1
|
Ayaz A, Zaman W, Radák Z, Gu Y. Green strength: The role of micronutrients in plant-based diets for athletic performance enhancement. Heliyon 2024; 10:e32803. [PMID: 38975163 PMCID: PMC11225853 DOI: 10.1016/j.heliyon.2024.e32803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
This review examines the correlation between plant-based diets and athletic performance, with a specific emphasis on the vital aspect of optimizing micronutrients for athletes. In light of the increasing prevalence of plant-based nutrition among athletes due to its perceived advantages in terms of health, ethics, and the environment, this study investigates the ability of these diets to satisfy the demanding nutritional requirements essential for achieving optimal performance and facilitating recovery. The article emphasizes the significance of essential micronutrients such as iron, vitamin B12, calcium, vitamin D, zinc, and omega-3 fatty acids and also addressing the challenges with their absorption and bioavailability from plant sources. The review consolidates existing scientific knowledge to propose strategies for improving micronutrient consumption, comparing the effects of supplements against whole foods, and highlighting the significance of enhancing bioavailability. The proposal supports the implementation of personalized meal planning, with the assistance of sports nutritionists or dietitians, and is substantiated by case studies showcasing the success of plant-based athletes. Future research directions examine the long-term effects of plant-based diets on micronutrient status and athletic performance, as well as developing nutritional trends and technology. The review concludes that plant-based diets can meet athletes' nutritional demands and improve peak performance while aligning with personal and ethical values with strategic planning and professional guidance. This study intends to help athletes, coaches, and nutritionists understand plant-based nutrition for enhanced athletic performance.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Sultana OF, Hia RA, Reddy PH. A Combinational Therapy for Preventing and Delaying the Onset of Alzheimer's Disease: A Focus on Probiotic and Vitamin Co-Supplementation. Antioxidants (Basel) 2024; 13:202. [PMID: 38397800 PMCID: PMC10886126 DOI: 10.3390/antiox13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder with a complex etiology, and effective interventions to prevent or delay its onset remain a global health challenge. In recent years, there has been growing interest in the potential role of probiotic and vitamin supplementation as complementary strategies for Alzheimer's disease prevention. This review paper explores the current scientific literature on the use of probiotics and vitamins, particularly vitamin A, D, E, K, and B-complex vitamins, in the context of Alzheimer's disease prevention and management. We delve into the mechanisms through which probiotics may modulate gut-brain interactions and neuroinflammation while vitamins play crucial roles in neuronal health and cognitive function. The paper also examines the collective impact of this combinational therapy on reducing the risk factors associated with Alzheimer's disease, such as oxidative stress, inflammation, and gut dysbiosis. By providing a comprehensive overview of the existing evidence and potential mechanisms, this review aims to shed light on the promise of probiotic and vitamin co-supplementation as a multifaceted approach to combat Alzheimer's disease, offering insights into possible avenues for future research and clinical application.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Raksa Andalib Hia
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
3
|
Hersant H, He S, Maliha P, Grossberg G. Over the Counter Supplements for Memory: A Review of Available Evidence. CNS Drugs 2023; 37:797-817. [PMID: 37603263 DOI: 10.1007/s40263-023-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
In 2021, the Global Brain Health Supplement Industry Market size was valued at US$7.6 billion. It is predicted to increase to US$15.59 billion by 2030. Memory and its enhancement are a segment of the market that comprised the highest global revenue share in 2021. In the USA alone, dietary supplement sales reached US$18 billion in 2018. The US Food and Drug Administration (FDA) does not have the authority to approve dietary supplements' safety, effectiveness, or labeling before products go on the market. The FDA often does not even review supplements before they go to market. Supplement manufacturers are thus responsible for ensuring their products are safe and that their claims are truthful. An extensive review of current supplements on the market was performed by surveying memory products for sale at local and national pharmacies and grocery stores. A list of 103 supplements was compiled and the ingredients in these memory supplements were reviewed. The 18 most common ingredients in these supplements were identified. Each of the supplements included at least one of the 18 most common ingredients. Scientific data relative to these ingredients and their effect on memory was searched using PubMed and Cochrane library databases. Currently, there is no compelling evidence for use of apoaequorin, coenzyme Q10, coffee extracts, L-theanine, omega-3 fatty acids, vitamin B6, vitamin B9, or vitamin B12 supplementation for memory. On the other hand, there is some current evidence for memory benefit from supplementation with ashwagandha, choline, curcumin, ginger, Lion's Mane, polyphenols, phosphatidylserine, and turmeric. There are current studies with mixed results regarding the benefit of carnitine, gingko biloba, Huperzine A, vitamin D, and vitamin E supplementation for memory. Dietary supplements geared toward improving cognition are a billion-dollar industry that continues to grow despite lacking a solid scientific foundation for their marketing claims. More rigorous studies are needed relative to the long-term use of these supplements in homogenous populations with standardized measurements of cognition. Health care providers need to be aware of any and all supplements their older adult patients may be consuming and be educated about their side effects and interactions with prescription medications. Lastly, the FDA needs to take an active position relative to monitoring marketed supplements regarding safety, purity and claims of efficacy.
Collapse
Affiliation(s)
- Haley Hersant
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA.
| | - Sean He
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - Peter Maliha
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - George Grossberg
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| |
Collapse
|
4
|
Talukdar T, Zwilling CE, Barbey AK. Integrating Nutrient Biomarkers, Cognitive Function, and Structural MRI Data to Build Multivariate Phenotypes of Healthy Aging. J Nutr 2023; 153:1338-1346. [PMID: 36965693 DOI: 10.1016/j.tjnut.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Research in the emerging field of Nutritional Cognitive Neuroscience demonstrates that many aspects of nutrition - from entire diets to specific nutrients - affect cognitive performance and brain health. OBJECTIVE While prior research has primarily examined the bivariate relationship between nutrition and cognition, or nutrition and brain health, the present study sought to investigate the joint relationship between these essential and interactive elements of human health. METHODS We applied a state-of-the-art data fusion method, Coupled Matrix Tensor Factorization, to characterize the joint association between measures of nutrition (52 nutrient biomarkers), cognition (Wechsler Abbreviated Test of Intelligence and Wechsler Memory Scale), and brain health (high-resolution Magnetic Resonance Imaging measures of structural brain volume) within a cross-sectional sample of 111 healthy older adults that had an average age of 69.1 years, were 62% female and had an average Body Mass Index of 26.0. RESULTS Data fusion uncovered 3 latent factors that capture the joint association between specific nutrient profiles, cognitive measures, and cortical volumes, demonstrating the respects in which these health domains are coupled. Hierarchical cluster analysis further revealed systematic differences between the observed latent factors, providing evidence for multivariate phenotypes that represent high versus low levels of performance across multiple health domains. The primary features that distinguish between each phenotype were: (i) nutrient biomarkers for monounsaturated and polyunsaturated fatty acids; (ii) cognitive measures of immediate, auditory, and delayed memory; and (iii) brain volumes within frontal, temporal, and parietal cortex. CONCLUSIONS By incorporating innovations in nutritional epidemiology (nutrient biomarker analysis), cognitive neuroscience (high-resolution structural brain imaging), and statistics (data fusion), the present study provides an interdisciplinary synthesis of methods that elucidate how nutrition, cognition, and brain health are integrated through lifestyle choices that affect healthy aging.
Collapse
Affiliation(s)
- Tanveer Talukdar
- Decision Neuroscience Laboratory, Beckman Institute, University of Illinois, Urbana, IL. USA
| | - Christopher E Zwilling
- Decision Neuroscience Laboratory, Beckman Institute, University of Illinois, Urbana, IL. USA
| | - Aron K Barbey
- Decision Neuroscience Laboratory, Beckman Institute, University of Illinois, Urbana, IL. USA; Department of Psychology, University of Illinois, Urbana, IL. USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Champaign, IL. USA; Department of Bioengineering, University of Illinois, Champaign, IL. USA; Division of Nutritional Sciences, University of Illinois, Champaign, IL. USA; Neuroscience Program, University of Illinois, Champaign, IL. USA.
| |
Collapse
|
5
|
Palimariciuc M, Balmus IM, Gireadă B, Ciobica A, Chiriță R, Iordache AC, Apostu M, Dobrin RP. The Quest for Neurodegenerative Disease Treatment-Focusing on Alzheimer's Disease Personalised Diets. Curr Issues Mol Biol 2023; 45:1519-1535. [PMID: 36826043 PMCID: PMC9955192 DOI: 10.3390/cimb45020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Dementia represents a clinical syndrome characterised by progressive decline in memory, language, visuospatial and executive function, personality, and behaviour, causing loss of abilities to perform instrumental or essential activities of daily living. The most common cause of dementia is Alzheimer's disease (AD), which accounts for up to 80% of all dementia cases. Despite that extensive studies regarding the etiology and risk factors have been performed in recent decades, and how the current knowledge about AD pathophysiology significantly improved with the recent advances in science and technology, little is still known about its treatment options. In this controverted context, a nutritional approach could be a promising way to formulate improved AD management strategies and to further analyse possible treatment strategy options based on personalised diets, as Nutritional Psychiatry is currently gaining relevance in neuropsychiatric disease treatment. Based on the current knowledge of AD pathophysiology, as well as based on the repeatedly documented anti-inflammatory and antioxidant potential of different functional foods, we aimed to find, describe, and correlate several dietary compounds that could be useful in formulating a nutritional approach in AD management. We performed a screening for relevant studies on the main scientific databases using keywords such as "Alzheimer's disease", "dementia", "treatment", "medication", "treatment alternatives", "vitamin E", "nutrition", "selenium", "Ginkgo biloba", "antioxidants", "medicinal plants", and "traditional medicine" in combinations. Results: nutrients could be a key component in the physiologic and anatomic development of the brain. Several nutrients have been studied in the pursuit of the mechanism triggered by the pathology of AD: vitamin D, fatty acids, selenium, as well as neuroprotective plant extracts (i.e., Ginkgo biloba, Panax ginseng, Curcuma longa), suggesting that the nutritional patterns could modulate the cognitive status and provide neuroprotection. The multifactorial origin of AD development and progression could suggest that nutrition could greatly contribute to the complex pathological picture. The identification of adequate nutritional interventions and the not yet fully understood nutrient activity in AD could be the next steps in finding several innovative treatment options for neurodegenerative disorders.
Collapse
Affiliation(s)
- Matei Palimariciuc
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Bogdan Gireadă
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
- Correspondence: (B.G.); (A.C.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
- Centre of Biomedical Research, Romanian Academy, B dul Carol I, No. 8, 700506 Iasi, Romania
- Correspondence: (B.G.); (A.C.)
| | - Roxana Chiriță
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Strada, 700115 Iasi, Romania
| | - Mihai Apostu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
| | - Romeo Petru Dobrin
- Department of Medicine III, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universității Street, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 36 Bucium Street, 700282 Iasi, Romania
| |
Collapse
|
6
|
Qiu J, Zhao L, Xiao S, Zhang S, Li L, Nie J, Bai L, Qian S, Yang Y, Phillips M, Sheng M, Fang Y, Li X. Efficacy of comprehensive cognitive health management for Shanghai community older adults with mild cognitive impairment. Gen Psychiatr 2022; 35:e100532. [PMID: 36118417 PMCID: PMC9422796 DOI: 10.1136/gpsych-2021-100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
Background The management of modifiable risk factors and comorbidities may impact the future trajectory of cognitive impairment, but easy-to-implement management methods are lacking. Aims This study investigated the effects of simple but comprehensive cognitive health management practices on the cognitive function of older adults in the community with normal cognition (NC) and mild cognitive impairment (MCI). Methods The comprehensive cognitive health management programme included a psychiatric assessment of the cognitive risk factors for those in the intervention groups and individualised recommendations for reducing the risks through self-management supported by regular medical professional follow-up. The intervention groups for this study included 84 elderly participants with NC and 43 elderly participants with MCI who received comprehensive cognitive health management. The control groups included 84 elderly participants with NC and 43 elderly participants with MCI who matched the intervention group’s general characteristics and scale scores using the propensity matching score analysis. The Montreal Cognitive Assessment (MoCA) scale and Geriatric Depression Scale (GDS) scores were compared after a 1-year follow-up. Results For older adults with MCI in the intervention group, MoCA scores were higher at the 1-year follow-up than at baseline (24.07 (3.674) vs 22.21 (3.052), p=0.002). For the MoCA subscales, the intervention group’s abstract and delayed memory scores had significantly increased during the 1-year follow-up. Furthermore, in a generalised linear mixed model analysis, the interaction effect of group×follow-up was statistically significant for the MCI group (F=6.61, p=0.011; coefficients=5.83). Conclusions After the comprehensive cognitive health management intervention, the older adults with MCI in the community showed improvement at the 1-year follow-up. This preliminary study was the first to demonstrate an easy-to-implement strategy for modifying the cognitive risk factors of elderly individuals with MCI in the community, providing new insight into early-stage intervention for dementia.
Collapse
Affiliation(s)
- Jiayuan Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Nie
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Bai
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shixing Qian
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Shanghai I-Zhaohu Senior Care Services, Shanghai, China
| | - Michael Phillips
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqing Sheng
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021; 13:nu13114080. [PMID: 34836334 PMCID: PMC8624903 DOI: 10.3390/nu13114080] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple factors combined are currently recognized as contributors to cognitive decline. The main independent risk factor for cognitive impairment and dementia is advanced age followed by other determinants such as genetic, socioeconomic, and environmental factors, including nutrition and physical activity. In the next decades, a rise in dementia cases is expected due largely to the aging of the world population. There are no hitherto effective pharmaceutical therapies to treat age-associated cognitive impairment and dementia, which underscores the crucial role of prevention. A relationship among diet, physical activity, and other lifestyle factors with cognitive function has been intensively studied with mounting evidence supporting the role of these determinants in the development of cognitive decline and dementia, which is a chief cause of disability globally. Several dietary patterns, foods, and nutrients have been investigated in this regard, with some encouraging and other disappointing results. This review presents the current evidence for the effects of dietary patterns, dietary components, some supplements, physical activity, sleep patterns, and social engagement on the prevention or delay of the onset of age-related cognitive decline and dementia.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; +39-0916554828
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Flora Inzerillo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy;
- UOC of Neurology, University Hospital “Paolo Giaccone”, 90100 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90100 Palermo, Italy; (N.V.); (L.V.); (G.C.); (F.I.); (M.B.)
| |
Collapse
|
8
|
Shea AK, Wolfman W, Fortier M, Soares CN. Guideline No. 422c: Menopause: Mood, Sleep, and Cognition. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2021; 43:1316-1323.e1. [PMID: 34758906 DOI: 10.1016/j.jogc.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Provide strategies for improving the care of perimenopausal and postmenopausal women based on the most recent published evidence. TARGET POPULATION Perimenopausal and postmenopausal women. BENEFITS, HARMS, AND COSTS Target population will benefit from the most recent published scientific evidence provided via the information from their health care provider. No harms or costs are involved with this information since women will have the opportunity to choose among the different therapeutic options for the management of the symptoms and morbidities associated with menopause, including the option to choose no treatment. EVIDENCE Databases consulted were PubMed, MEDLINE, and the Cochrane Library for the years 2002-2020, and MeSH search terms were specific for each topic developed through the 7 chapters. VALIDATION METHODS The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See online Appendix A (Tables A1 for definitions and A2 for interpretations of strong and weak recommendations). INTENDED AUDIENCE: physicians, including gynaecologists, obstetricians, family physicians, internists, emergency medicine specialists; nurses, including registered nurses and nurse practitioners; pharmacists; medical trainees, including medical students, residents, fellows; and other providers of health care for the target population. SUMMARY STATEMENTS RECOMMENDATIONS.
Collapse
|
9
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
10
|
Shea AK, Wolfman W, Fortier M, Soares CN. Directive clinique n° 422c : Ménopause : Humeur, sommeil et cognition. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2021; 43:1324-1333.e1. [PMID: 34555544 DOI: 10.1016/j.jogc.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIF Proposer des stratégies fondées sur les plus récentes données publiées pour améliorer les soins aux femmes ménopausées ou en périménopause. POPULATION CIBLE Les femmes ménopausées ou en périménopause. BéNéFICES, RISQUES ET COûTS: La population cible bénéficiera des plus récentes données scientifiques publiées communiquées par leurs fournisseurs de soins de santé. Aucun coût ni préjudice ne sont associés à cette information, car les femmes seront libres de choisir parmi les différentes options thérapeutiques, y compris le statu quo, pour la prise en charge des symptômes et morbidités associés à la ménopause. DONNéES PROBANTES: Les auteurs ont interrogé les bases de données PubMed, MEDLINE et Cochrane Library pour extraire des articles publiés entre 2002 et 2020 en utilisant des termes MeSH spécifiques à chacun des sujets abordés dans les 7 chapitres. MéTHODES DE VALIDATION: Les auteurs ont évalué la qualité des données probantes et la force des recommandations en utilisant l'approche d'évaluation, de développement et d'évaluation (GRADE). Voir l'annexe A en ligne (tableau A1 pour les définitions et tableau A2 pour l'interprétation des recommandations fortes et conditionnelles [faibles]). PROFESSIONNELS CONCERNéS: gynécologues, obstétriciens, médecins de famille, internistes, urgentologues, infirmières (autorisées et praticiennes), pharmaciens, stagiaires (étudiants en médecine, résidents, moniteurs cliniques) et autres fournisseurs de soins de santé pour la population cible. DÉCLARATIONS SOMMAIRES: RECOMMANDATIONS.
Collapse
|
11
|
Koch M, Furtado JD, Cronjé HT, DeKosky ST, Fitzpatrick AL, Lopez OL, Kuller LH, Mukamal KJ, Jensen MK. Plasma antioxidants and risk of dementia in older adults. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12208. [PMID: 34504943 PMCID: PMC8418668 DOI: 10.1002/trc2.12208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Plant-based diets rich in fruits and vegetables have been associated with lower risk of dementia, but the specific role of antioxidants, a key class of bioactive phytochemicals, has not been well ascertained. METHODS We measured antioxidants in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 996 randomly selected participants and 521 participants who developed dementia, of which 351 were diagnosed with Alzheimer's disease (AD) during a median of 5.9 years of follow-up. We measured baseline plasma levels of retinol, α-, and γ-tocopherol; zeaxanthin and lutein (combined); beta-cryptoxanthin; cis-lycopene; trans-lycopene; α-carotene; and trans-β-carotene by organic phase extraction followed by chromatographic analysis and related these to neurologist-adjudicated risks of all-cause dementia and AD. RESULTS Plasma retinol, α-, and γ-tocopherol, and carotenoids were not significantly related to risk of dementia or AD. Associations were not significant upon Bonferroni correction for multiple testing and were consistent within strata of sex, age, apolipoprotein E ε4 genotype, mild cognitive impairment at baseline, and intake of multivitamin, vitamin A or β-carotene, or vitamin E supplements. Higher trans-β-carotene tended to be related to a higher risk of dementia (adjusted hazard ratio [HR] per 1 standard deviation [SD] higher trans-β-carotene: 1.10; 95% confidence interval [CI]: 1.00, 1.20) and α-carotene tended to be associated with higher risk of AD only (adjusted HR per 1 SD higher α-carotene: 1.15; 95% CI: 1.02, 1.29). DISCUSSION Plasma antioxidants were not significantly associated with risk of dementia or AD among older adults. Similar studies in younger populations are required to better understand the association between plasma antioxidants and dementia risk.
Collapse
Affiliation(s)
- Manja Koch
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jeremy D. Furtado
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Héléne Toinét Cronjé
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Annette L. Fitzpatrick
- Departments of Family MedicineEpidemiology and Global HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Oscar L. Lopez
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lewis H. Kuller
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Majken K. Jensen
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Public HealthSection of EpidemiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
12
|
Soares CN, Shea AK. The Midlife Transition, Depression, and Its Clinical Management. Obstet Gynecol Clin North Am 2021; 48:215-229. [PMID: 33573787 DOI: 10.1016/j.ogc.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The World Health Organization estimates that more than 260 million people are affected by depression worldwide, a condition that imposes a significant burden to individuals, their families, and society. Women seem to be disproportionately more affected by depression than men, and it is now clear that some women may experience windows of vulnerability for depression at certain reproductive stages across their life span, including the midlife transition. For some, age, the presence of cardiovascular or metabolic problems, and the emergence of significant, bothersome vasomotor symptoms and sleep problems may result in a compounded, deleterious impact on well-being and overall functioning.
Collapse
Affiliation(s)
- Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, Providence Care Hospital, 752 King Street West, Kingston, Ontario K7L 4X3, Canada.
| | - Alison K Shea
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
13
|
Advances in developing therapeutic strategies for Alzheimer's disease. Biomed Pharmacother 2021; 139:111623. [DOI: 10.1016/j.biopha.2021.111623] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
|
14
|
Ungurianu A, Zanfirescu A, Nițulescu G, Margină D. Vitamin E beyond Its Antioxidant Label. Antioxidants (Basel) 2021; 10:634. [PMID: 33919211 PMCID: PMC8143145 DOI: 10.3390/antiox10050634] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin E, comprising tocopherols and tocotrienols, is mainly known as an antioxidant. The aim of this review is to summarize the molecular mechanisms and signaling pathways linked to inflammation and malignancy modulated by its vitamers. Preclinical reports highlighted a myriad of cellular effects like modulating the synthesis of pro-inflammatory molecules and oxidative stress response, inhibiting the NF-κB pathway, regulating cell cycle, and apoptosis. Furthermore, animal-based models have shown that these molecules affect the activity of various enzymes and signaling pathways, such as MAPK, PI3K/Akt/mTOR, JAK/STAT, and NF-κB, acting as the underlying mechanisms of their reported anti-inflammatory, neuroprotective, and anti-cancer effects. In clinical settings, not all of these were proven, with reports varying considerably. Nonetheless, vitamin E was shown to improve redox and inflammatory status in healthy, diabetic, and metabolic syndrome subjects. The anti-cancer effects were inconsistent, with both pro- and anti-malignant being reported. Regarding its neuroprotective properties, several studies have shown protective effects suggesting vitamin E as a potential prevention and therapeutic (as adjuvant) tool. However, source and dosage greatly influence the observed effects, with bioavailability seemingly a key factor in obtaining the preferred outcome. We conclude that this group of molecules presents exciting potential for the prevention and treatment of diseases with an inflammatory, redox, or malignant component.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Georgiana Nițulescu
- Department Pharmaceutical Technology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| |
Collapse
|
15
|
Sheng LT, Jiang YW, Feng L, Pan A, Koh WP. Dietary total antioxidant capacity and late-life cognitive impairment: the Singapore Chinese Health Study. J Gerontol A Biol Sci Med Sci 2021; 77:561-569. [PMID: 33824992 DOI: 10.1093/gerona/glab100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the dramatically rapid rate of aging worldwide, the maintenance of cognitive function in old age is a major public health priority. The association between total antioxidant capacity (TAC) of midlife diet and cognitive function in late-life is still unclear. METHODS The study included 16 703 participants from a prospective cohort study in Singapore. Dietary intakes and selected supplementary use were assessed with a validated 165-item food frequency questionnaires at baseline (1993-1998). Two dietary TACs were calculated from the intake of antioxidant nutrients, the Comprehensive Dietary Antioxidant Index (CDAI) and the Vitamin C Equivalent Antioxidant Capacity (VCEAC). Cognitive function was assessed 20.2 years later using a Singapore-modified version of the Mini-Mental State Examination when subjects were 61-96 years old. Cognitive impairment was defined using education-specific cut-offs. Multivariable logistic regression models were utilized to estimate the associations between dietary TACs, component nutrients and cognitive impairment. RESULTS A total of 2392 participants (14.3%) were defined to have cognitive impairment. Both CDAI and VCEAC scores were inversely associated with odds of cognitive impairment in a dose-dependent manner. The odds ratio (95% confidence interval; p-trend) comparing the highest with the lowest quartile was 0.84 (0.73, 0.96; p-trend = .003) for the CDAI and 0.75 (0.66, 0.86; p-trend < .001) for the VCEAC. Higher intakes of vitamin C, vitamin E, carotenoids, and flavonoids were all inversely associated with cognitive impairment. CONCLUSIONS Higher dietary total antioxidant capacity was associated with lower odds of cognitive impairment in later life in a Chinese population in Singapore.
Collapse
Affiliation(s)
- Li-Ting Sheng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi-Wen Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Nguyen TT, Vo TK, Vo GV. Therapeutic Strategies and Nano-Drug Delivery Applications in Management of Aging Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:183-198. [PMID: 33725354 DOI: 10.1007/978-3-030-55035-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. Existing drugs only suppress symptoms or delay further deterioration but do not address the cause of the disease. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates, such as acetylcholinesterase inhibitors, are currently utilized as an effective clinical therapy. Currently, nano-based therapies can make a difference, providing new therapeutic options by helping drugs to cross the blood-brain barrier and enter the brain more effectively. The main aim of this review was to highlight advances in research on the development of nano-based therapeutics for improved treatment of AD.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Hanoi, Vietnam
| | - Giau Van Vo
- Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si, South Korea. .,Department of Bionano Technology, Gachon University, Seongnam-si, South Korea. .,School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
17
|
Improvement of Executive Function after Short-Term Administration of an Antioxidants Mix Containing Bacopa, Lycopene, Astaxanthin and Vitamin B12: The BLAtwelve Study. Nutrients 2020; 13:nu13010056. [PMID: 33375429 PMCID: PMC7824614 DOI: 10.3390/nu13010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
During the last few years increasing interest has been focused on antioxidants as potentially useful agents in the prevention of the onset and progression of cognitive dysfunction. In this randomized, double-blind, controlled, parallel arm study, the effects of daily consumption of an antioxidant mix on cognitive function in healthy older adults were evaluated. After a 1 week run-in period, 80 subjects aged 60 years or more, and with no evidence of cognitive dysfunction, were randomly allocated to a mix of four bioactive compounds (bacopa, lycopene, astaxanthin, and vitamin B12) or matched placebo, taken orally once a day for 8 weeks. The primary objective of the study was to evaluate the changes in trial making test (TMT) scores from baseline to 8 weeks of treatment, analyzed in the following hierarchical order: TMT-B, TMT-A, and TMT-B minus TMT-A. TMT-B increased in the control group (+3.46 s) and decreased in the active group (−17.63 s). The treatment difference was −21.01 s in favor of the active group (95% C.I. −26.80 to −15.2, p < 0.0001). The decrease in TMT-A was significantly higher in the active group (−6.86 s) than in the control group (−0.37 s). TMT-B minus TMT-A increased in the control group (+3.84 s) and decreased in the active group (−10.46 s). The increase in letter fluency in the verbal fluency test (VFT) was also significantly higher in the active group and statistically significant (+5.28 vs. +1.07 words; p < 0.001). Our findings provide encouraging evidence that regular dietary supplementation with bacopa, lycopene, astaxanthin, and vitamin B12 may be an effective dietary approach for counteracting cognitive changes associated with brain aging.
Collapse
|
18
|
George EK, Reddy PH. Can Healthy Diets, Regular Exercise, and Better Lifestyle Delay the Progression of Dementia in Elderly Individuals? J Alzheimers Dis 2020; 72:S37-S58. [PMID: 31227652 DOI: 10.3233/jad-190232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. Current healthcare costs for over 50 million people afflicted with AD are about $818 million and are projected to be $2 billion by 2050. Unfortunately, there are no drugs currently available that can delay and/or prevent the progression of disease in elderly individuals and in AD patients. Loss of synapses and synaptic damage are largely correlated with cognitive decline in AD patients. Women are at a higher lifetime risk of developing AD encompassing two-thirds of the total AD afflicted population. Only about 1-2% of total AD patients can be explained by genetic mutations in APP, PS1, and PS2 genes. Several risk factors have been identified, such as Apolipoprotein E4 genotype, type 2 diabetes, traumatic brain injury, depression, and hormonal imbalance, are reported to be associated with late-onset AD. Strong evidence reveals that antioxidant enriched diets and regular exercise reduces toxic radicals, enhances mitochondrial function and synaptic activity, and improves cognitive function in elderly populations. Current available data on the use of antioxidants in mouse models of AD and antioxidant(s) supplements in diets of elderly individuals were investigated. The use of antioxidants in randomized clinical trials in AD patients was also critically assessed. Based on our survey of current literature and findings, we cautiously conclude that healthy diets, regular exercise, and improved lifestyle can delay dementia progression and reduce the risk of AD in elderly individuals and reverse subjects with mild cognitive impairment to a non-demented state.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA
| |
Collapse
|
19
|
Suh SW, Kim HS, Han JH, Bae JB, Oh DJ, Han JW, Kim KW. Efficacy of Vitamins on Cognitive Function of Non-Demented People: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E1168. [PMID: 32331312 PMCID: PMC7231132 DOI: 10.3390/nu12041168] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Previous evidence has suggested that vitamins might be beneficial for cognition. This systematic review aimed to investigate the efficacy of B vitamins, antioxidant vitamins, and vitamin D on the cognitive function of non-demented middle-aged or older people. Randomized or quasi-randomized controlled trials of individuals aged 40 years or older were included. PubMed/MEDLINE, EMBASE, CINAHL, PsycINFO, Cochrane Library databases, and other grey literature sources were searched up to November 2019. Their methodological quality was evaluated using the Cochrane Risk of Bias tool. Twenty-three studies on B vitamins (n = 22-1053; comprising folate, B6, and B12), nine on antioxidant vitamins (n = 185-20,469), and six on vitamin D (n = 55-4122) were included. Taking B vitamins for over 3 months was beneficial for global cognition (standardized mean difference (SMD) -0.18, 95% CI -0.30 to -0.06) and episodic memory (SMD -0.09, 95% CI -0.15 to -0.04). However, antioxidant vitamins (SMD -0.02, 95% CI -0.08 to 0.03) and vitamin D (SMD -0.06, 95% CI -0.36 to 0.23) were not. Antioxidant vitamins were beneficial for global cognition in sensitivity analyses using final measurement data as mean difference estimates (SMD, -0.04, 95% CI -0.08 to -0.01). Taking B vitamins and possibly antioxidant vitamins may be beneficial for the cognitive function of non-demented people.
Collapse
Affiliation(s)
- Seung Wan Suh
- Department of Psychiatry, College of Medicine, Hallym University, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Hye Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Ji Hyun Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Dae Jong Oh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Moga DC, Beech BF, Abner EL, Schmitt FA, El Khouli RH, Martinez AI, Eckmann L, Huffmyer M, George R, Jicha GA. INtervention for Cognitive Reserve Enhancement in delaying the onset of Alzheimer's Symptomatic Expression (INCREASE), a randomized controlled trial: rationale, study design, and protocol. Trials 2019; 20:806. [PMID: 31888732 PMCID: PMC6937673 DOI: 10.1186/s13063-019-3993-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The course of Alzheimer's disease (AD) includes a 10-20-year preclinical period with progressive accumulation of amyloid β (Aβ) plaques and neurofibrillary tangles in the absence of symptomatic cognitive or functional decline. The duration of this preclinical stage in part depends on the rate of pathologic progression, which is offset by compensatory mechanisms, referred to as cognitive reserve (CR). Comorbid medical conditions, psychosocial stressors, and inappropriate medication use may lower CR, hastening the onset of symptomatic AD. Here, we describe a randomized controlled trial (RCT) designed to test the efficacy of a medication therapy management (MTM) intervention to reduce inappropriate medication use, bolster cognitive reserve, and ultimately delay symptomatic AD. METHODS/DESIGN Our study aims to enroll 90 non-demented community-dwelling adults ≥ 65 years of age. Participants will undergo positron emission tomography (PET) scans, measuring Aβ levels using standardized uptake value ratios (SUVr). Participants will be randomly assigned to MTM intervention or control, stratified by Aβ levels, and followed for 12 months via in-person and telephone visits. Outcomes of interest include: (1) medication appropriateness (measured with the Medication Appropriateness Index (MAI)); (2) scores from Trail Making Test B (TMTB), Montreal Cognitive Assessment (MoCA), and California Verbal Learning Test (CVLT); (3) perceived health status (measured with the SF-36). We will also evaluate pre- to post-intervention change in: (1) use of inappropriate medications as measured by MAI; 2) CR Change Score (CRCS), defined as the difference in scopolamine-challenged vs unchallenged cognitive scores at baseline and follow-up. Baseline Aβ SUVr will be used to examine the relative impact of preclinical AD (pAD) pathology on CRCS, as well as the interplay of amyloid burden with inappropriate medication use. DISCUSSION This manuscript describes the protocol of INCREASE ("INtervention for Cognitive Reserve Enhancement in delaying the onset of Alzheimer's Symptomatic Expression"): a randomized controlled trial that investigates the impact of deprescribing inappropriate medications and optimizing medication regimens on potentially delaying the onset of symptomatic AD and AD-related dementias. TRIAL REGISTRATION ClinicalTrials.gov, NCT02849639. Registered on 29 July 2016.
Collapse
Affiliation(s)
- Daniela C Moga
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, USA.
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, Lexington, KY, USA.
| | | | - Erin L Abner
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Riham H El Khouli
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ashley I Martinez
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Lynne Eckmann
- PRO2RX LLC Pharmacy Consulting Services, Lexington, KY, USA
| | - Mark Huffmyer
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- PRO2RX LLC Pharmacy Consulting Services, Lexington, KY, USA
| | - Rosmy George
- Sanders-Brown Center on Aging, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Lexington, KY, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Bowman GL, Dodge HH, Guyonnet S, Zhou N, Donohue J, Bichsel A, Schmitt J, Hooper C, Bartfai T, Andrieu S, Vellas B. A blood-based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:953-963. [PMID: 31921969 PMCID: PMC6944714 DOI: 10.1016/j.trci.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction Multinutrient approaches may produce more robust effects on brain health through interactive qualities. We hypothesized that a blood-based nutritional risk index (NRI) including three biomarkers of diet quality can explain cognitive trajectories in the multidomain Alzheimer prevention trial (MAPT) over 3-years. Methods The NRI included erythrocyte n-3 polyunsaturated fatty acids (n-3 PUFA 22:6n-3 and 20:5n-3), serum 25-hydroxyvitamin D, and plasma homocysteine. The NRI scores reflect the number of nutritional risk factors (0–3). The primary outcome in MAPT was a cognitive composite Z score within each participant that was fit with linear mixed-effects models. Results Eighty percent had at lease one nutritional risk factor for cognitive decline (NRI ≥1: 573 of 712). Participants presenting without nutritional risk factors (NRI=0) exhibited cognitive enhancement (β = 0.03 standard units [SU]/y), whereas each NRI point increase corresponded to an incremental acceleration in rates of cognitive decline (NRI-1: β = −0.04 SU/y, P = .03; NRI-2: β = −0.08 SU/y, P < .0001; and NRI-3: β = −0.11 SU/y, P = .0008). Discussion Identifying and addressing these well-established nutritional risk factors may reduce age-related cognitive decline in older adults; an observation that warrants further study. Multi-nutrient approaches may produce more robust effects through interactive properties Nutritional risk index can objectively quantify nutrition-related cognitive changes Optimum nutritional status associated with cognitive enhancement over 3-years Suboptimum nutritional status associated with cognitive decline over 3-years Optimizing this nutritional risk index may promote cognitive health in older adults
Collapse
Affiliation(s)
- Gene L Bowman
- Department of Nutrition and Brain Health, Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland.,Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hiroko H Dodge
- Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA.,Department of Neurology and Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, MI, USA
| | - Sophie Guyonnet
- Department of Internal Medicine and Geriatrics, Gerontopole, CHU, Toulouse, France.,LEASP UMR1027 INSERM, University Paul Sabatier, France
| | - Nina Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Juliana Donohue
- Department of Nutrition and Brain Health, Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Aline Bichsel
- Department of Nutrition and Brain Health, Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Jeroen Schmitt
- Clinical Development Unit, Nestle Research, Lausanne, Switzerland
| | - Claudie Hooper
- Department of Internal Medicine and Geriatrics, Gerontopole, CHU, Toulouse, France
| | - Tamas Bartfai
- Department of Neurochemistry, Stockholm University, Sweden
| | - Sandrine Andrieu
- LEASP UMR1027 INSERM, University Paul Sabatier, France.,Department of Public Health, CHU de Toulouse, Toulouse, France
| | - Bruno Vellas
- Department of Internal Medicine and Geriatrics, Gerontopole, CHU, Toulouse, France.,LEASP UMR1027 INSERM, University Paul Sabatier, France
| | | |
Collapse
|
22
|
Ranard KM, Erdman JW. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr Rev 2019; 76:141-153. [PMID: 29301023 DOI: 10.1093/nutrit/nux067] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Of the 8 vitamin E analogues, RRR α-tocopherol likely has the greatest effect on health outcomes. Two sources of α-tocopherol, naturally sourced RRR α-tocopherol and synthetic all-racemic α-tocopherol, are commonly consumed from foods and dietary supplements in the United States. A 2016 US Food and Drug Administration ruling substantially changed the RRR to all-racemic α-tocopherol ratio of biopotency from 1.36:1 to 2:1 for food-labeling purposes, but the correct ratio is still under debate in the literature. Few studies have directly compared the 2 α-tocopherol sources, and existing studies do not compare the efficacy of either source for preventing or treating disease in humans. To help close this gap, this review evaluates studies that investigated the effects of either RRR α-tocopherol or all-racemic α-tocopherol on health outcomes, and compares the overall findings. α-Tocopherol has been used to prevent and/or treat cancer and diseases of the central nervous system, the immune system, and the cardiovascular system, so these diseases are the focus of the review. No firm conclusions about the relative effects of the α-tocopherol sources on health outcomes can be made. Changes to α-tocopherol-relevant policies have proceeded without adequate scientific support. Additional research is needed to assemble the pieces of the α-tocopherol puzzle and to determine the RRR to all-racemic α-tocopherol ratio of biopotency for health outcomes.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
23
|
Travica N, Ried K, Sali A, Hudson I, Scholey A, Pipingas A. Plasma Vitamin C Concentrations and Cognitive Function: A Cross-Sectional Study. Front Aging Neurosci 2019; 11:72. [PMID: 31001107 PMCID: PMC6454201 DOI: 10.3389/fnagi.2019.00072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Vitamin-C is a water soluble molecule that humans have lost the ability to produce. Vitamin-C plays a role in CNS functions such as neuronal differentiation, maturation, myelin formation and modulation of the catecholaminergic systems. A recent systematic review by our team indicated the need for further research into the relationship between plasma vitamin C and cognition in cognitively intact participants using plasma vitamin C concentrations instead of estimates derived from food-frequency-questionnaires (FFQ), and more sensitive cognitive assessments suitable for cognitive abilities vulnerable to aging. It was hypothesized that higher plasma vitamin C concentrations would be linked with higher cognitive performance. This cross-sectional trial was conducted on healthy adults (n = 80, Female = 52, Male = 28, 24-96 years) with a range of plasma Vitamin C concentrations. Cognitive assessments included The Swinburne-University-Computerized-Cognitive-Assessment-Battery (SUCCAB) and two pen and paper tests, the Symbol-Digits-Modalities-Test (SDMT) and Hopkins-Verbal-Learning-Test-Revised (HVLT-R). The pen and paper assessments were conducted to establish whether their scores would correlate with the computerized tasks. Plasma-Vitamin C concentrations were measured using two biochemical analyses. Participants were grouped into those with plasma vitamin-C concentrations of adequate level (≥28 μmol/L) and deficient level (<28 μmol/L). The SUCCAB identified a significantly higher performance ratio (accuracy/reaction-time) in the group with adequate vitamin-C levels vs. deficient vitamin-C on the choice reaction time (M = 188 ± 4 vs. 167 ± 9, p = 0.039), immediate recognition memory (M = 81 ± 3 vs. 68 ± 6, p = 0.03), congruent Stroop (M = 134 ± 3 vs. 116 ± 7, p = 0.024), and delayed recognition tasks (M = 72 ± 2 vs. 62 ± 4, p = 0.049), after adjusting for age (p < 0.05). Significantly higher scores in immediate recall on the HVLT-R (M = 10.64 ± 0.16 vs. 9.17 ± 0.37, p = 0.001), delayed recall (M = 9.74 ± 0.22 vs. 7.64 ± 0.51, p < 0.001), total recall (M = 27.93 ± 0.48 vs. 24.19 ± 1.11, p = 0.003) were shown in participants with adequate plasma Vitamin-C concentrations, after adjusting for vitamin-C supplementation dose (p < 0.05). Similarly, higher SDMT scores were observed in participants with adequate plasma Vitamin-C concentrations (M = 49.73 ± 10.34 vs. 41.38 ± 5.06, p = 0.039), after adjusting for age (p < 0.05). In conclusion there was a significant association between vitamin-C plasma concentrations and performance on tasks involving attention, focus, working memory, decision speed, delayed and total recall, and recognition. Plasma vitamin C concentrations obtained through vitamin C supplementation did not affect cognitive performance differently to adequate concentrations obtained through dietary intake. Clinicaltrials.gov Unique Identifier: ACTRN 12615001140549, URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369440.
Collapse
Affiliation(s)
- Nikolaj Travica
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- National Institute of Integrative Medicine, Hawthorn, VIC, Australia
| | - Karin Ried
- National Institute of Integrative Medicine, Hawthorn, VIC, Australia
- Discipline of General Practice, The University of Adelaide, Adelaide, SA, Australia
- Health and Sports Institute, Bond University, Gold Coast, QLD, Australia
| | - Avni Sali
- National Institute of Integrative Medicine, Hawthorn, VIC, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, Department of Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
- School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Zwilling CE, Talukdar T, Zamroziewicz MK, Barbey AK. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage 2019; 188:239-251. [DOI: 10.1016/j.neuroimage.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022] Open
|
25
|
Dominguez LJ, Barbagallo M. Dietary Strategies and Supplements for the Prevention of Cognitive Decline and Alzheimer’s Disease. OMEGA FATTY ACIDS IN BRAIN AND NEUROLOGICAL HEALTH 2019:231-247. [DOI: 10.1016/b978-0-12-815238-6.00015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. J Chem Neuroanat 2019; 95:70-80. [DOI: 10.1016/j.jchemneu.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023]
|
27
|
Rutjes AWS, Denton DA, Di Nisio M, Chong L, Abraham RP, Al‐Assaf AS, Anderson JL, Malik MA, Vernooij RWM, Martínez G, Tabet N, McCleery J. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev 2018; 12:CD011906. [PMID: 30556597 PMCID: PMC6353240 DOI: 10.1002/14651858.cd011906.pub2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamins and minerals play multiple functions within the central nervous system which may help to maintain brain health and optimal cognitive functioning. Supplementation of the diet with various vitamins and minerals has been suggested as a means of maintaining cognitive function, or even of preventing dementia, in later life. OBJECTIVES To evaluate the effects of vitamin and mineral supplementation on cognitive function in cognitively healthy people aged 40 years or more. SEARCH METHODS We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group's (CDCIG) specialised register, as well as MEDLINE, Embase, PsycINFO, CINAHL, ClinicalTrials.gov and the WHO Portal/ICTRP from inception to 26th January 2018. SELECTION CRITERIA We included randomised controlled trials that evaluated the cognitive effects on people aged 40 years or more of any vitamin or mineral supplements taken by mouth for at least three months. DATA COLLECTION AND ANALYSIS Study selection, data extraction, and quality assessments were done in duplicate. Vitamins were considered broadly in the categories of B vitamins, antioxidant vitamins, and combinations of both. Minerals were considered separately, where possible. If interventions and outcomes were considered sufficiently similar, then data were pooled. In order to separate short-term cognitive effects from possible longer-term effects on the trajectory of cognitive decline, data were pooled for various treatment durations from 3 months to 12 months and up to 10 years or more. MAIN RESULTS In total, we included 28 studies with more than 83,000 participants. There were some general limitations of the evidence. Most participants were enrolled in studies which were not designed primarily to assess cognition. These studies often had no baseline cognitive assessment and used only brief cognitive assessments at follow-up. Very few studies assessed the incidence of dementia. Most study reports did not mention adverse events or made only very general statements about them. Only 10 studies had a mean follow-up > 5 years. Only two studies had participants whose mean age was < 60 years at baseline. The risk of bias in the included studies was generally low, other than a risk of attrition bias for longer-term outcomes. We considered the certainty of the evidence behind almost all results to be moderate or low.We included 14 studies with 27,882 participants which compared folic acid, vitamin B12, vitamin B6, or a combination of these to placebo. The majority of participants were aged over 60 years and had a history of cardio- or cerebrovascular disease. We found that giving B vitamin supplements to cognitively healthy adults, mainly in their 60s and 70s, probably has little or no effect on global cognitive function at any time point up to 5 years (SMD values from -0.03 to 0.06) and may also have no effect at 5-10 years (SMD -0.01). There were very sparse data on adverse effects or on incidence of cognitive impairment or dementia.We included 8 studies with 47,840 participants in which the active intervention was one or more of the antioxidant vitamins: ß-carotene, vitamin C or vitamin E. Results were mixed. For overall cognitive function, there was low-certainty evidence of benefit associated with ß-carotene after a mean of 18 years of treatment (MD 0.18 TICS points, 95% CI 0.01 to 0.35) and of vitamin C after 5 years to 10 years (MD 0.46 TICS points, 95% CI 0.14 to 0.78), but not at earlier time points. From two studies which reported on dementia incidence, there was low-certainty evidence of no effect of an antioxidant vitamin combination or of vitamin E, either alone or combined with selenium. One of the included studies had been designed to look for effects on the incidence of prostate cancer; it found a statistically significant increase in prostate cancer diagnoses among men taking vitamin E.One trial with 4143 participants compared vitamin D3 (400 IU/day) and calcium supplements to placebo. We found low- to moderate-certainty evidence of no effect of vitamin D3 and calcium supplements at any time-point up to 10 years on overall cognitive function (MD after a mean of 7.8 years -0.1 MMSE points, 95% CI -0.81 to 0.61) or the incidence of dementia (HR 0.94, 95% CI 0.72 to 1.24). A pilot study with 60 participants used a higher dose of vitamin D3 (4000 IU on alternate days) and found preliminary evidence that this dose probably has no effect on cognitive function over six months.We included data from one trial of zinc and copper supplementation with 1072 participants. There was moderate-certainty evidence of little or no effect on overall cognitive function (MD 0.6 MMSE points, 95% CI -0.19 to 1.39) or on the incidence of cognitive impairment after 5 years to 10 years. A second smaller trial provided no usable data, but reported no cognitive effects of six months of supplementation with zinc gluconate.From one study with 3711 participants, there was low-certainty evidence of no effect of approximately five years of selenium supplementation on the incidence of dementia (HR 0.83, 95% CI 0.61 to 1.13).Finally, we included three trials of complex supplements (combinations of B vitamins, antioxidant vitamins, and minerals) with 6306 participants. From the one trial which assessed overall cognitive function, there was low-certainty evidence of little or no effect on the TICS (MD after a mean of 8.5 years 0.12, 95% CI -0.14 to 0.38). AUTHORS' CONCLUSIONS We did not find evidence that any vitamin or mineral supplementation strategy for cognitively healthy adults in mid or late life has a meaningful effect on cognitive decline or dementia, although the evidence does not permit definitive conclusions. There were very few data on supplementation starting in midlife (< 60 years); studies designed to assess cognitive outcomes tended to be too short to assess maintenance of cognitive function; longer studies often had other primary outcomes and used cognitive measures which may have lacked sensitivity. The only positive signals of effect came from studies of long-term supplementation with antioxidant vitamins. These may be the most promising for further research.
Collapse
Affiliation(s)
- Anne WS Rutjes
- University of BernInstitute of Social and Preventive Medicine (ISPM)Mittelstrasse 43BernBernSwitzerland3012
- University of BernInstitute of Primary Health Care (BIHAM)Mittelstrasse 43BernBernSwitzerland3012
| | - David A Denton
- Sussex Partnership NHS Foundation TrustSpecialist Older People's ServicesUckfield Community HosptialFramfield RoadUckfieldUKTN22 5AW
| | - Marcello Di Nisio
- University "G. D'Annunzio" of Chieti‐PescaraDepartment of Medicine and Ageing SciencesVia dei Vestini 31Chieti ScaloItaly66013
| | | | - Rajesh P Abraham
- Surrey and Borders Partnership NHS Foundation TrustCommunity Mental Health Team for Older People:Waverley11‐13 Ockford RoadGuildfordUKGU7 1QU
| | - Aalya S Al‐Assaf
- Newcastle UniversityNIHR Innovation ObservatorySuite A, 4th Floor, Time CentralGallowgateNewcastle Upon TyneUKNE1 4BF
| | - John L Anderson
- Brighton and Sussex Medical School, University of BrightonDepartment of Medical EducationWatson BuildingFalmerUKBN1 9PH
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of BrightonDepartment of Medical Education (Postgraduate)Room 341, Mayfield HouseFalmerUKBN1 9PH
| | - Robin WM Vernooij
- Iberoamerican Cochrane CentreC/ Sant Antoni Maria Claret 167BarcelonaBarcelonaSpain08025
| | - Gabriel Martínez
- Universidad de AntofagastaFaculty of Medicine and DentistryAvenida Argentina 2000AntofagastaChile127001
| | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesMayfield House, University of BrightonFalmerBrightonUKBN1 9PH
| | - Jenny McCleery
- Oxford Health NHS Foundation TrustElms CentreOxford RoadBanburyOxfordshireUKOX16 9AL
| | | |
Collapse
|
28
|
McCleery J, Abraham RP, Denton DA, Rutjes AWS, Chong L, Al‐Assaf AS, Griffith DJ, Rafeeq S, Yaman H, Malik MA, Di Nisio M, Martínez G, Vernooij RWM, Tabet N. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev 2018; 11:CD011905. [PMID: 30383288 PMCID: PMC6378925 DOI: 10.1002/14651858.cd011905.pub2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamins and minerals have many functions in the nervous system which are important for brain health. It has been suggested that various different vitamin and mineral supplements might be useful in maintaining cognitive function and delaying the onset of dementia. In this review, we sought to examine the evidence for this in people who already had mild cognitive impairment (MCI). OBJECTIVES To evaluate the effects of vitamin and mineral supplementation on cognitive function and the incidence of dementia in people with mild cognitive impairment. SEARCH METHODS We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group's (CDCIG) specialised register, as well as MEDLINE, Embase, PsycINFO, CENTRAL, CINAHL, LILACs, Web of Science Core Collection, ClinicalTrials.gov, and the WHO Portal/ICTRP, from inception to 25 January 2018. SELECTION CRITERIA We included randomised or quasi-randomised, placebo-controlled trials which evaluated orally administered vitamin or mineral supplements in participants with a diagnosis of mild cognitive impairment and which assessed the incidence of dementia or cognitive outcomes, or both. We were interested in studies applicable to the general population of older people and therefore excluded studies in which participants had severe vitamin or mineral deficiencies. DATA COLLECTION AND ANALYSIS We sought data on our primary outcomes of dementia incidence and overall cognitive function and on secondary outcomes of episodic memory, executive function, speed of processing, quality of life, functional performance, clinical global impression, adverse events, and mortality. We conducted data collection and analysis according to standard Cochrane systematic review methods. We assessed the risk of bias of included studies using the Cochrane 'Risk of bias' assessment tool. We grouped vitamins and minerals according to their putative mechanism of action and, where we considered it to be clinically appropriate, we pooled data using random-effects methods. We used GRADE methods to assess the overall quality of evidence for each comparison and outcome. MAIN RESULTS We included five trials with 879 participants which investigated B vitamin supplements. In four trials, the intervention was a combination of vitamins B6, B12, and folic acid; in one, it was folic acid only. Doses varied. We considered there to be some risks of performance and attrition bias and of selective outcome reporting among these trials. Our primary efficacy outcomes were the incidence of dementia and scores on measures of overall cognitive function. None of the trials reported the incidence of dementia and the evidence on overall cognitive function was of very low-quality. There was probably little or no effect of B vitamins taken for six to 24 months on episodic memory, executive function, speed of processing, or quality of life. The evidence on our other secondary clinical outcomes, including harms, was very sparse or very low-quality. There was evidence from one study that there may be a slower rate of brain atrophy over two years in participants taking B vitamins. The same study reported subgroup analyses based on the level of serum homocysteine (tHcy) at baseline and found evidence that B vitamins may improve episodic memory in those with tHcy above the median at baseline.We included one trial (n = 516) of vitamin E supplementation. Vitamin E was given as 1000 IU of alpha-tocopherol twice daily. We considered this trial to be at risk of attrition and selective reporting bias. There was probably no effect of vitamin E on the probability of progression from MCI to Alzheimer's dementia over three years (HR 1.02; 95% CI 0.74 to 1.41; n = 516; 1 study, moderate-quality evidence). There was also no evidence of an effect at intermediate time points. The available data did not allow us to conduct analyses, but the authors reported no significant effect of three years of supplementation with vitamin E on overall cognitive function, episodic memory, speed of processing, clinical global impression, functional performance, adverse events, or mortality (five deaths in each group). We considered this to be low-quality evidence.We included one trial (n = 256) of combined vitamin E and vitamin C supplementation and one trial (n = 26) of supplementation with chromium picolinate. In both cases, there was a single eligible cognitive outcome, but we considered the evidence to be very low-quality and so could not be sure of any effects. AUTHORS' CONCLUSIONS The evidence on vitamin and mineral supplements as treatments for MCI is very limited. Three years of treatment with high-dose vitamin E probably does not reduce the risk of progression to dementia, but we have no data on this outcome for other supplements. Only B vitamins have been assessed in more than one RCT. There is no evidence for beneficial effects on cognition of supplementation with B vitamins for six to 24 months. Evidence from a single study of a reduced rate of brain atrophy in participants taking vitamin B and a beneficial effect of vitamin B on episodic memory in those with higher tHcy at baseline warrants attempted replication.
Collapse
Affiliation(s)
- Jenny McCleery
- Oxford Health NHS Foundation TrustElms CentreOxford RoadBanburyOxfordshireUKOX16 9AL
| | - Rajesh P Abraham
- Surrey and Borders Partnership NHS Foundation TrustCommunity Mental Health Team for Older People:Waverley11‐13 Ockford RoadGuildfordUKGU7 1QU
| | - David A Denton
- Sussex Partnership NHS Foundation TrustSpecialist Older People's ServicesUckfield Community HosptialFramfield RoadUckfieldUKTN22 5AW
| | - Anne WS Rutjes
- Fondazione "Università G. D'Annunzio"Centre for Systematic ReviewsVia dei Vestini 31ChietiChietiItaly66100
- University of BernInstitute of Social and Preventive Medicine (ISPM)Mittelstrasse 43BernBernSwitzerland3012
| | | | - Aalya S Al‐Assaf
- Newcastle UniversityNIHR Innovation ObservatorySuite A, 4th Floor, Time CentralGallowgateNewcastle Upon TyneUKNE1 4BF
| | - Daniel J Griffith
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation TrustDepartment of Nutrition and DieteticsMindelsohn WayEdgbastonBirminghamWest MidlandsUKB15 2GW
| | - Shireen Rafeeq
- Central Park Medical CollegeCommunity MedicineCentral Park Housing Scheme, Ferozepur Road, Kahna NauLahorePunjabPakistan53100
| | - Hakan Yaman
- Faculty of Medicine, Akdeniz UniversityDepartment of Family MedicineAntalyaTurkey07059
| | - Muzaffar A Malik
- Brighton and Sussex Medical School, University of BrightonDepartment of Medical Education (Postgraduate)Room 341, Mayfield HouseFalmerUKBN1 9PH
| | - Marcello Di Nisio
- University "G. D'Annunzio" of Chieti‐PescaraDepartment of Medicine and Ageing SciencesVia dei Vestini 31Chieti ScaloItaly66013
| | - Gabriel Martínez
- Universidad de AntofagastaFaculty of Medicine and DentistryAvenida Argentina 2000AntofagastaChile127001
- Iberoamerican Cochrane CentreSant Antoni Maria Claret 167BarcelonaSpain08025
| | - Robin WM Vernooij
- Iberoamerican Cochrane CentreSant Antoni Maria Claret 167BarcelonaSpain08025
| | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesMayfield House, University of BrightonFalmerBrightonUKBN1 9PH
| | | |
Collapse
|
29
|
Affiliation(s)
- Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health
| | - Klodian Dhana
- Department of Nutrition, Harvard T.H. Chan School of Public Health
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Van Giau V, An SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer's disease. J Neurol Sci 2018; 395:62-70. [PMID: 30292965 DOI: 10.1016/j.jns.2018.09.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/09/2018] [Accepted: 09/26/2018] [Indexed: 01/26/2023]
Abstract
Alzheimer's Disease (AD) is one of the most common age-related neurodegenerative diseases in the developed world. Treatment of AD is particularly challenging as the drug must overcome the blood brain barrier (BBB) before it can reach its target. Mitochondria are recognized as one of the most important targets for neurological drugs as the organelle is known to play a critical role in diverse cellular processes such as energy production and apoptosis regulation. Mitochondrial targeting was originally developed to study mitochondrial dysfunction and the organelles interaction with other sub-cellular organelles. The purpose of this review is to provide an overview of mitochondrial dysfunction and its role in late onset AD pathology. We then highlight recent antioxidant and enzymatic treatments used to alleviate mitochondrial dysfunction. Finally, we describe current applications of targeted mitochondrial delivery in the treatment of AD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea.
| | - John P Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea.
| |
Collapse
|
31
|
Ravi SK, Narasingappa RB, Vincent B. Neuro-nutrients as anti-alzheimer's disease agents: A critical review. Crit Rev Food Sci Nutr 2018; 59:2999-3018. [PMID: 29846084 DOI: 10.1080/10408398.2018.1481012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is characterized by a massive neuronal death causing memory loss, cognitive impairment and behavioral alteration that ultimately lead to dementia and death. AD is a multi-factorial pathology controlled by molecular events such as oxidative stress, protein aggregation, mitochondrial dysfunction and neuro inflammation. Nowadays, there is no efficient disease-modifying treatment for AD and epidemiological studies have suggested that diet and nutrition have a significant impact on the development of this disorder. Indeed, some nutrients can protect all kind of cells, including neurons. As prevention is better than cure, life style improvement, with a special emphasis on diet, should seriously be considered as an anti-AD track and intake of nutrients promoting neuronal health is the need of the hour. Diets rich in unsaturated fatty acids, polyphenols and vitamins have been shown to protect against AD, whereas saturated fatty acids-containing diets deprived of polyphenols promote the development of the disease. Thus, Mediterranean diets, mainly composed of fruits, vegetables and omega-3 fatty acids, stand as valuable, mild and preventive anti-AD agents. This review focuses on our current knowledge in the field and how one can fight this devastating neurodegenerative disorder through the simple proper modification of our life style.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences , Bangalore , Hassan , Karnataka , India
| | - Ramesh B Narasingappa
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences , Bangalore , Hassan , Karnataka , India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand.,Centre National de la Recherche Scientifique , Paris , France
| |
Collapse
|
32
|
Dominguez LJ, Barbagallo M. Nutritional prevention of cognitive decline and dementia. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:276-290. [PMID: 29957766 PMCID: PMC6179018 DOI: 10.23750/abm.v89i2.7401] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 04/28/2018] [Indexed: 12/28/2022]
Abstract
Cognitive impairment results from a complex interplay of many factors. The most important independent predictor of cognitive decline is age but other contributing factors include demographic, genetic, socio-economic, and environmental parameters, including nutrition. The number of persons with cognitive decline and dementia will increase in the next decades in parallel with aging of the world population. Effective pharmaceutical treatments for age-related cognitive decline are lacking, emphasizing the importance of prevention strategies. There is extensive evidence supporting a relationship between diet and cognitive functions. Thus, nutritional approaches to prevent or slow cognitive decline could have a remarkable public health impact. Several dietary components and supplements have been examined in relation to their association with the development of cognitive decline. A number of studies have examined the role of dietary patterns on late-life cognition, with accumulating evidence that combinations of foods and nutrients may act synergistically to provide stronger benefit than those conferred by individual dietary components. Higher adherence to the Mediterranean dietary pattern has been associated with decreased cognitive decline and incident AD. Another dietary pattern with neuroprotective actions is the Dietary Approach to Stop Hypertension (DASH). The combination of these two dietary patterns has been associated with slower rates of cognitive decline and significant reduction in incident AD. This review evaluates the evidence for the effects of some dietary components, supplements, and dietary patterns as neuroprotective, with potential to delay cognitive decline and the onset of dementia.
Collapse
Affiliation(s)
- Ligia J Dominguez
- Geriatric Unit, Dept. of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy.
| | - Mario Barbagallo
- Geriatric Unit, Dept. of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy.
| |
Collapse
|
33
|
Exercise Intervention Associated with Cognitive Improvement in Alzheimer's Disease. Neural Plast 2018; 2018:9234105. [PMID: 29713339 PMCID: PMC5866875 DOI: 10.1155/2018/9234105] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the syndrome of cognitive and functional decline. Pharmacotherapy has always been in a dominant position for the treatment of AD. However, in most cases, drug therapy is accompanied with clinical delays when older adults have suffered from cognitive decline in episodic memory, working memory, and executive function. On the other hand, accumulating evidence suggests that exercise intervention may ameliorate the progression of cognitive impairment in aging ones while the standard strategy is lacking based on different levels of cognitive decline especially in mild cognitive impairment (MCI) and AD. MCI is the preclinical stage of AD in which neurodegeneration may be reversed via neuroplasticity. Therefore, taking exercise intervention in the early stage of MCI and healthy aging at the risk of AD could slow down the process of cognitive impairment and provide a promising cost-effective nonpharmacological therapy to dementia.
Collapse
|
34
|
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.
Collapse
Affiliation(s)
- Eric Tönnies
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Gillis JC, Chang SC, Devore EE, Rosner BA, Grodstein F, Okereke OI. Patterns of late-life depressive symptoms and subsequent declines in cognitive domains. Int J Geriatr Psychiatry 2017; 32:1330-1341. [PMID: 29193360 PMCID: PMC5712842 DOI: 10.1002/gps.4618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Depression frequently co-occurs with cognitive decline, but the nature of this association is unclear. We examined relations of late-life depressive symptom patterns to subsequent domain-specific cognitive changes. METHODS Depressive symptoms were measured at up to 3 timepoints among 11,675 Nurses' Health Study participants prior to cognitive testing. Depressive symptom patterns were categorized as non-depressed, variable or persistent, based on published severity cutpoints. Outcomes were global, verbal, and executive function-attention composite scores. RESULTS Participants with persistent depressive symptoms had worse executive function-attention decline compared with non-depressed participants (multivariable-adjusted mean difference = -0.03 units/year, 95% CI: -0.05, -0.01; p = 0.003); this difference was comparable with 8 years of aging. However, being in the persistent versus non-depressed group was not significantly related to verbal (p = 0.71) or global score (p = 0.09) decline. By contrast, compared with the non-depressed group, those with variable depressive symptoms had worse verbal memory decline (multivariable-adjusted mean difference = -0.01 units/year, 95% CI: -0.02, -0.002; p = 0.03); this group showed no differences for global or executive function-attention decline. CONCLUSIONS A variable pattern of depressive symptom severity related to subsequent decline in verbal memory, while a persistent pattern related to decline in executive function-attention. Findings could signal differences in underlying neuropathologic processes among persons with differing depression patterns and late-life cognitive decline. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- J Cai Gillis
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shun-Chiao Chang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth E Devore
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard A Rosner
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Grodstein
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olivia I Okereke
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Gugliandolo A, Bramanti P, Mazzon E. Role of Vitamin E in the Treatment of Alzheimer's Disease: Evidence from Animal Models. Int J Mol Sci 2017; 18:ijms18122504. [PMID: 29168797 PMCID: PMC5751107 DOI: 10.3390/ijms18122504] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing the major cause of dementia. It is characterized by memory loss, and cognitive and behavioral decline. In particular, the hallmarks of the pathology are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), formed by aggregated hyperphosphorylated tau protein. Oxidative stress plays a main role in AD, and it is involved in initiation and progression of AD. It is well known that Aβ induced oxidative stress, promoting reactive oxygen species (ROS) production and consequently lipid peroxidation, protein oxidation, tau hyperphosphorylation, results in toxic effects on synapses and neurons. In turn, oxidative stress can increase Aβ production. For these reasons, the administration of an antioxidant therapy in AD patients was suggested. The term vitamin E includes different fat-soluble compounds, divided into tocopherols and tocotrienols, that possess antioxidant action. α-Tocopherol is the most studied, but some studies suggested that tocotrienols may have different health promoting capacities. In this review, we focused our attention on the effects of vitamin E supplementation in AD animal models and AD patients or older population. Experimental models showed that vitamin E supplementation, by decreasing oxidative stress, may be a good strategy to improve cognitive and memory deficits. Furthermore, the combination of vitamin E with other antioxidant or anti-inflammatory compounds may increase its efficacy. However, even if some trials have evidenced some benefits, the effects of vitamin E in AD patients are still under debate.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
37
|
Cervantes B, Ulatowski LM. Vitamin E and Alzheimer's Disease-Is It Time for Personalized Medicine? Antioxidants (Basel) 2017; 6:antiox6030045. [PMID: 28672782 PMCID: PMC5618073 DOI: 10.3390/antiox6030045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
For the last two decades, it has been hotly debated whether vitamin E-the major lipid-soluble antioxidant, which functions to maintain neurological integrity-is efficacious as a therapy for Alzheimer's disease. Several factors key to the debate, include (1) which of the eight naturally-occurring vitamin E forms should be used; (2) how combination treatments affect vitamin E efficacy; and (3) safety concerns that most-recently resurfaced after the results of the Selenium and vitamin E Cancer prevention trial SELECT prostate cancer trial. However, with the advent of new genetic technologies and identifications of vitamin E-modulating single nucleotide polymorphisms (SNPs), we propose that clinical trials addressing the question "Is vitamin E an effective treatment for Alzheimer's disease" should consider a more focused and personalized medicine approach to designing experiments. An individual's naturally-occurring SNP variants may indeed influence vitamin E's therapeutic effect on Alzheimer's disease.
Collapse
|
38
|
Farina N, Llewellyn D, Isaac MGEKN, Tabet N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database Syst Rev 2017; 4:CD002854. [PMID: 28418065 PMCID: PMC6478142 DOI: 10.1002/14651858.cd002854.pub5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin E occurs naturally in the diet. It has several biological activities, including functioning as an antioxidant to scavenge toxic free radicals. Evidence that free radicals may contribute to the pathological processes behind cognitive impairment has led to interest in the use of vitamin E supplements to treat mild cognitive impairment (MCI) and Alzheimer's disease (AD). This is an update of a Cochrane Review first published in 2000, and previously updated in 2006 and 2012. OBJECTIVES To assess the efficacy of vitamin E in the treatment of MCI and dementia due to AD. SEARCH METHODS We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources on 22 April 2016 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA We included all double-blind, randomised trials in which treatment with any dose of vitamin E was compared with placebo in people with AD or MCI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. Where appropriate we attempted to contact authors to obtain missing information. MAIN RESULTS Four trials met the inclusion criteria, but we could only extract outcome data in accordance with our protocol from two trials, one in an AD population (n = 304) and one in an MCI population (n = 516). Both trials had an overall low to unclear risk of bias. It was not possible to pool data across studies owing to a lack of comparable outcome measures.In people with AD, we found no evidence of any clinically important effect of vitamin E on cognition, measured with change from baseline in the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) over six to 48 months (mean difference (MD) -1.81, 95% confidence interval (CI) -3.75 to 0.13, P = 0.07, 1 study, n = 272; moderate quality evidence). There was no evidence of a difference between vitamin E and placebo groups in the risk of experiencing at least one serious adverse event over six to 48 months (risk ratio (RR) 0.86, 95% CI 0.71 to 1.05, P = 0.13, 1 study, n = 304; moderate quality evidence), or in the risk of death (RR 0.84, 95% CI 0.52 to 1.34, P = 0.46, 1 study, n = 304; moderate quality evidence). People with AD receiving vitamin E showed less functional decline on the Alzheimer's Disease Cooperative Study/Activities of Daily Living Inventory than people receiving placebo at six to 48 months (mean difference (MD) 3.15, 95% CI 0.07 to 6.23, P = 0.04, 1 study, n = 280; moderate quality evidence). There was no evidence of any clinically important effect on neuropsychiatric symptoms measured with the Neuropsychiatric Inventory (MD -1.47, 95% CI -4.26 to 1.32, P = 0.30, 1 study, n = 280; moderate quality evidence).We found no evidence that vitamin E affected the probability of progression from MCI to probable dementia due to AD over 36 months (RR 1.03, 95% CI 0.79 to 1.35, P = 0.81, 1 study, n = 516; moderate quality evidence). Five deaths occurred in each of the vitamin E and placebo groups over the 36 months (RR 1.01, 95% CI 0.30 to 3.44, P = 0.99, 1 study, n = 516; moderate quality evidence). We were unable to extract data in accordance with the review protocol for other outcomes. However, the study authors found no evidence that vitamin E differed from placebo in its effect on cognitive function, global severity or activities of daily living . There was also no evidence of a difference between groups in the more commonly reported adverse events. AUTHORS' CONCLUSIONS We found no evidence that the alpha-tocopherol form of vitamin E given to people with MCI prevents progression to dementia, or that it improves cognitive function in people with MCI or dementia due to AD. However, there is moderate quality evidence from a single study that it may slow functional decline in AD. Vitamin E was not associated with an increased risk of serious adverse events or mortality in the trials in this review. These conclusions have changed since the previous update, however they are still based on small numbers of trials and participants and further research is quite likely to affect the results.
Collapse
Affiliation(s)
- Nicolas Farina
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | - David Llewellyn
- University of ExeterMedical SchoolExeterUK+44 (0) 1392 726018
| | | | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | | |
Collapse
|
39
|
Mitochondria-Targeted Molecules as Potential Drugs to Treat Patients With Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:173-201. [PMID: 28253985 DOI: 10.1016/bs.pmbts.2016.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common multifactorial mental illness affecting the elderly population in the world. Its prevalence increases as person ages. There is no known drug or agent that can delay or prevent the AD and its progression. Extensive research has revealed that multiple cellular pathways involved, including amyloid beta production, mitochondrial structural and functional changes, hyperphosphorylation of Tau and NFT formation, inflammatory responses, and neuronal loss in AD pathogenesis. Amyloid beta-induced synaptic damage, mitochondrial abnormalities, and phosphorylated Tau are major areas of present research investigations. Synaptic pathology and mitochondrial oxidative damage are early events in disease process. In this chapter, a systematic literature survey has been conducted and presented a summary of antioxidants used in (1) AD mouse models, (2) elderly populations, and (3) randomized clinical trials in AD patients. This chapter highlights the recent progress in developing and testing mitochondria-targeted molecules using AD cell cultures and AD mouse models. This chapter also discusses recent research on AD pathogenesis and therapeutics, focusing on mitochondria-targeted molecules as potential therapeutic targets to delay or prevent AD progression.
Collapse
|
40
|
Abstract
BACKGROUND Vitamin E occurs naturally in the diet. It has several biological activities, including functioning as an antioxidant to scavenge toxic free radicals. Evidence that free radicals may contribute to the pathological processes behind cognitive impairment has led to interest in the use of vitamin E supplements to treat mild cognitive impairment (MCI) and Alzheimer's disease (AD). This is an update of a Cochrane Review first published in 2000, and previously updated in 2006 and 2012. OBJECTIVES To assess the efficacy of vitamin E in the treatment of MCI and dementia due to AD. SEARCH METHODS We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources on 22 April 2016 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA We included all double-blind, randomised trials in which treatment with any dose of vitamin E was compared with placebo in people with AD or MCI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. Where appropriate we attempted to contact authors to obtain missing information. MAIN RESULTS Four trials met the inclusion criteria, but we could only extract outcome data in accordance with our protocol from two trials, one in an AD population (n = 304) and one in an MCI population (n = 516). Both trials had an overall low to unclear risk of bias. It was not possible to pool data across studies owing to a lack of comparable outcome measures.In people with AD, we found no evidence of any clinically important effect of vitamin E on cognition, measured with change from baseline in the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) over six to 48 months (mean difference (MD) -1.81, 95% confidence interval (CI) -3.75 to 0.13, P = 0.07, 1 study, n = 272; moderate quality evidence). There was no evidence of a difference between vitamin E and placebo groups in the risk of experiencing at least one serious adverse event over six to 48 months (risk ratio (RR) 0.86, 95% CI 0.71 to 1.05, P = 0.13, 1 study, n = 304; moderate quality evidence), or in the risk of death (RR 0.84, 95% CI 0.52 to 1.34, P = 0.46, 1 study, n = 304; moderate quality evidence). People with AD receiving vitamin E showed less functional decline on the Alzheimer's Disease Cooperative Study/Activities of Daily Living Inventory than people receiving placebo at six to 48 months (mean difference (MD) 3.15, 95% CI 0.07 to 6.23, P = 0.04, 1 study, n = 280; moderate quality evidence). There was no evidence of any clinically important effect on neuropsychiatric symptoms measured with the Neuropsychiatric Inventory (MD -1.47, 95% CI -4.26 to 1.32, P = 0.30, 1 study, n = 280; moderate quality evidence).We found no evidence that vitamin E affected the probability of progression from MCI to probable dementia due to AD over 36 months (RR 1.03, 95% CI 0.79 to 1.35, P = 0.81, 1 study, n = 516; moderate quality evidence). Five deaths occurred in each of the vitamin E and placebo groups over the 36 months (RR 1.01, 95% CI 0.30 to 3.44, P = 0.99, 1 study, n = 516; moderate quality evidence). We were unable to extract data in accordance with the review protocol for other outcomes. However, the study authors found no evidence that vitamin E differed from placebo in its effect on cognitive function, global severity or activities of daily living . There was also no evidence of a difference between groups in the more commonly reported adverse events. AUTHORS' CONCLUSIONS We found no evidence that the alpha-tocopherol form of vitamin E given to people with MCI prevents progression to dementia, or that it improves cognitive function in people with MCI or dementia due to AD. However, there is moderate quality evidence from a single study that it may slow functional decline in AD. Vitamin E was not associated with an increased risk of serious adverse events or mortality in the trials in this review. These conclusions have changed since the previous update, however they are still based on small numbers of trials and participants and further research is quite likely to affect the results.
Collapse
Affiliation(s)
- Nicolas Farina
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | - David Llewellyn
- University of ExeterMedical SchoolExeterUK+44 (0) 1392 726018
| | | | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| |
Collapse
|
41
|
Vitamin E, Turmeric and Saffron in Treatment of Alzheimer's Disease. Antioxidants (Basel) 2016; 5:antiox5040040. [PMID: 27792130 PMCID: PMC5187538 DOI: 10.3390/antiox5040040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/02/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing epidemic and currently there is no cure for the disease. The disease has a detrimental effect on families and will strain the economy and health care systems of countries worldwide. The paper provides a literature review on a few ongoing possible antioxidant therapy treatments for the disease. The paper highlights use of vitamin E, turmeric and saffron for an alternative antioxidant therapy approach. Clinical studies report their therapeutic abilities as protective agents for nerve cells against free radical damage, moderating acetylcholinesterase (AChE) activity and reducing neurodegeneration, which are found as key factors in Alzheimer’s. The paper suggests that future research, with more clinical trials focused on more natural approaches and their benefits for AD treatment could be worthwhile.
Collapse
|
42
|
Abstract
Dementia incidence increases exponentially with age even in people aged 90 years and above. Because therapeutic regimens are limited, modification of lifestyle behaviors may offer the best means for disease control. To test the hypotheses that lifestyle factors are related to lower risk of dementia in the oldest-old, we analyzed data from The 90+ Study, a population-based longitudinal cohort study initiated in 2003. This analysis included 587 participants (mean age=93 y) seen in-person and determined not to have dementia at enrollment. Information on lifestyle factors (smoking, alcohol, caffeine, vitamin supplements, exercise, and other activities) was obtained at enrollment and was available from data collected 20 years previously. After an average follow-up of 36 months, 268 participants were identified with incident dementia. No variable measured 20 years previously was associated with risk. Engagement in specific social/mental activities and intakes of antioxidant vitamin supplements and caffeine at time of enrollment were, associated with significantly reduced risks. When these variables were analyzed together, the HRs changed little and remained significant for reading (0.54, P=0.01) and going to church/synagogue (HR=0.66, P<0.05) but not for caffeine (HR=0.61, P=0.15) and vitamin C (HR=0.68, P=0.07). While lifestyle behaviors around age 70 did not modify risk of late-life dementia, participation in activities and caffeine and supplemental vitamin intake around age 90 warrant further investigation.
Collapse
|
43
|
Boccardi V, Baroni M, Mangialasche F, Mecocci P. Vitamin E family: Role in the pathogenesis and treatment of Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:182-191. [PMID: 29067305 PMCID: PMC5651353 DOI: 10.1016/j.trci.2016.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction Vitamin E family, composed by tocopherols and tocotrienols, is a group of compounds with neuroprotective properties. The exact role in the pathogenesis and the benefit of vitamin E as treatment for Alzheimer's disease (AD) are still under debate. Methods A literature search in PubMed, Medline, and Cochrane databases has been carried out. All types of studies, from bench and animal models to clinical, were included. Results High plasma vitamin E levels are associated with better cognitive performance, even if clear evidence of their ability to prevent or delay cognitive decline in AD is still lacking. Each vitamin E form is functionally unique and shows specific biological functions. Tocotrienols seem to have superior antioxidant and anti-inflammatory properties compared with tocopherols. Discussion The benefit of vitamin E as a treatment for AD is still under debate, mainly because of the inconsistent findings from observational studies and the methodological limitations of clinical trials.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Marta Baroni
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | | | - Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
Zhuo Y, Guo H, Cheng Y, Wang C, Wang C, Wu J, Zou Z, Gan D, Li Y, Xu J. Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by Aβ25-35 in rats. Metab Brain Dis 2016; 31:779-91. [PMID: 26920899 DOI: 10.1007/s11011-016-9814-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/23/2016] [Indexed: 02/05/2023]
Abstract
Phosphodiesterase-4 (PDE4) inhibitors prevent the breakdown of the second messenger cAMP and have been demonstrated to improve learning in several animal models of cognition. In this study, we explored the antioxidative effects of rolipram in Alzheimer's disease (AD) by using bilateral Aβ25-35 injection into the hippocampus of rats, which were used as an AD model. Rats received 3 intraperitoneal (i.p.) doses of rolipram (0.1, 0.5 and 1.25 mg/kg) daily after the injection of Aβ25-35 for 25 days. Chronic administration of rolipram prevented the memory impairments induced by Aβ25-35, as assessed using the passive avoidance test and the Morris water maze test. Furthermore, rolipram significantly reduced the oxidative stress induced by Aβ25-35, as evidenced by the decrease in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and restored the reduced GSH levels and superoxide dismutase (SOD) activity. Moreover, western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis showed that rolipram remarkably upregulated thioredoxin (Trx) and inhibited the inducible nitric oxide synthase/nitric oxide (iNOS/NO) pathway in the hippocampus. These results demonstrated that rolipram improved the learning and memory abilities in an Aβ25-35-induced AD rat model. The mechanism underlying these effects may be due to the noticeable antioxidative effects of rolipram.
Collapse
Affiliation(s)
- Yeye Zhuo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Haibiao Guo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yufang Cheng
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
| | - Canmao Wang
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Jingang Wu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhengqiang Zou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Danna Gan
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Yiwen Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiangping Xu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
45
|
Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of Physical Exercise Combined with Nutritional Supplements on Aging Brain Related Structures and Functions: A Systematic Review. Front Aging Neurosci 2016; 8:161. [PMID: 27458371 PMCID: PMC4933713 DOI: 10.3389/fnagi.2016.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023] Open
Abstract
Age-related decline in gray and white brain matter goes together with cognitive depletion. To influence cognitive functioning in elderly, several types of physical exercise and nutritional intervention have been performed. This paper systematically reviews the potential additive and complementary effects of nutrition/nutritional supplements and physical exercise on cognition. The search strategy was developed for EMBASE, Medline, PubMed, Cochrane, CINAHL, and PsycInfo databases and focused on the research question: “Is the combination of physical exercise with nutrition/nutritional supplementation more effective than nutrition/nutritional supplementation or physical exercise alone in effecting on brain structure, metabolism, and/or function?” Both mammalian and human studies were included. In humans, randomized controlled trials that evaluated the effects of nutrition/nutritional supplements and physical exercise on cognitive functioning and associated parameters in healthy elderly (>65 years) were included. The systematic search included English and German language literature without any limitation of publication date. The search strategy yielded a total of 3129 references of which 67 studies met the inclusion criteria; 43 human and 24 mammalian, mainly rodent, studies. Three out of 43 human studies investigated a nutrition/physical exercise combination and reported no additive effects. In rodent studies, additive effects were found for docosahexaenoic acid supplementation when combined with physical exercise. Although feasible combinations of physical exercise/nutritional supplements are available for influencing the brain, only a few studies evaluated which possible combinations of nutrition/nutritional supplementation and physical exercise might have an effect on brain structure, metabolism and/or function. The reason for no clear effects of combinatory approaches in humans might be explained by the misfit between the combinations of nutritional methods with the physical interventions in the sense that they were not selected on sharing of similar neuronal mechanisms. Based on the results from this systematic review, future human studies should focus on the combined effect of docosahexaenoic acid supplementation and physical exercise that contains elements of (motor) learning.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Kilian Baur
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Jan Stutz
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, Swiss Federal Institute of Technology (ETH Zurich) Zurich, Switzerland
| |
Collapse
|
46
|
Rautiainen S, Manson JE, Lichtenstein AH, Sesso HD. Dietary supplements and disease prevention - a global overview. Nat Rev Endocrinol 2016; 12:407-20. [PMID: 27150288 DOI: 10.1038/nrendo.2016.54] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary supplements are widely used and offer the potential to improve health if appropriately targeted to those in need. Inadequate nutrition and micronutrient deficiencies are prevalent conditions that adversely affect global health. Although improvements in diet quality are essential to address these issues, dietary supplements and/or food fortification could help meet requirements for individuals at risk of deficiencies. For example, supplementation with vitamin A and iron in developing countries, where women of reproductive age, infants and children often have deficiencies; with folic acid among women of reproductive age and during pregnancy; with vitamin D among infants and children; and with calcium and vitamin D to ensure bone health among adults aged ≥65 years. Intense debate surrounds the benefits of individual high-dose micronutrient supplementation among well-nourished individuals because the alleged beneficial effects on chronic diseases are not consistently supported. Daily low-dose multivitamin supplementation has been linked to reductions in the incidence of cancer and cataracts, especially among men. Baseline nutrition is an important consideration in supplementation that is likely to modify its effects. Here, we provide a detailed summary of dietary supplements and health outcomes in both developing and developed countries to help guide decisions about dietary supplement recommendations.
Collapse
Affiliation(s)
- Susanne Rautiainen
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
47
|
Ryan AS, Hay WW. Challenges of infant nutrition research: a commentary. Nutr J 2016; 15:42. [PMID: 27103229 PMCID: PMC4840881 DOI: 10.1186/s12937-016-0162-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Considerable advances have been made in the field of infant feeding research. The last few decades have witnessed the expansion in the number of studies on the composition and benefits of human milk. The practice of breastfeeding and use of human milk represent today’s reference standards for infant feeding and nutrition. Additional research regarding the benefits of breastfeeding is needed to determine which factors in human milk and in the act of breastfeeding itself, singly or in combination, are most important for producing the beneficial effects on infant growth, body composition, and neurodevelopmental outcome. We examine evidence that breastfeeding confers health benefits and offer suggestions on how best to interpret the data and present it to the public. We also describe some examples of well-designed infant nutrition studies that provide useful and clinically meaningful data regarding infant feeding, growth, and development. Because not all mothers choose to breastfeed or can breastfeed, other appropriate feeding options should be subjected to critical review to help establish how infant formula and bottle feeding can confer benefits similar to those of human milk and the act of breastfeeding. We conclude with the overarching point that the goal of infant feeding research is to promote optimal infant growth and development. Since parents/families may take different paths to feeding their infants, it is fundamental that health professionals understand how best to interpret research studies and their findings to support optimal infant growth and development.
Collapse
Affiliation(s)
- Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL, 33473, USA.
| | - William W Hay
- Perinatal Research Center, University of Colorado School of Medicine, Anschutz Medical Campus, Mail Stop F441, 13243 East 23rd Avenue, Aurora, CO, 80045, USA
| |
Collapse
|
48
|
Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr 2016; 103:330-40. [PMID: 26718417 DOI: 10.3945/ajcn.115.124081] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The intake of fish and polyunsaturated fatty acids (PUFAs) may benefit cognitive function. However, optimal intake recommendations for protection are unknown. OBJECTIVE We systematically investigated associations between fish and PUFA intake and mild-to-severe cognitive impairment risk. DESIGN Studies that reported risk estimates for mild cognitive impairment (MCI), cognitive decline, dementia, Alzheimer disease (AD), or Parkinson disease (PD) from fish, total PUFAs, total n-3 (ω-3) PUFAs, or at least one n-3 PUFA were included. Study characteristics and outcomes were extracted. The pooled RR was estimated with the use of a random-effects model meta-analysis. A dose-response analysis was conducted with the use of the 2-stage generalized least-squares trend program. RESULTS We included 21 studies (181,580 participants) with 4438 cases identified during follow-up periods (2.1-21 y). A 1-serving/wk increment of dietary fish was associated with lower risks of dementia (RR: 0.95; 95% CI: 0.90, 0.99; P = 0.042, I(2) = 63.4%) and AD (RR: 0.93; 95% CI: 0.90, 0.95; P = 0.003, I(2) = 74.8%). Pooled RRs of MCI and PD were 0.71 (95% CI: 0.59, 0.82; P = 0.733, I(2) = 0%) and 0.90 (95% CI: 0.80, 0.99; P = 0.221, I(2) = 33.7%), respectively, for an 8-g/d increment of PUFA intake. As an important source of marine n-3 PUFAs, a 0.1-g/d increment of dietary docosahexaenoic acid (DHA) intake was associated with lower risks of dementia (RR: 0.86; 95% CI: 0.76, 0.96; P < 0.001, I(2) = 92.7%) and AD (RR: 0.63; 95% CI: 0.51, 0.76; P < 0.001, I(2) = 94.5%). Significant curvilinear relations between fish consumption and risk of AD and between total PUFAs and risk of MCI (both P-nonlinearity < 0.001) were observed. CONCLUSIONS Fishery products are recommended as dietary sources and are associated with lower risk of cognitive impairment. Marine-derived DHA was associated with lower risk of dementia and AD but without a linear dose-response relation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; and
| | - Jingnan Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; and
| | | | - Yingjun Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbing Wang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
49
|
Forbes SC, Holroyd-Leduc JM, Poulin MJ, Hogan DB. Effect of Nutrients, Dietary Supplements and Vitamins on Cognition: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can Geriatr J 2015; 18:231-45. [PMID: 26740832 PMCID: PMC4696451 DOI: 10.5770/cgj.18.189] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Observational studies have suggested that various nutrients, dietary supplements, and vitamins may delay the onset of age-associated cognitive decline and dementia. We systematically reviewed recent randomized controlled trials investigating the effect of nutritional interventions on cognitive performance in older non-demented adults. Methods We searched MEDLINE, CINAHL, Embase, and the Cochrane Library for articles published between 2003 and 2013. We included randomized trials of ≥ 3 months’ duration that examined the cognitive effects of a nutritional intervention in non-demented adults > 40 years of age. Meta-analyses were done when sufficient trials were available. Results Twenty-four trials met inclusion criteria (six omega-3 fatty acids, seven B vitamins, three vitamin E, eight other interventions). In the meta-analyses, omega-3 fatty acids showed no significant effect on Mini-Mental State Examination (MMSE) scores (four trials, mean difference 0.06, 95% CI −0.08 – 0.19) or digit span forward (three trials, mean difference −0.02, 95% CI −0.30 – 0.25), while B vitamins showed no significant effect on MMSE scores (three trials, mean difference 0.02, 95% CI −0.22 – 0.25). None of the vitamin E studies reported significant effects on cognitive outcomes. Among the other nutritional interventions, statistically significant differences between the intervention and control groups on at least one cognitive domain were found in single studies of green tea extract, Concord grape juice, chromium picolinate, beta-carotene, two different combinations of multiple vitamins, and a dietary approach developed for the control of hypertension. Conclusions Omega-3 fatty acids, B vitamins, and vitamin E supplementation did not affect cognition in non-demented middle-aged and older adults. Other nutritional interventions require further evaluation before their use can be advocated for the prevention of age-associated cognitive decline and dementia.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB
| | - Jayna M Holroyd-Leduc
- Departments of Medicine, Clinical Neurosciences and Community Health Sciences, Faculty of Medicine, University of Calgary, Calgary, AB;; Alberta Seniors Health Strategic Clinical Network, Alberta Health Services, Calgary, AB
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB;; Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB
| | - David B Hogan
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB;; Brenda Stafford Foundation Chair in Geriatric Medicine, Faculty of Medicine, University of Calgary, Calgary, AB;; Departments of Medicine, Clinical Neurosciences and Community Health Sciences, Faculty of Medicine, University of Calgary, Calgary, AB;; Alberta Seniors Health Strategic Clinical Network, Alberta Health Services, Calgary, AB
| |
Collapse
|
50
|
Abstract
Animal experiments and cross-sectional or prospective longitudinal research in human subjects suggest a role for nutrition in cognitive ageing. However, data from randomised controlled trials (RCT) that seek causal evidence for the impact of nutrients on cognitive ageing in humans often produce null results. Given that RCT test hypotheses in a rigorous fashion, one conclusion could be that the positive effects of nutrition on the aged brain observed in other study designs are spurious. On the other hand, it may be that the design of many clinical trials conducted thus far has been less than optimal. In the present review, we offer a blueprint for a more targeted approach to the design of RCT in nutrition, cognition and brain health in ageing that focuses on three key areas. First, the role of nutrition is more suited for the maintenance of health rather than the treatment of disease. Second, given that cognitive functions and brain regions vary in their susceptibility to ageing, those that especially deteriorate in senescence should be focal points in evaluating the efficacy of an intervention. Third, the outcome measures that assess change due to nutrition, especially in the cognitive domain, should not necessarily be the same neuropsychological tests used to assess gross brain damage or major pathological conditions. By addressing these three areas, we expect that clinical trials of nutrition, cognition and brain health in ageing will align more closely with other research in this field, and aid in revealing the true nature of nutrition's impact on the aged brain.
Collapse
|