401
|
Goto T, Hirata M, Aoki Y, Iwase M, Takahashi H, Kim M, Li Y, Jheng HF, Nomura W, Takahashi N, Kim CS, Yu R, Seno S, Matsuda H, Aizawa-Abe M, Ebihara K, Itoh N, Kawada T. The hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-α agonist-induced amelioration of metabolic disorders in obese mice. J Biol Chem 2017; 292:9175-9190. [PMID: 28404815 DOI: 10.1074/jbc.m116.767590] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 04/12/2017] [Indexed: 01/05/2023] Open
Abstract
Obesity causes excess fat accumulation in white adipose tissues (WAT) and also in other insulin-responsive organs such as the skeletal muscle, increasing the risk for insulin resistance, which can lead to obesity-related metabolic disorders. Peroxisome proliferator-activated receptor-α (PPARα) is a master regulator of fatty acid oxidation whose activator is known to improve hyperlipidemia. However, the molecular mechanisms underlying PPARα activator-mediated reduction in adiposity and improvement of metabolic disorders are largely unknown. In this study we investigated the effects of PPARα agonist (fenofibrate) on glucose metabolism dysfunction in obese mice. Fenofibrate treatment reduced adiposity and attenuated obesity-induced dysfunctions of glucose metabolism in obese mice fed a high-fat diet. However, fenofibrate treatment did not improve glucose metabolism in lipodystrophic A-Zip/F1 mice, suggesting that adipose tissue is important for the fenofibrate-mediated amelioration of glucose metabolism, although skeletal muscle actions could not be completely excluded. Moreover, we investigated the role of the hepatokine fibroblast growth factor 21 (FGF21), which regulates energy metabolism in adipose tissue. In WAT of WT mice, but not of FGF21-deficient mice, fenofibrate enhanced the expression of genes related to brown adipocyte functions, such as Ucp1, Pgc1a, and Cpt1b Fenofibrate increased energy expenditure and attenuated obesity, whole body insulin resistance, and adipocyte dysfunctions in WAT in high-fat-diet-fed WT mice but not in FGF21-deficient mice. These findings indicate that FGF21 is crucial for the fenofibrate-mediated improvement of whole body glucose metabolism in obese mice via the amelioration of WAT dysfunctions.
Collapse
Affiliation(s)
- Tsuyoshi Goto
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan, .,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501 Japan
| | - Mariko Hirata
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Yumeko Aoki
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Mari Iwase
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Haruya Takahashi
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Minji Kim
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Yongjia Li
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Huei-Fen Jheng
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Wataru Nomura
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501 Japan
| | - Nobuyuki Takahashi
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501 Japan
| | - Chu-Sook Kim
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749, South Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749, South Korea
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
| | - Megumi Aizawa-Abe
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto 606-8507, Japan, and
| | - Ken Ebihara
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto 606-8507, Japan, and
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan
| | - Teruo Kawada
- From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501 Japan
| |
Collapse
|
402
|
Mele L, Carobbio S, Brindani N, Curti C, Rodriguez-Cuenca S, Bidault G, Mena P, Zanotti I, Vacca M, Vidal-Puig A, Del Rio D. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function. Mol Nutr Food Res 2017; 61. [PMID: 28276197 DOI: 10.1002/mnfr.201700074] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 01/09/2023]
Abstract
SCOPE Consumption of products rich in flavan-3-ols, such as tea and cocoa, has been associated with decreased obesity, partially dependent on their capacity to enhance energy expenditure. Despite these phenolics having been reported to increase the thermogenic program in brown and white adipose tissue, flavan-3-ols are vastly metabolised in vivo to phenyl-γ-valerolactones. Therefore, we hypothesize that phenyl-γ-valerolactones may directly stimulate the differentiation and the activation of brown adipocytes. METHODS AND RESULTS Immortalized brown pre-adipocytes were differentiated in presence of (R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL1), (R)-5-(3´-hydroxyphenyl)-γ-valerolactone-4'-O-sulphate (VL2), (R)-5-phenyl-γ-valerolactone-3´,4´-di-O-sulphate (VL3), at concentrations of 2 or 10μM, whereas fully differentiated brown adipocyte were treated acutely (6-24h). None of the treatments regulated the expression levels of the uncouple protein 1, nor of the main transcription factors involved in brown adipogenesis. Similarly, mitochondrial content was unchanged after treatments. Moreover these compounds did not display peroxisome proliferator-activated receptor γ-agonist activity, as evaluated by luciferase assay, and did not enhance norepinephrine-stimulated lipolysis in mature adipocytes. However, both VL1 and VL2 prevented oxidative stress caused by H2 O2 . CONCLUSION Phenyl-γ-valerolactones and their sulphated forms do not influence brown adipocyte development or function at physiological or supraphysiological doses in vitro, but they are active protecting brown adipocytes from increased reactive oxygen species production.
Collapse
Affiliation(s)
- Laura Mele
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Nicoletta Brindani
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy.,Department of Pharmacy, University of Parma, Parma, Italy
| | - Claudio Curti
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Sergio Rodriguez-Cuenca
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy
| | - Ilaria Zanotti
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Michele Vacca
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food & Drug, University of Parma, Parma, Italy.,NNEdPro Global Centre for Nutrition and, St John's Innovation Centre, Cowley Road, Cambridge
| |
Collapse
|
403
|
Modica S, Wolfrum C. The dual role of BMP4 in adipogenesis and metabolism. Adipocyte 2017; 6:141-146. [PMID: 28425843 PMCID: PMC5477726 DOI: 10.1080/21623945.2017.1287637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
BMP4 has a well-established role in triggering commitment of mesenchymal stem cells into the osteogenic and adipogenic linage. We recently described an additional dual function in adipogenesis: after promoting the formation of both white and brown pre-adipocytes, Bmp4 drives terminal differentiation into mature white rather than brown fat cells. Besides this, Bmp4 seems to have a dual role in metabolism either promoting or repressing oxidative metabolism in a cell context dependent manner.
Collapse
Affiliation(s)
- Salvatore Modica
- a Swiss Federal Institute of Technology, Department of Health Science , Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology , Schwerzenbach , Switzerland
| | - Christian Wolfrum
- a Swiss Federal Institute of Technology, Department of Health Science , Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology , Schwerzenbach , Switzerland
| |
Collapse
|
404
|
Taylor D, Gottlieb RA. Parkin-mediated mitophagy is downregulated in browning of white adipose tissue. Obesity (Silver Spring) 2017; 25:704-712. [PMID: 28240819 PMCID: PMC5373982 DOI: 10.1002/oby.21786] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Browning of white adipose tissue (WAT) promotes increased energy expenditure through the action of uncoupling protein 1 (UCP1) and is an attractive target to promote weight loss in obesity. Lowering of mitochondrial membrane potential by UCP1 is uniquely beneficial in this context; in other tissues, reduced membrane potential promotes mitochondrial clearance via mitophagy. It is unknown how parkin-mediated mitophagy is regulated in beige adipocytes. METHODS The relationship between parkin expression and WAT browning was investigated in 3T3-L1 adipocytes and parkin-deficient male C57BL/6 mice in response to pharmacological browning stimuli. RESULTS Rosiglitazone treatment in 3T3-L1 adipocytes promoted mitochondrial biogenesis, UCP1 expression, and mitochondrial uncoupling. Parkin expression was decreased and reduced mitochondrial-associated parkin, and p62 indicated a reduction in mitophagy activity. Parkin overexpression prevented mitochondrial remodeling in response to rosiglitazone. In CL 316,243-treated wild-type mice, decreased parkin expression was observed in subcutaneous inguinal WAT, where UCP1 was strongly induced. CL 316,243 treatment weakly induced UCP1 expression in the gonadal depot, where parkin expression was unchanged. In contrast, parkin-deficient mice exhibited robust UCP1 expression in gonadal WAT following CL 316,243 treatment. CONCLUSIONS WAT browning was associated with a decrease in parkin-mediated mitophagy, and parkin expression antagonized browning of WAT.
Collapse
Affiliation(s)
- David Taylor
- The Cedars-Sinai Heart Institute, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roberta A. Gottlieb
- The Cedars-Sinai Heart Institute, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
405
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
406
|
Kodo K, Sugimoto S, Nakajima H, Mori J, Itoh I, Fukuhara S, Shigehara K, Nishikawa T, Kosaka K, Hosoi H. Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice. PLoS One 2017; 12:e0173661. [PMID: 28288167 PMCID: PMC5348037 DOI: 10.1371/journal.pone.0173661] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin (EPO), clinically used as a hematopoietic drug, has received much attention due to its nonhematopoietic effects. EPO reportedly has beneficial effects on obesity and diabetes mellitus. We investigated whether interscapular brown adipose tissue (iBAT: main part of classical BAT) could play a role in EPO’s anti-obesity and anti-diabetic effects in diet-induced obese mice. Four-week-old male C57BL/6J mice were fed a high-fat diet (HFD-Con), and half were additionally given an intraperitoneal injection of recombinant human EPO (200 IU/kg) (HFD-EPO) thrice a week for four weeks. At 8 weeks, EPO-injected mice showed significantly reduced body weight with reduced epididymal and subcutaneous white fat mass and unchanged caloric intake and locomotor activity. HOMA-IR (insulin resistance index) and glucose levels during intraperitoneal glucose tolerance test (IPGTT) were significantly lower in HFD-EPO mice than in HFD-Con mice. EPO-injected mice also showed increased oxygen consumption, indicative of metabolic rate, and skin temperature around iBAT tissue masses. EPO significantly upregulated the PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16), a transcriptional factor with a crucial role in brown adipocyte differentiation. EPO significantly increased phosphorylated signal transducer and activator of transcription 3 (STAT3), which is downstream of erythropoietin receptor (EpoR) and known to stabilize PRDM16. EPO’s suppression of myocyte enhancer factor 2c (Mef2c) and microRNA-133a (miR-133a) via β3-adrenergic receptor caused PRDM16 upregulation. EPO-mediated enhancement of EpoR/STAT3 and β-adrenergic receptor/Mef2c/miR-133 pathways dramatically increases total uncoupling protein 1 (UCP1), an essential enzyme for BAT thermogenesis. Furthermore, EPO activated BAT’s endocrine functions. EPO facilitated fibroblast growth factor 21 (FGF21) production and excretion in iBAT, associated with reduction of liver gluconeogenesis-related genes. Thus, EPO’s improvement of obesity and glucose homeostasis can be attributed to increased iBAT thermogenic capacity and activation of BAT’s endocrine functions.
Collapse
Affiliation(s)
- Kazuki Kodo
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- Department of Pediatrics, Ayabe Municipal Hospital, Ayabe City, Japan
- * E-mail: (SS); (HN)
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- * E-mail: (SS); (HN)
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Ikuyo Itoh
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Shota Fukuhara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Keiichi Shigehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kitaro Kosaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
407
|
Dumortier O, Roger E, Pisani DF, Casamento V, Gautier N, Lebrun P, Johnston H, Lopez P, Amri EZ, Jousse C, Fafournoux P, Prentki M, Hinault C, Van Obberghen E. Age-Dependent Control of Energy Homeostasis by Brown Adipose Tissue in Progeny Subjected to Maternal Diet-Induced Fetal Programming. Diabetes 2017; 66:627-639. [PMID: 27927722 DOI: 10.2337/db16-0956] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/27/2016] [Indexed: 11/13/2022]
Abstract
Epidemiological and animal studies show that deleterious maternal environments predispose aging offspring to metabolic disorders and type 2 diabetes. Young progenies in a rat model of maternal low-protein (LP) diet are normoglycemic despite collapsed insulin secretion. However, without further worsening of the insulin secretion defect, glucose homeostasis deteriorates in aging LP descendants. Here we report that normoglycemic and insulinopenic 3-month-old LP progeny shows increased body temperature and energy dissipation in association with enhanced brown adipose tissue (BAT) activity. In addition, it is protected against a cold challenge and high-fat diet (HFD)-induced obesity with associated insulin resistance and hyperglycemia. Surgical BAT ablation in 3-month-old LP offspring normalizes body temperature and causes postprandial hyperglycemia. At 10 months, BAT activity declines in LP progeny with the appearance of reduced protection to HFD-induced obesity; at 18 months, LP progeny displays a BAT activity comparable to control offspring and insulin resistance and hyperglycemia occur. Together our findings identify BAT as a decisive physiological determinant of the onset of metabolic dysregulation in offspring predisposed to altered β-cell function and hyperglycemia and place it as a critical regulator of fetal programming of adult metabolic disease.
Collapse
Affiliation(s)
| | - Estelle Roger
- Université Côte d'Azur, INSERM, CNRS, IRCAN, Nice, France
| | | | | | - Nadine Gautier
- Université Côte d'Azur, INSERM, CNRS, IRCAN, Nice, France
| | | | | | - Pascal Lopez
- Université Côte d'Azur, INSERM, CNRS, IRCAN, Nice, France
| | | | | | | | - Marc Prentki
- CRCHUM and Montreal Diabetes Research Center and Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
408
|
Altshuler-Keylin S, Kajimura S. Mitochondrial homeostasis in adipose tissue remodeling. Sci Signal 2017; 10:10/468/eaai9248. [PMID: 28246203 DOI: 10.1126/scisignal.aai9248] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial homeostasis is regulated by a balance between mitochondrial biogenesis and degradation. Emerging evidence suggests that mitophagy, a selective form of autophagy that degrades mitochondria, plays a key role in the physiology and pathophysiology of mitochondria-enriched cells, such as brown and beige adipocytes. This review discusses findings regarding the roles of autophagy and mitophagy in cellular development, maintenance, and functions of metabolic organs, including adipose tissue, liver, and pancreas. A better understanding of the molecular links between mitophagy and energy metabolism will help to identify promising targets for the treatment of obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Svetlana Altshuler-Keylin
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| | - Shingo Kajimura
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| |
Collapse
|
409
|
Pradhan RN, Zachara M, Deplancke B. A systems perspective on brown adipogenesis and metabolic activation. Obes Rev 2017; 18 Suppl 1:65-81. [PMID: 28164456 DOI: 10.1111/obr.12512] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
Abstract
Brown adipocytes regulate energy expenditure via mitochondrial uncoupling. This makes these fat cells attractive therapeutic targets to tackle the burgeoning issue of obesity, which itself is coupled to insulin resistance, type 2 diabetes, cardiovascular and fatty liver disease. Recent research has revealed a complex network underlying brown fat cell differentiation and thermogenic activation, involving secreted factors, signal transduction, metabolic pathways and gene regulatory components. Given that brown fat is now reported to be present in adult humans, it is desirable to harness the knowledge from each network module to design effective therapeutic strategies. In this review, we will present a systems perspective on brown adipogenesis and the subsequent metabolic activation of brown adipocytes by integrating signaling, metabolic and gene regulatory modules with a specific focus on known 'druggable' targets within each module.
Collapse
Affiliation(s)
- R N Pradhan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - M Zachara
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - B Deplancke
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
410
|
van den Berg SM, van Dam AD, Rensen PCN, de Winther MPJ, Lutgens E. Immune Modulation of Brown(ing) Adipose Tissue in Obesity. Endocr Rev 2017; 38:46-68. [PMID: 27849358 DOI: 10.1210/er.2016-1066] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Obesity is associated with a variety of medical conditions such as type 2 diabetes and cardiovascular diseases and is therefore responsible for high morbidity and mortality rates. Increasing energy expenditure by brown adipose tissue (BAT) is a current novel strategy to reduce the excessive energy stores in obesity. Brown adipocytes burn energy to generate heat and are mainly activated upon cold exposure. As prolonged cold exposure is not a realistic therapy, researchers worldwide are searching for novel ways to activate BAT and/or induce beiging of white adipose tissue. Recently, the contribution of immune cells in the regulation of brown adipocyte activity and beiging of white adipose tissue has gained increased attention, with a prominent role for eosinophils and alternatively activated macrophages. This review discusses the rediscovery of BAT, presents an overview of modes of activation and differentiation of beige and brown adipocytes, and describes the recently discovered immunological pathways that are key in mediating brown/beige adipocyte development and function. Interventions in immunological pathways harbor the potential to provide novel strategies to increase beige and brown adipose tissue activity as a therapeutic target for obesity.
Collapse
Affiliation(s)
- Susan M van den Berg
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands
| | - Andrea D van Dam
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and
| | - Menno P J de Winther
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, 1105AZ The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, 80539 Munich, Germany
| |
Collapse
|
411
|
Kohlie R, Perwitz N, Resch J, Schmid SM, Lehnert H, Klein J, Iwen KA. Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. J Mol Endocrinol 2017; 58:57-66. [PMID: 27923872 DOI: 10.1530/jme-16-0159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
Abstract
Brown adipose tissue (BAT) is key to energy homeostasis. By virtue of its thermogenic potential, it may dissipate excessive energy, regulate body weight and increase insulin sensitivity. Catecholamines are critically involved in the regulation of BAT thermogenesis, yet research has focussed on the effects of noradrenaline and adrenaline. Some evidence suggests a role of dopamine (DA) in BAT thermogenesis, but the cellular mechanisms involved have not been addressed. We employed our extensively characterised murine brown adipocyte cells. D1-like and D2-like receptors were detectable at the protein level. Stimulation with DA caused an increase in cAMP concentrations. Oxygen consumption rates (OCR), mitochondrial membrane potential (Δψm) and uncoupling protein 1 (UCP1) levels increased after 24 h of treatment with either DA or a D1-like specific receptor agonist. A D1-like receptor antagonist abolished the DA-mediated effect on OCR, Δψm and UCP1. DA induced the release of fatty acids, which did not additionally alter DA-mediated increases of OCR. Mitochondrial mass (as determined by (i) CCCP- and oligomycin-mediated effects on OCR and (ii) immunoblot analysis of mitochondrial proteins) also increased within 24 h. This was accompanied by an increase in peroxisome proliferator-activated receptor gamma co-activator 1 alpha protein levels. Also, DA caused an increase in p38 MAPK phosphorylation and pharmacological inhibition of p38 MAPK abolished the DA-mediated effect on Δψm In summary, our study is the first to reveal direct D1-like receptor and p38 MAPK-mediated increases of thermogenesis and mitochondrial mass in brown adipocytes. These results expand our understanding of catecholaminergic effects on BAT thermogenesis.
Collapse
Affiliation(s)
- Rose Kohlie
- Universität zu LübeckUniversitätsklinikum Schleswig-Holstein, Campus Lübeck, Medizinische Klinik I, Lübeck, Germany
| | - Nina Perwitz
- Universität zu LübeckUniversitätsklinikum Schleswig-Holstein, Campus Lübeck, Medizinische Klinik I, Lübeck, Germany
| | - Julia Resch
- Universität zu LübeckUniversitätsklinikum Schleswig-Holstein, Campus Lübeck, Medizinische Klinik I, Lübeck, Germany
| | - Sebastian M Schmid
- Universität zu LübeckUniversitätsklinikum Schleswig-Holstein, Campus Lübeck, Medizinische Klinik I, Lübeck, Germany
| | - Hendrik Lehnert
- Universität zu LübeckUniversitätsklinikum Schleswig-Holstein, Campus Lübeck, Medizinische Klinik I, Lübeck, Germany
| | - Johannes Klein
- Universität zu LübeckUniversitätsklinikum Schleswig-Holstein, Campus Lübeck, Medizinische Klinik I, Lübeck, Germany
| | - K Alexander Iwen
- Universität zu LübeckUniversitätsklinikum Schleswig-Holstein, Campus Lübeck, Medizinische Klinik I, Lübeck, Germany
| |
Collapse
|
412
|
Koksharova E, Ustyuzhanin D, Philippov Y, Mayorov A, Shestakova M, Shariya M, Ternovoy S, Dedov I. The Relationship Between Brown Adipose Tissue Content in Supraclavicular Fat Depots and Insulin Sensitivity in Patients with Type 2 Diabetes Mellitus and Prediabetes. Diabetes Technol Ther 2017; 19:96-102. [PMID: 28118051 PMCID: PMC5278804 DOI: 10.1089/dia.2016.0360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The evaluation of brown adipose tissue (BAT) and its role in metabolism and obesity remains an important topic in the recent literature. This study evaluated the influence of the BAT triglyceride content measured by proton magnetic resonance (MR) spectroscopy in patients with type 2 diabetes mellitus (DM2) and prediabetes on insulin sensitivity. METHODS A total of 25 patients with DM2 and prediabetes (45.9 ± 10.1 years old, body mass index [BMI] of 31.6 ± 5.4 kg/m2) underwent anthropometric measurements (BMI), insulin sensitivity analysis (M value during euglycemic hyperinsulinemic clamp and homeostasis model assessment of insulin resistance), proton MR spectroscopy, and blood tests (total cholesterol, low-density lipoproteins, high-density lipoproteins, and triglycerides). The relationship between the triglyceride content in the supraclavicular fat depot and insulin sensitivity, anthropometric measurements, and blood test results was assessed. RESULTS The triglyceride content in the supraclavicular fat depot varied between 79.2% and 97.1% (mean: 92.6% ± 4.2%). The triglyceride content in the subcutaneous white adipose tissue of the neck was significantly higher (85.3%-99.3%; mean: 95.5% ± 2.9%; P = 0.0007). The triglyceride content in the supraclavicular fat depot exhibited a significantly moderate correlation with the BMI (r = 0.64; P = 0.0009). A significant weak negative correlation between the supraclavicular fat content and M value was revealed (r = -0.44; P = 0.002). Patients with high insulin resistance (IR) had a higher triglyceride content in the supraclavicular fat depot than patients with normal and lower IR (94.3% ± 2.0% vs. 90.4% ± 5.2%; P = 0.02). CONCLUSIONS Reducing the BAT content in the supraclavicular fat depot can influence the development of IR in patients with DM2 and prediabetes.
Collapse
Affiliation(s)
| | | | | | - Alexander Mayorov
- Endocrinology Research Centre, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina Shestakova
- Endocrinology Research Centre, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Sergey Ternovoy
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ivan Dedov
- Endocrinology Research Centre, Moscow, Russia
| |
Collapse
|
413
|
Arias N, Picó C, Teresa Macarulla M, Oliver P, Miranda J, Palou A, Portillo MP. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity (Silver Spring) 2017; 25:111-121. [PMID: 27874268 DOI: 10.1002/oby.21706] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To analyze whether a combination of quercetin (Q) and resveratrol (RSV) would induce a white adipose tissue (WAT) browning effect. METHODS Thirty-six rats were fed an obesogenic diet and divided into four groups: control, treated with RSV (15 mg/kg body weight/day; RSV group), treated with Q (30 mg/kg body weight/day; Q group), or treated with both polyphenols (RSV + Q group). RESULTS After 6 weeks, body and WAT weights were significantly reduced in the RSV + Q group. In perirenal WAT of the control, RSV, and Q groups, white unilocular adipocytes appeared in the majority of cells, while in the RSV + Q group numerous multilocular adipocytes with positive immunostaining for UCP1 were observed. The presence of UCP1 was confirmed by Western blot. This group also revealed increased mRNA levels of Cidea, Hocx9, Bmp4, Slc27a1, Pat2, Atgl, and Atp5d. Interscapular brown adipose tissue weight showed no differences between groups, but the Cidea mRNA level was increased in the RSV group, the Cox-2 mRNA level in the RSV + Q group, and UCP1 protein expression in the RSV and the RSV + Q groups. CONCLUSIONS This study demonstrated that the RSV + Q combination produces a brown-like remodeling effect in perirenal WAT, as well as increased UCP1 protein expression in interscapular brown adipose tissue.
Collapse
Affiliation(s)
- Noemí Arias
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - M Teresa Macarulla
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Jonatan Miranda
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - María P Portillo
- Department of Nutrition and Food Science, Nutrition and Obesity Group, University of the Basque Country (UPV/EHU), Lucio Lascaray Center and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Vitoria, Spain
| |
Collapse
|
414
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
415
|
Babaei R, Bayindir-Buchhalter I, Meln I, Vegiopoulos A. Immuno-Magnetic Isolation and Thermogenic Differentiation of White Adipose Tissue Progenitor Cells. Methods Mol Biol 2017; 1566:37-48. [PMID: 28244039 DOI: 10.1007/978-1-4939-6820-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Appropriate cell models are necessary for the investigation of thermogenic beige adipocyte differentiation from progenitor cells. Here, we describe a primary cell culture method that is based on defined progenitor cells from murine white adipose tissue and aims at minimizing confounding factors including cell heterogeneity and nonphysiological differentiation inducers. Adipocyte progenitor cells are enriched by immuno-magnetic separation, expanded minimally, and induced for beige adipocyte differentiation with carbaprostacyclin, a stable analogue of the endogenous mediator PGI2.
Collapse
Affiliation(s)
- Rohollah Babaei
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Irem Bayindir-Buchhalter
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Irina Meln
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Alexandros Vegiopoulos
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
| |
Collapse
|
416
|
Wankhade UD, Shen M, Yadav H, Thakali KM. Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2365609. [PMID: 28105413 PMCID: PMC5220392 DOI: 10.1155/2016/2365609] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022]
Abstract
Nonshivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production in order to dissipate energy as heat. Because of its crucial role in regulating energy homeostasis, ongoing exploration of BAT has emphasized its therapeutic potential in addressing the global epidemics of obesity and diabetes. The recent appreciation that adult humans possess functional BAT strengthens this prospect. Furthermore, it has been identified that there are both classical brown adipocytes residing in dedicated BAT depots and "beige" adipocytes residing in white adipose tissue depots that can acquire BAT-like characteristics in response to environmental cues. This review aims to provide a brief overview of BAT research and summarize recent findings concerning the physiological, cellular, and developmental characteristics of brown adipocytes. In addition, some key genetic, molecular, and pharmacologic targets of BAT/Beige cells that have been reported to have therapeutic potential to combat obesity will be discussed.
Collapse
Affiliation(s)
- Umesh D. Wankhade
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Hariom Yadav
- Diabetes, Endocrinology, and Obesity Branch, National Institutes of Health, Bethesda, MD, USA
| | - Keshari M. Thakali
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
417
|
Zhu Q, Ghoshal S, Tyagi R, Chakraborty A. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain. Mol Metab 2016; 6:73-85. [PMID: 28123939 PMCID: PMC5220553 DOI: 10.1016/j.molmet.2016.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE IP6 kinases (IP6Ks) regulate cell metabolism and survival. Mice with global (IP6K1-KO) or adipocyte-specific (AdKO) deletion of IP6K1 are protected from diet induced obesity (DIO) at ambient (23 °C) temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE). Thus, at thermoneutral (30 °C) temperature, high fat diet (HFD)-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. METHODS Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR), fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. RESULTS Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C) exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. CONCLUSIONS Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sarbani Ghoshal
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Richa Tyagi
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anutosh Chakraborty
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
418
|
Labbé SM, Mouchiroud M, Caron A, Secco B, Freinkman E, Lamoureux G, Gélinas Y, Lecomte R, Bossé Y, Chimin P, Festuccia WT, Richard D, Laplante M. mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Sci Rep 2016; 6:37223. [PMID: 27876792 PMCID: PMC5120333 DOI: 10.1038/srep37223] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
In response to cold, brown adipose tissue (BAT) increases its metabolic rate and expands its mass to produce heat required for survival, a process known as BAT recruitment. The mechanistic target of rapamycin complex 1 (mTORC1) controls metabolism, cell growth and proliferation, but its role in regulating BAT recruitment in response to chronic cold stimulation is unknown. Here, we show that cold activates mTORC1 in BAT, an effect that depends on the sympathetic nervous system. Adipocyte-specific mTORC1 loss in mice completely blocks cold-induced BAT expansion and severely impairs mitochondrial biogenesis. Accordingly, mTORC1 loss reduces oxygen consumption and causes a severe defect in BAT oxidative metabolism upon cold exposure. Using in vivo metabolic imaging, metabolomics and transcriptomics, we show that mTORC1 deletion impairs glucose and lipid oxidation, an effect linked to a defect in tricarboxylic acid (TCA) cycle activity. These analyses also reveal a severe defect in nucleotide synthesis in the absence of mTORC1. Overall, these findings demonstrate an essential role for mTORC1 in the regulation of BAT recruitment and metabolism in response to cold.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Alexandre Caron
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Blandine Secco
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Guillaume Lamoureux
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Yves Gélinas
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Roger Lecomte
- Centre d'imagerie moléculaire de Sherbrooke (CIMS), Département de Médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada
| | - Patricia Chimin
- Department of Physiology &Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - William T Festuccia
- Department of Physiology &Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Denis Richard
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
419
|
Lee C, Kim KH, Cohen P. MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 2016; 100:182-187. [PMID: 27216708 PMCID: PMC5116416 DOI: 10.1016/j.freeradbiomed.2016.05.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
Mitochondria are ancient organelles that are thought to have emerged from once free-living α-proto-bacteria. As such, they still possess several bacterial-like qualities, including a semi-autonomous genetic system, complete with an independent genome and a unique genetic code. The bacterial-like circular mitochondrial DNA (mtDNA) has been described to encode 37 genes, including 22 tRNAs, 2 rRNAs, and 13 mRNAs. Two additional peptides reported to originate from the mtDNA, namely humanin (Hashimoto et al., 2001; Ikone et al., 2003; Guo et al., 2003) [1-3] and MOTS-c (mitochondrial ORF of the twelve S c) (Lee et al., 2015) [4], indicate a larger mitochondrial genetic repertoire (Shokolenko and Alexeyev, 2015) [5]. These mitochondrial-derived peptides (MDPs) have profound and distinct biological activities and provide a paradigm-shifting concept of active mitochondrial-encoded signals that act at the cellular and organismal level (i.e. mitochondrial hormone) (da Cunha et al., 2015; Quiros et al., 2016) [6,7]. Considering that mitochondria are the single most important metabolic organelle, it is not surprising that these MDPs have metabolic actions. MOTS-c has been shown to target the skeletal muscle and enhance glucose metabolism. As such, MOTS-c has implications in the regulation of obesity, diabetes, exercise, and longevity, representing an entirely novel mitochondrial signaling mechanism to regulate metabolism within and between cells.
Collapse
Affiliation(s)
- Changhan Lee
- USC Leonard Davis School of Gerontology, 3715 McClintock Ave., Suite 103, Los Angeles, CA 90089, United States.
| | - Kyung Hwa Kim
- USC Leonard Davis School of Gerontology, 3715 McClintock Ave., Suite 103, Los Angeles, CA 90089, United States
| | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, 3715 McClintock Ave., Suite 103, Los Angeles, CA 90089, United States.
| |
Collapse
|
420
|
Smith BK, Ford RJ, Desjardins EM, Green AE, Hughes MC, Houde VP, Day EA, Marcinko K, Crane JD, Mottillo EP, Perry CGR, Kemp BE, Tarnopolsky MA, Steinberg GR. Salsalate (Salicylate) Uncouples Mitochondria, Improves Glucose Homeostasis, and Reduces Liver Lipids Independent of AMPK-β1. Diabetes 2016; 65:3352-3361. [PMID: 27554471 PMCID: PMC5233442 DOI: 10.2337/db16-0564] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022]
Abstract
Salsalate is a prodrug of salicylate that lowers blood glucose in patients with type 2 diabetes (T2D) and reduces nonalcoholic fatty liver disease (NAFLD) in animal models; however, the mechanism mediating these effects is unclear. Salicylate directly activates AMPK via the β1 subunit, but whether salsalate requires AMPK-β1 to improve T2D and NAFLD has not been examined. Therefore, wild-type (WT) and AMPK-β1-knockout (AMPK-β1KO) mice were treated with a salsalate dose resulting in clinically relevant serum salicylate concentrations (∼1 mmol/L). Salsalate treatment increased VO2, lowered fasting glucose, improved glucose tolerance, and led to an ∼55% reduction in liver lipid content. These effects were observed in both WT and AMPK-β1KO mice. To explain these AMPK-independent effects, we found that salicylate increases oligomycin-insensitive respiration (state 4o) and directly increases mitochondrial proton conductance at clinical concentrations. This uncoupling effect is tightly correlated with the suppression of de novo lipogenesis. Salicylate is also able to stimulate brown adipose tissue respiration independent of uncoupling protein 1. These data indicate that the primary mechanism by which salsalate improves glucose homeostasis and NAFLD is via salicylate-driven mitochondrial uncoupling.
Collapse
Affiliation(s)
- Brennan K Smith
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alex E Green
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Meghan C Hughes
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Vanessa P Houde
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Emily A Day
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katarina Marcinko
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Justin D Crane
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Emilio P Mottillo
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St Vincent's Institute and Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
421
|
Muzik O, Mangner TJ, Leonard WR, Kumar A, Granneman JG. Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults. J Nucl Med 2016; 58:799-806. [PMID: 27789721 DOI: 10.2967/jnumed.116.180992] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m2) underwent 11C-meta-hydroxyephedrin (11C-HED) and 15O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18F-FDG tracer uptake. Blood flow and 11C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO2) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results:18F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11C-HED RI under thermoneutral conditions significantly predicted 18F-FDG uptake during cold stress (R2 = 0.68, P < 0.01). In contrast to the significant increase of 11C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11C-HED RI and 18F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan .,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tom J Mangner
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - William R Leonard
- Department of Anthropology, Northwestern University, Evanston, Illinois
| | - Ajay Kumar
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan; and.,Center for Integrative Metabolic and Endocrine Research and Family Medicine
| |
Collapse
|
422
|
Matsukawa T, Villareal MO, Motojima H, Isoda H. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. J Nutr Biochem 2016; 40:77-85. [PMID: 27865158 DOI: 10.1016/j.jnutbio.2016.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 11/25/2022]
Abstract
Obesity is a serious health problem and a major risk factor for the onset of several diseases such as heart disease, diabetes, stroke and cancer. The conversion of white adipocytes to brown-like adipocytes, also called beige or brite adipocytes, by pharmacological and dietary compounds has gained attention as an effective treatment for obesity. Cyanidin-3-glucoside (Cy3G), a polyphenolic compound contained in black soybean, blueberry and grape, has several antiobesity effects. However, there are no reports on the role of Cy3G in the induction of differentiation of preadipocytes to beige adipocytes and corresponding phenotypes. Here, the formation of beige adipocyte phenotypes following treatment with Cy3G was evaluated using 3T3-L1 adipocytes. Cy3G induced phenotypic changes to white adipocytes, such as increased multilocular lipid droplets and mitochondrial content. Additionally, the expression of mitochondrial genes (TFAM, SOD2, UCP-1 and UCP-2), UCP-1 protein and beige adipocyte markers (CITED1 and TBX1) in 3T3-L1 adipocytes was increased by Cy3G. Furthermore, Cy3G promoted preadipocyte differentiation by up-regulating of C/EBPβ through the elevation of the intracellular cAMP levels. These results indicated that Cy3G elevates the intracellular cAMP levels, which induces beige adipocyte phenotypes. This is the first report on the effect of Cy3G on induction of differentiation of preadipocytes into beige adipocyte phenotypes.
Collapse
Affiliation(s)
- Toshiya Matsukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Myra O Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Hideko Motojima
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki, 305-8572, Japan.
| |
Collapse
|
423
|
Koh EH, Chen Y, Bader DA, Hamilton MP, He B, York B, Kajimura S, McGuire SE, Hartig SM. Mitochondrial Activity in Human White Adipocytes Is Regulated by the Ubiquitin Carrier Protein 9/microRNA-30a Axis. J Biol Chem 2016; 291:24747-24755. [PMID: 27758866 DOI: 10.1074/jbc.m116.749408] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/30/2016] [Indexed: 11/06/2022] Open
Abstract
The acquisition of beige adipocyte features by white fat cells corresponds to protection against obesity-induced metabolic diseases in humans and animal models of type 2 diabetes. In adipose tissue, expression of the E2 small ubiquitin-like modifier ligase ubiquitin carrier protein 9 (Ubc9) is positively correlated with markers of insulin resistance and corresponds with impaired browning of human white adipocytes. However, the molecular regulation of Ubc9 expression in adipocytes and other cells remains unclear. In this study, we demonstrate that the mRNA and protein expression of Ubc9 are regulated by the microRNA miRNA-30a (miR-30a) in human subcutaneous adipocytes. Ubc9 and miR-30a exhibit inverse expression in adipose tissue, with miR-30a robustly elevated in brown fat. Depletion of Ubc9 by siRNA or enforced expression of a miR-30a mimic augments mitochondrial volume and respiration in human white adipocytes, reflecting features of brown fat cells. Furthermore, Ubc9 depletion induces a brown fat gene program in human subcutaneous adipocytes. Induction of the beige-selective gene program corresponds to stabilization of the PR domain-containing 16 (PRDM16) protein, an obligate transcriptional regulator of the brown/beige fat metabolic program in white adipocytes that interacts with Ubc9. Taken together, our data demonstrate a previously unappreciated molecular axis that controls browning of human white adipocytes.
Collapse
Affiliation(s)
- Eun Hee Koh
- From the Departments of Molecular and Cellular Biology and; the Department of Internal Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Yong Chen
- the Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, and
| | - David A Bader
- From the Departments of Molecular and Cellular Biology and
| | | | - Bin He
- From the Departments of Molecular and Cellular Biology and; Medicine, Division of Hematology and Oncology, Baylor College of Medicine, Houston, Texas 77030
| | - Brian York
- From the Departments of Molecular and Cellular Biology and
| | - Shingo Kajimura
- the Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, and
| | - Sean E McGuire
- From the Departments of Molecular and Cellular Biology and; the Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sean M Hartig
- From the Departments of Molecular and Cellular Biology and.
| |
Collapse
|
424
|
Zhu Q, Ghoshal S, Rodrigues A, Gao S, Asterian A, Kamenecka TM, Barrow JC, Chakraborty A. Adipocyte-specific deletion of Ip6k1 reduces diet-induced obesity by enhancing AMPK-mediated thermogenesis. J Clin Invest 2016; 126:4273-4288. [PMID: 27701146 DOI: 10.1172/jci85510] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/29/2016] [Indexed: 12/15/2022] Open
Abstract
Enhancing energy expenditure (EE) is an attractive strategy to combat obesity and diabetes. Global deletion of Ip6k1 protects mice from diet-induced obesity (DIO) and insulin resistance, but the tissue-specific mechanism by which IP6K1 regulates body weight is unknown. Here, we have demonstrated that IP6K1 regulates fat accumulation by modulating AMPK-mediated adipocyte energy metabolism. Cold exposure led to downregulation of Ip6k1 in murine inguinal and retroperitoneal white adipose tissue (IWAT and RWAT) depots. Adipocyte-specific deletion of Ip6k1 (AdKO) enhanced thermogenic EE, which protected mice from high-fat diet-induced weight gain at ambient temperature (23°C), but not at thermoneutral temperature (30°C). AdKO-induced increases in thermogenesis also protected mice from cold-induced decreases in body temperature. UCP1, PGC1α, and other markers of browning and thermogenesis were elevated in IWAT and RWAT of AdKO mice. Cold-induced activation of sympathetic signaling was unaltered, whereas AMPK was enhanced, in AdKO IWAT. Moreover, beige adipocytes from AdKO IWAT displayed enhanced browning, which was diminished by AMPK depletion. Furthermore, we determined that IP6 and IP6K1 differentially regulate upstream kinase-mediated AMPK stimulatory phosphorylation in vitro. Finally, treating mildly obese mice with the IP6K inhibitor TNP enhanced thermogenesis and inhibited progression of DIO. Thus, IP6K1 regulates energy metabolism via a mechanism that could potentially be targeted in obesity.
Collapse
|
425
|
Antonopoulos AS, Oikonomou EK, Antoniades C, Tousoulis D. From the BMI paradox to the obesity paradox: the obesity-mortality association in coronary heart disease. Obes Rev 2016; 17:989-1000. [PMID: 27405510 DOI: 10.1111/obr.12440] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022]
Abstract
Despite a strong association between body weight and mortality in the general population, clinical evidence suggests better clinical outcome of overweight or obese individuals with established coronary heart disease. This finding has been termed the 'obesity paradox', but its existence remains a point of debate, because it is mostly observed when body mass index (BMI) is used to define obesity. Inherent limitations of BMI as an index of adiposity, as well as methodological biases and the presence of confounding factors, may account for the observed findings of clinical studies. In this review, our aim is to present the data that support the presence of a BMI paradox in coronary heart disease and then explore whether next to a BMI paradox a true obesity paradox exists as well. We conclude by attempting to link the obesity paradox notion to available translational research data supporting a 'healthy', protective adipose tissue phenotype. © 2016 World Obesity.
Collapse
Affiliation(s)
- A S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, Athens Medical School, Athens, Greece. .,Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| | - E K Oikonomou
- 1st Cardiology Department, Hippokration Hospital, Athens Medical School, Athens, Greece.,Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - C Antoniades
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - D Tousoulis
- 1st Cardiology Department, Hippokration Hospital, Athens Medical School, Athens, Greece
| |
Collapse
|
426
|
Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu MJ, Du M. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep 2016; 6:34345. [PMID: 27686741 PMCID: PMC5043374 DOI: 10.1038/srep34345] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
Maternal obesity and high-fat diet (HFD) predisposes offspring to obesity and metabolic diseases. Due to uncoupling, brown adipose tissue (BAT) dissipates energy via heat generation, mitigating obesity and diabetes. The lactation stage is a manageable period for improving the health of offspring of obese mothers, but the impact of maternal HFD during lactation on offspring BAT function is unknown. To determine, female mice were fed either a control or HFD during lactation. At weaning, HFD offspring gained more body weight and had greater body fat mass compared to the control, and these differences maintained into adulthood, which correlated with glucose intolerance and insulin resistance in HFD offspring. Adaptive thermogenesis of BAT was impaired in HFD offspring at weaning. In adulthood, HFD offspring BAT had lower Ucp1 expression and thermogenic activity. Mechanistically, maternal HFD feeding during lactation elevated peripheral serotonin, which decreased the sensitivity of BAT to sympathetic β3-adrenergic signaling. Importantly, early postnatal metformin administration decreased serotonin concentration and ameliorated the impairment of offspring BAT due to maternal HFD. Our data suggest that attenuation of BAT thermogenic function may be a key mechanism linking maternal HFD during lactation to persisted metabolic disorder in the offspring.
Collapse
Affiliation(s)
- Xingwei Liang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiyuan Yang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lupei Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Joseph W Maricelli
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
427
|
Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J Nutr Biochem 2016; 39:101-109. [PMID: 27833050 DOI: 10.1016/j.jnutbio.2016.08.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/08/2023]
Abstract
Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects.
Collapse
|
428
|
Abstract
Background Obesity is a consequence of chronic energy imbalance. We need accurate and precise measurements of energy intake and expenditure, as well as the related behaviors, to fully understand how energy homeostasis is regulated in order to develop interventions and evaluate their effectiveness to combat the global obesity epidemic. Scope of review We provide an in-depth review of the methodologies currently used to measure energy intake and expenditure in humans, including their principles, advantages, and limitations in the clinical research setting. The aim is to provide researchers with a comprehensive guide to conduct obesity research of the highest possible quality. Major conclusions An array of methodologies is available to measure various aspects of energy metabolism and none is perfect under all circumstances. The choice of methods should be specific to particular research questions with practicality and quality of data the priorities for consideration. A combination of complementary measurements may be preferable. There is an imperative need to develop new methodologies to improve the accuracy and precision of energy intake assessments. Image-based technology is a significant step to improve energy intake measurement. Physical activity informs patterns but not absolute energy expenditure. Combining complementary measurements overcomes shortfalls of individual methods.
Collapse
|
429
|
Lv Y, Zhang SY, Liang X, Zhang H, Xu Z, Liu B, Xu MJ, Jiang C, Shang J, Wang X. Adrenomedullin 2 Enhances Beiging in White Adipose Tissue Directly in an Adipocyte-autonomous Manner and Indirectly through Activation of M2 Macrophages. J Biol Chem 2016; 291:23390-23402. [PMID: 27621315 DOI: 10.1074/jbc.m116.735563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
Adrenomedullin 2 (ADM2) is an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family. Our previous studies showed that overexpression of ADM2 in mice reduced obesity and insulin resistance by increasing thermogenesis in brown adipose tissue. However, the effects of ADM2 in another type of thermogenic adipocyte, beige adipocytes, remain to be understood. The plasma ADM2 levels were inversely correlated with obesity in humans, and adipo-ADM2-transgenic (tg) mice displayed resistance to high-fat diet-induced obesity with increased energy expenditure. Beiging of subcutaneous white adipose tissues (WAT) was more noticeably induced in high-fat diet-fed transgenic mice with adipocyte-ADM2 overexpression (adipo-ADM2-tg mice) than in WT animals. ADM2 treatment in primary rat subcutaneous adipocytes induced beiging with up-regulation of UCP1 and beiging-related marker genes and increased mitochondrial uncoupling respiration, which was mainly mediated by activation of the calcitonin receptor-like receptor (CRLR)·receptor activity-modifying protein 1 (RAMP1) complex and PKA and p38 MAPK signaling pathways. Importantly, this adipocyte-autonomous beiging effect by ADM2 was translatable to human primary adipocytes. In addition, M2 macrophage activation also contributed to the beiging effects of ADM2 through catecholamine secretion. Therefore, our study reveals that ADM2 enhances subcutaneous WAT beiging via a direct effect by activating the CRLR·RAMP1-cAMP/PKA and p38 MAPK pathways in white adipocytes and via an indirect effect by stimulating alternative M2 polarization in macrophages. Through both mechanisms, beiging of WAT by ADM2 results in increased energy expenditure and reduced obesity, suggesting ADM2 as a novel anti-obesity target.
Collapse
Affiliation(s)
- Ying Lv
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Song-Yang Zhang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xianyi Liang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Heng Zhang
- the Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhi Xu
- the Department of General Surgery, Peking University Third Hospital, Beijing 100191, China, and
| | - Bo Liu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ming-Jiang Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Changtao Jiang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China,
| | - Jin Shang
- the Department of Cardiometabolic Disease, Merck Research Laboratories, Merck & Co, Inc., Kenilworth, New Jersey 07033
| | - Xian Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
430
|
Mulya A, Kirwan JP. Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities? Endocrinol Metab Clin North Am 2016; 45:605-21. [PMID: 27519133 PMCID: PMC5206678 DOI: 10.1016/j.ecl.2016.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Overweight and obesity are global health problems placing an ever-increasing demand on health care systems. Brown adipose tissue (BAT) is present in significant amounts in adults. BAT has potential as a fuel for oxidation and dissipation as heat production, which makes it an attractive target for obesity therapy. BAT activation results in increased energy expenditure via thermogenesis. The role of BAT/beige adipocyte activation on whole body energy homeostasis, body weight management/regulation, and whole body glucose and lipid homeostasis remains unproven. This paper reviews knowledge on brown/beige adipocytes in energy expenditure and how it may impact obesity therapy and its comorbidities.
Collapse
Affiliation(s)
- Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE40, Cleveland, OH 44195, USA; Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
431
|
Kasza I, Hernando D, Roldán-Alzate A, Alexander CM, Reeder SB. Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues. JCI Insight 2016; 1:e87146. [PMID: 27668285 DOI: 10.1172/jci.insight.87146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals, ob/ob). Using a preliminary cohort of normal human subjects, we found the thickness of skin-associated fat varied 8-fold, from 0.13-1.10 cm; on average, this depot is calculated to weigh 8.8 kg.
Collapse
Affiliation(s)
| | | | | | | | - Scott B Reeder
- Department of Radiology.,Department of Medical Physics.,Department of Biomedical Engineering.,Department of Medicine, and.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
432
|
Odegaard JI, Lee MW, Sogawa Y, Bertholet AM, Locksley RM, Weinberg DE, Kirichok Y, Deo RC, Chawla A. Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell 2016; 166:841-854. [PMID: 27453471 PMCID: PMC4985267 DOI: 10.1016/j.cell.2016.06.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
Abstract
For placental mammals, the transition from the in utero maternal environment to postnatal life requires the activation of thermogenesis to maintain their core temperature. This is primarily accomplished by induction of uncoupling protein 1 (UCP1) in brown and beige adipocytes, the principal sites for uncoupled respiration. Despite its importance, how placental mammals license their thermogenic adipocytes to participate in postnatal uncoupled respiration is not known. Here, we provide evidence that the "alarmin" IL-33, a nuclear cytokine that activates type 2 immune responses, licenses brown and beige adipocytes for uncoupled respiration. We find that, in absence of IL-33 or ST2, beige and brown adipocytes develop normally but fail to express an appropriately spliced form of Ucp1 mRNA, resulting in absence of UCP1 protein and impairment in uncoupled respiration and thermoregulation. Together, these data suggest that IL-33 and ST2 function as a developmental switch to license thermogenesis during the perinatal period. PAPERCLIP.
Collapse
Affiliation(s)
- Justin I Odegaard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Min-Woo Lee
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Yoshitaka Sogawa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Ambre M Bertholet
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Rahul C Deo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0795, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
433
|
Abdullahi A, Jeschke MG. White Adipose Tissue Browning: A Double-edged Sword. Trends Endocrinol Metab 2016; 27:542-552. [PMID: 27397607 PMCID: PMC5234861 DOI: 10.1016/j.tem.2016.06.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022]
Abstract
The study of white adipose tissue (WAT) 'browning' has become a 'hot topic' in various acute and chronic metabolic conditions, based on the idea that WAT browning might be able to facilitate weight loss and improve metabolic health. However, this view cannot be translated into all areas of medicine. Recent studies identified effects of browning associated with adverse outcomes, and as more studies are being conducted, a very different picture has emerged about WAT browning and its detrimental effect in acute and chronic hypermetabolic conditions. Therefore, the notion that browning is supposedly beneficial may be inadequate. In this review we analyze how and why browning in chronic hypermetabolic associated diseases can be detrimental and lead to adverse outcomes.
Collapse
Affiliation(s)
- Abdikarim Abdullahi
- Institute of Medical Science, University of Toronto, Canada; Sunnybrook Research Institute, Totonto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Canada; Sunnybrook Research Institute, Totonto, Canada; Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, Canada; Department of Surgery, Division of Plastic Surgery, Department of Immunology, University of Toronto, Canada.
| |
Collapse
|
434
|
Berry DC, Jiang Y, Graff JM. Emerging Roles of Adipose Progenitor Cells in Tissue Development, Homeostasis, Expansion and Thermogenesis. Trends Endocrinol Metab 2016; 27:574-585. [PMID: 27262681 PMCID: PMC10947416 DOI: 10.1016/j.tem.2016.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023]
Abstract
Stem or progenitor cells are an essential component for the development, homeostasis, expansion, and regeneration of many tissues. Within white adipose tissue (WAT) reside vascular-resident adipose progenitor cells (APCs) that can proliferate and differentiate into either white or beige/brite adipocytes, which may control adiposity. Recent studies have begun to show that APCs can be manipulated to control adiposity and counteract 'diabesity'. However, much remains unknown about the identity of APCs and how they may control adiposity in response to homeostatic and external cues. Here, we discuss recent advances in our understanding of adipose progenitors and cover a range of topics, including the stem cell/progenitor lineage, their niche, their developmental and adult roles, and their role in cold-induced beige/brite adipocyte formation.
Collapse
Affiliation(s)
- Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA.
| |
Collapse
|
435
|
Lund J, Gillum MP. Towards Leanness by 'Feeding' a Novel Thermogenic Pathway? Trends Endocrinol Metab 2016; 27:529-530. [PMID: 27269658 DOI: 10.1016/j.tem.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022]
Abstract
Upon activation, brown and beige adipocytes help to fight excessive fat in rodents, and their oxidative properties can be induced by cooling, capsinoids, and fish oil. New research now suggests that synergistic anti-obesity effects can be achieved by combining such strategies, and that a novel pathway mediates part of the effect.
Collapse
Affiliation(s)
- Jens Lund
- Obesity Research Section, Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark; Section for Metabolic Imaging and Liver Metabolism, the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Matthew Paul Gillum
- Section for Metabolic Imaging and Liver Metabolism, the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
436
|
Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y, Tang D, Reeves WH, Yang LJ. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab 2016; 311:E530-41. [PMID: 27436609 DOI: 10.1152/ajpendo.00094.2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipogenesis and osteogenesis. Cultured fragments of scWAT and perirenal brown fat were used for investigating signal transduction pathways that mediate irisin's browning effect by Western blotting to detect phosphorylated forms of p38, ERK, and STAT3 as well as uncoupling protein 1 (UCP1). Individual responses to irisin in scWAT were correlated with basal expression levels of brown/beige genes. Irisin upregulated the expression of browning-associated genes and UCP1 protein in both cultured primary mature adipocytes and fresh adipose tissues. It also significantly increased thermogenesis at 5 nmol/l by elevating cellular energy metabolism (OCR and ECAR). Treating human scWAT with irisin increased UCP1 expression by activating the ERK and p38 MAPK signaling. Blocking either pathway with specific inhibitors abolished irisin-induced UCP1 upregulation. However, our results showed that UCP1 in human perirenal adipose tissue was insensitive to irisin. Basal levels of brown/beige and FNDC5 genes correlated positively with the browning response of scWAT to irisin. In addition, irisin significantly inhibited adipogenic differentiation but promoted osteogenic differentiation. We conclude that irisin promotes "browning" of mature white adipocytes by increasing cellular thermogenesis, whereas it inhibits adipogenesis and promotes osteogenesis during lineage-specific differentiation. Our findings provide a rationale for further exploring the therapeutic use of irisin in obesity and exercise-associated bone formation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida; Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Chao Xie
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Hai Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Robin M Foss
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Morgan Clare
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Eva Vertes George
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Adam Katz
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery, and Development, College of Pharmacy, University of Florida, Gainesville, Florida; and
| | - Dongqi Tang
- Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Westley H Reeves
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida;
| |
Collapse
|
437
|
Saito M, Yoneshiro T, Matsushita M. Activation and recruitment of brown adipose tissue by cold exposure and food ingredients in humans. Best Pract Res Clin Endocrinol Metab 2016; 30:537-547. [PMID: 27697214 DOI: 10.1016/j.beem.2016.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since the recent re-discovery of brown adipose tissue (BAT) in adult humans, this thermogenic tissue has attracted increasing interest. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. Cold exposure activates and recruits BAT in association with increased energy expenditure and decreased body fatness. The stimulatory effects of cold are mediated through transient receptor potential channels (TRP), most of which are also chemesthetic receptors for various food ingredients. In fact, capsaicin and its analog capsinoids, representative agonists of TRPV1, mimic the effects of cold to decrease body fatness through the activation and recruitment of BAT. The anti-obesity effect of some other food ingredients including tea catechins may also be attributable to the activation of the TRP-BAT axis. Thus, BAT is a promising target for combating obesity and related metabolic disorders in humans.
Collapse
Affiliation(s)
- Masayuki Saito
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Department of Nutrition, Tenshi College, Sapporo 065-0013, Japan.
| | - Takeshi Yoneshiro
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Mami Matsushita
- Department of Nutrition, Tenshi College, Sapporo 065-0013, Japan.
| |
Collapse
|
438
|
A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J Physiol Sci 2016; 67:395-406. [PMID: 27443171 PMCID: PMC5477687 DOI: 10.1007/s12576-016-0472-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022]
Abstract
The ability to alter the amount and activity of brown adipose tissue (BAT) in human adults is a potential strategy to manage obesity and related metabolic disorders associated with food, drug, and environmental stimuli with BAT activating/recruiting capacity. Infrared thermography (IRT) provides a non-invasive and inexpensive alternative to the current methods (e.g. 18F-FDG PET) used to assess BAT. We have quantified BAT activation in the cervical-supraclavicular (C-SCV) region using IRT video imaging and a novel image computational algorithm by studying C-SCV heat production in healthy young men after cold stimulation and the ingestion of capsinoids in a prospective double-blind placebo-controlled randomized trial. Subjects were divided into low-BAT and high-BAT groups based on changes in IR emissions in the C-SCV region induced by cold. The high-BAT group showed significant increases in energy expenditure, fat oxidation, and heat output in the C-SCV region post-capsinoid ingestion compared to post-placebo ingestion, but the low-BAT group did not. Based on these results, we conclude that IRT is a promising tool for quantifying BAT activity.
Collapse
|
439
|
Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, van Beek EJR, Morton NM, Walker BR, Stimson RH. Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation. Cell Metab 2016; 24:130-41. [PMID: 27411014 PMCID: PMC4949380 DOI: 10.1016/j.cmet.2016.06.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 01/07/2023]
Abstract
The discovery of brown adipose tissue (BAT) in adult humans presents a new therapeutic target for metabolic disease; however, little is known about the regulation of human BAT. Chronic glucocorticoid excess causes obesity in humans, and glucocorticoids suppress BAT activation in rodents. We tested whether glucocorticoids regulate BAT activity in humans. In vivo, the glucocorticoid prednisolone acutely increased (18)fluorodeoxyglucose uptake by BAT (measured using PET/CT) in lean healthy men during mild cold exposure (16°C-17°C). In addition, prednisolone increased supraclavicular skin temperature (measured using infrared thermography) and energy expenditure during cold, but not warm, exposure in lean subjects. In vitro, glucocorticoids increased isoprenaline-stimulated respiration and UCP-1 in human primary brown adipocytes, but substantially decreased isoprenaline-stimulated respiration and UCP-1 in primary murine brown and beige adipocytes. The highly species-specific regulation of BAT function by glucocorticoids may have important implications for the translation of novel treatments to activate BAT to improve metabolic health.
Collapse
Affiliation(s)
- Lynne E Ramage
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Murat Akyol
- Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, UK
| | - Alison M Fletcher
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - John Forsythe
- Department of Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, UK
| | - Mark Nixon
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Roderick N Carter
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Edwin J R van Beek
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Nicholas M Morton
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Brian R Walker
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Roland H Stimson
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| |
Collapse
|
440
|
Abstract
The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Michael A Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany
| |
Collapse
|
441
|
Mottillo EP, Desjardins EM, Crane JD, Smith BK, Green AE, Ducommun S, Henriksen TI, Rebalka IA, Razi A, Sakamoto K, Scheele C, Kemp BE, Hawke TJ, Ortega J, Granneman JG, Steinberg GR. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function. Cell Metab 2016; 24:118-29. [PMID: 27411013 PMCID: PMC5239668 DOI: 10.1016/j.cmet.2016.06.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/20/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role in regulating BAT and WAT metabolism is unclear. We generated an inducible model for deletion of the two AMPK β subunits in adipocytes (iβ1β2AKO) and found that iβ1β2AKO mice were cold intolerant and resistant to β-adrenergic activation of BAT and beiging of WAT. BAT from iβ1β2AKO mice had impairments in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents and thermal stress, and protecting against nutrient-overload-induced NAFLD and insulin resistance.
Collapse
Affiliation(s)
- Emilio P Mottillo
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Justin D Crane
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Brennan K Smith
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Alex E Green
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Serge Ducommun
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Tora I Henriksen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Aida Razi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bruce E Kemp
- St Vincent's Institute and Department of Medicine, University of Melbourne, Fitzroy, Victoria 3065, Australia; Mary MacKillop Institute for Health Research Australian Catholic University, Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W., Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
442
|
Hankir MK, Kranz M, Gnad T, Weiner J, Wagner S, Deuther-Conrad W, Bronisch F, Steinhoff K, Luthardt J, Klöting N, Hesse S, Seibyl JP, Sabri O, Heiker JT, Blüher M, Pfeifer A, Brust P, Fenske WK. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol Med 2016; 8:796-812. [PMID: 27247380 PMCID: PMC4931292 DOI: 10.15252/emmm.201506085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterase type 10A (PDE10A) is highly enriched in striatum and is under evaluation as a drug target for several psychiatric/neurodegenerative diseases. Preclinical studies implicate PDE10A in the regulation of energy homeostasis, but the mechanisms remain unclear. By utilizing small-animal PET/MRI and the novel radioligand [(18)F]-AQ28A, we found marked levels of PDE10A in interscapular brown adipose tissue (BAT) of mice. Pharmacological inactivation of PDE10A with the highly selective inhibitor MP-10 recruited BAT and potentiated thermogenesis in vivo In diet-induced obese mice, chronic administration of MP-10 caused weight loss associated with increased energy expenditure, browning of white adipose tissue, and improved insulin sensitivity. Analysis of human PET data further revealed marked levels of PDE10A in the supraclavicular region where brown/beige adipocytes are clustered in adults. Finally, the inhibition of PDE10A with MP-10 stimulated thermogenic gene expression in human brown adipocytes and induced browning of human white adipocytes. Collectively, our findings highlight a novel thermoregulatory role for PDE10A in mouse and human adipocytes and promote PDE10A inhibitors as promising candidates for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Mathias Kranz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital University of Bonn, Bonn, Germany
| | - Juliane Weiner
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Sally Wagner
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Felix Bronisch
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Karen Steinhoff
- Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Swen Hesse
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | | | - Osama Sabri
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - John T Heiker
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital University of Bonn, Bonn, Germany
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| |
Collapse
|
443
|
Yamashita Y, Yamada-Goto N, Katsuura G, Ochi Y, Kanai Y, Miyazaki Y, Kuwahara K, Kanamoto N, Miura M, Yasoda A, Ohinata K, Inagaki N, Nakao K. Brain-specific natriuretic peptide receptor-B deletion attenuates high-fat diet-induced visceral and hepatic lipid deposition in mice. Peptides 2016; 81:38-50. [PMID: 27020246 DOI: 10.1016/j.peptides.2016.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B (NPR-B), are abundantly distributed in the hypothalamus. To explore the role of central CNP/NPR-B signaling in energy regulation, we generated mice with brain-specific NPR-B deletion (BND mice) by crossing Nestin-Cre transgenic mice and mice with a loxP-flanked NPR-B locus. Brain-specific NPR-B deletion prevented body weight gain induced by a high-fat diet (HFD), and the mesenteric fat and liver weights were significantly decreased in BND mice fed an HFD. The decreased liver weight in BND mice was attributed to decreased lipid accumulation in the liver, which was confirmed by histologic findings and lipid content. Gene expression analysis revealed a significant decrease in the mRNA expression levels of CD36, Fsp27, and Mogat1 in the liver of BND mice, and uncoupling protein 2 mRNA expression was significantly lower in the mesenteric fat of BND mice fed an HFD than in that of control mice. This difference was not observed in the epididymal or subcutaneous fat. Although previous studies reported that CNP/NPR-B signaling inhibits SNS activity in rodents, SNS is unlikely to be the underlying mechanism of the metabolic phenotype observed in BND mice. Taken together, CNP/NPR-B signaling in the brain could be a central factor that regulates visceral lipid accumulation and hepatic steatosis under HFD conditions. Further analyses of the precise mechanisms will enhance our understanding of the contribution of the CNP/NPR-B system to energy regulation.
Collapse
Affiliation(s)
- Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobuko Yamada-Goto
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University, School of Medicine, 35, Shinano-machi, Shinjyuku-ku, Tokyo 160-8582, Japan.
| | - Goro Katsuura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukari Ochi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuri Miyazaki
- Division of Food Science and Biotechnology, Kyoto University Graduate School of Agriculture, Gokasyo, Uji-shi, Kyoto 611-0011, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naotetsu Kanamoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masako Miura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Kyoto University Graduate School of Agriculture, Gokasyo, Uji-shi, Kyoto 611-0011, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Kyoto University Graduate School of Medicine Medical Innovation Center, 53, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
444
|
Lund J. Important Nuances on Leucine and Adipose Browning. Trends Pharmacol Sci 2016; 37:730-731. [PMID: 27352989 DOI: 10.1016/j.tips.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Jens Lund
- Obesity Research Section, Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Frederiksberg C, Denmark; Section for Metabolic Imaging and Liver Metabolism, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
445
|
Abstract
Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume and activity of BAT, it has become clear that activated BAT combusts fatty acids rather than glucose. Here, we review the role of brown and beige adipocytes in lipoprotein metabolism and atherosclerosis, with evidence derived from both animal and human studies. On the basis of mainly data from animal models, we propose a model in which activated brown adipocytes use their intracellular triglyceride stores to generate fatty acids for combustion. BAT rapidly replenishes these stores by internalizing primarily lipoprotein triglyceride-derived fatty acids, generated by lipoprotein lipase-mediated hydrolysis of triglycerides, rather than by holoparticle uptake. As a consequence, BAT activation leads to the generation of lipoprotein remnants that are subsequently cleared via the liver provided that an intact apoE-low-density lipoprotein receptor pathway is present. Through these mechanisms, BAT activation reduces plasma triglyceride and cholesterol levels and attenuates diet-induced atherosclerosis development. Initial studies suggest that BAT activation in humans may also reduce triglyceride and cholesterol levels, but potential antiatherogenic effects should be assessed in future studies.
Collapse
Affiliation(s)
- Geerte Hoeke
- From the Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- From the Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- From the Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- From the Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- From the Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
446
|
Jeremic N, Chaturvedi P, Tyagi SC. Browning of White Fat: Novel Insight Into Factors, Mechanisms, and Therapeutics. J Cell Physiol 2016; 232:61-8. [PMID: 27279601 DOI: 10.1002/jcp.25450] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
Abstract
What is more interesting about brown adipose tissue (BAT) is its ability to provide thermogenesis, protection against obesity by clearing triglycerides, releasing batokines, and mitigating insulin resistance. White adipose tissue (WAT) on the other hand stores excess energy and secretes some endocrine factors like leptin for regulating satiety. For the last decade there has been an increasing interest in the browning of fat keeping in view its beneficial effects on metabolic disorders and protection in the form of perivascular fat. Obesity is one such metabolic disorder that leads to significant morbidity and mortality from obesity-related disorders such as type 2 diabetes mellitus (T2D) and cardiovascular disease risk. Browning of white fat paves the way to restrict obesity and obesity related disorders. Although exercise has been the most common factor for fat browning; however, there are other factors that involve: (1) beta aminoisobutyric acid (BAIBA); (2) gamma amino butyric acid (GABA); (3) PPARɣ agonists; (4) JAK inhibition; and (5) IRISIN. In this review, we propose two novel factors musclin and TFAM for fat browning. Musclin a myokine released from muscles during exercise activates PPARɣ which induces browning of WAT that has beneficial metabolic and cardiac effects. TFAM is a transcription factor that induces mitochondrial biogenesis. Since BAT is rich in mitochondria, higher expression of TFAM in WAT or TFAM treatment in WAT cells can induce browning of WAT. We propose that fat browning can be used as a therapeutic tool for metabolic disorders and cardiovascular diseases. J. Cell. Physiol. 232: 61-68, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nevena Jeremic
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Pankaj Chaturvedi
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
447
|
Giroud M, Pisani DF, Karbiener M, Barquissau V, Ghandour RA, Tews D, Fischer-Posovszky P, Chambard JC, Knippschild U, Niemi T, Taittonen M, Nuutila P, Wabitsch M, Herzig S, Virtanen KA, Langin D, Scheideler M, Amri EZ. miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Mol Metab 2016; 5:615-625. [PMID: 27656399 PMCID: PMC5021678 DOI: 10.1016/j.molmet.2016.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Objective In rodents and humans, besides brown adipose tissue (BAT), islands of thermogenic adipocytes, termed “brite” (brown-in-white) or beige adipocytes, emerge within white adipose tissue (WAT) after cold exposure or β3-adrenoceptor stimulation, which may protect from obesity and associated diseases. microRNAs are novel modulators of adipose tissue development and function. The purpose of this work was to characterize the role of microRNAs in the control of brite adipocyte formation. Methods/Results Using human multipotent adipose derived stem cells, we identified miR-125b-5p as downregulated upon brite adipocyte formation. In humans and rodents, miR-125b-5p expression was lower in BAT than in WAT. In vitro, overexpression and knockdown of miR-125b-5p decreased and increased mitochondrial biogenesis, respectively. In vivo, miR-125b-5p levels were downregulated in subcutaneous WAT and interscapular BAT upon β3-adrenergic receptor stimulation. Injections of an miR-125b-5p mimic and LNA inhibitor directly into WAT inhibited and increased β3-adrenoceptor-mediated induction of UCP1, respectively, and mitochondrial brite adipocyte marker expression and mitochondriogenesis. Conclusion Collectively, our results demonstrate that miR-125b-5p plays an important role in the repression of brite adipocyte function by modulating oxygen consumption and mitochondrial gene expression. miR-125b-5p levels negatively correlate with UCP1 expression in rodent and human. miR125b levels in white adipose tissue are positively correlated with BMI. miR-125b-5p modulates oxygen consumption. Mitochondriogenesis is controlled by miR-125b-5p. In vivo modulation of miR-125b-5p controls brown and brite adipocyte formation.
Collapse
Affiliation(s)
- Maude Giroud
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Didier F Pisani
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University Graz, Graz, Austria
| | - Valentin Barquissau
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | | | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89075 Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89075 Ulm, Germany
| | | | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Surgery Center, D-89075 Ulm, Germany
| | - Tarja Niemi
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland
| | - Markku Taittonen
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland
| | - Pirjo Nuutila
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland; Turku University Hospital, Turku, Finland
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89075 Ulm, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kirsi A Virtanen
- Department of Endocrinology, Turku University Hospital, Turku, 20521, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Dominique Langin
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ez-Zoubir Amri
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France.
| |
Collapse
|
448
|
Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol 2016; 17:480-95. [PMID: 27251423 DOI: 10.1038/nrm.2016.62] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes.
Collapse
Affiliation(s)
- Takeshi Inagaki
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan 153-8904.,The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan 113-8655
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan 153-8904.,The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan 113-8655
| | - Shingo Kajimura
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143-0669, USA
| |
Collapse
|
449
|
Sakellariou P, Valente A, Carrillo AE, Metsios GS, Nadolnik L, Jamurtas AZ, Koutedakis Y, Boguszewski C, Andrade CMB, Svensson PA, Kawashita NH, Flouris AD. Chronic l-menthol-induced browning of white adipose tissue hypothesis: A putative therapeutic regime for combating obesity and improving metabolic health. Med Hypotheses 2016; 93:21-6. [PMID: 27372851 DOI: 10.1016/j.mehy.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/09/2016] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Obesity constitutes a serious global health concern reaching pandemic prevalence rates. The existence of functional brown adipose tissue (BAT) in adult humans has provoked intense research interest in the role of this metabolically active tissue in whole-body energy balance and body weight regulation. A number of environmental, physiological, pathological, and pharmacological stimuli have been proposed to induce BAT-mediated thermogenesis and functional thermogenic BAT-like activity in white adipose tissue (WAT), opening new avenues for therapeutic strategies based on enhancing the number of beige adipocytes in WAT. HYPOTHESIS Recent evidence support a role of l-menthol cooling, mediated by TRPM8 receptor, on UCP1-dependent thermogenesis and BAT-like activity in classical WAT depots along with the recruitment of BAT at specific anatomical sites. l-Menthol-induced BAT thermogenesis has been suggested to occur by a β-adrenergic-independent mechanism, avoiding potential side-effects due to extensive β-adrenergic stimulation mediated by available beta receptor agonists. l-Menthol has been also linked to the activation of the cold-gated ion channel TRPA1. However, its role in l-menthol-induced UCP1-dependent thermogenic activity in BAT and WAT remains undetermined. White adipose tissue plasticity has important clinical implications for obesity prevention and/or treatment because higher levels of UCP1-dependent thermogenesis can lead to enhanced energy expenditure at a considerable extent. We hypothesize that chronic dietary l-menthol treatment could induce TRPM8- and TRPA1-dependent WAT adaptations, resembling BAT-like activity, and overall improve whole-body metabolic health in obese and overweight individuals. CONCLUSIONS The putative impact of chronic l-menthol dietary treatment on the stimulation of BAT-like activity in classical WAT depots in humans remains unknown. A detailed experimental design has been proposed to investigate the hypothesized l-menthol-induced browning of WAT. If our hypothesis was to be confirmed, TRPM8/TRPA1-induced metabolic adaptations of WAT to BAT-like activity could provide a promising novel therapeutic approach for increasing energy expenditure, regulating body weight, and preventing obesity and its related co-morbidities in humans.
Collapse
Affiliation(s)
- Paraskevi Sakellariou
- Institute of Research and Technology Thessaly, Centre for Research and Technology Hellas, Trikala, Greece; FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece
| | - Angelica Valente
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece; Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andres E Carrillo
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece; Department of Exercise Science, Chatham University, Pittsburgh, PA, USA
| | - George S Metsios
- Faculty of Education, Health and Wellbeing, Wolverhampton University, Walsall Campus, UK
| | - Liliya Nadolnik
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, Grodno, Belarus
| | - Athanasios Z Jamurtas
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece
| | - Yiannis Koutedakis
- FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece; Faculty of Education, Health and Wellbeing, Wolverhampton University, Walsall Campus, UK
| | - Cesar Boguszewski
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Parana, Curitiba, Brazil
| | | | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Andreas D Flouris
- Institute of Research and Technology Thessaly, Centre for Research and Technology Hellas, Trikala, Greece; FAME Laboratory, Department of Exercise Sciences, University of Thessaly, Trikala, Greece.
| |
Collapse
|
450
|
Gao S, Stevens JR, Butler AA. Adropin - a circulating factor in metabolic control or a drop in the ocean? Expert Rev Endocrinol Metab 2016; 11:239-241. [PMID: 30058929 DOI: 10.1080/17446651.2016.1175938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Su Gao
- a Cardiovascular Research Center , University of Alberta , Edmonton , Canada
| | - Joseph R Stevens
- b Department of Pharmacology & Physiology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Andrew A Butler
- b Department of Pharmacology & Physiology , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|