1
|
Kassanos P, Hourdakis E. Implantable Passive Sensors for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 25:133. [PMID: 39796923 PMCID: PMC11723123 DOI: 10.3390/s25010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
In recent years, implantable sensors have been extensively researched since they allow localized sensing at an area of interest (e.g., within the vicinity of a surgical site or other implant). They allow unobtrusive and potentially continuous sensing, enabling greater specificity, early warning capabilities, and thus timely clinical intervention. Wireless remote interrogation of the implanted sensor is typically achieved using radio frequency (RF), inductive coupling or ultrasound through an external device. Two categories of implantable sensors are available, namely active and passive. Active sensors offer greater capabilities, such as on-node signal and data processing, multiplexing and multimodal sensing, while also allowing lower detection limits, the possibility to encode patient sensitive information and bidirectional communication. However, they require an energy source to operate. Battery implantation, and maintenance, remains a very important constraint in many implantable applications even though energy can be provided wirelessly through the external device, in some cases. On the other hand, passive sensors offer the possibility of detection without the need for a local energy source or active electronics. They also offer significant advantages in the areas of system complexity, cost and size. In this review, implantable passive sensor technologies will be discussed along with their communication and readout schemes. Materials, detection strategies and clinical applications of passive sensors will be described. Advantages over active sensor technologies will be highlighted, as well as critical aspects related to packaging and biocompatibility.
Collapse
Affiliation(s)
| | - Emmanouel Hourdakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece;
| |
Collapse
|
2
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
3
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
4
|
Prieto Jarabo ME, Redlich C, Schauer A, Alves PKN, Guder C, Poehle G, Weissgaerber T, Adams V, Kappert U, El-Armouche A, Linke A, Wagner M. Bioresorbable molybdenum temporary epicardial pacing wires. Acta Biomater 2024; 178:330-339. [PMID: 38432350 DOI: 10.1016/j.actbio.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cardiac pacing with temporary epicardial pacing wires (TEPW) is used to treat rhythm disturbances after cardiac surgery. Occasionally, TEPW cannot be mechanically extracted and remain in the thorax, where they may rarely cause serious complications like migration and infection. We aim to develop bioresorbable TEPW that will dissolve over time even if postoperative removal is unsuccessful. In the present study, we demonstrate a completely bioresorbable design using molybdenum (Mo) as electric conductor and the resorbable polymers poly(D, L-lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) for electrically insulating double-coating. We compared the pacing properties of these Mo TEPW demonstrators to conventional steel TEPW in Langendorff-perfused rat hearts and observed similar functionality. In vitro, static immersion tests in simulated body fluid for up to 28 days elucidated the degradation behaviour of uncoated Mo strands and the influence of polymer coating thereon. Degradation was considerably reduced in double-coated Mo TEPW compared to the uncoated and the PLGA-coated condition. Furthermore, we confirmed good biocompatibility of Mo degradation products in the form of low cytotoxicity in cell cultures of human cardiomyocytes and cardiac fibroblasts. STATEMENT OF SIGNIFICANCE: Temporary pacing wires are routinely implanted on the heart surface to treat rhythm disturbances in the days following cardiac surgery. Subsequently, these wires are to be removed. When removal attempts are unsuccessful, wires are cut at skin level and the remainders are left inside the chest. Retained fragments may migrate within the body or become a centre of infection. These complications may be prevented using resorbable pacing wires. We manufactured completely resorbable temporary pacing wires using molybdenum as electrical conductor and assessed their function, degradation and biological compatibility. Our study represents an important step in the development of a safer approach to the treatment of rhythm disturbances after cardiac surgery.
Collapse
Affiliation(s)
- Maria-Elisa Prieto Jarabo
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany
| | - Christian Redlich
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Germany
| | - Antje Schauer
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany; Laboratory of Experimental and Molecular Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany
| | - Paula Ketilly Nascimento Alves
- Laboratory of Experimental and Molecular Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Celine Guder
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Germany
| | - Georg Poehle
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Germany
| | - Thomas Weissgaerber
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Germany; Chair of Powder Metallurgy, Institute of Materials Science, Technische Universität Dresden, Germany
| | - Volker Adams
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany; Laboratory of Experimental and Molecular Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany
| | - Utz Kappert
- Clinic for Cardiac Surgery, Heart Center Dresden, Technische Universität Dresden, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany
| | - Axel Linke
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany
| | - Michael Wagner
- Clinic for Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Germany.
| |
Collapse
|
5
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Shin JW, Kim DJ, Jang TM, Han WB, Lee JH, Ko GJ, Yang SM, Rajaram K, Han S, Kang H, Lim JH, Eom CH, Bandodkar AJ, Min H, Hwang SW. Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems. NANO-MICRO LETTERS 2024; 16:102. [PMID: 38300387 PMCID: PMC10834929 DOI: 10.1007/s40820-023-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 02/02/2024]
Abstract
Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Semiconductor R&D Center, Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix, 2091, Gyeongchung-daero, Bubal-eup, Icheon-si, Gyeonggi-do, 17336, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Kaveti Rajaram
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hanul Min
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
7
|
Zhao S, Zhao Y, Li C, Wang W, Liu HY, Cui L, Li X, Yang Z, Zhang A, Wang Y, Lin Y, Hao T, Yin J, Kang J, Zhu J. Aramid Nanodielectrics for Ultraconformal Transparent Electronic Skins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305479. [PMID: 37705254 DOI: 10.1002/adma.202305479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/09/2023] [Indexed: 09/15/2023]
Abstract
On-skin electronics require minimal thicknesses and decent transparency for conformal contact, imperceptible wearing, and visual aesthetics. It is challenging to search for advanced ultrathin dielectrics capable of supporting the active components while maintaining bending softness, easy handling, and wafer-scale processability. Here, self-delaminated aramid nanodielectrics (ANDs) are demonstrated, enabling any skin-like electronics easily exfoliated from the processing substrates after complicated nanofabrication. In addition, ANDs are mechanically strong, chemically and thermally stable, transparent and breathable, therefore are ideal substrates for soft electronics. As demonstrated, compliant epidermal electrodes comprising silver nanowires and ANDs can successfully record high-quality electromyogram signals with low motion artifacts and satisfying sweat and water resistance. Furthermore, ANDs can serve as both substrates and dielectrics in single-walled carbon nanotube field-effect transistors (FETs) with a merely 160-nm thickness, which can be operated within 4 V with on/off ratios of 1.4 ± 0.5 × 105 , mobilities of 39.9 ± 2.2 cm2 V-1 s-1 , and negligible hysteresis. The ultraconformal FETs can function properly when wrapped around human hair without any degradation in performance.
Collapse
Affiliation(s)
- Sanchuan Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yingtao Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Chenning Li
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Hai-Yang Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Xiang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Zhenhua Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Anni Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yurou Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Tailang Hao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
8
|
Wu Y, Rytkin E, Bimrose M, Li S, Choi YS, Lee G, Wang Y, Tang L, Madrid M, Wickerson G, Chang JK, Gu J, Zhang Y, Liu J, Tawfick S, Huang Y, King WP, Efimov IR, Rogers JA. A Sewing Approach to the Fabrication of Eco/bioresorbable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305017. [PMID: 37528504 DOI: 10.1002/smll.202305017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Indexed: 08/03/2023]
Abstract
Eco/bioresorbable electronics represent an emerging class of technology defined by an ability to dissolve or otherwise harmlessly disappear in environmental or biological surroundings after a period of stable operation. The resulting devices provide unique capabilities as temporary biomedical implants, environmental sensors, and related systems. Recent publications report schemes to overcome challenges in fabrication that follow from the low thermostability and/or high chemical reactivity of the eco/bioresorbable constituent materials. Here, this work reports the use of high-speed sewing machines, as the basis for a high-throughput manufacturing technique that addresses many requirements for these applications, without the need for high temperatures or reactive solvents. Results demonstrate that a range of eco/bioresorbable metal wires and polymer threads can be embroidered into complex, user-defined conductive patterns on eco/bioresorbable substrates. Functional electronic components, such as stretchable interconnects and antennas are possible, along with fully integrated systems. Examples of the latter include wirelessly powered light-emitting diodes, radiofrequency identification tags, and temporary cardiac pacemakers. These advances add to a growing range of options in high-throughput, automated fabrication of eco/bioresorbable electronics.
Collapse
Affiliation(s)
- Yunyun Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Eric Rytkin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Miles Bimrose
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yeon Sik Choi
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lichao Tang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Micah Madrid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Grace Wickerson
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jan-Kai Chang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Wearifi Inc, Evanston, IL, 60208, USA
| | - Jianyu Gu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Sameh Tawfick
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - William P King
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
9
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Abyzova E, Dogadina E, Rodriguez RD, Petrov I, Kolesnikova Y, Zhou M, Liu C, Sheremet E. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Mater Today Bio 2023; 22:100784. [PMID: 37731959 PMCID: PMC10507164 DOI: 10.1016/j.mtbio.2023.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices.
Collapse
Affiliation(s)
- Elena Abyzova
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | - Elizaveta Dogadina
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, Russia, 634050
| | | | - Mo Zhou
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | |
Collapse
|
11
|
Honarbari A, Cataldi P, Zych A, Merino D, Paknezhad N, Ceseracciu L, Perotto G, Crepaldi M, Athanassiou A. A Green Conformable Thermoformed Printed Circuit Board Sourced from Renewable Materials. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:5050-5060. [PMID: 37779887 PMCID: PMC10537457 DOI: 10.1021/acsaelm.3c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Printed circuit boards (PCBs) physically support and connect electronic components to the implementation of complex circuits. The most widespread insulating substrate that also acts as a mechanical support in PCBs is commercially known as FR4, and it is a glass-fiber-reinforced epoxy resin laminate. FR4 has exceptional dielectric, mechanical, and thermal properties. However, it was designed without considering sustainability and end-of-life aspects, heavily contributing to the accumulation of electronic waste in the environment. Thus, greener alternatives that can be reprocessed, reused, biodegraded, or composted at the end of their function are needed. This work presents the development and characterization of a PCB substrate based on poly(lactic acid) and cotton fabric, a compostable alternative to the conventional FR4. The substrate has been developed by compression molding, a process compatible with the polymer industry. We demonstrate that conductive silver ink can be additively printed on the substrate's surface, as its morphology and wettability are similar to those of FR4. For example, the compostable PCB's water contact angle is 72°, close to FR4's contact angle of 64°. The developed substrate can be thermoformed to curved surfaces at low temperatures while preserving the conductivity of the silver tracks. The green substrate has a dielectric constant comparable to that of the standard FR4, showing a value of 5.6 and 4.6 at 10 and 100 kHz, respectively, which is close to the constant value of 4.6 of FR4. The substrate is suitable for microdrilling, a fundamental process for integrating electronic components to the PCB. We implemented a proof-of-principle circuit to control the blinking of LEDs on top of the PCB, comprising resistors, capacitors, LEDs, and a dual in-line package circuit timer. The developed PCB substrate represents a sustainable alternative to standard FR4 and could contribute to the reduction of the overwhelming load of electronic waste in landfills.
Collapse
Affiliation(s)
- Amirsoheil Honarbari
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Dipartimento
di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), University of Genoa, Via all’Opera Pia 13, Genova 16145, Italy
| | - Pietro Cataldi
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Arkadiusz Zych
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Danila Merino
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Niloofar Paknezhad
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Department
of Biology, University of Rome “Tor
Vergata”, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Luca Ceseracciu
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Genova 16163, Italy
| | - Giovanni Perotto
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Marco Crepaldi
- Electronic
Design Laboratory, Istituto Italiano di
Tecnologia, Via Enrico
Melen, Genova 16152, Italy
| | | |
Collapse
|
12
|
Wu SD, Hsu SH, Ketelsen B, Bittinger SC, Schlicke H, Weller H, Vossmeyer T. Fabrication of Eco-Friendly Wearable Strain Sensor Arrays via Facile Contact Printing for Healthcare Applications. SMALL METHODS 2023; 7:e2300170. [PMID: 37154264 DOI: 10.1002/smtd.202300170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Wearable flexible strain sensors with spatial resolution enable the acquisition and analysis of complex actions for noninvasive personalized healthcare applications. To provide secure contact with skin and to avoid environmental pollution after usage, sensors with biocompatibility and biodegradability are highly desirable. Herein, wearable flexible strain sensors composed of crosslinked gold nanoparticle (GNP) thin films as the active conductive layer and transparent biodegradable polyurethane (PU) films as the flexible substrate are developed. The patterned GNP films (micrometer- to millimeter-scale square and rectangle geometry, alphabetic characters, and wave and array patterns) are transferred onto the biodegradable PU film via a facile, clean, rapid and high-precision contact printing method, without the need of a sacrificial polymer carrier or organic solvents. The GNP-PU strain sensor with low Young's modulus (≈17.8 MPa) and high stretchability showed good stability and durability (10 000 cycles) as well as degradability (42% weight loss after 17 days at 74 °C in water). The GNP-PU strain sensor arrays with spatiotemporal strain resolution are applied as wearable eco-friendly electronics for monitoring subtle physiological signals (e.g., mapping of arterial lines and sensing pulse waveforms) and large-strain actions (e.g., finger bending).
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Bendix Ketelsen
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Sophia C Bittinger
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Hendrik Schlicke
- Fraunhofer Center for Applied Nanotechnology CAN, 20146, Hamburg, Germany
| | - Horst Weller
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
- Fraunhofer Center for Applied Nanotechnology CAN, 20146, Hamburg, Germany
| | - Tobias Vossmeyer
- Institute of Physical Chemistry, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
13
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
14
|
Sanchez-Duenas L, Gomez E, Larrañaga M, Blanco M, Goitandia AM, Aranzabe E, Vilas-Vilela JL. A Review on Sustainable Inks for Printed Electronics: Materials for Conductive, Dielectric and Piezoelectric Sustainable Inks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113940. [PMID: 37297073 DOI: 10.3390/ma16113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
In the last decades, the demand for electronics and, therefore, electronic waste, has increased. To reduce this electronic waste and the impact of this sector on the environment, it is necessary to develop biodegradable systems using naturally produced materials with low impact on the environment or systems that can degrade in a certain period. One way to manufacture these types of systems is by using printed electronics because the inks and the substrates used are sustainable. Printed electronics involve different methods of deposition, such as screen printing or inkjet printing. Depending on the method of deposition selected, the developed inks should have different properties, such as viscosity or solid content. To produce sustainable inks, it is necessary to ensure that most of the materials used in the formulation are biobased, biodegradable, or not considered critical raw materials. In this review, different inks for inkjet printing or screen printing that are considered sustainable, and the materials that can be used to formulate them, are collected. Printed electronics need inks with different functionalities, which can be mainly classified into three groups: conductive, dielectric, or piezoelectric inks. Materials need to be selected depending on the ink's final purpose. For example, functional materials such as carbon or biobased silver should be used to secure the conductivity of an ink, a material with dielectric properties could be used to develop a dielectric ink, or materials that present piezoelectric properties could be mixed with different binders to develop a piezoelectric ink. A good combination of all the components selected must be achieved to ensure the proper features of each ink.
Collapse
Affiliation(s)
- Leire Sanchez-Duenas
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Estibaliz Gomez
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Mikel Larrañaga
- Electronics and Communications Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Miren Blanco
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Amaia M Goitandia
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - Estibaliz Aranzabe
- Surface Chemistry & Nanotechnologies Unit, Fundación Tekniker, Inaki Goenaga 5, 20600 Eibar, Spain
| | - José Luis Vilas-Vilela
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
15
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
16
|
Sánchez Vergara ME, Agraz Rentería MJ, Vázquez-Olmos AR, Rincón-Granados KL, Álvarez Bada JR, Sato-Berrú RY. Fabrication and Characterization of Hybrid Films Based on NiFe 2O 4 Nanoparticles in a Polymeric Matrix for Applications in Organic Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091525. [PMID: 37177070 PMCID: PMC10180306 DOI: 10.3390/nano13091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Hybrid films for applications in organic electronics from NiFe2O4 nanoparticles (NPs) in poly(3,4 ethylene dioxythiophene), poly(4-styrenesulfonate) (PEDOT:PSS), and poly(methyl methacrylate) (PMMA) were fabricated by the spin-coating technique. The films were characterized by infrared spectroscopy, atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy to subsequently determine their optical parameters. The electronic transport of the hybrid films was determined in bulk heterojunction devices. The presence of NiFe2O4 NPs reinforces mechanical properties and increases transmittance in the hybrid films; the PEDOT:PSS-NiFe2O4 NPs film is the one that has a maximum stress of 28 MPa and a Knoop hardness of 0.103, while the PMMA-NiFe2O4 NPs film has the highest transmittance of (87%). The Tauc band gap is in the range of 3.78-3.9 eV, and the Urbach energy is in the range of 0.24-0.33 eV. Regarding electrical behavior, the main effect is exerted by the matrix, although the current carried is of the same order of magnitude for the two devices: glass/ITO/polymer-NiFe2O4 NPs/Ag. NiFe2O4 NPs enhance the mechanical, optical, and electrical behavior of the hybrid films and can be used as semi-transparent anodes and as active layers.
Collapse
Affiliation(s)
- María Elena Sánchez Vergara
- Faculty of Engineering, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico
| | - María José Agraz Rentería
- Faculty of Engineering, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico
| | - América R Vázquez-Olmos
- Institute of Applied Sciences and Technology, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C.U., Coyoacán 04510, Ciudad de México, Mexico
| | - Karen L Rincón-Granados
- Institute of Applied Sciences and Technology, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C.U., Coyoacán 04510, Ciudad de México, Mexico
| | - José Ramón Álvarez Bada
- Faculty of Engineering, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico
| | - Roberto Y Sato-Berrú
- Institute of Applied Sciences and Technology, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C.U., Coyoacán 04510, Ciudad de México, Mexico
| |
Collapse
|
17
|
Dutta A, Cheng H. Pathway of transient electronics towards connected biomedical applications. NANOSCALE 2023; 15:4236-4249. [PMID: 36688506 DOI: 10.1039/d2nr06068j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transient electronic devices have shown promising applications in hardware security and medical implants with diagnosing therapeutics capabilities since their inception. Control of the device transience allows the device to "dissolve at will" after its functional operation, leading to the development of on-demand transient electronics. This review discusses the recent developments and advantages of triggering strategies (e.g., electrical, thermal, ultrasound, and optical) for controlling the degradation of on-demand transient electronics. We also summarize bioresorbable sensors for medical diagnoses, including representative applications in electrophysiology and neurochemical sensing. Along with the profound advancements in medical diagnosis, the commencement of therapeutic systems such as electrical stimulation and drug delivery for the biomedical or medical implant community has also been discussed. However, implementing a transient electronic system in real healthcare infrastructure is still in its infancy. Many critical challenges still need to be addressed, including strategies to decouple multimodal sensing signals, dissolution selectivity in the presence of multiple stimuli, and a complete sensing-stimulation closed-loop system. Therefore, the review discusses future opportunities in transient decoupling sensors and robust transient devices, which are selective to a particular stimulus and act as hardware-based passwords. Recent advancements in closed-loop controller-enabled electronics have also been analyzed for future opportunities of using data-driven artificial intelligence-powered controllers in fully closed-loop transient systems.
Collapse
Affiliation(s)
- Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| |
Collapse
|
18
|
Ghosh G, Bag A, Hanif A, Meeseepong M, Lee YR, Lee N. Tough, Bio‐disintegrable and Stretchable Substrate Reinforced with Nanofibers for Transient Wearable Electronics. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202209277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 01/06/2025]
Abstract
AbstractResearch on transient wearable electronics with stretchable components is of increasing interest because of their abilities to conform seamlessly to human tissues and, more interestingly, disappear from the environment when disposed. To wear them comfortably, their component materials must be pliable, tough, stretchable, biocompatible, and disintegrable. However, most biodegradable materials are not stretchable or tough, limiting their use in transient wearable electronics. Herein, these challenges are addressed by demonstrating a biodegradable nanofiber (NF)‐reinforced water‐borne polyurethane (NFR‐WPU) with stretchability, toughness, and partial biodegradability by embedding biodegradable composite NFs of poly(glycerol sebacate): poly(vinyl alcohol) (PGS:PVA) into the WPU matrix, thus rendering its properties tunable. An optimal loading amount of NFs into the NFR‐WPU significantly enhanced the toughness by 19 times while maintaining the Young's modulus as low as 3.3 MPa. Furthermore, the NFR‐WPU substrate has very high fracture toughness and shows excellent biocompatibility. Moreover, the NFR‐WPU has a disintegration rate nine times greater than that of pristine WPU. Finally, disintegrable and stretchable triboelectric and capacitive touch sensors on the NFR‐WPU are fabricated and demonstrated for potential use in transient wearable electronics.
Collapse
Affiliation(s)
- Gargi Ghosh
- School of Advanced Materials Science & Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Atanu Bag
- School of Advanced Materials Science & Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
- Research Centre for Advanced Materials Technology Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Adeela Hanif
- School of Advanced Materials Science & Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yu Rim Lee
- School of Advanced Materials Science & Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Nae‐Eung Lee
- School of Advanced Materials Science & Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
- Research Centre for Advanced Materials Technology Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
- Institute of Quantum Biophysics (IQB) Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
19
|
Zarei M, Lee G, Lee SG, Cho K. Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human-Machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203193. [PMID: 35737931 DOI: 10.1002/adma.202203193] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the electronics industry and proliferation of electronic materials and telecommunications technologies has led to the release of a massive amount of untreated electronic waste (e-waste) into the environment. Consequently, catastrophic environmental damage at the microbiome level and serious human health diseases threaten the natural fate of the planet. Currently, the demand for wearable electronics for applications in personalized medicine, electronic skins (e-skins), and health monitoring is substantial and growing. Therefore, "green" characteristics such as biodegradability, self-healing, and biocompatibility ensure the future application of wearable electronics and e-skins in biomedical engineering and bioanalytical sciences. Leveraging the biodegradability, sustainability, and biocompatibility of natural materials will dramatically influence the fabrication of environmentally friendly e-skins and wearable electronics. Here, the molecular and structural characteristics of biological skins and artificial e-skins are discussed. The focus then turns to the biodegradable materials, including natural and synthetic-polymer-based materials, and their recent applications in the development of biodegradable e-skin in wearable sensors, robotics, and human-machine interfaces (HMIs). Finally, the main challenges and outlook regarding the preparation and application of biodegradable e-skins are critically discussed in a near-future scenario, which is expected to lead to the next generation of biodegradable e-skins.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Giwon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
20
|
Wang L, Zhang Y, Zhang P, Wen D. Physical Transient Photoresistive Variable Memory Based on Graphene Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3976. [PMID: 36432261 PMCID: PMC9695640 DOI: 10.3390/nano12223976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Biomaterials have attracted attention as a major material for biodegradable and transient electronic devices. In this work, biocompatible gelatin-doped graphene quantum dot films are reported as active layer switching memories with good electrical properties and physical transient properties. Such nonvolatile memory devices have write-once-read-many electrical properties and a concentrated distribution of low-resistance and high-resistance states. It provides a solution for the current obstacle of resistive memory storage and computing integration. Based on the sensitivity of the device to ultraviolet light, the "OR gate" logic operation is completed. Furthermore, the active layer can be dissolved in deionized water within 15 min, and the gelatin substrate-based device can be destroyed immediately in water, indicating the potential biodegradation and physical transient properties of our fabricated device. Biocompatible memory devices are environmentally friendly, sustainable for safe storage, and low-cost, making them ideal for storage applications.
Collapse
Affiliation(s)
- Lu Wang
- Heilongjiang Provincial Key Laboratory of Micronano Sensitive Devices and Systems, School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | | | | | | |
Collapse
|
21
|
Yang Q, Hu Z, Seo MH, Xu Y, Yan Y, Hsu YH, Berkovich J, Lee K, Liu TL, McDonald S, Nie H, Oh H, Wu M, Kim JT, Miller SA, Jia Y, Butun S, Bai W, Guo H, Choi J, Banks A, Ray WZ, Kozorovitskiy Y, Becker ML, Pet MA, MacEwan MR, Chang JK, Wang H, Huang Y, Rogers JA. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nat Commun 2022; 13:6518. [PMID: 36316354 PMCID: PMC9622701 DOI: 10.1038/s41467-022-34173-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies.
Collapse
Affiliation(s)
- Quansan Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Min-Ho Seo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- School of Biomedical Convergence Engineering, College of Information & Biomedical Engineering, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yameng Xu
- The Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, 63130, USA
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Jaime Berkovich
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kwonjae Lee
- Department of Biological Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | | | - Haolin Nie
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hannah Oh
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Stephen A Miller
- Laser and Electronics Design Core Facility, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Jia
- Micro/Nano Fabrication Facility, Northwestern University, Evanston, IL, 60208, USA
| | - Serkan Butun
- Micro/Nano Fabrication Facility, Northwestern University, Evanston, IL, 60208, USA
| | - Wubin Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hexia Guo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Junhwan Choi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Anthony Banks
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Wilson Z Ray
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, 63130, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
- Developmental Therapeutics Core, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, NC, 27708, USA
| | - Mitchell A Pet
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, 63130, USA
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, 63130, USA
| | - Jan-Kai Chang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Wearifi Inc., Evanston, IL, 60201, USA
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
- Zhejiang Tsinghua Institute of Flexible Electronics Technology, Jiaxing, 314000, China.
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
22
|
Wang L, Zhang Y, Zhang P, Wen D. Flexible Transient Resistive Memory Based on Biodegradable Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3531. [PMID: 36234659 PMCID: PMC9565246 DOI: 10.3390/nano12193531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/12/2023]
Abstract
Physical transient electronics have attracted more attention as the basis for building green electronics and biomedical devices. However, there are difficulties in selecting materials for the fabricated devices to take into account both biodegradability and high performance. In this paper, a physically transient resistive random-access memory (RRAM) device was fabricated by using egg protein and graphene quantum dot composites as active layers. The sandwich structure composed of Al/EA:GQD/ITO shows a good write-once-multiple-read memory characteristic, and the introduced GQD improves the switching current ratio of the device. By using the sensitivity of GQDs to ultraviolet light, the logic operation of the "OR gate" is completed. Furthermore, the device exhibits a physical transient behavior and good biodegradability due to the dissolution behavior in deionized water. These results suggest that the device is a favorable candidate for the construction of memory elements for transient electronic systems.
Collapse
Affiliation(s)
- Lu Wang
- Heilongjiang Provincial Key Laboratory of Micronano Sensitive Devices and Systems, School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | | | | | | |
Collapse
|
23
|
Zhai Z, Du X, Long Y, Zheng H. Biodegradable polymeric materials for flexible and degradable electronics. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.985681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodegradable electronics have great potential to reduce the environmental footprint of electronic devices and to avoid secondary removal of implantable health monitors and therapeutic electronics. Benefiting from the intensive innovation on biodegradable nanomaterials, current transient electronics can realize full components’ degradability. However, design of materials with tissue-comparable flexibility, desired dielectric properties, suitable biocompatibility and programmable biodegradability will always be a challenge to explore the subtle trade-offs between these parameters. In this review, we firstly discuss the general chemical structure and degradation behavior of polymeric biodegradable materials that have been widely studied for various applications. Then, specific properties of different degradable polymer materials such as biocompatibility, biodegradability, and flexibility were compared and evaluated for real-life applications. Complex biodegradable electronics and related strategies with enhanced functionality aimed for different components including substrates, insulators, conductors and semiconductors in complex biodegradable electronics are further researched and discussed. Finally, typical applications of biodegradable electronics in sensing, therapeutic drug delivery, energy storage and integrated electronic systems are highlighted. This paper critically reviews the significant progress made in the field and highlights the future prospects.
Collapse
|
24
|
Gong C, Gu Y, Wang X, Yi C. Oligomer Content Determines the Properties and Application of Polycaprolactone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caihong Gong
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, Hunan, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yu Gu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Xi Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| | - Chunwang Yi
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, Hunan, P. R. China
| |
Collapse
|
25
|
Fernandes C, Taurino I. Biodegradable Molybdenum (Mo) and Tungsten (W) Devices: One Step Closer towards Fully-Transient Biomedical Implants. SENSORS 2022; 22:s22083062. [PMID: 35459047 PMCID: PMC9027146 DOI: 10.3390/s22083062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 01/03/2023]
Abstract
Close monitoring of vital physiological parameters is often key in following the evolution of certain medical conditions (e.g., diabetes, infections, post-operative status or post-traumatic injury). The allocation of trained medical staff and specialized equipment is, therefore, necessary and often translates into a clinical and economic burden on modern healthcare systems. As a growing field, transient electronics may establish fully bioresorbable medical devices capable of remote real-time monitoring of therapeutically relevant parameters. These devices could alert remote medical personnel in case of any anomaly and fully disintegrate in the body without a trace. Unfortunately, the need for a multitude of biodegradable electronic components (power supplies, wires, circuitry) in addition to the electrochemical biosensing interface has halted the arrival of fully bioresorbable electronically active medical devices. In recent years molybdenum (Mo) and tungsten (W) have drawn increasing attention as promising candidates for the fabrication of both energy-powered active (e.g., transistors and integrated circuits) and passive (e.g., resistors and capacitors) biodegradable electronic components. In this review, we discuss the latest Mo and W-based dissolvable devices for potential biomedical applications and how these soluble metals could pave the way towards next-generation fully transient implantable electronic systems.
Collapse
Affiliation(s)
- Catarina Fernandes
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (Micro- and Nano Systems), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium;
- Correspondence:
| | - Irene Taurino
- Micro and Nano-Systems (MNS), Department of Electrical Engineering (Micro- and Nano Systems), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium;
- Semiconductor Physics, Department of Physics and Astronomy (Semiconductor Physics), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium
| |
Collapse
|
26
|
Xia F, Xia T, Xiang L, Liu F, Jia W, Liang X, Hu Y. High-Performance Carbon Nanotube-Based Transient Complementary Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12515-12522. [PMID: 35230800 DOI: 10.1021/acsami.1c23134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient electronics is an emerging class of electronic devices that can physically degrade or disintegrate after a stable period of service, showing a vast prospect in applications of "green" consumer electronics, hardware-secure devices, medical implants, etc. Complementary metal-oxide-semiconductor (CMOS) technology is dominant in integrated circuit design for its advantages of low static power consumption, high noise immunity, and simple design layout, which also work and are highly preferred for transient electronics. However, the performance of complementary transient electronics is severely restricted by the confined selection of transient materials and compatible fabrication strategies. Here, we report the realization of high-performance transient complementary electronics based on carbon nanotube thin films via a reliable electrostatic doping method. Under a low operating voltage of 2 V, on a 1.5 μm-thick water-soluble substrate made of poly(vinyl alcohol), the width-normalized on-state currents of the p-type and n-type transient thin-film transistors (TFTs) reach 4.5 and 4.7 μA/μm, and the width-normalized transconductances reach 2.8 and 3.7 μS/μm, respectively. Meanwhile, these TFTs show small subthreshold swings no more than 108 mV/dec and current on/off ratios above 106 with good uniformity. Transient CMOS inverters, as basic circuit components, are demonstrated with a voltage gain of 24 and a high noise immunity of 67.4%. Finally, both the degradation of the active components and the disintegration of the functional system are continuously monitored with nontraceable remains after 10 and 5 h, respectively.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, and School of Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tian Xia
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, and School of Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Xiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, and School of Electronics, Peking University, Beijing 100871, China
- College of Materials and Engineering, Hunan University, Changsha 410082, China
| | - Fang Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, and School of Electronics, Peking University, Beijing 100871, China
| | - Weijie Jia
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, and School of Electronics, Peking University, Beijing 100871, China
| | - Xuelei Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, and School of Electronics, Peking University, Beijing 100871, China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, and School of Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
28
|
Pandey S, Mastrangelo C. Towards Transient Electronics through Heat Triggered Shattering of Off-the-Shelf Electronic Chips. MICROMACHINES 2022; 13:mi13020242. [PMID: 35208366 PMCID: PMC8877697 DOI: 10.3390/mi13020242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
With most of the critical data being stored in silicon (Si) based electronic devices, there is a need to develop such devices with a transient nature. Here, we have focused on developing a programmable and controllable heat triggered shattering transience mechanism for any off-the-shelf (OTS) Si microchip as a means to develop transient electronics which can then be safely and rapidly disabled on trigger when desired. This transience mechanism is based on irreversible and spontaneous propagation of cracks that are patterned on the back of the OTS chip in the form of grooves and then filled with thermally expandable (TE) material. Two types of TE materials were used in this study, commercially available microsphere particles and a developed elastomeric material. These materials expand >100 times their original volume on the application of heat which applies wedging stress of the groove boundaries and induces crack propagation resulting in the complete shattering of the OTS Si chip into tiny silicon pieces. Transience was controlled by temperature and can be triggered at ~160–190 °C. We also demonstrated the programmability of critical parameters such as transience time (0.35–12 s) and transience efficiency (5–60%) without the knowledge of material properties by modeling the swelling behavior using linear viscoelastic models.
Collapse
|
29
|
Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium. SENSORS 2022; 22:s22030802. [PMID: 35161547 PMCID: PMC8838160 DOI: 10.3390/s22030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.
Collapse
|
30
|
Shin JW, Chan Choe J, Lee JH, Han WB, Jang TM, Ko GJ, Yang SM, Kim YG, Joo J, Lim BH, Park E, Hwang SW. Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. ACS NANO 2021; 15:19310-19320. [PMID: 34843199 DOI: 10.1021/acsnano.1c05463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The lifetime of transient electronic components can be programmed via the use of encapsulation/passivation layers or of on-demand, stimuli-responsive polymers (heat, light, or chemicals), but yet most research is limited to slow dissolution rate, hazardous constituents, or byproducts, or complicated synthesis of reactants. Here we present a physicochemical destruction system with dissolvable, nontoxic materials as an efficient, multipurpose platform, where chemically produced bubbles rapidly collapse device structures and acidic molecules accelerate dissolution of functional traces. Extensive studies of composites based on biodegradable polymers (gelatin and poly(lactic-co-glycolic acid)) and harmless blowing agents (organic acid and bicarbonate salt) validate the capability for the desired system. Integration with wearable/recyclable electronic components, fast-degradable device layouts, and wireless microfluidic devices highlights potential applicability toward versatile/multifunctional transient systems. In vivo toxicity tests demonstrate biological safety of the proposed system.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong Chan Choe
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yu-Gyeong Kim
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jaesun Joo
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Bong Hee Lim
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Eunkyoung Park
- Department of Medical and Mechatronics Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si, Chungcheongnam-do 31538, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
31
|
Yi N, Gao Y, Verso AL, Zhu J, Erdely D, Xue C, Lavelle R, Cheng H. Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:24-34. [PMID: 35177951 PMCID: PMC8846415 DOI: 10.1016/j.mattod.2021.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Deployment of functional circuits on a 3D freeform surface is of significant interest to wearable devices on curvilinear skin/tissue surfaces or smart Internet-of-Things with sensors on 3D objects. Here we present a new fabrication strategy that can directly print functional circuits either transient or long-lasting onto freeform surfaces by intense pulsed light-induced mass transfer of zinc nanoparticles (Zn NPs). The intense pulsed light can locally raise the temperature of Zn NPs to cause evaporation. Lamination of a kirigami-patterned soft semi-transparent polymer film with Zn NPs conforming to a 3D surface results in condensation of Zn NPs to form conductive yet degradable Zn patterns onto a 3D freeform surface for constructing transient electronics. Immersing the Zn patterns into a copper sulfate or silver nitrate solution can further convert the transient device to a long-lasting device with copper or silver. Functional circuits with integrated sensors and a wireless communication component on 3D glass beakers and seashells with complex surface geometries demonstrate the viability of this manufacturing strategy.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Antonino Lo Verso
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jia Zhu
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel Erdely
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cuili Xue
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road, Shanghai 200240, China
| | - Robert Lavelle
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
32
|
Xiong H, Ling S, Li Y, Duan F, Zhu H, Lu S, Du M. Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. J Colloid Interface Sci 2021; 608:1126-1134. [PMID: 34735849 DOI: 10.1016/j.jcis.2021.10.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
The recyclable, self-healing and easily-degradable transient electronic technology has aroused tremendous attention in flexible electronic products. However, integrating the above advantages into one single flexible electronic device is still a huge challenge. Herein, we demonstrate a flexible and recyclable bio-based memory device using fish colloid as the resistive switching layer on a polyimine substrate, which affords reliable mechanical and electrical properties under repetitive conformal deformation operation. This flexible bio-based memory device presents potential analog behaviors including memory characteristics and excitatory current response, which undergoes incremental potentiation in conductance under successive electrical pulses. Moreover, this device is expected to greatly alleviate the environmental problems caused by electronic waste. It can be decomposed rapidly in water and well recycled, which is a promising candidate for transient memories and information security. We believe that this study can provide new possibilities to the field of high-performance transient electronics and flexible resistive memory devices.
Collapse
Affiliation(s)
- Hanli Xiong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
33
|
Bozó É, Ervasti H, Halonen N, Shokouh SHH, Tolvanen J, Pitkänen O, Järvinen T, Pálvölgyi PS, Szamosvölgyi Á, Sápi A, Konya Z, Zaccone M, Montalbano L, De Brauwer L, Nair R, Martínez-Nogués V, San Vicente Laurent L, Dietrich T, Fernández de Castro L, Kordas K. Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49301-49312. [PMID: 34609829 PMCID: PMC8532127 DOI: 10.1021/acsami.1c13787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0-26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.
Collapse
Affiliation(s)
- Éva Bozó
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Henri Ervasti
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Niina Halonen
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Seyed Hossein Hosseini Shokouh
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Jarkko Tolvanen
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Olli Pitkänen
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Topias Järvinen
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Petra S. Pálvölgyi
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| | - Ákos Szamosvölgyi
- Department
of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary
- MTA-SZTE
Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary
| | - András Sápi
- Department
of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary
- MTA-SZTE
Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary
| | - Zoltan Konya
- Department
of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary
- MTA-SZTE
Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich B. tér 1, Szeged 6720, Hungary
| | - Marta Zaccone
- Proplast—Consorzio
per la Promozione della Cultura Plastica, Via Roberto di Ferro, 86, 15122 Alessandria (AL), Italy
| | - Luana Montalbano
- Proplast—Consorzio
per la Promozione della Cultura Plastica, Via Roberto di Ferro, 86, 15122 Alessandria (AL), Italy
| | - Laurens De Brauwer
- Bio
Base Europe Pilot Plant VZW, Rodenhuizekaai 1, 9042 Desteldonk (Gent), Belgium
| | - Rakesh Nair
- Bio
Base Europe Pilot Plant VZW, Rodenhuizekaai 1, 9042 Desteldonk (Gent), Belgium
| | | | - Leire San Vicente Laurent
- TECNALIA,
Basque Research and Technology Alliance (BRTA), Health Division, Parque
Tecnológico de Álava, Leonardo Da Vinci, 11, E-01510 Miñano, Araba, Spain
| | - Thomas Dietrich
- TECNALIA,
Basque Research and Technology Alliance (BRTA), Health Division, Parque
Tecnológico de Álava, Leonardo Da Vinci, 11, E-01510 Miñano, Araba, Spain
| | - Laura Fernández de Castro
- TECNALIA,
Basque Research and Technology Alliance (BRTA), Health Division, Parque
Tecnológico de Álava, Leonardo Da Vinci, 11, E-01510 Miñano, Araba, Spain
| | - Krisztian Kordas
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PO Box 4500, FI-90570 Oulu, Finland
| |
Collapse
|
34
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
35
|
Kang K, Park J, Kim K, Yu KJ. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. NANO RESEARCH 2021; 14:3096-3111. [DOI: 10.1007/s12274-021-3490-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2025]
|
36
|
Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing. MICROMACHINES 2021; 12:mi12091057. [PMID: 34577700 PMCID: PMC8472004 DOI: 10.3390/mi12091057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Hydrogels are the ideal materials in the development of implanted bioactive neural interfaces because of the nerve tissue-mimicked physical and biological properties that can enhance neural interfacing compatibility. However, the integration of hydrogels and rigid/dehydrated electronic microstructure is challenging due to the non-reliable interfacial bonding, whereas hydrogels are not compatible with most conditions required for the micromachined fabrication process. Herein, we propose a new enzyme-mediated transfer printing process to design an adhesive biological hydrogel neural interface. The donor substrate was fabricated via photo-crosslinking of gelatin methacryloyl (GelMA) containing various conductive nanoparticles (NPs), including Ag nanowires (NWs), Pt NWs, and PEDOT:PSS, to form a stretchable conductive bioelectrode, called NP-doped GelMA. On the other hand, a receiver substrate composed of microbial transglutaminase-incorporated gelatin (mTG-Gln) enabled simultaneous temporally controlled gelation and covalent bond-enhanced adhesion to achieve one-step transfer printing of the prefabricated NP-doped GelMA features. The integrated hydrogel microelectrode arrays (MEA) were adhesive, and mechanically/structurally bio-compliant with stable conductivity. The devices were structurally stable in moisture to support the growth of neuronal cells. Despite that the introduction of AgNW and PEDOT:PSS NPs in the hydrogels needed further study to avoid cell toxicity, the PtNW-doped GelMA exhibited a comparable live cell density. This Gln-based MEA is expected to be the next-generation bioactive neural interface.
Collapse
|
37
|
Alam RB, Ahmad MH, Islam MR. Bio-inspired gelatin/single-walled carbon nanotube nanocomposite for transient electrochemical energy storage: An approach towards eco-friendly and sustainable energy system. Heliyon 2021; 7:e07468. [PMID: 34278039 PMCID: PMC8264608 DOI: 10.1016/j.heliyon.2021.e07468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Wide-scale production of non-biodegradable e-waste from electrical appliances are causing great harm to the environment. The use of bio-polymer based nanomaterials may offer a promising approach for the fabrication of eco-friendly sustainable devices. In this work, gelatin/single walled carbon nanotube (Gel/SWCNT) nanocomposites were prepared by a simple and economic aqueous casting method. The effect of SWCNT on the structural, surface-morphological, electrical, and electrochemical properties of the nanocomposite was studied. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FESEM) showed an improved degree of interaction between the SWCNTs and Gel matrix. The surface wettability of the nanocomposites was found to be changed from hydrophilic to hydrophobic in nature due to the incorporation of SWCNTs into the Gel matrix. The incorporation of SWCNTs was also found to reduce the DC resistivity of the nanocomposite by 4 orders of magnitude. SWCNTs also increase the specific capacitance of the nanocomposite from 124 mF/g to 467 mF/g at a current density of 0.3 mA/g. The electrochemical impedance spectroscopy analysis revealed an increase of the pseudo-capacitance increased from 9.4 μF to 31 μF due to the incorporation of SWCNT. The Gel/SWCNT nanocomposite showed cyclic stability with capacitive retention of about 98% of its initial capacitance after completing 2000 charging/discharging cycles at a current density of 100 mA/g. The nanocomposite completely dissolves in water within 12 h, demonstrates it as a promising candidate for transient energy storage applications. The Gel/SWCNT nanocomposite may offer a new route for the synthesis of eco-friendly, biodegradable, and transient devices.
Collapse
Affiliation(s)
- Rabeya Binta Alam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Md Hasive Ahmad
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| |
Collapse
|
38
|
Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. MICROMACHINES 2021; 12:mi12060600. [PMID: 34067419 PMCID: PMC8224698 DOI: 10.3390/mi12060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, China;
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Z.X.); (Q.G.)
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China;
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Correspondence: (Z.X.); (Q.G.)
| |
Collapse
|
39
|
Ferlauto L, Vagni P, Fanelli A, Zollinger EG, Monsorno K, Paolicelli RC, Ghezzi D. All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials 2021; 274:120889. [PMID: 33992836 DOI: 10.1016/j.biomaterials.2021.120889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Transient bioelectronics has grown fast, opening possibilities never thought before. In medicine, transient implantable devices are interesting because they could eliminate the risks related to surgical retrieval and reduce the chronic foreign body reaction. Despite recent progress in this area, the potential of transient bioelectronics is still limited by their short functional lifetime owed to the fast dissolution rate of degradable metals, which is typically a few days or weeks. Here we report that a switch from degradable metals to an entirely polymer-based approach allows for a slower degradation process and a longer lifetime of the transient probe, thus opening new possibilities for transient medical devices. As a proof-of-concept, we fabricated all-polymeric transient neural probes that can monitor brain activity in mice for a few months, rather than a few days or weeks. Also, we extensively evaluated the foreign body reaction around the implant during the probe degradation. This kind of devices might pave the way for several applications in neuroprosthetics.
Collapse
Affiliation(s)
- Laura Ferlauto
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Paola Vagni
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Adele Fanelli
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Rosa Chiara Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland.
| |
Collapse
|
40
|
Bae J, Gwak E, Hwang G, Hwang HW, Lee D, Lee J, Joo Y, Sun J, Jun SH, Ok M, Kim J, Kang S. Biodegradable Metallic Glass for Stretchable Transient Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004029. [PMID: 34026449 PMCID: PMC8132068 DOI: 10.1002/advs.202004029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (≈2.6% in the nano-tensile test) and offers enhanced stretchability (≈115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use.
Collapse
Affiliation(s)
- Jae‐Young Bae
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Eun‐Ji Gwak
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery & Materials (KIMM)Daejeon34103Republic of Korea
| | - Gyeong‐Seok Hwang
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Hae Won Hwang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Biomaterials Research Center, Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Dong‐Ju Lee
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Jong‐Sung Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Young‐Chang Joo
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Jeong‐Yun Sun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Sang Ho Jun
- Department of Oral and Maxillofacial SurgeryKorea University Anam HospitalSeoul02841Republic of Korea
| | - Myoung‐Ryul Ok
- Biomaterials Research Center, Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Ju‐Young Kim
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
41
|
Togonon JJH, Esparcia EA, del Rosario JAD, Ocon JD. Development of Magnesium Anode-Based Transient Primary Batteries. ChemistryOpen 2021; 10:471-476. [PMID: 33830634 PMCID: PMC8028319 DOI: 10.1002/open.202000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biodegradable primary batteries, also known as transient batteries, are essential to realize autonomous biodegradable electronic devices with high performance and advanced functionality. In this work, magnesium, copper, iron, and zinc - metals that exist as trace elements in the human body - were tested as materials for biomedical transient electronic devices. Different full cell combinations of Mg and X (where X = Cu, Fe, and Zn and the anodized form of the metals) with phosphate buffered saline (PBS) as electrolyte were studied. To form the cathodes, metal foils were anodized galvanostatically at a current density of 2.0 mA cm-2 for 30 mins. Electrochemical measurements were then conducted for each electrode combination to evaluate full cell battery performance. Results showed that the Mg-Cuanodized chemistry has the highest power density at 0.99 mW/cm2 . Nominal operating voltages of 1.26 V for the first 0.50 h and 0.63 V for the next 3.7 h were observed for Mg-Cuanodized which was discharged at a current density of 0.70 mA cm-2 . Among the materials tested, Mg-Cuanodized exhibited the best discharge performance with an average specific capacity of 2.94 mAh cm-2 , which is comparable to previous reports on transient batteries.
Collapse
Affiliation(s)
- Jazer Jose H. Togonon
- Laboratory of Electrochemical Engineering (LEE)Department of Chemical EngineeringCollege of EngineeringUniversity of the Philippines DilimanQuezon City1101Philippines
- Energy Engineering ProgramCollege of EngineeringUniversity of the Philippines DilimanQuezon City1101Philippines
| | - Eugene A. Esparcia
- Laboratory of Electrochemical Engineering (LEE)Department of Chemical EngineeringCollege of EngineeringUniversity of the Philippines DilimanQuezon City1101Philippines
| | - Julie Anne D. del Rosario
- Laboratory of Electrochemical Engineering (LEE)Department of Chemical EngineeringCollege of EngineeringUniversity of the Philippines DilimanQuezon City1101Philippines
- Energy Engineering ProgramCollege of EngineeringUniversity of the Philippines DilimanQuezon City1101Philippines
| | - Joey D. Ocon
- Laboratory of Electrochemical Engineering (LEE)Department of Chemical EngineeringCollege of EngineeringUniversity of the Philippines DilimanQuezon City1101Philippines
- Energy Engineering ProgramCollege of EngineeringUniversity of the Philippines DilimanQuezon City1101Philippines
| |
Collapse
|
42
|
Lobo K, Sahoo P, Kurapati R, Krishna K. V, Patil V, Pandit A, Matte HSSR. Additive‐free Aqueous Dispersions of Two‐Dimensional Materials with Glial Cell Compatibility and Enzymatic Degradability. Chemistry 2021; 27:7434-7443. [DOI: 10.1002/chem.202005491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Kenneth Lobo
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
- Manipal Academy of Higher Education Manipal 576 104 India
| | - Priyabrata Sahoo
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
- Manipal Academy of Higher Education Manipal 576 104 India
| | - Rajendra Kurapati
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Vijaya Krishna K.
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices National University of Ireland Galway H91 W2TY Ireland
| | - H. S. S. Ramakrishna Matte
- Energy Materials Laboratory Centre for Nano and Soft Matter Sciences Prof. U. R. Rao Road, Jalahalli Bengaluru 560013 India
| |
Collapse
|
43
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
44
|
Jiang T, Meng X, Zhou Z, Wu Y, Tian Z, Liu Z, Lu G, Eginlidil M, Yu HD, Liu J, Huang W. Highly flexible and degradable memory electronics comprised of all-biocompatible materials. NANOSCALE 2021; 13:724-729. [PMID: 33393574 DOI: 10.1039/d0nr05858k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biocompatible materials have received increasing attention as one of the most important building blocks for flexible and transient memories. Herein, a fully biocompatible resistive switching (RS) memory electronic composed of a carbon dot (CD)-polyvinyl pyrrolidone (PVP) nanocomposite and a silver nanowire (Ag NW) network buried in a flexible gelatin film is introduced with promising nonvolatile RS characteristics for flexible and transient memory applications. The fabricated device exhibited a rewritable flash-type memory behavior, such as low operation voltage (≈-1.12 V), high ON/OFF ratio (>102), long retention time (over 104 s), and small bending radius (15 mm). As a proof of degradability, this transient memory can dissolve completely within 90 s after being immersed into deionized water at 55 °C; it can decompose naturally in soil within 6 days. This fully biocompatible memory electronic paves a novel way for flexible and wearable green electronics.
Collapse
Affiliation(s)
- Tongfen Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sheng H, Zhou J, Li B, He Y, Zhang X, Liang J, Zhou J, Su Q, Xie E, Lan W, Wang K, Yu C. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. SCIENCE ADVANCES 2021; 7:7/2/eabe3097. [PMID: 33523998 PMCID: PMC7793580 DOI: 10.1126/sciadv.abe3097] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 05/23/2023]
Abstract
It has been an outstanding challenge to achieve implantable energy modules that are mechanically soft (compatible with soft organs and tissues), have compact form factors, and are biodegradable (present for a desired time frame to power biodegradable, implantable medical electronics). Here, we present a fully biodegradable and bioabsorbable high-performance supercapacitor implant, which is lightweight and has a thin structure, mechanical flexibility, tunable degradation duration, and biocompatibility. The supercapacitor with a high areal capacitance (112.5 mF cm-2 at 1 mA cm-2) and energy density (15.64 μWh cm-2) uses two-dimensional, amorphous molybdenum oxide (MoO x ) flakes as electrodes, which are grown in situ on water-soluble Mo foil using a green electrochemical strategy. Biodegradation behaviors and biocompatibility of the associated materials and the supercapacitor implant are systematically studied. Demonstrations of a supercapacitor implant that powers several electronic devices and that is completely degraded after implantation and absorbed in rat body shed light on its potential uses.
Collapse
Affiliation(s)
- Hongwei Sheng
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingjing Zhou
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bo Li
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xuetao Zhang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jie Liang
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinyuan Zhou
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing Su
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Erqing Xie
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wei Lan
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
- Department of Mechanical Engineering, Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Cunjiang Yu
- Department of Mechanical Engineering, Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
46
|
Li S, Rizvi MH, Lynch BB, Tracy JB, Ford E. Flexible Cyclic-Poly(phthalaldehyde)/Poly(ε-caprolactone) Blend Fibers with Fast Daylight-Triggered Transience. Macromol Rapid Commun 2020; 42:e2000657. [PMID: 33368746 DOI: 10.1002/marc.202000657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022]
Abstract
Cyclic-poly(phthalaldehyde) (cPPHA) exhibits photo-triggerable depolymerization on-demand for applications like the photolithography of microfabricated electronics. However, cPPHA is inherently brittle and thermally sensitive; both of these properties limit its usefulness as an engineering plastic. Prior to this report, small molecule plasticizers are added to cPPHA-based films to make the polymer more flexible. But plasticizers can eventually leach out of cPPHA, then leaving it increasingly more brittle throughout product lifetime. In this research, a new approach to fabricating flexible cPPHA blends for use as spun fibers is achieved through the incorporation of poly (ε-caprolactone) (PCL) by a modified wet spinning method. Among blend compositions, the 50/50 cPPHA/PCL fiber shows fast transience (<50 s) in response to daylight while retaining the flexibility of PCL and mechanical properties of an elastomer (i.e., tensile strength of ≈8 MPa, Young's modulus of ≈118 MPa, and elongation at break of ≈190%). Embedding 2 wt% gold nanoparticles to cPPHA can further improve the transience rate of fibers comprising less than 50% cPPHA. These flexible, daylight-triggerable cPPHA/PCL fibers can be applied to an extensive range of applications, such as wearable electronics, intelligent textiles, and zero waste packaging for which modest mechanical performance and fast transience are desired.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
| | - Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Brian B Lynch
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Ericka Ford
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
| |
Collapse
|
47
|
Keum K, Kim JW, Hong SY, Son JG, Lee SS, Ha JS. Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002180. [PMID: 32930437 DOI: 10.1002/adma.202002180] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Indexed: 05/24/2023]
Abstract
With the miniaturization of personal wearable electronics, considerable effort has been expended to develop high-performance flexible/stretchable energy storage devices for powering integrated active devices. Supercapacitors can fulfill this role owing to their simple structures, high power density, and cyclic stability. Moreover, a high electrochemical performance can be achieved with flexible/stretchable supercapacitors, whose applications can be expanded through the introduction of additional novel functionalities. Here, recent advances in and future prospects for flexible/stretchable supercapacitors with innate functionalities are covered, including biodegradability, self-healing, shape memory, energy harvesting, and electrochromic and temperature tolerance, which can contribute to reducing e-waste, ensuring device integrity and performance, enabling device self-charging following exposure to surrounding stimuli, displaying the charge status, and maintaining the performance under a wide range of temperatures. Finally, the challenges and perspectives of high-performance all-in-one wearable systems with integrated functional supercapacitors for future practical application are discussed.
Collapse
Affiliation(s)
- Kayeon Keum
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Yeong Hong
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeong Gon Son
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang-Soo Lee
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
48
|
Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Indexed: 05/23/2023]
Abstract
Transient electronics refers to an emerging class of advanced technology, defined by an ability to chemically or physically dissolve, disintegrate, and degrade in actively or passively controlled fashions to leave environmentally and physiologically harmless by-products in environments, particularly in bio-fluids or aqueous solutions. The unusual properties that are opposite to operational modes in conventional electronics for a nearly infinite time frame offer unprecedented opportunities in research areas of eco-friendly electronics, temporary biomedical implants, data-secure hardware systems, and others. This review highlights the developments of transient electronics, including materials, manufacturing strategies, electronic components, and transient kinetics, along with various potential applications.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
49
|
Choi YS, Hsueh YY, Koo J, Yang Q, Avila R, Hu B, Xie Z, Lee G, Ning Z, Liu C, Xu Y, Lee YJ, Zhao W, Fang J, Deng Y, Lee SM, Vázquez-Guardado A, Stepien I, Yan Y, Song JW, Haney C, Oh YS, Liu W, Yoon HJ, Banks A, MacEwan MR, Ameer GA, Ray WZ, Huang Y, Xie T, Franz CK, Li S, Rogers JA. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat Commun 2020; 11:5990. [PMID: 33239608 PMCID: PMC7688647 DOI: 10.1038/s41467-020-19660-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.
Collapse
Affiliation(s)
- Yeon Sik Choi
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yuan-Yu Hsueh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70456, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 70456, Taiwan
| | - Jahyun Koo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Quansan Yang
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Buwei Hu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian, University of Technology, 116024, Dalian, China
- Department of Engineering Mechanics, Dalian University of Technology, 116024, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, 116024, Dalian, China
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Zheng Ning
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Claire Liu
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yameng Xu
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Young Joong Lee
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Weikang Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yujun Deng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Seung Min Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Abraham Vázquez-Guardado
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Iwona Stepien
- Center for Developmental Therapeutics, Chemistry Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph W Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chad Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208, USA
| | - Yong Suk Oh
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hong-Joon Yoon
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Anthony Banks
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew R MacEwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yonggang Huang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Colin K Franz
- Regenerative Neurorehabilitation Laboratory, Biologics, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
50
|
Piro B, Tran HV, Thu VT. Sensors Made of Natural Renewable Materials: Efficiency, Recyclability or Biodegradability-The Green Electronics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5898. [PMID: 33086552 PMCID: PMC7594081 DOI: 10.3390/s20205898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/24/2023]
Abstract
Nowadays, sensor devices are developing fast. It is therefore critical, at a time when the availability and recyclability of materials are, along with acceptability from the consumers, among the most important criteria used by industrials before pushing a device to market, to review the most recent advances related to functional electronic materials, substrates or packaging materials with natural origins and/or presenting good recyclability. This review proposes, in the first section, passive materials used as substrates, supporting matrixes or packaging, whether organic or inorganic, then active materials such as conductors or semiconductors. The last section is dedicated to the review of pertinent sensors and devices integrated in sensors, along with their fabrication methods.
Collapse
Affiliation(s)
- Benoît Piro
- ITODYS, CNRS, Université de Paris, F-75006 Paris, France
| | - Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST), 1st Dai Co Viet Road, 10000 Hanoi, Vietnam;
| | - Vu Thi Thu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi, Vietnam;
| |
Collapse
|