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, 20129 Milan, Italy
| | - Andreas Jeromin
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712, and
| | - Roberta Epis
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Barbara Borroni
- Department of Neurological Sciences, University of Brescia, 25125 Brescia, Italy
| | - Flaminio Cattabeni
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Carlo Sala
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, 20129 Milan, Italy
| | - Alessandro Padovani
- Department of Neurological Sciences, University of Brescia, 25125 Brescia, Italy
| | - Monica Di Luca
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| |
Collapse
|
405
|
Proepper C, Johannsen S, Liebau S, Dahl J, Vaida B, Bockmann J, Kreutz MR, Gundelfinger ED, Boeckers TM. Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation. EMBO J 2007; 26:1397-409. [PMID: 17304222 PMCID: PMC1817621 DOI: 10.1038/sj.emboj.7601569] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 01/03/2007] [Indexed: 01/27/2023] Open
Abstract
Synaptogenesis and synaptic plasticity depend crucially on the dynamic and locally specific regulation of the actin cytoskeleton. We identified an important component for controlled actin assembly, abelson interacting protein-1 (Abi-1), as a binding partner for the postsynaptic density (PSD) protein ProSAP2/Shank3. During early neuronal development, Abi-1 is localized in neurites and growth cones; at later stages, the protein is enriched in dendritic spines and PSDs, as are components of a trimeric complex consisting of Abi-1, Eps8 and Sos-1. Abi-1 translocates upon NMDA application from PSDs to nuclei. Nuclear entry depends on abelson kinase activity. Abi-1 co-immunoprecipitates with the transcription factor complex of Myc/Max proteins and enhances E-box-regulated gene transcription. Downregulation of Abi-1 by small interfering RNA results in excessive dendrite branching, immature spine and synapse morphology and a reduction of synapses, whereas overexpression of Abi-1 has the opposite effect. Data show that Abi-1 can act as a specific synapto-nuclear messenger and is essentially involved in dendrite and synapse formation.
Collapse
Affiliation(s)
| | - Svenja Johannsen
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Stefan Liebau
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Janine Dahl
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Bianca Vaida
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael R Kreutz
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, IfN, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, IfN, Magdeburg, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany. Tel.: +49 731 5023220; Fax: +49 731 5023217; E-mail:
| |
Collapse
|
406
|
Gray NW, Weimer RM, Bureau I, Svoboda K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol 2007; 4:e370. [PMID: 17090216 PMCID: PMC1634879 DOI: 10.1371/journal.pbio.0040370] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/05/2006] [Indexed: 11/18/2022] Open
Abstract
Most excitatory synapses terminate on dendritic spines. Spines vary in size, and their volumes are proportional to the area of the postsynaptic density (PSD) and synaptic strength. PSD-95 is an abundant multi-domain postsynaptic scaffolding protein that clusters glutamate receptors and organizes the associated signaling complexes. PSD-95 is thought to determine the size and strength of synapses. Although spines and their synapses can persist for months in vivo, PSD-95 and other PSD proteins have shorter half-lives in vitro, on the order of hours. To probe the mechanisms underlying synapse stability, we measured the dynamics of synaptic PSD-95 clusters in vivo. Using two-photon microscopy, we imaged PSD-95 tagged with GFP in layer 2/3 dendrites in the developing (postnatal day 10–21) barrel cortex. A subset of PSD-95 clusters was stable for days. Using two-photon photoactivation of PSD-95 tagged with photoactivatable GFP (paGFP), we measured the time over which PSD-95 molecules were retained in individual spines. Synaptic PSD-95 turned over rapidly (median retention times τr ~ 22–63 min from P10–P21) and exchanged with PSD-95 in neighboring spines by diffusion. PSDs therefore share a dynamic pool of PSD-95. Large PSDs in large spines captured more diffusing PSD-95 and also retained PSD-95 longer than small PSDs. Changes in the sizes of individual PSDs over days were associated with concomitant changes in PSD-95 retention times. Furthermore, retention times increased with developmental age (τr ~ 100 min at postnatal day 70) and decreased dramatically following sensory deprivation. Our data suggest that individual PSDs compete for PSD-95 and that the kinetic interactions between PSD molecules and PSDs are tuned to regulate PSD size. Using two-photon microscopy and photoactivation of a fluorescently tagged synaptic protein (PSD-95), the authors demonstrated rapid turnover of these molecules in dendritic spines of the mouse sensory cortex in vivo.
Collapse
Affiliation(s)
- Noah W Gray
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Robby M Weimer
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Ingrid Bureau
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Karel Svoboda
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
407
|
Mauceri D, Gardoni F, Marcello E, Di Luca M. Dual role of CaMKII-dependent SAP97 phosphorylation in mediating trafficking and insertion of NMDA receptor subunit NR2A. J Neurochem 2007; 100:1032-46. [PMID: 17156128 DOI: 10.1111/j.1471-4159.2006.04267.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synapse Associated Protein 97 (SAP97), a member of membrane-associated guanylate kinase (MAGUK) protein family, has been involved in the correct targeting and clustering of ionotropic glutamate receptors (iGluRs) at postsynaptic sites. Calcium/calmodulin kinase II (CaMKII) phosphorylates SAP97 on two major sites in vivo; one located in the N-terminal domain (Ser39) and the other in the first postsynaptic density disc large ZO1 (PDZ) domain (Ser232). CaMKII-mediated phosphorylation of SAP97-Ser39 is necessary and sufficient to drive SAP97 to the postsynaptic compartment in cultured hippocampal neurons. CaMKII-dependent phosphorylation of Ser232 disrupts SAP97 interaction with NR2A subunit, thereby regulating synaptic targeting of this NMDA receptor subunit. Here we show by means of phospho-specific antibodies that SAP97-Ser39 phosphorylation represents the driving force to release SAP97/NR2A complex from the endoplasmic reticulum. Ser39 phosphorylation does not interfere with SAP97 capability to bind NR2A. On the contrary, SAP97-Ser232 phosphorylation occurs within the postsynaptic compartment and is responsible for both the disruption of NR2A/SAP97 complex and, consequently, for NR2A insertion in the postsynaptic membrane. Thus, CaMKII-dependent phosphorylation of SAP97 in different time frames and locations within the neurons controls both NR2A trafficking and insertion.
Collapse
Affiliation(s)
- D Mauceri
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
408
|
Affiliation(s)
- Shuanglin Hao
- University of Michigan Health System--VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
409
|
Abstract
Leucine-rich repeats (LRRs) are 20-29-aa motifs that mediate protein-protein interactions and are present in a variety of membrane and cytoplasmic proteins. Many LRR proteins with neuronal functions have been reported. Here, we summarize an emerging group of synaptic LRR proteins, which includes densin-180, Erbin, NGL, SALM, and LGI1. These proteins have been implicated in the formation, differentiation, maintenance, and plasticity of neuronal synapses.
Collapse
Affiliation(s)
- Jaewon Ko
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Ku, Kuseong-Dong, Daejeon, Korea
| | | |
Collapse
|
410
|
Fu Z, Lee SH, Simonetta A, Hansen J, Sheng M, Pak DTS. Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. J Neurochem 2007; 100:118-31. [PMID: 17227435 PMCID: PMC12125706 DOI: 10.1111/j.1471-4159.2006.04195.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rap family of small GTPases is implicated in the mechanisms of synaptic plasticity, particularly synaptic depression. Here we studied the role of Rap in neuronal morphogenesis and synaptic transmission in cultured neurons. Constitutively active Rap2 expressed in hippocampal pyramidal neurons caused decreased length and complexity of both axonal and dendritic branches. In addition, Rap2 caused loss of dendritic spines and spiny synapses, and an increase in filopodia-like protrusions and shaft synapses. These Rap2 morphological effects were absent in aspiny interneurons. In contrast, constitutively active Rap1 had no significant effect on axon or dendrite morphology. Dominant-negative Rap mutants increased dendrite length, indicating that endogenous Rap restrains dendritic outgrowth. The amplitude and frequency of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-mediated miniature excitatory postsynaptic currents (mEPSCs) decreased in hippocampal neurons transfected with active Rap1 or Rap2, associated with reduced surface and total levels of AMPA receptor subunit GluR2. Finally, increasing synaptic activity with GABA(A) receptor antagonists counteracted Rap2's inhibitory effect on dendrite growth, and masked the effects of Rap1 and Rap2 on AMPA-mediated mEPSCs. Rap1 and Rap2 thus have overlapping but distinct actions that potentially link the inhibition of synaptic transmission with the retraction of axons and dendrites.
Collapse
Affiliation(s)
- Zhanyan Fu
- Georgetown University Medical School, Department of Physiology and Biophysics, Washington, DC, USA
| | - Sang Hyoung Lee
- Medical College of Wisconsin, Department of Pharmacology, Milwaukee, Wisconsin, USA
| | - Alyson Simonetta
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan Hansen
- Medical College of Wisconsin, Department of Pharmacology, Milwaukee, Wisconsin, USA
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel T. S. Pak
- Georgetown University Medical School, Department of Pharmacology, Washington, DC, USA
| |
Collapse
|
411
|
Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AKY, Greenberg ME, Ip NY. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 2006; 10:67-76. [PMID: 17143272 DOI: 10.1038/nn1811] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 11/06/2006] [Indexed: 11/08/2022]
Abstract
The development of dendritic spines is thought to be crucial for synaptic plasticity. Dendritic spines are retracted upon Eph receptor A4 (EphA4) activation, but the mechanisms that control this process are not well understood. Here we report an important function of cyclin-dependent kinase 5 (Cdk5) in EphA4-dependent spine retraction in mice. We found that blocking Cdk5 activity inhibits ephrin-A1-triggered spine retraction and reduction of mEPSC frequency at hippocampal synapses. The activation of EphA4 resulted in the recruitment of Cdk5 to EphA4, leading to the tyrosine phosphorylation and activation of Cdk5. EphA4 and Cdk5 then enhanced the activation of ephexin1, a guanine-nucleotide exchange factor that regulates activation of the small Rho GTPase RhoA. The association between EphA4 and ephexin1 was significantly reduced in Cdk5(-/-) brains and Cdk5-dependent phosphorylation of ephexin1 was required for the ephrin-A1-mediated regulation of spine density. These findings suggest that ephrin-A1 promotes EphA4-dependent spine retraction through the activation of Cdk5 and ephexin1, which in turn modulates actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Kim E, Ko J. Molecular organization and assembly of the postsynaptic density of excitatory brain synapses. Results Probl Cell Differ 2006; 43:1-23. [PMID: 17068965 DOI: 10.1007/400_011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The postsynaptic density (PSD) is a postsynaptic membrane specialization at excitatory synapses. The PSD is made of macromolecular multiprotein complexes, which contain a variety of synaptic proteins including membrane, scaffolding, and signaling proteins. By coaggregating with postsynaptic cell adhesion molecules, PSD proteins promote the formation and maturation of excitatory synapses. PSD proteins organize signaling pathways to coordinate structural and functional changes in synapses, and they regulate trafficking and recycling of glutamate receptors, which determines synaptic strength and plasticity. Synaptic activity dynamically regulates the assembly of the PSD through mechanisms including protein phosphorylation, palmitoylation, and protein degradation. PSD proteins associate with diverse motor proteins, suggesting that they function as adaptors linking motors to their specific cargoes.
Collapse
Affiliation(s)
- Eunjoon Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon.
| | | |
Collapse
|
413
|
Redecker P, Bockmann J, Böckers TM. Secretory granules of hypophyseal and pancreatic endocrine cells contain proteins of the neuronal postsynaptic density. Cell Tissue Res 2006; 328:49-55. [PMID: 17120053 DOI: 10.1007/s00441-006-0309-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Accepted: 07/17/2006] [Indexed: 10/23/2022]
Abstract
The PDZ domain-containing protein Shank is a master scaffolding protein of the neuronal postsynaptic density and directly or indirectly links neurotransmitter receptors and cell adhesion molecules to the actin-based cytoskeleton. ProSAP/Shank proteins have recently also been detected in several non-neuronal cells in which they are mostly concentrated in the apical subplasmalemmal cytoplasm. In contrast, we have previously reported a more widespread cytoplasmic immunostaining pattern for the ProSAP1/Shank2 protein in endocrine cells at the light-microscopic level. Therefore, in the present study, we have determined the ultrastructural localization of ProSAP1/Shank2 and the ProSAP/Shank-interacting proteins ProSAPiP1 and IRSp53 in pancreatic islet and adenohypophyseal cells by using immunogold staining techniques. Dense immunolabeling of secretory granules including the granule core in cells such as hypophyseal somatotrophs and pancreatic B-cells indicates the unexpected presence of ProSAP/Shank and ProSAP/Shank-interacting proteins in the hormone-storing compartment of endocrine cells. Thus, ProSAP/Shank and certain ProSAP/Shank-interacting proteins exhibit distinct subcellular localizations in the different cell types, raising the possibility that the function of ProSAP/Shank proteins is more diverse than has been envisaged to date.
Collapse
Affiliation(s)
- Peter Redecker
- Department of Cell Biology, Centre of Anatomy, Hannover Medical School, 30625 Hannover, Germany.
| | | | | |
Collapse
|
414
|
Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, Pramparo T, Zuffardi O. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet 2006; 43:822-8. [PMID: 16284256 PMCID: PMC2563164 DOI: 10.1136/jmg.2005.038604] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/27/2005] [Accepted: 11/01/2005] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The 22q13.3 deletion syndrome (MIM 606232) is characterised by neonatal hypotonia, normal to accelerated growth, absent to severely delayed speech, global developmental delay, and minor dysmorphic facial features. We report the molecular characterisation of the deletion breakpoint in two unrelated chromosome 22q13.3 deletion cases. METHODS The deletions were characterised by FISH, checked for other abnormalities by array-CGH, and confirmed by Real-Time PCR, and finally the breakpoints were cloned, sequenced, and compared. RESULTS Both cases show the cardinal features of the 22q13.3 deletion syndrome associated with a deletion involving the last 100 kb of chromosome 22q13.3. The cases show a breakpoint within the same 15 bp repeat unit, overlapping the results obtained by Wong and colleagues in 1997 and suggesting that a recurrent deletion breakpoint exists within the SHANK3 gene. The direct repeat involved in these 22q13 deletion cases is presumably able to form slipped (hairpin) structures, but it also has a strong potential for forming tetraplex structures. DISCUSSION Three cases with a common breakpoint within SHANK3 share a number of common phenotypic features, such as mental retardation and developmental delay with severely delayed or absent expressive speech. The two cases presented here, having a deletion partially overlapping the commercial subtelomeric probe, highlight the difficulties in interpreting FISH results and suggest that many similar cases may be overlooked.
Collapse
|
415
|
Abstract
Homer is a crucial postsynaptic scaffolding protein involved in both maintenance and activity-induced plasticity of the synapse. However, its quaternary structure has yet to be determined. We conducted a series of biophysical experiments that provide the first evidence that Homer forms a tetramer via its coiled-coil domain, in which all subunits are aligned in parallel orientation. To test the importance of the tetrameric structure for functionality, we engineered dimeric and tetrameric Homer by deleting a part of coiled-coil domain or replacing it with artificially engineered dimeric or tetrameric coiled-coil domain from a yeast protein. The structure-activity relationship was determined by assaying cocluster formation with its ligand in heterologous cells, distribution in dendritic spines, and turnover rate of protein exist in dendritic spines. Our results provide the first insight into the structure of native Homer protein as a tetramer and the functional significance conferred by that structure.
Collapse
|
416
|
Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C. Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression. Neuropsychopharmacology 2006; 31:1946-56. [PMID: 16319916 DOI: 10.1038/sj.npp.1300962] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Administration of methylphenidate (MPH, Ritalin) to children with attention deficit hyperactivity disorder (ADHD) is an elective therapy, but raises concerns for public health, due to possible persistent neurobehavioral alterations. Wistar adolescent rats (30 to 46 day old) were administered MPH or saline (SAL) for 16 days, and tested for reward-related and motivational-choice behaviors. When tested in adulthood in a drug-free state, MPH-pretreated animals showed increased choice flexibility and economical efficiency, as well as a dissociation between dampened place conditioning and more marked locomotor sensitization induced by cocaine, compared to SAL-pretreated controls. The striatal complex, a core component of the natural reward system, was collected both at the end of the MPH treatment and in adulthood. Genome-wide expression profiling, followed by RT-PCR validation on independent samples, showed that three members of the postsynaptic-density family and five neurotransmitter receptors were upregulated in the adolescent striatum after subchronic MPH administration. Interestingly, only genes for the kainate 2 subunit of ionotropic glutamate receptor (Grik2, also known as KA2) and the 5-hydroxytryptamine (serotonin) receptor 7 (Htr7) (but not GABA(A) subunits and adrenergic receptor alpha1b) were still upregulated in adulthood. cAMP responsive element-binding protein and Homer 1a transcripts were modulated only as a long-term effect. In summary, our data indicate short-term changes in neural plasticity, suggested by modulation of expression of key genes, and functional changes in striatal circuits. These modifications might in turn trigger enduring changes responsible for the adult neurobehavioral profile, that is, altered processing of incentive values and a modified flexibility/habit balance.
Collapse
Affiliation(s)
- Walter Adriani
- Department of Cell Biology & Neurosciences, Behavioral Neuroscience Section, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
417
|
Kuriu T, Inoue A, Bito H, Sobue K, Okabe S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 2006; 26:7693-706. [PMID: 16855097 PMCID: PMC6674289 DOI: 10.1523/jneurosci.0522-06.2006] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organization and dynamic remodeling of postsynaptic density (PSD) are thought to be critical in postsynaptic signal transduction, but the underlying molecular mechanisms are not well understood. We show here that four major scaffolding molecules, PSD-95, GKAP, Shank, and PSD-Zip45, show distinct instability in total molecular content per synapse. Fluorescence recovery after photobleaching also confirmed their distinct turnover rates. Among the PSD molecules examined, PSD-95 was most stable, but its elimination did not influence the dynamics of its direct binding partner GKAP. Multiple interactions of scaffolding molecules with the actin cytoskeleton have suggested their importance in both maintenance and remodeling of the PSD. Indeed, acute pharmacological disruption of F-actin rapidly eliminated the dynamic fraction of GKAP, Shank, and PSD-Zip45, without changing synaptic localization of PSD-95. GKAP content in synapses increased after pharmacological enhancement of neuronal activity, whereas Shank and PSD-Zip45 content showed reduction. Inhibition of F-actin dynamics prevented activity-dependent redistribution of all three scaffolds. We also assessed involvement of glutamate receptors in the regulation of PSD dynamics. Genetic manipulations eliminating either NMDA receptors or metabotropic glutamate receptors did not primarily influence mobility of their binding scaffolds. These results collectively indicate a critical role of filamentous actin in determining the extent of dynamic reorganization in PSD molecular composition.
Collapse
|
418
|
Van Keuren-Jensen K, Cline HT. Visual experience regulates metabotropic glutamate receptor-mediated plasticity of AMPA receptor synaptic transmission by homer1a induction. J Neurosci 2006; 26:7575-80. [PMID: 16855085 PMCID: PMC6674274 DOI: 10.1523/jneurosci.5083-05.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brief metabotropic glutamate receptor (mGluR) activation leads to plasticity of AMPA receptor (AMPAR) synaptic transmission. To test whether mGluR-mediated plasticity of AMPAR transmission is influenced by recent neuronal activity, we manipulated visual activity in Xenopus laevis tadpoles in vivo. We compared mGluR-mediated plasticity of AMPAR transmission in optic tectal cells of tadpoles with low levels of previous synaptic activity (overnight in the dark) to transmission in neurons from animals after 4 h of constant visual stimulation. mGluR-mediated plasticity of AMPA transmission was significantly decreased in neurons with recent activity. We tested the role of the activity-regulated mGluR scaffolding protein Homer1a in modulating mGluR-mediated changes in AMPAR transmission. We found that, by changing the ratios of Homer 1a to Homer 1b in vivo, by either induction of endogenous Homer1a by visual activity or ectopic expression of Homer1a or Homer1b, we could change the direction of mGluR-mediated plasticity. This is the first evidence that mGluR-mediated changes in AMPA transmission can be regulated by Homer proteins in response to physiologically relevant stimuli.
Collapse
|
419
|
Abstract
Glutamatergic synapses in the central nervous system are characterized by an electron-dense web underneath the postsynaptic membrane; this web is called the postsynaptic density (PSD). PSDs are composed of a dense network of several hundred proteins, creating a macromolecular complex that serves a wide range of functions. Prominent PSD proteins such as members of the MaGuk or ProSAP/Shank family build up a dense scaffold that creates an interface between clustered membrane-bound receptors, cell adhesion molecules and the actin-based cytoskeleton. Moreover, kinases, phosphatases and several proteins of different signalling pathways are specifically localized within the spine/PSD compartment. Small GTPases and regulating proteins are also enriched in PSDs being the molecular basis for regulated structural changes of cytoskeletal components within the synapse in response to external or internal stimuli, e.g. synaptic activation. This synaptic rearrangement (structural plasticity) is a rapid process and is believed to underlie learning and memory formation. The characterization of synapse/PSD proteins is especially important in the light of recent data suggesting that several mental disorders have their molecular defect at the synapse/PSD level.
Collapse
Affiliation(s)
- T M Boeckers
- Department of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
420
|
Grossman AW, Aldridge GM, Weiler IJ, Greenough WT. Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci 2006; 26:7151-5. [PMID: 16822971 PMCID: PMC6673953 DOI: 10.1523/jneurosci.1790-06.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Behavioral experiences can modulate neural networks through changes in synaptic morphology and number. In contrast, abnormal morphogenesis of dendritic spines is associated with cognitive impairment, as in Fragile X syndrome. Dendritic or synaptic protein synthesis could provide the specificity and speed necessary for spine morphogenesis. Here, we highlight locally translated proteins shown to affect synaptic morphology (e.g., Fragile X mental retardation protein).
Collapse
|
421
|
Gao L, Blair LAC, Salinas GD, Needleman LA, Marshall J. Insulin-like growth factor-1 modulation of CaV1.3 calcium channels depends on Ca2+ release from IP3-sensitive stores and calcium/calmodulin kinase II phosphorylation of the alpha1 subunit EF hand. J Neurosci 2006; 26:6259-68. [PMID: 16763033 PMCID: PMC6675183 DOI: 10.1523/jneurosci.0481-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In neurons, L-type calcium channels (CaV1.2 and CaV1.3) regulate an extensive range of functions. However, the roles of CaV1.3-containing L channels, which are physiologically and pharmacologically distinct from the better understood CaV1.2 channels, are only beginning to be determined. We find that CaV1.3 channels are modulated by the insulin-like growth factor-1/receptor tyrosine kinase (IGF-1/RTK) through a signaling pathway that involves phospholipase C, calcium release from IP3-sensitive internal stores, and calcium/calmodulin kinase II. In addition, we find that the IGF-1-induced modulation requires phosphorylation of a specific serine residue, S1486, in the EF hand motif of the CaV1.3 subunit. This modulation alters CaV1.3 activity, causing a left shift in the current-voltage relationship and strongly potentiating peak currents at hyperpolarized membrane potentials. We also find that CaV1.3 channels and their RTK-dependent potentiation contribute to the regulation of the survival-promoting transcription factor cAMP response element-binding protein (CREB): in both cortical and hippocampal neurons, depolarization and IGF-1 rapidly increase phospho-CREB levels in a manner that requires CaV1.3 activity and the S1486 phosphorylation site to achieve a full effect. Although the full effects of CaV1.3 channels remain to be determined, their preferential localization to dendritic shafts and spine heads coupled with their ability to activate at relatively hyperpolarized and even subthreshold potentials suggests that CaV1.3 activity may subserve different cellular functions from CaV1.2 and, in particular, may be important in transducing signals initiated by excitatory neurotransmission.
Collapse
|
422
|
Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU. A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci 2006; 31:366-73. [PMID: 16793273 DOI: 10.1016/j.tibs.2006.05.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/21/2006] [Accepted: 05/25/2006] [Indexed: 01/06/2023]
Abstract
Chemical synapses are asymmetric cell junctions that mediate communication between neurons. Multidomain scaffolding proteins of the Shank family act as major organizing elements of the "postsynaptic density"--that is, the cytoskeletal protein matrix associated with the postsynaptic membrane. A recent study has shown that the C-terminal sterile alpha-motif or "SAM domain" of Shank3 (also known as ProSAP2) can form two-dimensional sheets of helical fibers. Assembly and packaging of these fibers are markedly enhanced by the presence of Zn2+ ions. Zn2+ can be released together with glutamate from synaptic vesicles and can enter the postsynaptic cell through specific ionotropic receptors. Based on these observations, we propose a new model of synaptic plasticity in which Zn2+ influx directly and instantly modulates the structure and function of the postsynaptic density.
Collapse
Affiliation(s)
- Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany.
| | | | | | | |
Collapse
|
423
|
Redecker P, Bockmann J, Böckers TM. Expression of postsynaptic density proteins of the ProSAP/Shank family in the thymus. Histochem Cell Biol 2006; 126:679-85. [PMID: 16758162 DOI: 10.1007/s00418-006-0199-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
PSD95-DLG-ZO1 domain-containing proteins of the ProSAP/Shank family are major scaffolding proteins of the neuronal postsynaptic density which play a pivotal role in the linkage of membrane receptors to downstream signal effectors and the actin-based cytoskeleton. Recently, ProSAP1/Shank2 has also been localized in various non-neuronal cells where it may fulfill similar functions as in neurons. We now complement these data by the study of ProSAP/Shank expression at the mRNA and protein level in a primary lymphoid organ, i.e., the thymus. Transcripts for ProSAP1/Shank2, the spliceoform Shank2E, and ProSAP2/Shank3 could be clearly detected in the thymus. Western blot and immunocytochemical analyses verified the presence of ProSAP1/Shank2 and ProSAP2/Shank3 proteins in thymic tissue. Immunoreactivity was concentrated in the whole peripheral cytoplasm of thymocytes underneath the plasma membrane. Discrete subplasmalemmal areas of pronounced ProSAP/Shank immunoreactivity could be demonstrated inside several thymocytes by confocal laser scanning microscopy. Our results establish ProSAP/Shank as a constituent of the cell cortex of thymocytes and thus lead to the hypothesis that ProSAP/Shank proteins serve as a platform for the coordination of membrane receptor-dependent signal transduction in immune cells.
Collapse
Affiliation(s)
- Peter Redecker
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | |
Collapse
|
424
|
Lominac KD, Oleson EB, Pava M, Klugmann M, Schwarz MK, Seeburg PH, During MJ, Worley PF, Kalivas PW, Szumlinski KK. Distinct roles for different Homer1 isoforms in behaviors and associated prefrontal cortex function. J Neurosci 2006; 25:11586-94. [PMID: 16354916 PMCID: PMC6726036 DOI: 10.1523/jneurosci.3764-05.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Homer1 mutant mice exhibit behavioral and neurochemical abnormalities that are consistent with an animal model of schizophrenia. Because the Homer1 gene encodes both immediate early gene (IEG) and constitutively expressed (CC) gene products, we used the local infusion of adeno-associated viral vectors carrying different Homer1 transcriptional variants into the prefrontal cortex (PFC) to distinguish between the roles for IEG and CC Homer1 isoforms in the "schizophrenia-like" phenotype of Homer1 mutant mice. PFC overexpression of the IEG Homer1 isoform Homer1a reversed the genotypic differences in behavioral adaptation to repeated stress, whereas overexpression of the constitutively expressed Homer1 isoform Homer1c reversed the genotypic differences in sensorimotor and cognitive processing, as well as cocaine behavioral sensitivity. Homer1a overexpression did not influence PFC basal glutamate content but blunted the glutamate response to cocaine in wild-type mice. In contrast, Homer1c overexpression reversed the genotypic difference in PFC basal glutamate content and enhanced cocaine-induced elevations in glutamate. These data demonstrate active and distinct roles for Homer1a and Homer1c isoforms in the PFC in the mediation of behavior, in the maintenance of basal extracellular glutamate, and in the regulation of PFC glutamate release relevant to schizophrenia and stimulant abuse comorbidity.
Collapse
Affiliation(s)
- Kevin D Lominac
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Vickers CA, Stephens B, Bowen J, Arbuthnott GW, Grant SGN, Ingham CA. Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95). Brain Res 2006; 1090:89-98. [PMID: 16677619 DOI: 10.1016/j.brainres.2006.03.075] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/13/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
Post synaptic density protein 95 (PSD-95) is a postsynaptic adaptor protein coupling the NMDA receptor to downstream signalling pathways underlying plasticity. Mice carrying a targeted gene mutation of PSD-95 show altered behavioural plasticity including spatial learning, neuropathic pain, orientation preference in visual cortical cells, and cocaine sensitisation. These behavioural effects are accompanied by changes in long-term potentiation of synaptic transmission. In vitro studies of PSD-95 signalling indicate that it may play a role in regulating dendritic spine structure. Here, we show that PSD-95 mutant mice have alterations in dendritic spine density in the striatum (a 15% decrease along the dendritic length) and in the hippocampus (a localised 40% increase) without changes in dendritic branch patterns or gross neuronal architecture. These changes in spine density were accompanied by altered expression of proteins known to interact with PSD-95, including NR2B and SAP102, suggesting that PSD-95 plays a role in regulating the expression and activation of proteins found within the NMDA receptor complex. Thus, PSD-95 is an important regulator of neuronal structure as well as plasticity in vivo.
Collapse
Affiliation(s)
- Catherine A Vickers
- Department of Pre-Clinical Veterinary Sciences, (RDSVS) Summerhall, University of Edinburgh, Edinburgh. EH9 1QH, UK.
| | | | | | | | | | | |
Collapse
|
426
|
Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 2006; 49:547-62. [PMID: 16476664 DOI: 10.1016/j.neuron.2006.01.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/18/2005] [Accepted: 01/20/2006] [Indexed: 11/23/2022]
Abstract
Nonsynaptic clusters of postsynaptic proteins have been documented; however, their role remains elusive. We monitored the trafficking of several candidate proteins implicated in synaptogenesis, when nonsynaptic clusters of scaffold proteins are most abundant. We find a protein complex consisting of two populations that differ in their content, mobility, and involvement in synapse formation. One subpopulation is mobile and relies on actin transport for delivery to nascent and existing synapses. These mobile clusters contain the scaffolding proteins PSD-95, GKAP, and Shank. A proportion of mobile clusters that exhibits slow movement and travels short distances contains neuroligin-1. The second group consists of stationary nonsynaptic scaffold complexes that mainly contain neuroligin-1, can recruit synaptophysin-containing axonal transport vesicles, and are readily transformed to functional presynaptic contacts that recycle the vital dye FM 4-64. These results postulate a mechanism whereby preformed scaffold protein complexes serve as predetermined postsynaptic hotspots for establishment of new functional excitatory synapses.
Collapse
Affiliation(s)
- Kimberly Gerrow
- Department of Psychiatry and the Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | | | | | | | | | | |
Collapse
|
427
|
Matsuno H, Okabe S, Mishina M, Yanagida T, Mori K, Yoshihara Y. Telencephalin slows spine maturation. J Neurosci 2006; 26:1776-86. [PMID: 16467526 PMCID: PMC6793635 DOI: 10.1523/jneurosci.2651-05.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic filopodia are highly dynamic structures, and morphological maturation from dendritic filopodia to spines is intimately associated with the stabilization and strengthening of synapses during development. Here, we report that telencephalin (TLCN), a cell adhesion molecule belonging to the Ig superfamily, is a negative regulator of spine maturation. Using cultured hippocampal neurons, we examined detailed localization and functions of TLCN in spine development and synaptogenesis. At early stages of synaptogenesis, TLCN immunoreactivity gradually increased and was present in dendritic shafts and filopodia. At later stages, TLCN tended to be excluded from mature spine synapses in which PSD-95 (postsynaptic density-95) clusters were apposed to presynaptic synaptophysin clusters. To elucidate the function of TLCN in spine maturation, we analyzed the dendrite morphology of TLCN-overexpressing and TLCN-deficient neurons. Overexpression of TLCN caused a dramatic increase in the density of dendritic filopodia and a concomitant decrease in the density of spines. Conversely, TLCN-deficient mice showed a decreased density of filopodia and an acceleration of spine maturation in vitro as well as in vivo. These results demonstrate that TLCN normally slows spine maturation by promoting the filopodia formation and negatively regulating the filopodia-to-spine transition. In addition, we found that spine heads of mature neurons were wider in TLCN-deficient mice compared with wild-type mice. Thus, the preservation of immature synapses by TLCN may be an essential step for refinement of functional neural circuits in the telencephalon, that take charge of higher brain functions such as learning, memory, and emotion.
Collapse
|
428
|
Regalado MP, Terry-Lorenzo RT, Waites CL, Garner CC, Malenka RC. Transsynaptic signaling by postsynaptic synapse-associated protein 97. J Neurosci 2006; 26:2343-57. [PMID: 16495462 PMCID: PMC6674804 DOI: 10.1523/jneurosci.5247-05.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The molecular mechanisms by which postsynaptic modifications lead to precisely coordinated changes in presynaptic structure and function are primarily unknown. To address this issue, we examined the presynaptic consequences of postsynaptic expression of members of the membrane-associated guanylate kinase family of synaptic scaffolding proteins. Postsynaptic expression of synapse-associated protein 97 (SAP97) increased presynaptic protein content and active zone size to a greater extent than comparable amounts of postsynaptic PSD-95 (postsynaptic density-95) or SAP102. In addition, postsynaptic expression of SAP97 enhanced presynaptic function, as measured by increased FM4-64 dye uptake. The structural presynaptic effects of postsynaptic SAP97 required ligand binding through two of its PDZ (PSD-95/Discs large/zona occludens-1) domains as well as intact N-terminal and guanylate kinase domains. Expression of SAP97 recruited a complex of additional postsynaptic proteins to synapses including glutamate receptor 1, Shank1a, SPAR (spine-associated RapGAP), and proSAP2. Furthermore, inhibition of several different transsynaptic signaling proteins including cadherins, integrins, and EphB receptor/ephrinB significantly reduced the presynaptic growth caused by postsynaptic SAP97. These results suggest that SAP97 may play a central role in the coordinated growth of synapses during development and plasticity by recruiting a complex of postsynaptic proteins that enhances presynaptic terminal growth and function via multiple transsynaptic molecular interactions.
Collapse
|
429
|
Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 2006; 25:11300-12. [PMID: 16339025 PMCID: PMC6725892 DOI: 10.1523/jneurosci.2270-05.2005] [Citation(s) in RCA: 479] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms that determine the size and complexity of the neuronal dendritic tree are unclear. Here, we show that the phosphoinositide-3' kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway promotes the growth and branching of dendrites in cultured hippocampal neurons. Constitutively active mutants of Ras, PI3K, and Akt, or RNA interference (RNAi) knockdown of lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome Ten), induced growth and elaboration of dendrites that was blocked by mTOR inhibitor rapamycin and/or by overexpression of eIF-4E binding protein 1 (4E-BP1), which inhibits translation of 5' capped mRNAs. The effect of PI3K on dendrites was lost in more mature neurons (>14 d in vitro). Dendritic complexity was reduced by inhibition of PI3K and by RNAi knockdown of mTOR or p70 ribosomal S6 kinase (p70S6K, an effector of mTOR). A rapamycin-resistant mutant of mTOR "rescued" the morphogenetic effects of PI3K in the presence of rapamycin. By regulating global and/or local protein translation, and as a convergence point for multiple signaling pathways, mTOR could play a central role in the control of dendrite growth and branching during development and in response to activity.
Collapse
Affiliation(s)
- Jacek Jaworski
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN), Massachusetts Institute of Technology Neuroscience Research Center, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
430
|
Sala C, Roussignol G, Meldolesi J, Fagni L. Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. J Neurosci 2006; 25:4587-92. [PMID: 15872106 PMCID: PMC6725036 DOI: 10.1523/jneurosci.4822-04.2005] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A key aspect of postsynaptic function, also important for plasticity, is the segregation within dendritic spines of Ca2+ rises attributable to release from intracellular stores. Previous studies have shown that overexpression in hippocampal neurons of two postsynaptic density (PSD) scaffold proteins, Shank1B and Homer1b, induces spine maturation, including translocation of the intracellular Ca2+ channel inositol trisphosphate receptor (IP3R). The structural and functional significance of these processes remained undefined. Here, we show that in its relocation, IP3R is accompanied by other endoplasmic reticulum (ER) proteins: the Ca2+ pump sarcoendoplasmic reticulum calcium ATPase, the lumenal Ca2+-binding protein calreticulin, the ER lumen-addressed green fluorescent protein, and, to a lesser extent, the membrane chaperone calbindin. The specificity of these translocations was demonstrated by their inhibition by both a Shank1 fragment and the dominant-negative Homer1a. Activation in Shank1B-transfected neurons of the metabotropic glutamatergic receptors 1/5 (mGluRs1/5), which induce IP3 generation with ensuing Ca2+ release from the stores, triggered considerable increases in Ca2+-dependent responses: activation of the big K+ channel, which was revealed by patch clamping, and extracellular signal-regulated protein kinase (ERK) phosphorylation. The interaction of Shank1B and Homer1b appears as the molecular mechanism linking mGluRs1/5, strategically located in the spines, to IP3R with the integration of entire ER cisternas in the PSD and with consequences on both local Ca2+ homeostasis and overall neuronal signaling.
Collapse
Affiliation(s)
- Carlo Sala
- Cellular and Molecular Pharmacology Section, Institute of Neuroscience, Consiglio Nazionale delle Ricerche, and Department of Pharmacology, University of Milan, 20129 Milan, Italy.
| | | | | | | |
Collapse
|
431
|
Calabrese B, Wilson MS, Halpain S. Development and regulation of dendritic spine synapses. Physiology (Bethesda) 2006; 21:38-47. [PMID: 16443821 DOI: 10.1152/physiol.00042.2005] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are small protrusions from neuronal dendrites that form the postsynaptic component of most excitatory synapses in the brain. They play critical roles in synaptic transmission and plasticity. Recent advances in imaging and molecular technologies reveal that spines are complex, dynamic structures that contain a dense array of cytoskeletal, transmembrane, and scaffolding molecules. Several neurological and psychiatric disorders exhibit dendritic spine abnormalities.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, USA
| | | | | |
Collapse
|
432
|
Sgambato-Faure V, Xiong Y, Berke JD, Hyman SE, Strehler EE. The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun 2006; 343:630-7. [PMID: 16554037 PMCID: PMC3873836 DOI: 10.1016/j.bbrc.2006.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 03/06/2006] [Indexed: 01/30/2023]
Abstract
The Homer family of scaffold proteins couples NMDA receptors to metabotropic glutamate receptors and links extracellular signals to calcium release from intracellular stores. Ania-3 is a member of the Homer family and is rapidly inducible in brain in response to diverse stimuli. Here, we report the identification of the plasma membrane Ca2+ ATPase (PMCA) as a novel Ania-3/Homer-associated protein. Ania-3/Homer interacts with the b-splice forms of all PMCAs (PMCA1b, 2b, 3b, and 4b) via their PDZ domain-binding COOH-terminal tail. Ectopically expressed Ania-3 colocalized with the PMCA at the plasma membrane of polarized MDCK epithelial cells, and endogenous Ania-3/Homer and PMCA2 are co-expressed in the soma and dendrites of primary rat hippocampal neurons. The interaction between Ania-3/Homer and PMCAs may represent a novel mechanism by which local calcium signaling and hence synaptic function can be modulated in neurons.
Collapse
Affiliation(s)
- Véronique Sgambato-Faure
- Molecular Plasticity Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yuning Xiong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Joshua D. Berke
- Molecular Plasticity Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Steven E. Hyman
- Molecular Plasticity Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Harvard University, Cambridge, MA, USA
| | - Emanuel E. Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
433
|
Wendholt D, Spilker C, Schmitt A, Dolnik A, Smalla KH, Proepper C, Bockmann J, Sobue K, Gundelfinger ED, Kreutz MR, Boeckers TM. ProSAP-interacting protein 1 (ProSAPiP1), a novel protein of the postsynaptic density that links the spine-associated Rap-Gap (SPAR) to the scaffolding protein ProSAP2/Shank3. J Biol Chem 2006; 281:13805-13816. [PMID: 16522626 DOI: 10.1074/jbc.m601101200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ProSAPs/Shanks are a family of proteins that have a major scaffolding function for components of the postsynaptic density (PSD) of excitatory brain synapses. Members of the family harbor a variety of domains for protein-protein interactions, one of which is a unique PDZ domain that differs significantly from those of other proteins. We have identified a novel binding partner for this PDZ domain, termed ProSAPiP1, that is highly enriched in the PSD and shares significant sequence homology with the PSD protein PSD-Zip70. Both molecules code for a Fez1 domain that can be found in a total of four related proteins. ProSAPiP1 is widely expressed in rat brain and co-localizes with ProSAP2/Shank3 in excitatory spines and synapses. ProSAP2/Shank3 co-immunoprecipitates with ProSAPiP1 but not with PSD-Zip70. Both proteins, however, bind and recruit SPAR to synapses with a central coiled-coil region that harbors a leucine zipper motif. This region is also responsible for homo- and heteromultimerization of ProSAPiP1 and PSD-Zip70. Thus, ProSAPiP1 and PSD-Zip70 are founders of a novel family of scaffolding proteins, the "Fezzins," which adds further complexity to the organization of the PSD protein network.
Collapse
Affiliation(s)
- Doreen Wendholt
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Christina Spilker
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Angelika Schmitt
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Anna Dolnik
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Karl-Heinz Smalla
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Christian Proepper
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Kenji Sobue
- Department of Neuroscience, Osaka University School of Medicine, Suita, Osaka 565, Japan
| | - Eckart D Gundelfinger
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michael R Kreutz
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany,.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
434
|
Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JQ. The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 2006; 25:2741-52. [PMID: 15758184 PMCID: PMC6725183 DOI: 10.1523/jneurosci.4360-04.2005] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) increase cellular levels of inositol-1,4,5-triphosphate (IP3) and thereby trigger intracellular Ca2+ release. Also, group I mGluRs are organized with members of Homer scaffold proteins into multiprotein complexes involved in postreceptor signaling. In this study, we investigated the relative importance of the IP3/Ca2+ signaling and novel Homer proteins in group I mGluR-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in cultured rat striatal neurons. We found that selective activation of mGluR5, but not mGluR1, increased ERK1/2 phosphorylation. Whereas the IP3/Ca2+ cascade transmits a small portion of signals from mGluR5 to ERK1/2, the member of Homer family Homer1b/c forms a central signaling pathway linking mGluR5 to ERK1/2 in a Ca2+-independent manner. This was demonstrated by the findings that the mGluR5-mediated ERK1/2 phosphorylation was mostly reduced by a cell-permeable Tat-fusion peptide that selectively disrupted the interaction of mGluR5 with the Homer1b/c and by small interfering RNAs that selectively knocked down cellular levels of Homer1b/c proteins. Furthermore, ERK1/2, when only coactivated by both IP3/Ca2+- and Homer1b/c-dependent pathways, showed the ability to phosphorylate two transcription factors, Elk-1 and cAMP response element-binding protein, and thereby facilitated c-Fos expression. Together, we have identified two coordinated signaling pathways (a conventional IP3/Ca2+ vs a novel Homer pathway) that differentially mediate the mGluR5-ERK coupling in neurons. Both the Ca2+-dependent and -independent pathways are corequired to activate ERK1/2 to a level sufficient to achieve the mGluR5-dependent synapse-to-nucleus communication imperative for the transcriptional regulation.
Collapse
Affiliation(s)
- Limin Mao
- Department of Basic Medical Science, University of Missouri-Kansas City, School of Medicine, Kansas City, Missouri 64108, USA
| | | | | | | | | | | |
Collapse
|
435
|
Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, Bockaert J, Fagni L. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2006; 25:3560-70. [PMID: 15814786 PMCID: PMC6725374 DOI: 10.1523/jneurosci.4354-04.2005] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Shank proteins assemble glutamate receptors with their intracellular signaling apparatus and cytoskeleton at the postsynaptic density. Whether Shank plays a role in spinogenesis and synaptogenesis remained unclear. Here, we report that knock-down of Shank3/prolinerich synapse-associated protein-2 by RNA interference reduces spine density in hippocampal neurons. Moreover, transgene expression of Shank 3 is sufficient to induce functional dendritic spines in aspiny cerebellar neurons. Transfected Shank protein recruits functional glutamate receptors, increases the number and size of synaptic contacts, and increases amplitude, frequency, and the AMPA component of miniature EPSCs, similar to what is observed during synapse developmental maturation. Mutation/deletion approaches indicate that these effects require interactions of Shank3 with the glutamate receptor complex. Consistent with this observation, chronic treatment with glutamate receptor antagonists alters maturation of the Shank3-induced spines. These results strongly suggest that Shank proteins and the associated glutamate receptors participate in a concerted manner to form spines and functional synapses.
Collapse
Affiliation(s)
- Gautier Roussignol
- Institut de Génomique Fonctionnelle, Unité Mixte de Recherche 5203, 34000 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
436
|
Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 2006; 49:175-82. [PMID: 16423692 DOI: 10.1016/j.neuron.2005.12.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 11/07/2005] [Accepted: 12/09/2005] [Indexed: 11/22/2022]
Abstract
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.
Collapse
Affiliation(s)
- Jubin Ryu
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
437
|
Nonaka M, Doi T, Fujiyoshi Y, Takemoto-Kimura S, Bito H. Essential contribution of the ligand-binding beta B/beta C loop of PDZ1 and PDZ2 in the regulation of postsynaptic clustering, scaffolding, and localization of postsynaptic density-95. J Neurosci 2006; 26:763-74. [PMID: 16421296 PMCID: PMC6675374 DOI: 10.1523/jneurosci.2489-05.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Postsynaptic density-95 (PSD-95), a PSD-95/Discs large/zona occludens-1 (PDZ) domain-containing scaffold protein, clusters many signaling molecules near NMDA-type glutamate receptors in the postsynaptic densities. Although the synaptic localization of PSD-95 requires palmitoylation of two cysteines at the N terminus and the presence of at least one PDZ domain, how the clustering of PSD-95 is initiated and regulated remains essentially unknown. To address this issue, we examined PSD-95 clustering in primary cultured hippocampal neurons expressing full-length PSD-95 mutant proteins lacking the ligand-binding ability of PDZ1, PDZ2, and/or PDZ3. The formation of either excitatory or inhibitory synapses was unaffected. Combinations of individual mutations, however, significantly reduced the PSD-95 clustering index, in an approximately additive manner. The sensitivity to 2-bromo-palmitate and latrunculin A, reagents known to affect PSD-95 turnover, was also augmented. Furthermore, the synaptic recruitment of a PSD-95 ligand, synaptic GTPase-activating protein (synGAP), was significantly impaired, whereas the clustering of other scaffolding proteins, such as Homer 1c, Shank/Synamon, and PSD-93/Chapsin-110 was spared. Intriguingly, overexpression of the PSD-95 PDZ1/2/3 mutants caused the PSD-95 clusters to localize away from the dendritic shaft, resulting in the formation of elongated spines, in an inverse correlation with the overall PDZ-ligand affinity. Expression of a mutant synGAP lacking the PDZ-binding motif replicated both the clustering and spine morphology phenotypes. In conclusion, the ligand-binding affinity of the PDZ domains of PSD-95, contributed in part via its interaction with the C-terminal end of synGAP, plays a critical role in titrating the synaptic clustering of PSD-95 and controlling its tight association with the PSD scaffold, thereby affecting synapse maturation.
Collapse
Affiliation(s)
- Mio Nonaka
- Department of Biophysics, Kyoto University Graduate School of Science, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
438
|
Szumlinski KK, Lominac KD, Oleson EB, Walker JK, Mason A, Dehoff MH, Klugmann M, Klugman M, Cagle S, Welt K, During M, Worley PF, Middaugh LD, Kalivas PW. Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci 2006; 25:7054-61. [PMID: 16049182 PMCID: PMC6724845 DOI: 10.1523/jneurosci.1529-05.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homer proteins are integral to the assembly of proteins regulating glutamate signaling and synaptic plasticity. Constitutive Homer2 gene deletion [knock-out (KO)] and rescue with adeno-associated viral (AAV) transfection of Homer2b was used to demonstrate the importance of Homer proteins in neuroplasticity produced by repeated ethanol (EtOH) administration. Homer2 KO mice avoided drinking high concentrations of EtOH and did not develop place preference or locomotor sensitization after repeated EtOH administration. The deficient behavioral plasticity to EtOH after Homer2 deletion was paralleled by a lack of augmentation in the rise in extracellular dopamine and glutamate elicited by repeated EtOH injections. The genotypic differences in EtOH-induced change in behavior and neurochemistry were essentially reversed by AAV-mediated transfection of Homer2b into accumbens cells including, differences in EtOH preference, locomotor sensitization, and EtOH-induced elevations in extracellular glutamate and dopamine. These data demonstrate a necessary and active role for accumbens Homer2 expression in regulating EtOH-induced behavioral and cellular neuroplasticity.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Zhang H, Macara IG. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 2006; 8:227-37. [PMID: 16474385 DOI: 10.1038/ncb1368] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 01/23/2006] [Indexed: 12/31/2022]
Abstract
PAR-3 (partitioning-defective gene 3) is essential for cell polarization in many contexts, including axon specification. However, polarity proteins have not been implicated in later steps of neuronal differentiation, such as dendritic spine morphogenesis. Here, we show that PAR-3 is necessary for normal spine development in primary hippocampal neurons. Depletion of PAR-3 causes the formation of multiple filopodia- and lamellipodia-like dendritic protrusions - a phenotype similar to neurons expressing activated Rac. PAR-3 regulates spine formation by binding the Rac guanine nucleotide-exchange factor (GEF) TIAM1, and spatially restricting it to dendritic spines. Thus, a balance of PAR-3 and TIAM1 is essential to modulate Rac-GTP levels and to allow spine morphogenesis.
Collapse
Affiliation(s)
- Huaye Zhang
- Center for Cell Signaling, Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA.
| | | |
Collapse
|
440
|
Hoe HS, Pocivavsek A, Chakraborty G, Fu Z, Vicini S, Ehlers MD, Rebeck GW. Apolipoprotein E Receptor 2 Interactions with the N-Methyl-D-aspartate Receptor. J Biol Chem 2006; 281:3425-31. [PMID: 16332682 DOI: 10.1074/jbc.m509380200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In our previous studies we showed that apoE treatment of neurons activated ERK 1/2 signaling, and activation was blocked by treatment with inhibitors of the low density lipoprotein receptor family, the N-methyl-d-aspartate (NMDA) receptor antagonist MK 801, and calcium channel blockers. We hypothesized an interaction between the low density lipoprotein receptor family members and the NMDA receptor. In the present study, we confirmed through co-immunoprecipitation experiments an interaction between the apoE receptor, ApoEr2, and NMDAR1 through their extracellular domains. We also found that the PDZ1 domain of PSD95, a postsynaptic scaffolding protein, interacted with the C terminus of ApoEr2 via an alternatively spliced, intracellular exon. This interaction between ApoEr2 and PSD95 in neurons was modulated by NMDA receptor activation and an ApoEr2 ligand. We also found that the PDZ2 domain of PSD95 interacted with the NR2A and NR2B subunits of NMDA receptors. Full-length PSD95 increased cell surface levels of ApoEr2 and its cleavage, resulting in increases in secreted ApoEr2 and C-terminal fragments of ApoEr2. These studies suggest that ApoEr2 can form a multiprotein complex with NMDA receptor subunits and PSD95.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience and Physiology, Georgetown University Medical Center, Washington, DC 20057-1464, USA
| | | | | | | | | | | | | |
Collapse
|
441
|
Tappe A, Kuner R. Regulation of motor performance and striatal function by synaptic scaffolding proteins of the Homer1 family. Proc Natl Acad Sci U S A 2006; 103:774-9. [PMID: 16407107 PMCID: PMC1325014 DOI: 10.1073/pnas.0505900103] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Indexed: 11/18/2022] Open
Abstract
Intracellular calcium mobilization and signaling mechanisms triggered by activation of synaptic glutamate receptors in the striatum are important modulators of neurotransmission in striatal circuits. However, the expression and functions of scaffolding proteins anchoring glutamate receptors at striatal synapses have not been addressed so far. The long-form Homer1 proteins, Homer1b/c, assemble group I metabotropic glutamate receptors (mGluR1/5) in large macromolecular complexes with sources of calcium influx and release at synapses as well as with components of the NMDA receptor complex at the neuronal cell membrane. Homer1a, the short, activity-dependent splice variant of Homer1b/c, lacks the ability of linking mGluR1/5 to synaptic proteins and functions as an endogenous negative modulator of the mGluR1/5 inositol 1,4,5-trisphosphate receptor signaling complex. We have generated transgenic mice, which overexpress Homer1a in striatal medium spiny neurons either homogenously throughout the extrastriosomal matrix (Homer1a-matrix line) or predominantly in striosomal patches (Homer1a-striosome line). Homer1a-expressing mice demonstrated normal development of striatal structure and afferent-efferent connectivity. However, motor performance in behavioral tasks and striatal responses to the psychomotor stimulant amphetamine were significantly altered in the Homer1a-striosome line. Thus, glutamate receptor scaffolding proteins of the Homer1 family critically regulate the functions of striatal medium spiny neurons in complex motor tasks and its modulation by psychomotor stimulant drugs.
Collapse
Affiliation(s)
- Anke Tappe
- Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 366, Heidelberg 69120, Germany
| | | |
Collapse
|
442
|
Iki J, Inoue A, Bito H, Okabe S. Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity. Eur J Neurosci 2005; 22:2985-94. [PMID: 16367765 DOI: 10.1111/j.1460-9568.2005.04510.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract Cortactin is an F-actin-associated protein which interacts with the postsynaptic scaffolding protein Shank at the SH3 domain and is localized within the dendritic spine in the mouse neuron. Green fluorescent protein (GFP)-based time-lapse imaging revealed cortactin redistribution from dendritic cytoplasm to postsynaptic sites by application of brain-derived neurotrophic factor (BDNF). This response was mediated by mitogen-activated protein (MAP) kinase activation and was dependent on the C-terminal SH3 domain. In contrast, activation of N-methyl-D-aspartate (NMDA) receptors induced loss of cortactin from postsynaptic sites. This NMDA-dependent redistribution was blocked by an Src family kinase inhibitor. Conversely, increasing Src family kinase activity induced cortactin phosphorylation and loss of cortactin from the postsynaptic sites. Finally, blocking of endogenous BDNF reduced the amount of cortactin at the postsynaptic sites and an NMDA receptor antagonist prevented this reduction. These results indicate the importance of counterbalance between BDNF and NMDA receptor-mediated signalling in the reorganization of the postsynaptic actin cytoskeleton during neuronal development.
Collapse
Affiliation(s)
- Junko Iki
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | |
Collapse
|
443
|
Mizui T, Takahashi H, Sekino Y, Shirao T. Overexpression of drebrin A in immature neurons induces the accumulation of F-actin and PSD-95 into dendritic filopodia, and the formation of large abnormal protrusions. Mol Cell Neurosci 2005; 30:149-57. [PMID: 16054392 DOI: 10.1016/j.mcn.2005.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/11/2005] [Accepted: 06/30/2005] [Indexed: 11/28/2022] Open
Abstract
Drebrin A is a neuron-specific F-actin binding protein, and plays a pivotal role in the spine formation. In this study, we expressed drebrin A tagged with green fluorescent protein (GFP-DA) in hippocampal neurons at 7-9 days in vitro when presynaptic terminals are not fully maturated. GFP-DA was accumulated in dendritic protrusions and formed large abnormal structures. Since these structures were similar to filopodia in terms of lack of MAP2 immunostaining, we named them "megapodia" meaning large dendritic filopodia. F-actin and PSD-95 were also accumulated in megapodia, and their amounts were significantly correlated with that of GFP-DA. However, the expression of GFP-DA did not result in the promotion of the morphological change from filopodia into spines. These results demonstrate that drebrin A accumulates spine-resident proteins via protein-protein interaction in filopodia, and suggest that the spine formation requires the concurrence of the increase of drebrin-A expression and the functional presynaptic contact.
Collapse
Affiliation(s)
- Toshiyuki Mizui
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | | | | | | |
Collapse
|
444
|
Raymond CR, Redman SJ. Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol 2005; 570:97-111. [PMID: 16284072 PMCID: PMC1464297 DOI: 10.1113/jphysiol.2005.098947] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Calcium regulates numerous processes in the brain. How one signal can coordinate so many diverse actions, even within the same neurone, is the subject of intense investigation. Here we have used two-photon calcium imaging to determine the mechanism that enables calcium to selectively and appropriately induce different forms of long-term potentiation (LTP) in rat hippocampus. Short-lasting LTP (LTP 1) required activation of ryanodine receptors (RyRs), which selectively increased calcium in synaptic spines. LTP of intermediate duration (LTP 2) was dependent on activation of inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) and subsequent calcium release specifically in dendrites. Long-lasting LTP (LTP 3) was selectively dependent on L-type voltage-dependent calcium channels (L-VDCCs), which generated somatic calcium influx. Activation of NMDA receptors was necessary, but not sufficient, for the generation of appropriate calcium signals in spines and dendrites, and the induction of LTP 1 and LTP 2. These results suggest that the selective induction of different forms of LTP is achieved via spatial segregation of functionally distinct calcium signals.
Collapse
Affiliation(s)
- Clarke R Raymond
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
445
|
Huang WD, Fei Z, Zhang X. Traumatic injury induced homer-1a gene expression in cultured cortical neurons of rat. Neurosci Lett 2005; 389:46-50. [PMID: 16087291 DOI: 10.1016/j.neulet.2005.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/06/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
The Homer proteins belong to one of the newly found postsynaptic density protein families. As an immediately early gene, the homer-1a is dynamically expressed and is upregulated by synaptic activity. The homer-1b/c is constitutively expressed and there is no change of gene expression with neuronal activity. In this study, we investigated whether a traumatic injury might regulate the homer-1a expression in cultured cortical neurons of rat. After 7 days in vitro cultivation, the rat fetus cortical neurons were divided into control and injured groups. Then, a traumatic injury was performed on a cortical neuronal culture using a punch device that consisted of 28 stainless steel blades joined together, these produced parallel cuts of 1.2 mm that were uniformly distributed through the cell layer. The lactate dehydrogenase level of the neuronal cultures medium was evaluated and the expression patterns of homer-1a, homer-1b/c were analyzed with the method of RT-PCR and Western blot at different times after the injury (10, 30 min, 1, 3, 6, 12, 24, 72 h). It was shown that there was no expression of homer-1a in the control group, but homer-1a was upregulated in the period of 10 min to 72 h after the traumatic injury. The homer-1b/c was clearly observed in the control group, but there was no change in its expression after traumatic stimulation. It was concluded that traumatic stimulation could induce the homer-1a gene expression, dynamically expressed homer-1a and constitutively expressed homer-1b/c might modulate the distribution and function of group I metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Wei-Dong Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, PR China
| | | | | |
Collapse
|
446
|
Szumlinski KK, Lominac KD, Kleschen MJ, Oleson EB, Dehoff MH, Schwarz MK, Schwartz MK, Seeburg PH, Seeberg PH, Worley PF, Kalivas PW. Behavioral and neurochemical phenotyping of Homer1 mutant mice: possible relevance to schizophrenia. GENES BRAIN AND BEHAVIOR 2005; 4:273-88. [PMID: 16011574 DOI: 10.1111/j.1601-183x.2005.00120.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Homer proteins are involved in the functional assembly of postsynaptic density proteins at glutamatergic synapses and are implicated in learning, memory and drug addiction. Here, we report that Homer1-knockout (Homer1-KO) mice exhibit behavioral and neurochemical abnormalities that are consistent with the animal models of schizophrenia. Relative to wild-type mice, Homer1-KO mice exhibited deficits in radial arm maze performance, impaired prepulse inhibition, enhanced 'behavioral despair', increased anxiety in a novel objects test, enhanced reactivity to novel environments, decreased instrumental responding for sucrose and enhanced MK-801- and methamphetamine-stimulated motor behavior. No-net-flux in vivo microdialysis revealed a decrease in extracellular glutamate content in the nucleus accumbens and an increase in the prefrontal cortex. Moreover, in Homer1-KO mice, cocaine did not stimulate a rise in frontal cortex extracellular glutamate levels, suggesting hypofrontality. These behavioral and neurochemical data derived from Homer1 mutant mice are consistent with the recent association of schizophrenia with a single-nucleotide polymorphism in the Homer1 gene and suggest that the regulation of extracellular levels of glutamate within limbo-corticostriatal structures by Homer1 gene products may be involved in the pathogenesis of this neuropsychiatric disorder.
Collapse
Affiliation(s)
- K K Szumlinski
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
447
|
Gasperini R, Foa L. Homer 1b/c expression correlates with zebrafish olfactory system development. ACTA ACUST UNITED AC 2005; 33:671-80. [PMID: 16217622 DOI: 10.1007/s11068-005-3335-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 01/27/2005] [Accepted: 04/06/2005] [Indexed: 12/13/2022]
Abstract
The zebrafish, (Danio rerio) is an important model organism for the analysis of molecular mechanisms that govern neuronal circuit development. The neuronal circuitry that mediates olfaction is crucial for the development and survival of all teleost fishes. In concert with other sensory systems, olfaction is functional at early stages in zebrafish development and mediates important behavioral and survival strategies in the developing larva. Odorant cues are transduced by an array of signaling molecules from receptors in olfactory sensory neurons. The scaffolding protein family known as Homer is well placed to orchestrate this signaling cascade by interacting with and coupling membrane bound receptors to cytosolic signaling partners. To date, Homer has not been demonstrated in the zebrafish. Here we report that the Homer 1b/c isoform was prominent in the olfactory system from the earliest stages of differentiation. We describe the spatial and temporal distribution of Homer in the zebrafish olfactory system. At 24 hours post fertilization (hpf), Homer expression delineated the boundary of the presumptive olfactory placode. Subsequent expression steadily increased throughout the developing olfactory placode, with a prominent localization to the dendritic knobs of the olfactory sensory neurons. Homer expression in the developing olfactory bulb was punctate and prominent in the glomeruli, displaying an apparent synaptic localization. This work supports the hypothesis that Homer is an important molecule in neuronal circuit development, necessary for crucial behaviors required for development and survival.
Collapse
Affiliation(s)
- Robert Gasperini
- Discipline of Anatomy and Physiology, School of Medicine, University of Tasmania, Tasmania, Australia
| | | |
Collapse
|
448
|
Miletic G, Miyabe T, Gebhardt KJ, Miletic V. Increased levels of Homer1b/c and Shank1a in the post-synaptic density of spinal dorsal horn neurons are associated with neuropathic pain in rats. Neurosci Lett 2005; 386:189-93. [PMID: 16002212 DOI: 10.1016/j.neulet.2005.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/31/2005] [Accepted: 06/04/2005] [Indexed: 11/20/2022]
Abstract
Activity-dependent plasticity in the spinal dorsal horn may underlie the development of neuropathic pain following peripheral nerve injury. In this study we examined whether the expression and loss of behavioral signs of neuropathic pain were associated with changes in the content of the scaffolding proteins Homer and Shank in the post-synaptic density (PSD) of the spinal dorsal horn. In animals exhibiting thermal hyperalgesia and differential weight-bearing behavior 7 days after loose ligation of the sciatic nerve the levels of Homer1b/c and Shank1a were significantly greater than in control, uninjured or sham-operated animals. These greater levels were specifically a reflection of increases in the injured, ipsilateral and not contralateral dorsal horn. In contrast, there were no differences in the PSD content of Homer1b/c and Shank1a in the dorsal horn of control or sham-operated animals and ligated animals in which the thermal hyperalgesia and differential weight-bearing behavior had disappeared 28 days after the loose ligation. These data revealed a close association between the expression and loss of allodynia and hyperalgesia with changes in the levels of Homer1b/c and Shank1a in the spinal dorsal horn. The reversible shift in the content of scaffolding proteins in the PSD may have important implications for the development of injury-elicited neuropathic pain.
Collapse
Affiliation(s)
- Gordana Miletic
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706-1102, USA
| | | | | | | |
Collapse
|
449
|
Maruoka H, Konno D, Hori K, Sobue K. Collaboration of PSD-Zip70 with its binding partner, SPAR, in dendritic spine maturity. J Neurosci 2005; 25:1421-30. [PMID: 15703396 PMCID: PMC6726009 DOI: 10.1523/jneurosci.3920-04.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent studies have reported on the molecular mechanisms underlying dendritic spine (spine) dynamics. Because most of these studies investigated spine dynamics by overexpressing constitutively active or dominant-negative PSD (postsynaptic density) proteins in cultured mature neurons, the results represent the enlargement of mature spines or their return to an immature state. Here, we developed the technique of in utero electroporation to investigate spine dynamics. Using this technique, we demonstrated the suppression of spine maturation by the C-terminal variants of PSD-Zip70 in vitro and in vivo. Transient overexpression of the C terminus of PSD-Zip70 and knock-down of PSD-Zip70 also displayed the destabilization of mature spines. We further found the PSD-Zip70 and SPAR (spine-associated RapGAP) interaction via the short C-terminal region of PSD-Zip70 and the GK-binding domain of SPAR. In association with immature spines induced by overexpression of the PSD-Zip70 C terminus or knock-down of PSD-Zip70, SPAR lost its spine localization. Overexpression of the GK-binding domain of SPAR also induced to form immature spines without affecting the localization of PSD-Zip70 in the small heads of filopodial spines. Our results suggest that PSD-Zip70 in collaboration with SPAR is critically involved in spine maturity, especially in the mature spine formation and the maintenance of spine maturity.
Collapse
Affiliation(s)
- Hisato Maruoka
- Department of Neuroscience, Osaka University Graduate School of Medicine, Suita City, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
450
|
Choi J, Ko J, Racz B, Burette A, Lee JR, Kim S, Na M, Lee HW, Kim K, Weinberg RJ, Kim E. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J Neurosci 2005; 25:869-79. [PMID: 15673667 PMCID: PMC6725612 DOI: 10.1523/jneurosci.3212-04.2005] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The small GTPases Rac1 and Cdc42 are key regulators of the morphogenesis of actin-rich dendritic spines in neurons. However, little is known about how activated Rac1/Cdc42 regulates dendritic spines. Insulin receptor substrate 53 (IRSp53), which is highly expressed in the postsynaptic density (PSD), is known to link activated Rac1/Cdc42 to downstream effectors for actin regulation in non-neural cells. Here, we report that IRSp53 interacts with two specific members of the PSD-95 family, PSD-95 and chapsyn-110/PSD-93, in brain. An IRSp53 mutant lacking the C-terminal PSD-95-binding motif shows significant loss of synaptic localization in cultured neurons. Overexpression of IRSp53 in cultured neurons increases the density of dendritic spines but does not affect their length or width. Conversely, short-interfering RNA-mediated knock-down of IRSp53 reduces the density, length, and width of spines. In addition, the density and size of spines are decreased by a dominant-negative IRSp53 with a point mutation in the Src homology 3 (SH3) domain and a dominant-negative proline-rich region of WAVE2 (Wiskott-Aldrich syndrome protein family Verprolin-homologous protein), a downstream effector of IRSp53 that binds to the SH3 domain of IRSp53. These results suggest that PSD-95 interaction is an important determinant of synaptic IRSp53 localization and that the SH3 domain of IRSp53 links activated Rac1/Cdc42 to downstream effectors for the regulation of spine morphogenesis.
Collapse
Affiliation(s)
- Jeonghoon Choi
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|