1
|
Sun P, Zhao J, Sha G, Zhou Y, Zhao M, Li R, Kong X, Sun Q, Li Y, Li K, Bi R, Yang L, Qin Z, Huang W, Wang Y, Gao J, Chen G, Zhang H, Adnan M, Yang L, Zheng L, Chen XL, Wang G, Ishikawa T, Li Q, Xu JR, Li G. Inhibitor of cardiolipin biosynthesis-related enzyme MoGep4 confers broad-spectrum anti-fungal activity. PLANT, CELL & ENVIRONMENT 2024; 47:4259-4274. [PMID: 38946254 DOI: 10.1111/pce.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.
Collapse
Affiliation(s)
- Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Gan Sha
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Mengfei Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Renjian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Kong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yun Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ke Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ruiqing Bi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Wenzheng Huang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haifeng Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Adnan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Long Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanotechnology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Park S, Safdar M, Kim W, Seol J, Kim D, Lee KH, Son HI, Kim J. Gelatin Nanoparticles can Improve Pesticide Delivery Performance to Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402899. [PMID: 38949406 DOI: 10.1002/smll.202402899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Nanomaterials associated with plant growth and crop cultivation revolutionize traditional concepts of agriculture. However, the poor reiterability of these materials in agricultural applications necessitates the development of environmentally-friendly approaches. To address this, biocompatible gelatin nanoparticles (GNPs) as nanofertilizers with a small size (≈150 nm) and a positively charged surface (≈30 mV) that serve as a versatile tool in agricultural practices is designed. GNPs load agrochemical agents to improve maintenance and delivery. The biocompatible nature and small size of GNPs ensure unrestricted nutrient absorption on root surfaces. Furthermore, when combined with pesticides, GNPs demonstrate remarkable enhancements in insecticidal (≈15%) and weed-killing effects (≈20%) while preserving the efficacy of the pesticide. That GNPs have great potential for use in sustainable agriculture, particularly in inducing plant growth, specifically plant root growth, without fertilization and in enhancing the functions of agrochemical agents is proposed. It is suggested conceptual applications of GNPs in real-world agricultural practices.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jaehwi Seol
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoung Il Son
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
3
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
4
|
Wang J, Xiong Z, Fan Y, Wang H, An C, Wang B, Yang M, Li X, Wang Y, Wang Y. Lignin/Surfactin Coacervate as an Eco-Friendly Pesticide Carrier and Antifungal Agent against Phytopathogen. ACS NANO 2024; 18:22415-22430. [PMID: 39126678 DOI: 10.1021/acsnano.4c07173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Excessive usage of biologically toxic fungicides and their matrix materials poses a serious threat to public health. Leveraging fungicide carriers with inherent pathogen inhibition properties is highly promising for enhancing fungicide efficacy and reducing required dosage. Herein, a series of coacervates have been crafted with lignin and surfactin, both of which are naturally derived and demonstrate substantial antifungal properties. This hierarchically assembled carrier not only effectively loads fungicides with a maximum encapsulation efficiency of 95% but also stably deposits on hydrophobic leaves for high-speed impacting droplets. Intriguingly, these coacervates exhibit broad spectrum fungicidal activity against eight ubiquitous phytopathogens and even act as a standalone biofungicide to replace fungicides. This performance can significantly reduce the fungicide usage and be further strengthened by an encapsulated fungicide. The inhibition rate reaches 87.0% when 0.30 mM pyraclostrobin (Pyr) is encapsulated within this coacervate, comparable to the effectiveness of 0.80 mM Pyr alone. Additionally, the preventive effects against tomato gray mold reached 53%, significantly surpassing those of commercial adjuvants. Thus, it demonstrates that utilizing biosurfactants and biomass with intrinsic antifungal activity to fabricate fully biobased coacervates can synergistically combine the functions of a fungicide carrier and antifungal agent against phytopathogens and guarantee environmental friendliness. This pioneering approach provides deeper insights into synergistically enhancing the effectiveness of agrochemicals from multiple aspects, including fungicide encapsulation, cooperative antifungal action, and droplet deposition.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichen Xiong
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ming Yang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Li
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Suzhou Institute for Advanced Research, and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Liu J, Wang X, Chang J, Du P, Wu J, Hou R, Zhu S, Liu P, Miao X, Zhang P, Zhang Z. Green synthesized lignin nanoparticles for the sustainable delivery of pyraclostrobin to control strawberry diseases caused by Botrytis cinerea. Int J Biol Macromol 2024; 274:133488. [PMID: 38944092 DOI: 10.1016/j.ijbiomac.2024.133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Lignin, renowned for its renewable, biocompatible, and environmentally benign characteristics, holds immense potential as a sustainable feedstock for agrochemical formulations. In this study, raw dealkaline lignin (DAL) underwent a purification process involving two sequential solvent extractions. Subsequently, an enzyme-responsive nanodelivery system (Pyr@DAL-NPs), was fabricated through the solvent self-assembly method, with pyraclostrobin (Pyr) loaded into lignin nanoparticles. The Pyr@DAL-NPs shown an average particle size of 250.4 nm, demonstrating a remarkable loading capacity of up to 54.70 % and an encapsulation efficiency of 86.15 %. Notably, in the presence of cellulase and pectinase at a concentration of 2 mg/mL, the release of Pyr from the Pyr@DAL-NPs reached 92.66 % within 120 h. Furthermore, the photostability of Pyr@DAL-NPs was significantly improved, revealing a 2.92-fold enhancement compared to the commercially available fungicide suspension (Pyr SC). Bioassay results exhibited that the Pyr@DAL-NPs revealed superior fungicidal activity against Botrytis cinerea over Pyr SC, with an EC50 value of 0.951 mg/L. Additionally, biosafety assessments indicated that the Pyr@DAL-NPs effectively declined the acute toxicity of Pyr towards zebrafish and posed no negative effects on the healthy growth of strawberry plants. In conclusion, this study presents a viable and promising strategy for developing environmentally friendly controlled-release systems for pesticides, offering the unique properties of lignin.
Collapse
Affiliation(s)
- Jun Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jinzhe Chang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Pengrui Du
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Ruiquan Hou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Pengpeng Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Moreno A, Sipponen MH. Overcoming Challenges of Lignin Nanoparticles: Expanding Opportunities for Scalable and Multifunctional Nanomaterials. Acc Chem Res 2024; 57:1918-1930. [PMID: 38965046 PMCID: PMC11256356 DOI: 10.1021/acs.accounts.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
ConspectusThe increasing demand for polymeric materials derived from petroleum resources, along with rising concerns about climate change and global plastic pollution, has driven the development of biobased polymeric materials. Lignin, which is the second most abundant biomacromolecule after cellulose, represents a promising renewable raw material source for the preparation of advanced materials. The lucrative properties of lignin include its high carbon content (>60 atom %), high thermal stability, biodegradability, antioxidant activity, absorbance of ultraviolet radiation, and slower biodegradability compared to other wood components. Moreover, the advent of lignin nanoparticles (LNPs) over the last ten years has circumvented many well-known shortcomings of technical lignins, such as heterogeneity and poor compatibility with polymers, thereby unlocking the great potential of lignin for the development of advanced functional materials.LNPs stand out owing to their well-defined spherical shape and excellent colloidal stability, which is due to the electrostatic repulsion forces of carboxylic acid and phenolic hydroxyl groups enriched on their surface. These forces prevent their aggregation in aqueous dispersions (pH 3-9) and provide a high surface area to mass ratio that has been exploited to adsorb positively charged compounds such as enzymes or polymers. Consequently, it is not surprising that LNPs have become a prominent player in applied research in areas such as biocatalysis and polymeric composites, among others. However, like all ventures of life, LNPs also face certain challenges that limit their potential end-uses. Solvent instability remains the most challenging aspect due to the tendency of these particles to dissolve or aggregate in organic solvents and basic or acidic pH, thus limiting the window for their chemical functionalization and applications. In addition, the need for organic solvent during their preparation, the poor miscibility with hydrophobic polymeric matrices, and the nascent phase regarding their use in smart materials have been identified as important challenges that need to be addressed.In this Account, we recapitulate our efforts over the past years to overcome the main limitations mentioned above. We begin with a brief introduction to the fundamentals of LNPs and a detailed discussion of their associated challenges. We then highlight our work on: (i) Preparation of lignin-based nanocomposites with improved properties through a controlled dispersion of LNPs within a hydrophobic polymeric matrix, (ii) Stabilization of LNPs via covalent (intraparticle cross-linking) and noncovalent (hydration barrier) approaches, (iii) The development of an organic-solvent-free method for the production of LNPs, and (iv) The development of LNPs toward smart materials with high lignin content. Finally, we also offer our perspectives on this rapidly growing field.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Rovira i Virgili University, Tarragona 43007, Spain
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
- Wallenberg
Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
7
|
Ma C, Li G, Xu W, Qu H, Zhang H, Bahojb Noruzi E, Li H. Recent Advances in Stimulus-Responsive Nanocarriers for Pesticide Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602422 DOI: 10.1021/acs.jafc.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In an effort to make pesticide use safer, more efficient, and sustainable, micro-/nanocarriers are increasingly being utilized in agriculture to deliver pesticide-active agents, thereby reducing quantities and improving effectiveness. In the use of nanopesticides, the choice to further design and prepare pesticide stimulus-responsive nanocarriers based on changes in the plant growth environment (light, temperature, pH, enzymes, etc.) has received more and more attention from researchers. Based on this, this paper examines recent advancements in nanomaterials for the design of stimulus-responsive micro-/nanocarriers. It delves into the intricacies of preparation methods, material enhancements, in vivo/ex vivo controlled release, and application techniques for controlled release formulations. The aim is to provide a crucial reference for harnessing nanotechnology to pursue reduced pesticide use and increased efficiency.
Collapse
Affiliation(s)
- Cuiguang Ma
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiwei Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haifan Zhang
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ehsan Bahojb Noruzi
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Haibing Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
8
|
Zhong X, Su G, Hao L, Chen H, Li C, Xu H, Zhou H, Zhou X. Foliar application of glycine-functionalized nanopesticides for effective prevention and control of root-knot nematodes via a targeted delivery strategy. PEST MANAGEMENT SCIENCE 2024; 80:2120-2130. [PMID: 38145906 DOI: 10.1002/ps.7948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) are the highly damaging pests for various crops, and the prevalence of RKNs has posed serious threats to worldwide agricultural harvest, severely affecting global food security and ecosystem health. Traditional pesticide systems on controlling RKNs generally cause environmental hazards and phytotoxicity due to the excessive use of pesticides resulted from low utilization efficiency. And effective approaches with biosafe and efficient features are highly demanded to break away from the dilemma caused by RKNs. RESULTS In this research, a nanopesticide system with root-targeted delivery function was developed to achieve effective prevention and control of RKNs. The nanocarriers (MSN-KH560-Gly) and the obtained nanopesticides (EB@MSN-KH560-Gly) were proved to be biosafe. Also, this nanopesticide system demonstrated sustained release behavior. The grafting of glycine (Gly) significantly improved the pesticide contents translocating to cucumber roots (about 304.7%). Besides, such root-targeted delivery function resulted in no root nodule in cucumber plants after the foliar application of these nanopesticides (prevention rate of 100%). In addition, the root nodule numbers of the infected cucumber plants decreased by 71.67%. CONCLUSION Foliar application of these Gly-functionalized nanopesticides achieved effective prevention and control of RKNs due to the root-targeted delivery property inherent in this nanopesticide system, and such root-targeted delivery strategy opens a novel and efficient method to protect crops from RKN invasion and thus facilitates the development of sustainable agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ximing Zhong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Guofeng Su
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Li Hao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Huayao Chen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Chao Li
- Shenzhen Noposion Crop Science Co., Ltd, Shenzhen, PR China
| | - Hua Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Hongjun Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Xinhua Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| |
Collapse
|
9
|
Sánchez-Hernández E, Santiago-Aliste A, Correa-Guimarães A, Martín-Gil J, Gavara-Clemente RJ, Martín-Ramos P. Carvacrol Encapsulation in Chitosan-Carboxymethylcellulose-Alginate Nanocarriers for Postharvest Tomato Protection. Int J Mol Sci 2024; 25:1104. [PMID: 38256176 PMCID: PMC10817085 DOI: 10.3390/ijms25021104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Advancements in polymer science and nanotechnology hold significant potential for addressing the increasing demands of food security, by enhancing the shelf life, barrier properties, and nutritional quality of harvested fruits and vegetables. In this context, biopolymer-based delivery systems present themselves as a promising strategy for encapsulating bioactive compounds, improving their absorption, stability, and functionality. This study provides an exploration of the synthesis, characterization, and postharvest protection applications of nanocarriers formed through the complexation of chitosan oligomers, carboxymethylcellulose, and alginate in a 2:2:1 molar ratio. This complexation process was facilitated by methacrylic anhydride and sodium tripolyphosphate as cross-linking agents. Characterization techniques employed include transmission electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, thermal analysis, and X-ray powder diffraction. The resulting hollow nanospheres, characterized by a monodisperse distribution and a mean diameter of 114 nm, exhibited efficient encapsulation of carvacrol, with a loading capacity of approximately 20%. Their suitability for phytopathogen control was assessed in vitro against three phytopathogens-Botrytis cinerea, Penicillium expansum, and Colletotrichum coccodes-revealing minimum inhibitory concentrations ranging from 23.3 to 31.3 μg·mL-1. This indicates a higher activity compared to non-encapsulated conventional fungicides. In ex situ tests for tomato (cv. 'Daniela') protection, higher doses (50-100 μg·mL-1, depending on the pathogen) were necessary to achieve high protection. Nevertheless, these doses remained practical for real-world applicability. The advantages of safety, coupled with the potential for a multi-target mode of action, further enhance the appeal of these nanocarriers.
Collapse
Affiliation(s)
- Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| | - Alberto Santiago-Aliste
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| | - Adriana Correa-Guimarães
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain;
| | - Jesús Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| | - Rafael José Gavara-Clemente
- Packaging Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, 46980 Paterna, Spain;
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, 34004 Palencia, Spain; (E.S.-H.); (A.S.-A.); (A.C.-G.); (J.M.-G.)
| |
Collapse
|
10
|
Dong Y, Jiang T, Wu T, Wang W, Xie Z, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. Enzyme-responsive controlled-release materials for food preservation and crop protection - A review. Int J Biol Macromol 2024; 254:128051. [PMID: 37956811 DOI: 10.1016/j.ijbiomac.2023.128051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
The adoption of environmentally friendly and efficient methods to control food spoilage and crop diseases has become a new worldwide trend. In the medical field, various enzyme-responsive controlled-release drug formulations have been developed for precision therapy. Recently, these materials and techniques have also begun to be applied in the fields of food preservation and agricultural protection. This review of contemporary research focuses on applications of enzyme-responsive controlled-release materials in the field of food preservation and crop protection. It covers a variety of composite controlled-release materials triggered by different types of enzymes and describes in detail their composition and structure, controlled-release mechanisms, and practical application effects. The enzyme-responsive materials have been employed to control foodborne pathogens, fungi, and pests. These enzyme-responsive controlled-release materials exhibit excellent capabilities for targeted drug delivery. Upon contact with microorganisms or pests, the polymer shell of the material is degraded by secreted enzymes from these organisms, thereby releasing drugs that kill or inhibit the organisms. In addition, multi-enzyme sensitive carriers have been created to improve the effectiveness and broad spectrum of the delivery system. The increasing trend towards the use of enzyme-responsive controlled-release materials has opened up countless possibilities in food and agriculture.
Collapse
Affiliation(s)
- Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wenrui Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Zesen Xie
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
11
|
Jiang P, Pang B, Li G, Han Y, Chu F. Toward well-defined colloidal particles: Efficient fractionation of lignin by a multi-solvent strategy. Int J Biol Macromol 2024; 254:127948. [PMID: 37951432 DOI: 10.1016/j.ijbiomac.2023.127948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
Colloidal lignin particles (CLPs) have sparked various intriguing insights toward bio-polymeric materials and triggered many lignin-featured innovative applications. Here, we report a multi-solvent sequential fractionation methodology integrating green solvents of acetone, 1-butanol, and ethanol to fractionate industrial lignin for CLPs fabrication. Through a rationally designed fractionation strategy, multigrade lignin fractions with variable hydroxyl group contents, molecular weights, and high purity were obtained without altering their original chemical structures. CLPs with well-defined morphology, narrow size distribution, excellent thermal stability, and long-term colloidal stability can be obtained by rational selection of lignin fractions. We further elucidated that trace elements (S, N) were reorganized onto the near-surface area of CLPs from lignin fractions during the formation process in the form of -SO42- and -NH2. This work provides a sustainable and efficient strategy for refining industrial lignin into high-quality fractions and an in-depth insight into the CLPs formation process, holding great promise for enriching the existing libraries of colloidal materials.
Collapse
Affiliation(s)
- Pan Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China; National Engineering Research Center for Low-carbon and Efficient Utilization of Forest Biomass, Xiangshan Road, Beijing 100091, China
| | - Bo Pang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 10691, Sweden.
| | - Gaiyun Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China; National Engineering Research Center for Low-carbon and Efficient Utilization of Forest Biomass, Xiangshan Road, Beijing 100091, China
| | - Yanming Han
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China; National Engineering Research Center for Low-carbon and Efficient Utilization of Forest Biomass, Xiangshan Road, Beijing 100091, China.
| | - Fuxiang Chu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China; National Engineering Research Center for Low-carbon and Efficient Utilization of Forest Biomass, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
12
|
Balusamy SR, Joshi AS, Perumalsamy H, Mijakovic I, Singh P. Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications. J Nanobiotechnology 2023; 21:372. [PMID: 37821961 PMCID: PMC10568898 DOI: 10.1186/s12951-023-02135-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Undoubtedly, nanoparticles are one of the ideal choices for achieving challenges related to bio sensing, drug delivery, and biotechnological tools. After gaining success in biomedical research, scientists are exploring various types of nanoparticles for achieving sustainable agriculture. The active nanoparticles can be used as a direct source of micronutrients or as a delivery platform for delivering the bioactive agrochemicals to improve crop growth, crop yield, and crop quality. Till date, several reports have been published showing applications of nanotechnology in agriculture. For instance, several methods have been employed for application of nanoparticles; especially metal nanoparticles to improve agriculture. The physicochemical properties of nanoparticles such as core metal used to synthesize the nanoparticles, their size, shape, surface chemistry, and surface coatings affect crops, soil health, and crop-associated ecosystem. Therefore, selecting nanoparticles with appropriate physicochemical properties and applying them to agriculture via suitable method stands as smart option to achieve sustainable agriculture and improved plant performance. In presented review, we have compared various methods of nanoparticle application in plants and critically interpreted the significant differences to find out relatively safe and specific method for sustainable agricultural practice. Further, we have critically analyzed and discussed the different physicochemical properties of nanoparticles that have direct influence on plants in terms of nano safety and nanotoxicity. From literature review, we would like to point out that the implementation of smaller sized metal nanoparticles in low concentration via seed priming and foliar spray methods could be safer method for minimizing nanotoxicity, and for exhibiting better plant performance during stress and non-stressed conditions. Moreover, using nanomaterials for delivery of bioactive agrochemicals could pose as a smart alternative for conventional chemical fertilizers for achieving the safer and cleaner technology in sustainable agriculture. While reviewing all the available literature, we came across some serious drawbacks such as the lack of proper regulatory bodies to control the usage of nanomaterials and poor knowledge of the long-term impact on the ecosystem which need to be addressed in near future for comprehensive knowledge of applicability of green nanotechnology in agriculture.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006 Republic of Korea
| | - Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Shen M, Liu S, Jiang C, Zhang T, Chen W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. ECO-ENVIRONMENT & HEALTH 2023; 2:161-175. [PMID: 38074996 PMCID: PMC10702921 DOI: 10.1016/j.eehl.2023.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/16/2024]
Abstract
Nanotechnology-enabled fertilizers and pesticides, especially those capable of releasing plant nutrients or pesticide active ingredients (AIs) in a controlled manner, can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities. Herein, we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties, enabled by nanocarriers responsive to environmental and biological stimuli, including pH change, temperature, light, redox conditions, and the presence of enzymes. For pH-responsive nanocarriers, pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers. Similarly, temperature response typically involves structural changes in nanocarriers, and higher temperatures can accelerate the release by diffusion promoting or bond breaking. Photothermal materials enable responses to infrared light, and photolabile moieties (e.g., o-nitrobenzyl and azobenzene) are required for achieving ultraviolet light responses. Redox-responsive nanocarriers contain disulfide bonds or ferric iron, whereas enzyme-responsive nanocarriers typically contain the enzyme's substrate as a building block. For fabricating nanofertilizers, pH-responsive nanocarriers have been well explored, but only a few studies have reported temperature- and enzyme-responsive nanocarriers. In comparison, there have been more reports on nanopesticides, which are responsive to a range of stimuli, including many with dual- or triple-responsiveness. Nano-enabled controlled-release fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs. However, to expand their practical applications, future research should focus on optimizing their performance under realistic conditions, lowering costs, and addressing regulatory and public concerns over environmental and safety risks.
Collapse
Affiliation(s)
- Meimei Shen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Tombuloglu H, Ercan I, Alqahtani N, Alotaibi B, Bamhrez M, Alshumrani R, Turumtay H, Ergin I, Demirci T, Ozcelik S, Kayed TS, Ercan F. Impact of magnetic field on the translocation of iron oxide nanoparticles (Fe 3O 4) in barley seedlings ( Hordeum vulgare L.). 3 Biotech 2023; 13:296. [PMID: 37564274 PMCID: PMC10409972 DOI: 10.1007/s13205-023-03727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
The effect and contribution of an external magnetic field (MF) on the uptake and translocation of nanoparticles (NPs) in plants have been investigated in this study. Barley was treated with iron oxide NPs (Fe3O4, 500 mg/L, 50-100 nm) and grown under various MF strengths (20, 42, 125, and 250 mT). The root-to-shoot translocation of NPs was assessed using a vibrating sample magnetometer (VSM) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additionally, plant phenological parameters, such as germination, protein and chlorophyll content, and photosynthetic and nutritional status, were examined. The results demonstrated that the external MF significantly enhances the uptake of NPs through the roots. The uptake was higher at lower MF strengths (20 and 42 mT) than at higher MF strengths (125 and 250 mT). The root and shoot iron (Fe) contents were approximately 2.5-3-fold higher in the 250 mT application compared to the control. Furthermore, the MF treatments significantly increased micro-elements such as Mn, Zn, Cu, Mo, and B (P < 0.005). This effect could be attributed to the disruption of cell membranes at the root tip cells caused by both the MF and NPs. Moreover, the MF treatments improved germination rates by 28%, total protein content, and photosynthetic parameters. These findings show that magnetic field application helps the effective transport of magnetic NPs, which could be essential for NPs-mediated drug delivery, plant nutrition, and genetic transformation applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03727-4.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221 Dammam, Saudi Arabia
| | - Ismail Ercan
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81010 Düzce, Turkey
| | - Noha Alqahtani
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221 Dammam, Saudi Arabia
| | - Bayan Alotaibi
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221 Dammam, Saudi Arabia
| | - Muruj Bamhrez
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221 Dammam, Saudi Arabia
| | - Raghdah Alshumrani
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 34221 Dammam, Saudi Arabia
| | - Halbay Turumtay
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Energy System Engineering, Karadeniz Technical University, 61830 Trabzon, Turkey
| | - Ibrahim Ergin
- Department of Physics, Faculty of Art and Sciences, Cukurova University, 01330 Balcali-Adana, Turkey
| | - Tuna Demirci
- Scientific and Technological Research Laboratory, Düzce University, 81560 Düzce, Turkey
| | - Sezen Ozcelik
- Department of Food Engineering, Faculty of Engineering, Hakkari University, 30000 Hakkari, Turkey
| | - Tarek Said Kayed
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Filiz Ercan
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, PO Box 1982, 31441 Dammam, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, PO Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
15
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
16
|
Zhao K, Xu G, Wang L, Wu T, Zhang X, Zhang C, Zhao Y, Li Z, Gao Y, Du F. Using a Dynamic Hydrophilization Strategy to Achieve Nanodispersion, Full Wetting, and Precise Delivery of Hydrophobic Pesticide. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37488063 DOI: 10.1021/acsami.3c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Various strategies have been developed to improve the applicability of hydrophobic pesticides for better effectiveness in agriculture. However, existing formulations of hydrophobic pesticides still suffer from complicated processing, abused organic solvents, indispensable surfactants, or inescapable ecotoxicity, which strictly limit their applications. Herein, a dynamic covalent bond tailored pesticide (fipronil) amphiphile is constructed to address the above issues, which accomplishes the nanodispersion, full wetting, and precise delivery without organic solvents, surfactants, and materials simultaneously. By introducing a hydrophilic ligand on the hydrophobic fipronil through an imine bond, the cleavable fipronil amphiphile (FPP) exhibits superior water solubility and can even self-assemble into micelles at higher concentrations, which can be directly applied in powder form without organic solvents. Attributed to the suitable hydrophilic/hydrophobic ratio, FPP achieves full wetting and effective deposition on superhydrophobic rice leaves without surfactants. Moreover, benefiting from the unique dynamic nature of the imine bond, FPP maintains good storage stability while sensitively releasing back to fipronil under the humidity and pH trigger, consequently implementing the precise delivery for nontarget Apis cerana and target Chilo suppressalis without materials. To our knowledge, this dynamic covalent bond tailored amphiphile strategy is the first idea that simultaneously takes the dispersibility, wettability, and responsiveness of hydrophobic pesticides into account, providing a possibility to control the entire journey of field application and even promising to be incorporated into the synthesis process, thus paving the way for modern sustainable agriculture.
Collapse
Affiliation(s)
- Kefei Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Guangchun Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Leng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Tianyue Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Xingyu Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Chenhui Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Yuhang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Zilu Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Yuxia Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
17
|
Falsini S, Nieri T, Paolini A, Schiff S, Papini A, Mugnai L, Gonnelli C, Ristori S. Tannins-lignin mixed nanoformulations for improving the potential of neem oil as fungicide agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39131-39141. [PMID: 36595170 DOI: 10.1007/s11356-022-24991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Sustainability and circular economy are increasingly pushing for the search of natural materials to foster antiparasitic treatments, especially in the case of economically relevant agricultural cultivations, such as grapevine. In this work, we propose to deliver neem oil, a natural biopesticide loaded into novel nanovectors (nanocapsules) which were fabricated using a scalable procedure starting from Kraft lignin and grapeseed tannins. The obtained formulations were characterized in terms of size and Zeta potential, showing that almost all the nanocapsules had size in the suitable range for delivery purposes (mean diameter 150-300 nm), with low polydispersity and sufficient stability to ensure long shelf life. The target microorganisms were three reference fungal pathogens of grapevine (Botrytis cinerea, Phaeoacremonium minimum, Phaeomoniella chlamydospora), responsible for recurrent diseases on this crop: grey mold or berry rot by B. cinerea and diseases of grapevine wood within the Esca complex of diseases. Results showed that grapeseed tannins did not promote inhibitory effects, either alone or in combination with Kraft lignin. On the contrary, the efficacy of neem oil against P. minimum was boosted by more than 1-2 orders of magnitude and the parasite growth inhibition was higher with respect to a widely used commercial pesticide, while no additional activity was detected against P. chlamydospora and B. cinerea.
Collapse
Affiliation(s)
- Sara Falsini
- Department of Biology, University of Florence, via Micheli 1-3, 50121, Florence, Italy.
| | - Tommaso Nieri
- Department of Biology, University of Florence, via Micheli 1-3, 50121, Florence, Italy
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, P.le delle Cascine, 28, 50144, Florence, Italy
| | - Aurora Paolini
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, P.le delle Cascine, 28, 50144, Florence, Italy
| | - Silvia Schiff
- Department of Biology, University of Florence, via Micheli 1-3, 50121, Florence, Italy
| | - Alessio Papini
- Department of Biology, University of Florence, via Micheli 1-3, 50121, Florence, Italy
| | - Laura Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, P.le delle Cascine, 28, 50144, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, University of Florence, via Micheli 1-3, 50121, Florence, Italy
| | - Sandra Ristori
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, 50019, Florence, Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Zhang X, He Y, Yuan Z, Shen G, Zhang Z, Niu J, He L, Wang J, Qian K. A pH- and enzymatic-responsive nanopesticide to control pea aphids and reduce toxicity for earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160610. [PMID: 36460117 DOI: 10.1016/j.scitotenv.2022.160610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Thiacloprid is a new chlorinated nicotinoid insecticide against stinging-oral pests, such as aphids. It is less toxic to bees but more toxic to earthworms. In this study, a pH- and amylase-responsive MOF (ZIF-8) was constructed for site-specific delivery of thiacloprid to control pea aphids and more safety for earthworms. Thiacloprid from α-cyclodextrin@Thiacloprid@ZIF-8 (α-CD@T@ZIF-8) could be released quickly in pea aphids, which was ascribed to disintegration of ZIF-8 at low pH values in pea aphid intestines and degradation of α-CD under the action of α-amylase. The release results showed a significant pH dependence of α-CD@T@ZIF-8, with an approximately 65 % release amount at pH = 7 and a 95 % release amount at pH = 5 for 7 d. The results of the pot experiment and biosafety showed that for α-CD@T@ZIF-8, 88 % pea aphids could be killed compared with 32 % aphids for commercially available formulation on the 7th day after application. Meanwhile the LC50 of thiacloprid OD was 0.034 μg/cm2 and the LC50 of α-CD@T@ZIF-8 was 0.564 μg/cm2 on earthworms, and it was more safety for pea and lower acute toxicity and enrichment for the earthworms. α-CD@T@ZIF-8 could be used for intelligently controlled release of other insecticides against aphids.
Collapse
Affiliation(s)
- Xuqian Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ying He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Guangmao Shen
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zan Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jinzhi Niu
- College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Jinjun Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Santiago-Aliste A, Sánchez-Hernández E, Langa-Lomba N, González-García V, Casanova-Gascón J, Martín-Gil J, Martín-Ramos P. Multifunctional Nanocarriers Based on Chitosan Oligomers and Graphitic Carbon Nitride Assembly. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8981. [PMID: 36556785 PMCID: PMC9785438 DOI: 10.3390/ma15248981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this study, a graphitic carbon nitride and chitosan oligomers (g-C3N4−COS) nanocarrier assembly, which was obtained by cross-linking with methacrylic anhydride (MA), was synthesized and characterized. Its characterization was carried out using infrared spectroscopy, elemental and thermal analyses, and transmission electron microscopy. The new nanocarriers (NCs), with an average particle size of 85 nm in diameter and a 0.25 dispersity index, showed photocatalytic activity (associated with the g-C3N4 moiety), susceptibility to enzymatic degradation (due to the presence of the COS moiety), and high encapsulation and moderate-high release efficiencies (>95% and >74%, respectively). As a proof of concept, the visible-light-driven photocatalytic activity of the NCs was tested for rhodamine B degradation and the reduction of uranium(VI) to uranium(IV). Regarding the potential of the nanocarriers for the encapsulation and delivery of bioactive products for crop protection, NCs loaded with Rubia tinctorum extracts were investigated in vitro against three Vitis vinifera phytopathogens (viz. Neofusicoccum parvum, Diplodia seriata, and Xylophilus ampelinus), obtaining minimum inhibitory concentration values of 750, 250, and 187.5 µg·mL−1, respectively. Their antifungal activity was further tested in vivo as a pruning wound protection product in young ‘Tempranillo’ grapevine plants that were artificially infected with the two aforementioned species of the family Botryosphaeriaceae, finding a significant reduction of the necrosis lengths in the inner woody tissues. Therefore, g-C3N4-MA-COS NCs may be put forward as a multifunctional platform for environmental and agrochemical delivery applications.
Collapse
Affiliation(s)
- Alberto Santiago-Aliste
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
- Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Vicente González-García
- Plant Protection Unit, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - José Casanova-Gascón
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Jesús Martín-Gil
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| |
Collapse
|
20
|
Wu T, Zhao K, Zhang C, Zhong T, Li Z, Bao Z, Gao Y, Du F. Promising Delivery Platform for Smart Pest Control with High Water-Retaining Capacity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55062-55074. [PMID: 36472305 DOI: 10.1021/acsami.2c15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogels have been extensively used in agriculture to improve crop yields for their excellent properties. However, they are currently used either as pesticide delivery platforms or water retention agents alone; the combination of these two functions into one agricultural hydrogel formulation has never been reported, which is crucial to promote sustainable development in agriculture. Herein, using poly(β-cyclodextrin) and adamantane-grafted poly(acrylic acid) (PAA-Ada) as the host and guest, respectively, an easy operating, multi-responsive, and safer hydrogel delivery system for insecticides is fabricated by the host-guest interaction between cyclodextrin and adamantane, which can load uniformly dispersed insecticides (fipronil, imidacloprid, and thiamethoxam) up to 60%. Benefiting from the carboxyl and hydroxyl groups on polymer chains, different temperatures (25, 35, and 45 °C) and pH values (5.0, 6.8, and 10.0) change the intermolecular forces within the hydrogel network and then the diffusion of the content, finally resulting in controlled release behaviors. Besides, this platform can rapidly release the insecticides in the presence of amyloglucosidase due to its ring-opening effect on cyclodextrin. Moreover, this platform exhibits high water-retaining capacity toward soil, which can increase the maximum water absorption of nutrient soil and quartz sand by 31.6 and 13.9%, respectively, and slows down the water loss. Compared with commercial formulation, this smart system reduces the acute toxicity to non-target organism earthworms by 52.4% and improves the efficacy against target organism aphids by 47.3%, showing better durability, lower environmental toxicity, and higher efficiency. To our knowledge, this is the first idea that simultaneously adopts the water-retaining capacity and controlled release ability of hydrogels to improve insecticide efficacy. In this regard, this smart hydrogel platform holds great potentials as slow-release granules with water-holding ability for protection against insect pests, providing an alternative platform for the sustainable development in green agriculture.
Collapse
Affiliation(s)
- Tianyue Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| | - Kefei Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| | - Chenhui Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| | - Tingjun Zhong
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| | - Zilu Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| | - Zhenping Bao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| | - Yuxia Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing100193, P. R. China
| |
Collapse
|
21
|
Xiao D, Wu H, Zhang Y, Kang J, Dong A, Liang W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J Control Release 2022; 352:288-312. [PMID: 36273530 DOI: 10.1016/j.jconrel.2022.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Effective pest management for enhanced crop output is one of the primary goals of establishing sustainable agricultural practices in the world. Pesticides are critical in preventing biological disasters, ensuring crop productivity, and fostering sustainable agricultural production growth. Studies showed that crops are unable to properly utilize pesticides because of several limiting factors, such as leaching and bioconversion, thereby damaging ecosystems and human health. In recent years, stimuli-responsive systems for pesticides delivery (SRSP) by nanotechnology demonstrated excellent promise in enhancing the effectiveness and safety of pesticides. SRSP are being developed with the goal of delivering precise amounts of active substances in response to biological needs and environmental factors. An in-depth analysis of carrier materials, design fundamentals, and classification of SRSP were provided. The adhesion of SRSP to crop tissue, absorption, translocation in and within plants, mobility in the soil, and toxicity were also discussed. The problems and shortcomings that need be resolved to accelerate the actual deployment of SRSP were highlighted in this review.
Collapse
Affiliation(s)
- Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
22
|
Fu X, Zheng Z, Sha Z, Cao H, Yuan Q, Yu H, Li Q. Biorefining waste into nanobiotechnologies can revolutionize sustainable agriculture. Trends Biotechnol 2022; 40:1503-1518. [PMID: 36270903 DOI: 10.1016/j.tibtech.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Modern agriculture has evolved technological innovations to sustain crop productivity. Recent advances in biorefinery technology use crop residue as feedstock, but this raises carbon sequestration concerns as biorefining utilizes carbon that would otherwise be returned to the soil, thus causing a decline in crop productivity. Furthermore, biorefining generates abundant lignin waste that significantly impedes the efficiency of biorefineries. Valorizing lignin into advanced nanobiotechnologies for agriculture provides a unique opportunity to balance bioeconomy and soil carbon sequestration. Integration of agricultural practices such as utilization of agrochemicals, fertilizers, soil modifiers, and mulching with lignin nanobiotechnologies promotes crop productivity and also enables advanced manufacturing of high-value bioproducts from lignin. Lignin nanobiotechnologies thus represent state-of-the-art innovations to transform both the bioeconomy and sustainable agriculture.
Collapse
Affiliation(s)
- Xiao Fu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ze Zheng
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhimin Sha
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongliang Cao
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Zhang DX, Wang R, Ren C, Wang Y, Li BX, Mu W, Liu F, Hou Y. One-Step Construct Responsive Lignin/Polysaccharide/Fe Nano Loading System Driven by Digestive Enzymes of Lepidopteran for Precise Delivery of Pesticides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41337-41347. [PMID: 36053529 DOI: 10.1021/acsami.2c10899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A strategy that relies on the differences in feeding behavior between pests and natural enemies to deliver insecticides precisely was proposed. After proving that the digestive enzymes in Lepidopteran pests can act as triggers for lignin-based controlled-release carriers, a novel multiple-enzyme-responsive lignin/polysaccharide/Fe nanocarrier was constructed by combining the electrostatic self-assembly and chelation and loaded with lambda-cyhalothrin (LC) to form a nanocapsule suspension loading system. The nanocapsules were LC@sodium lignosulfonate/chitosan/Fe (LC@SL/CS/Fe) and LC@sodium lignosulfonate/alkyl polyglycoside quaternary ammonium salt/Fe (LC@SL/APQAS/Fe). LC@SL/APQAS/Fe was more stable than LC@SL/CS/Fe because it adsorbs more Fe3+, and the half-lives of LC in LC@SL/APQAS/Fe under UV irradiation were prolonged at 4.02- and 6.03-folds than those of LC@SL/CS/Fe and LC emulsifiable concentrate (LC EC), respectively. Both LC@SL/APQAS/Fe and LC@SL/CS/Fe have responsive release functions to laccase and cellulase, and the release rate of the former was slower. The insecticidal activity of LC@SL/APQAS/Fe against Agrotis ipsilonis was similar to those of LC@SL/CS/Fe and LC EC, while the toxicity of LC@SL/APQAS/Fe to the natural enemy was 2-3 times less than those of LC@SL/CS/Fe and LC EC. Meanwhile, the organic solvent component in the nanocapsule suspension was 94% less than that in the EC preparation. Therefore, the nano loading system based on SL/APQAS/Fe is a promising nanoplatform with the advantages of high efficiency, low toxicity, and environmental friendliness.
Collapse
Affiliation(s)
- Da-Xia Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Rui Wang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Chuangling Ren
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yaru Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Bei-Xing Li
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Feng Liu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
24
|
Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 2022; 303:102645. [PMID: 35358807 DOI: 10.1016/j.cis.2022.102645] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Devastating plant diseases and soil depletion rationalize an extensive use of agrochemicals to secure the food production worldwide. The sustained release of fertilizers and pesticides in agriculture is a promising solution to the eco-toxicological impacts and it might reduce the amount and increase the effectiveness of agrochemicals administration in the field. This review article focusses on carriers with diameters below 1 μm, such as capsules, spheres, tubes and micelles that promote the sustained release of actives. Biopolymer nanocarriers represent a potentially environmentally friendly alternative due to their renewable origin and biodegradability, which prevents the formation of microplastics. The social aspects, economic potential, and success of commercialization of biopolymer based nanocarriers are influenced by the controversial nature of nanotechnology and depend on the use case. Nanotechnology's enormous innovative power is only able to unfold its potential to limit the effects of climate change and to counteract current environmental developments if the perceived risks are understood and mitigated.
Collapse
Affiliation(s)
- Thiago O Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Justin Grabow
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands; Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Michel L Ehrenhard
- Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
25
|
Zhao N, Gui X, Fang Q, Zhang R, Zhu W, Zhang H, Li Q, Zhou Y, Zhao J, Cui X, Gao G, Tang H, Shen N, Chen T, Song H, Shen W. Graphene quantum dots rescue angiogenic retinopathy via blocking STAT3/Periostin/ERK signaling. J Nanobiotechnology 2022; 20:174. [PMID: 35366885 PMCID: PMC8977040 DOI: 10.1186/s12951-022-01362-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pathological retinal angiogenesis resulting from a variety of ocular diseases including oxygen induced retinopathy, diabetic retinopathy and ocular vein occlusion, is one of the major reasons for vision loss, yet the therapeutic option is limited. Multiple nanoparticles have been reported to alleviate angiogenic retinopathy. However, the adverse effect cannot be ignored due to the relatively large scale. Graphene quantum dots (GQDs) have shown potential in drug delivery and have been proved biocompatible. In this study, Graphene quantum dots are extensively investigated for their application in angiogenic retinopathy therapy. RESULTS We showed that GQDs were biocompatible nanomaterials in vitro and in vivo. The nanoparticles have a dose-dependent inhibitory effect on proliferation, migration, tube formation and sprouting of human umbilical vein endothelial cells (HUVECs). Further data show that GQDs could inhibit pathological retinal neovascularization in an oxygen-induced retinopathy (OIR) model. The data of RNA sequencing suggested that periostin is involved in this process. GQDs inhibit the expression of periostin via STAT3, and further regulated cell cycle-related protein levels through ERK pathway. The signaling pathway was conformed in vivo using OIR mouse model. CONCLUSIONS The present study indicated that GQDs could be a biocompatible anti-angiogenic nanomedicine in the treatment of pathological retinal neovascularization via disrupting periostin/ERK pathway and subsequent cell cycle.
Collapse
Affiliation(s)
- Na Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qian Fang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Weiye Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yukun Zhou
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiawei Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao Cui
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guangping Gao
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Huipeng Tang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ni Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Liang W, Cheng J, Zhang J, Xiong Q, Jin M, Zhao J. pH-Responsive On-Demand Alkaloids Release from Core-Shell ZnO@ZIF-8 Nanosphere for Synergistic Control of Bacterial Wilt Disease. ACS NANO 2022; 16:2762-2773. [PMID: 35135193 DOI: 10.1021/acsnano.1c09724] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing an effective and safe technology to control severe bacterial diseases in agriculture has attracted significant attention. Here, ZnO nanosphere and ZIF-8 are employed as core and shell, respectively, and then a pH-responsive core-shell nanocarrier (ZnO-Z) was prepared by in situ crystal growth strategy. The bactericide berberine (Ber) was further loaded to form Ber-loaded ZnO-Z (Ber@ZnO-Z) for control of tomato bacterial wilt disease. Results demonstrated that Ber@ZnO-Z could release Ber rapidly in an acidic environment, which corresponded to the pH of the soil where the tomato bacterial wilt disease often outbreak. In vitro experiments showed that the antibacterial activity of Ber@ZnO-Z was about 4.5 times and 1.8 times higher than that of Ber and ZnO-Z, respectively. It was because Ber@ZnO-Z could induce ROS generation, resulting in DNA damage, cytoplasm leakage, and membrane permeability changes so the released Ber without penetrability more easily penetrated the bacteria to achieve an efficient synergistic bactericidal effect with ZnO-Z carriers after combining with DNA. Pot experiments also showed that Ber@ZnO-Z significantly reduced disease severity with a wilt index of 45.8% on day 14 after inoculation, compared to 94.4% for the commercial berberine aqueous solution. More importantly, ZnO-Z carriers did not accumulate in aboveground parts of plants and did not affect plant growth in a short period. This work provides guidance for the effective control of soil-borne bacterial diseases and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiadong Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
27
|
Gigli M, Fellet G, Pilotto L, Sgarzi M, Marchiol L, Crestini C. Lignin-based nano-enabled agriculture: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:976410. [PMID: 36407611 PMCID: PMC9667414 DOI: 10.3389/fpls.2022.976410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 05/05/2023]
Abstract
Nowadays sustainable nanotechnological strategies to improve the efficiency of conventional agricultural practices are of utmost importance. As a matter of fact, the increasing use of productive factors in response to the growing food demand plays an important role in determining the environmental impact of agriculture. In this respect, low-efficiency conventional practices are becoming obsolete. On the other hand, the exploitation of nanoscaled systems for the controlled delivery of fertilizers, pesticides and herbicides shows great potential towards the development of sustainable, efficient and resilient agricultural processes, while promoting food security. In this context, lignin - especially in the form of its nanostructures - can play an important role as sustainable biomaterial for nano-enabled agricultural applications. In this review, we present and discuss the current advancements in the preparation of lignin nanoparticles for the controlled release of pesticides, herbicides, and fertilizers, as well as the latest findings in terms of plant response to their application. Special attention has been paid to the state-of-the-art literature concerning the release performance of these lignin-based nanomaterials, whose efficiency is compared with the conventional approaches. Finally, the major challenges and the future scenarios of lignin-based nano-enabled agriculture are considered.
Collapse
Affiliation(s)
- Matteo Gigli
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia-Mestre, Italy
| | - Guido Fellet
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- *Correspondence: Guido Fellet, ; Massimo Sgarzi,
| | - Laura Pilotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Massimo Sgarzi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia-Mestre, Italy
- *Correspondence: Guido Fellet, ; Massimo Sgarzi,
| | - Luca Marchiol
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Claudia Crestini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia-Mestre, Italy
| |
Collapse
|
28
|
Lima PHCD, Antunes DR, Forini MMDL, Pontes MDS, Mattos BD, Grillo R. Recent Advances on Lignocellulosic-Based Nanopesticides for Agricultural Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.809329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled release systems of agrochemicals have been developed in recent years. However, the design of intelligent nanocarriers that can be manufactured with renewable and low-cost materials is still a challenge for agricultural applications. Lignocellulosic building blocks (cellulose, lignin, and hemicellulose) are ideal candidates to manufacture ecofriendly nanocarriers given their low-cost, abundancy and sustainability. Complexity and heterogeneity of biopolymers have posed challenges in the development of nanocarriers; however, the current engineering toolbox for biopolymer modification has increased remarkably, which enables better control over their properties and tuned interactions with cargoes and plant tissues. In this mini-review, we explore recent advances on lignocellulosic-based nanocarriers for the controlled release of agrochemicals. We also offer a critical discussion regarding the future challenges of potential bio-based nanocarrier for sustainable agricultural development.
Collapse
|
29
|
Reis P, Gaspar A, Alves A, Fontaine F, Rego C. Combining an HA + Cu (II) Site-Targeted Copper-Based Product with a Pruning Wound Protection Program to Prevent Infection with Lasiodiplodia spp. in Grapevine. PLANTS (BASEL, SWITZERLAND) 2021; 10:2376. [PMID: 34834739 PMCID: PMC8625631 DOI: 10.3390/plants10112376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
The genus Lasiodiplodia has been reported from several grape growing regions and is considered as one of the fastest wood colonizers, causing Botryosphaeria dieback. The aim of this study was to (i) evaluate the efficacy of Esquive®, a biocontrol agent, on vineyard pruning wound protection, applied single or, in a combined protection strategy with a new site-targeted copper-based treatment (LC2017), and (ii) compare their efficacy with chemical protection provided by the commercially available product, Tessior®. For two seasons, protectants were applied onto pruning wounds, while LC2017 was applied throughout the season according to the manufacturer's instructions. Pruning wounds of two different cultivars were inoculated with three isolates of Lasiodiplodia spp. Efficacy of the wound protectants, varied between both years of the assay and according to the cultivar studied but were able to control the pathogen to some extent. The application of LC2017 did not show clear evidence of improving the control obtained by the sole application of the other products tested. Nevertheless, LC2017 showed a fungistatic effect against Lasiodiplodia spp., in vitro, and has previously shown an elicitor effect against grapevine trunk diseases. Therefore, this combination of two protection strategies may constitute a promising long-term approach to mitigate the impact of Botryosphaeria dieback.
Collapse
Affiliation(s)
- Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.R.)
| | - Ana Gaspar
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.R.)
| | - Artur Alves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Florence Fontaine
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Cecília Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.R.)
| |
Collapse
|
30
|
Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D. Multifunctional lignin-based nanocomposites and nanohybrids. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6698-6760. [PMID: 34671223 PMCID: PMC8452181 DOI: 10.1039/d1gc01684a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Significant progress in lignins valorization and development of high-performance sustainable materials have been achieved in recent years. Reports related to lignin utilization indicate excellent prospects considering green chemistry, chemical engineering, energy, materials and polymer science, physical chemistry, biochemistry, among others. To fully realize such potential, one of the most promising routes involves lignin uses in nanocomposites and nanohybrid assemblies, where synergistic interactions are highly beneficial. This review first discusses the interfacial assembly of lignins with polysaccharides, proteins and other biopolymers, for instance, in the synthesis of nanocomposites. To give a wide perspective, we consider the subject of hybridization with metal and metal oxide nanoparticles, as well as uses as precursor of carbon materials and the assembly with other biobased nanoparticles, for instance to form nanohybrids. We provide cues to understand the fundamental aspects related to lignins, their self-assembly and supramolecular organization, all of which are critical in nanocomposites and nanohybrids. We highlight the possibilities of lignin in the fields of flame retardancy, food packaging, plant protection, electroactive materials, energy storage and health sciences. The most recent outcomes are evaluated given the importance of lignin extraction, within established and emerging biorefineries. We consider the benefit of lignin compared to synthetic counterparts. Bridging the gap between fundamental and application-driven research, this account offers critical insights as far as the potential of lignin as one of the frontrunners in the uptake of bioeconomy concepts and its application in value-added products.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Life Cycle Thinking group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU) Bilbao 48013 Spain
- BCMaterials, Basque Center Centre for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, and Department of Wood Science, University of British Columbia 2360 East Mall Vancouver BC V6T 1Z4 Canada
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia Strada di Pentima 4 05100 Terni Italy
| |
Collapse
|
31
|
Ji Y, Ma S, Lv S, Wang Y, Lü S, Liu M. Nanomaterials for Targeted Delivery of Agrochemicals by an All-in-One Combination Strategy and Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43374-43386. [PMID: 34469104 DOI: 10.1021/acsami.1c11914] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The development of modern agriculture has prompted the greater input of herbicides, insecticides, and fertilizers. However, precision release and targeted delivery of these agrochemicals still remain a challenge. Here, a pesticide-fertilizer all-in-one combination (PFAC) strategy and deep learning are employed to form a system for controlled and targeted delivery of agrochemicals. This system mainly consists of three components: (1) hollow mesoporous silica (HMS), to encapsulate herbicides and phase-change material; (2) polydopamine (PDA) coating, to provide a photothermal effect; and (3) a zeolitic imidazolate framework (ZIF8), to provide micronutrient Zn2+ and encapsulate insecticides. Results show that the PFAC at concentration of 5 mg mL-1 reaches the phase transition temperature of 1-tetradecanol (37.5 °C) after 5 min of near-infrared (NIR) irradiation (800 nm, 0.5 W cm-2). The data of corn and weed are collected and relayed to deep learning algorithms for model building to realize object detection and further targeted weeding. In-field treatment results indicated that the growth of chicory herb was significantly inhibited when treated with the PFAC compared with the blank group after 24 h under NIR irradiation for 2 h. This system combines agrochemical innovation and artificial intelligence technology, achieves synergistic effects of weeding and insecticide and nutrient supply, and will potentially achieve precision and sustainable agriculture.
Collapse
Affiliation(s)
- Yanzheng Ji
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Song Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shaoqing Lv
- School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Yingjie Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Moreno A, Liu J, Gueret R, Hadi SE, Bergström L, Slabon A, Sipponen MH. Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid‐ and Base‐Catalyzed Functionalization in Dispersion State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adrian Moreno
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Jinrong Liu
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Robin Gueret
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| | - Mika H. Sipponen
- Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16C 10691 Stockholm Sweden
| |
Collapse
|
33
|
Moreno A, Liu J, Gueret R, Hadi SE, Bergström L, Slabon A, Sipponen MH. Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid- and Base-Catalyzed Functionalization in Dispersion State. Angew Chem Int Ed Engl 2021; 60:20897-20905. [PMID: 34196470 PMCID: PMC8518943 DOI: 10.1002/anie.202106743] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Lignin nanoparticles (LNPs) are promising renewable nanomaterials with applications ranging from biomedicine to water purification. However, the instability of LNPs under acidic and basic conditions severely limits their functionalization for improved performance. Here, we show that controlling the degree of esterification can significantly improve the stability of lignin oleate nanoparticles (OLNPs) in acidic and basic aqueous dispersions. The high stability of OLNPs is attributed to the alkyl chains accumulated in the shell of the particle, which delays protonation/deprotonation of carboxylic acid and phenolic hydroxyl groups. Owing to the enhanced stability, acid‐ and base‐catalyzed functionalization of OLNPs at pH 2.0 and pH 12.0 via oxirane ring‐opening reactions were successfully performed. We also demonstrated these new functionalized particles as efficient pH‐switchable dye adsorbents and anticorrosive particulate coatings.
Collapse
Affiliation(s)
- Adrian Moreno
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Jinrong Liu
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Robin Gueret
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Seyed Ehsan Hadi
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| |
Collapse
|
34
|
Monteiro RA, Camara MC, de Oliveira JL, Campos EVR, Carvalho LB, Proença PLDF, Guilger-Casagrande M, Lima R, do Nascimento J, Gonçalves KC, Polanczyk RA, Fraceto LF. Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-responsive approach aiming sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126004. [PMID: 33992010 DOI: 10.1016/j.jhazmat.2021.126004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Nanoencapsulation of biopesticides is an important strategy to increase the efficiency of these compounds, reducing losses and adverse effects on non-target organisms. This study describes the preparation and characterisation of zein nanoparticles containing the botanical compounds limonene and carvacrol, responsive to proteolytic enzymes present in the insects guts. The spherical nanoparticles, prepared by the anti-solvent precipitation method, presented in the nanoparticle tracking analysis (NTA) a concentration of 4.7 × 1012 ± 1.3 × 1011 particles.mL-1 and an average size of 125 ± 2 nm. The formulations showed stability over time, in addition to not being phytotoxic to Phaseolus vulgaris plants. In vivo tests demonstrated that formulations of zein nanoparticles containing botanical compounds showed higher mortality to Spodoptera frugiperda larvae. In addition, the FTIC probe (fluorescein isothiocyanate) showed wide distribution in the larvae midgut, as well as being identified in the feces. The trypsin enzyme, as well as the enzymatic extract from insects midgut, was effective in the degradation of nanoparticles containing the mixture of botanical compounds, significantly reducing the concentration of nanoparticles and the changes in size distribution. The zein degradation was confirmed by the disappearance of the protein band in the electrophoresis gel, by the formation of the lower molecular weight fragments and also by the greater release of FTIC after enzymes incubation. In this context, the synthesis of responsive nanoparticles has great potential for application in pest management, increasing the selectivity and specificity of the system and contributing to a more sustainable agriculture.
Collapse
Affiliation(s)
- Renata Aparecida Monteiro
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Marcela Candido Camara
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Jhones Luiz de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Lucas Bragança Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | | | - Mariana Guilger-Casagrande
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Renata Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Joacir do Nascimento
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Kelly Cristina Gonçalves
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Ricardo Antônio Polanczyk
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | - Leonardo Fernandes Fraceto
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials (LABiToN), University of Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil.
| |
Collapse
|
35
|
Beckers SJ, Staal AHJ, Rosenauer C, Srinivas M, Landfester K, Wurm FR. Targeted Drug Delivery for Sustainable Crop Protection: Transport and Stability of Polymeric Nanocarriers in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100067. [PMID: 34105269 PMCID: PMC8188206 DOI: 10.1002/advs.202100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/11/2021] [Indexed: 05/07/2023]
Abstract
Spraying of agrochemicals (pesticides, fertilizers) causes environmental pollution on a million-ton scale. A sustainable alternative is target-specific, on-demand drug delivery by polymeric nanocarriers. Trunk injections of aqueous nanocarrier dispersions can overcome the biological size barriers of roots and leaves and allow distributing the nanocarriers through the plant. To date, the fate of polymeric nanocarriers inside a plant is widely unknown. Here, the in planta conditions in grapevine plants are simulated and the colloidal stability of a systematic series of nanocarriers composed of polystyrene (well-defined model) and biodegradable lignin and polylactic-co-glycolic acid by a combination of different techniques is studied. Despite the adsorption of carbohydrates and other biomolecules onto the nanocarriers' surface, they remain colloidally stable after incubation in biological fluids (wood sap), suggesting a potential transport via the xylem. The transport is tracked by fluorine- and ruthenium-labeled nanocarriers inside of grapevines by 19 F-magnetic resonance imaging or induced coupled plasma - optical emission spectroscopy. Both methods show that the nanocarriers are transported inside of the plant and proved to be powerful tools to localize nanomaterials in plants. This study provides essential information to design nanocarriers for agrochemical delivery in plants to sustainable crop protection.
Collapse
Affiliation(s)
| | - Alexander H. J. Staal
- Department of Tumor ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein 26/28Nijmegen6525GAThe Netherlands
| | | | - Mangala Srinivas
- Department of Tumor ImmunologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein 26/28Nijmegen6525GAThe Netherlands
- Cenya Imaging BVTweede Kostverlorlenkade 11hAmsterdam1052RKThe Netherlands
| | | | - Frederik R. Wurm
- Max‐Planck‐Institut für PolymerforschungAckermannweg 10Mainz55128Germany
- Sustainable Polymer Chemistry GroupMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversiteit TwentePO Box 217Enschede7500AEThe Netherlands
| |
Collapse
|
36
|
Liang W, Xie Z, Cheng J, Xiao D, Xiong Q, Wang Q, Zhao J, Gui W. A Light-Triggered pH-Responsive Metal-Organic Framework for Smart Delivery of Fungicide to Control Sclerotinia Diseases of Oilseed Rape. ACS NANO 2021; 15:6987-6997. [PMID: 33856774 DOI: 10.1021/acsnano.0c10877] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Using a simple one-pot method, we developed a prochloraz (Pro) and pH-jump reagent-loaded zeolitic imidazolate framework-8 (PD@ZIF-8) composite for the smart control of Sclerotinia disease. The pH-jump reagent can induce the acidic degradation of ZIF-8 using UV light to realize the controlled release of Pro. Thus, the physical properties of PD@ZIF-8, such as its release, formulation stability, and adhesion, were investigated in detail. The results showed that the quantity of Pro released by PD@ZIF-8 under UV light irradiation (365 nm) was 63.4 ± 3.5%, whereas under dark conditions, it was only 13.7 ± 0.8%. In vitro activity indicated that the EC50 of PD@ZIF-8 under UV light irradiation was 0.122 ± 0.02 μg/mL, which was not significantly different from that of Pro (0.107 ± 0.01 μg/mL). Pot experiments showed that the efficacy of PD@ZIF-8 under light irradiation was 51.2 ± 5.7% for a fungal infection at 14 days post-spraying, whereas the effectiveness of prochloraz emulsion in water was only 9.3 ± 3.3%. Furthermore, fluorescence tracking of ZIF-8 and biosafety experiments showed that ZIF-8 could be absorbed by plant leaves and transported to various parts of oilseed rape in a short period of time and that PD@ZIF-8 was relatively safe for plants and HepG2 cells. These results highlight the potential of the composite to provide efficient and smart delivery of fungicides into plants for protection against diseases and provide an idea for developing sustainable agriculture.
Collapse
Affiliation(s)
- Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhengang Xie
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingli Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Douxin Xiao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiuyu Xiong
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
37
|
Del Buono D, Luzi F, Puglia D. Lignin Nanoparticles: A Promising Tool to Improve Maize Physiological, Biochemical, and Chemical Traits. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:846. [PMID: 33810279 PMCID: PMC8066232 DOI: 10.3390/nano11040846] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Lignin, and its derivatives, are the subject of current research for the exciting properties shown by this biomass. Particularly attractive are lignin nanoparticles for their eco- and biocompatibility compared to other nanomaterials. In this context, the effect of nanostructured lignin microparticles (LNP), obtained from alkaline lignin by acid treatment, on maize plants was investigated. To this end, maize seeds were primed with LNP at five concentrations: 80 mg L-1 (T80), 312 mg L-1 (T312), 1250 mg L-1 (T1250), 5000 mg L-1 (T5000) and 20,000 mg L-1 (T20000). Concerning the dose applied, LNP prompted positive effects on the first stages of maize development (germination and radicle length). Furthermore, the study of plant growth, biochemical and chemical parameters on the developed plants indicated that concerning the dose applied. LNP stimulated beneficial effects on the seedlings (fresh weight and length of shoots and roots). Besides, specific treatments increased the content of chlorophyll (a and b), carotenoid, and anthocyanin. Finally, the soluble protein content showed a positive trend in response to specific dosages. These effects are significant, given the essential biological function performed by these biomolecules. In conclusion, this research indicates as the nanostructured lignin microparticles can be used, at appropriate dosages, to induce positive biological responses in maize. This beneficial action deserves attention as it candidates LNP for biostimulating a crop through seed priming.
Collapse
Affiliation(s)
- Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy;
| | - Francesca Luzi
- Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 4, 05100 Perugia, Italy;
| | - Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 4, 05100 Perugia, Italy;
| |
Collapse
|
38
|
Battiston E, Compant S, Antonielli L, Mondello V, Clément C, Simoni A, Di Marco S, Mugnai L, Fontaine F. In planta Activity of Novel Copper(II)-Based Formulations to Inhibit the Esca-Associated Fungus Phaeoacremonium minimum in Grapevine Propagation Material. FRONTIERS IN PLANT SCIENCE 2021; 12:649694. [PMID: 33790931 PMCID: PMC8005723 DOI: 10.3389/fpls.2021.649694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 05/23/2023]
Abstract
Grapevine trunk diseases (GTDs) are a serious and growing threat to vineyards worldwide. The need for innovative control tools persists since pesticides used against some GTDs have been banned and only methods to prevent infections or to reduce foliar symptoms have been developed so far. In this context, the application of imaging methods, already applied to study plant-microbe interactions, represents an interesting approach to understand the effect of experimental treatments applied to reduce fungal colonization, on GTD-related pathogens activity. To this aim, trials were carried out to evaluate the efficacy of copper-based treatments, formulated with hydroxyapatite (HA) as co-adjuvant with innovative delivery properties, loaded with two different copper(II) compounds (tribasic sulfate and sulfate pentahydrate), and applied to grapevine propagation material to inhibit fungal wood colonization. The treated rootstock (Vitis berlandieri × Vitis riparia cv. K5BB) and scion cuttings (Vitis vinifera L., cv. Chardonnay) had been inoculated with a strain of Phaeoacremonium minimum (Pmi) compared to uninoculated rootstocks. Experimental treatments were applied during the water-soaking process, comparing the copper(II) compounds pure or formulated with HA, to hydrate the cuttings. After callusing, grafted vines were grown under greenhouse conditions in a nursery and inoculated with Pmi::gfp7 or with Pmi wild-type. Fifteen weeks post-inoculation, woody tissues close to the inoculation site were sampled to evaluate the efficiency of the treatments by studying the plant-microbe interaction by confocal laser scanning microscopy (CLSM). Copper and further elements were also quantified in the same tissues immediately after the treatments and on the CLSM samples. Finally, the grapevine defense responses were studied in the leaves of cuttings treated with the same formulations. The present investigation confirmed the relevant interaction of Pmi and the related transformed strain on the vascular tissues of grafted vines. Furthermore, in vitro assay revealed (i) the fungistatic effect of HA and the reduced effect of Cu fungicide when combined with HA. In planta assays showed (ii) the reduction of Pmi infection in propagation material treated with HA-Cu formulations, (iii) the movement of HA-Cu formulations inside the plant tissues and their persistence over time, and (iv) the plant defense reaction following the treatment with pure HA or Cu, or combined.
Collapse
Affiliation(s)
- Enrico Battiston
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali – Sezione Patologia Vegetale ed Entomologia, Università degli Studi di Firenze, Firenze, Italy
- Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, Reims, France
| | - Stéphane Compant
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Livio Antonielli
- Bioresources Unit, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Vincenzo Mondello
- Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, Reims, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, Reims, France
| | - Andrea Simoni
- Dipartimento di Scienze e Tecnologie Agroalimentari, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Stefano Di Marco
- Istituto per la Bioeconomia, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Laura Mugnai
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali – Sezione Patologia Vegetale ed Entomologia, Università degli Studi di Firenze, Firenze, Italy
| | - Florence Fontaine
- Université de Reims Champagne-Ardenne, Unité Résistance Induite et Bioprotection des Plantes, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
39
|
Wu H, Hu P, Xu Y, Xiao C, Chen Z, Liu X, Jia J, Xu H. Phloem Delivery of Fludioxonil by Plant Amino Acid Transporter-Mediated Polysuccinimide Nanocarriers for Controlling Fusarium Wilt in Banana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2668-2678. [PMID: 33629581 DOI: 10.1021/acs.jafc.0c07028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium wilt disease poses a serious threat to the global production of bananas. The targeted delivery of fungicides to banana phloem tissues may offer new hope for controlling this hard-to-treat vascular disease. In this study, fludioxonil (FLU)-loaded glycine methyl ester-conjugated polysuccinimide nanoparticles (PGA) were prepared with a loading efficiency (LE) of 27.9%. The obtained nanoparticles (FLU@PGA) exhibited pH-sensitive controlled release, specifically under an alkaline pH in plant phloem. In vivo experiments in potted bananas demonstrated that FLU@PGA can achieve the downward delivery of FLU to banana rhizomes and roots after foliar application, reducing disease severity by 50.4%. The phloem transport studies showed that the phloem loading of FLU@PGA was involved in an active transport mechanism at the organ level (castor bean seedlings). The observation of fluorescein-5-isothiocyanate cadaverine-labeled PGA nanocarriers showed that they could be absorbed by mesophyll cells and loaded into vascular tissues through the symplastic pathway. Furthermore, the interaction of FLU@PGA with the plant amino acid transporter AtLHT1 was observed to enhance transmembrane uptake at the cellular level (Xenopus oocytes). These results suggested that the phloem-targeted delivery of fungicide by transporter-mediated nanocarriers could be a promising new strategy for the management of Fusarium wilt in bananas.
Collapse
Affiliation(s)
- Hanxiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pengtong Hu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ye Xu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Chunxia Xiao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhibin Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaojing Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinliang Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, Guangdong 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, Guangdong 510642, China
| |
Collapse
|
40
|
Guerriero G, Sutera FM, Torabi-Pour N, Renaut J, Hausman JF, Berni R, Pennington HC, Welsh M, Dehsorkhi A, Zancan LR, Saffie-Siebert S. Phyto-Courier, a Silicon Particle-Based Nano-biostimulant: Evidence from Cannabis sativa Exposed to Salinity. ACS NANO 2021; 15:3061-3069. [PMID: 33523648 DOI: 10.1021/acsnano.0c09488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Global warming and sea level rise are serious threats to agriculture. The negative effects caused by severe salinity include discoloration and reduced surface of the leaves, as well as wilting due to an impaired uptake of water from the soil by roots. Nanotechnology is emerging as a valuable ally in agriculture: several studies have indeed already proven the role of silicon nanoparticles in ameliorating the conditions of plants subjected to (a) biotic stressors. Here, we introduce the concept of phyto-courier: hydrolyzable nanoparticles of porous silicon, stabilized with the nonreducing saccharide trehalose and containing different combinations of lipids and/or amino acids, were used as vehicle for the delivery of the bioactive compound quercetin to the leaves of salt-stressed hemp (Cannabis sativa L., Santhica 27). Hemp was used as a representative model of an economically important crop with multiple uses. Quercetin is an antioxidant known to scavenge reactive oxygen species in cells. Four different silicon-based formulations were administered via spraying in order to investigate their ability to improve the plant's stress response, thereby acting as nano-biostimulants. We show that two formulations proved to be effective at decreasing stress symptoms by modulating the amount of soluble sugars and the expression of genes that are markers of stress-response in hemp. The study proves the suitability of the phyto-courier technology for agricultural applications aimed at crop protection.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, L-4940 Hautcharage, Luxembourg
| | | | | | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, L-4940 Hautcharage, Luxembourg
| | - Roberto Berni
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | | | - Michael Welsh
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, United Kingdom
| | - Ashkan Dehsorkhi
- SiSaf Ltd., Surrey Research Park, Guildford GU2 7RE, United Kingdom
| | | | | |
Collapse
|
41
|
Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles' Heel in Protein Structure and Industrial Utilization. Molecules 2021; 26:molecules26030707. [PMID: 33572971 PMCID: PMC7866400 DOI: 10.3390/molecules26030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a “weak link” from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop “hot spots” for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure–stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions
Collapse
|
42
|
Nanotechnology Potential in Seed Priming for Sustainable Agriculture. NANOMATERIALS 2021; 11:nano11020267. [PMID: 33498531 PMCID: PMC7909549 DOI: 10.3390/nano11020267] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 01/09/2023]
Abstract
Our agriculture is threatened by climate change and the depletion of resources and biodiversity. A new agriculture revolution is needed in order to increase the production of crops and ensure the quality and safety of food, in a sustainable way. Nanotechnology can contribute to the sustainability of agriculture. Seed nano-priming is an efficient process that can change seed metabolism and signaling pathways, affecting not only germination and seedling establishment but also the entire plant lifecycle. Studies have shown various benefits of using seed nano-priming, such as improved plant growth and development, increased productivity, and a better nutritional quality of food. Nano-priming modulates biochemical pathways and the balance between reactive oxygen species and plant growth hormones, resulting in the promotion of stress and diseases resistance outcoming in the reduction of pesticides and fertilizers. The present review provides an overview of advances in the field, showing the challenges and possibilities concerning the use of nanotechnology in seed nano-priming, as a contribution to sustainable agricultural practices.
Collapse
|
43
|
Abstract
Bio-based lignin-like building blocks were synthesized and transformed into polyurethane nanocarriers by interfacial polymerization in a miniemulsion. The nanocarriers were degradable by fungal enzymes and might be used for agrochemical delivery.
Collapse
Affiliation(s)
- Sebastian J. Beckers
- Max-Planck-Institut für Polymerforschung (MPIP), Ackermannweg 10, 55128 Mainz, Germany
| | - Jochen Fischer
- IBWF gGmbH, Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
44
|
Beckers S, Peil S, Wurm FR. Pesticide-Loaded Nanocarriers from Lignin Sulfonates-A Promising Tool for Sustainable Plant Protection. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:18468-18475. [PMID: 33381356 PMCID: PMC7756456 DOI: 10.1021/acssuschemeng.0c05897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Indexed: 05/04/2023]
Abstract
Lignin is a promising feedstock in sustainable formulations for agrochemicals not only because of its biodegradability but also because the biopolymer occurs naturally in the cell wall of plants and therefore is renewable and abundant. We used different lignin sulfonates to prepare stable aqueous dispersions of lignin nanocarriers loaded with agrochemicals by interfacial cross-linking in a direct miniemulsion. Despite the differences in structure and functionality, different lignin sulfonates were successfully methacrylated and degrees of methacrylation (>70%) were achieved. The resulting methacrylated lignin sulfonates were water-soluble and exhibited interfacial activity; they were used as reactive surfactants to stabilize oil droplets (cyclohexane or olive or rapeseed oil) loaded with a dithiol cross-linker [EDBET, 2,2'-(ethylenedioxy)bis(ethylthiol)] and a hydrophobic cargo (the fluorescent dye 1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene or the commercial fungicides prothioconazole and pyraclostrobin). After the addition of a water-soluble base, the thia-Michael addition was initiated at the droplet interface and produced lignin sulfonate nanocarriers with a core-shell structure within oily core and a cross-linked shell. Nanocarriers with diameters of ca. 200-300 nm were prepared; encapsulation efficiencies between 65 and 90% were achieved depending on the cargo. When the amount of the cross-linker was varied, the resulting lignin nanocarriers allowed a controlled release of loaded cargo by diffusion over a period of several days. The strategy proves the potential of lignin sulfonates as a feedstock for delivery systems for advanced plant protection.
Collapse
Affiliation(s)
- Sebastian Beckers
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Stefan Peil
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R. Wurm
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Sustainable
Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, Universiteit
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| |
Collapse
|
45
|
Beckers SJ, Wetherbee L, Fischer J, Wurm FR. Fungicide-loaded and biodegradable xylan-based nanocarriers. Biopolymers 2020; 111:e23413. [PMID: 33306838 PMCID: PMC7816251 DOI: 10.1002/bip.23413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023]
Abstract
The delivery of agrochemicals is typically achieved by the spraying of fossil-based polymer dispersions, which might accumulate in the soil and increase microplastic pollution. A potentially sustainable alternative is the use of biodegradable nano- or micro-formulations based on biopolymers, which can be degraded selectively by fungal enzymes to release encapsulated agrochemicals. To date, no hemicellulose nanocarriers for drug delivery in plants have been reported. Xylan is a renewable and abundant feedstock occurring naturally in high amounts in hemicellulose - a major component of the plant cell wall. Herein, xylan from corncobs was used to produce the first fungicide-loaded xylan-based nanocarriers by interfacial polyaddition in an inverse miniemulsion using toluene diisocyanate (TDI) as a crosslinking agent. The nanocarriers were redispersed in water and the aqueous dispersions were proven to be active in vitro against several pathogenic fungi, which are responsible for fungal plant diseases in horticulture or agriculture. Besides, empty xylan-based nanocarriers stimulated the growth of fungal mycelium, which indicated the degradation of xylan in the presence of the fungi, and underlined the degradation as a trigger to release a loaded agrochemical. This first example of crosslinked xylan-based nanocarriers expands the library of biodegradable and biobased nanocarriers for agrochemical release and might play a crucial role for future formulations in plant protection.
Collapse
Affiliation(s)
- Sebastian J. Beckers
- Physical Chemistry of PolymersMax‐Planck‐Institut für PolymerforschungMainzGermany
| | - Luc Wetherbee
- Physical Chemistry of PolymersMax‐Planck‐Institut für PolymerforschungMainzGermany
| | - Jochen Fischer
- IBWF gGmbHInstitute for Biotechnology and Drug ResearchKaiserslauternGermany
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and TechnologyUniversiteit TwenteEnschedeThe Netherlands
| |
Collapse
|
46
|
Orsoni N, Degola F, Nerva L, Bisceglie F, Spadola G, Chitarra W, Terzi V, Delbono S, Ghizzoni R, Morcia C, Jamiołkowska A, Mielniczuk E, Restivo FM, Pelosi G. Double Gamers-Can Modified Natural Regulators of Higher Plants Act as Antagonists against Phytopathogens? The Case of Jasmonic Acid Derivatives. Int J Mol Sci 2020; 21:ijms21228681. [PMID: 33213072 PMCID: PMC7698523 DOI: 10.3390/ijms21228681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.
Collapse
Affiliation(s)
- Nicolò Orsoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
- Correspondence:
| | - Luca Nerva
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy; (L.N.); (W.C.)
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Walter Chitarra
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy; (L.N.); (W.C.)
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Valeria Terzi
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Stefano Delbono
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Roberta Ghizzoni
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Caterina Morcia
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Agnieszka Jamiołkowska
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20069 Lublin, Poland; (A.J.); (E.M.)
| | - Elżbieta Mielniczuk
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20069 Lublin, Poland; (A.J.); (E.M.)
| | - Francesco M. Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| |
Collapse
|
47
|
Machado T, Beckers SJ, Fischer J, Müller B, Sayer C, de Araújo PHH, Landfester K, Wurm FR. Bio-Based Lignin Nanocarriers Loaded with Fungicides as a Versatile Platform for Drug Delivery in Plants. Biomacromolecules 2020; 21:2755-2763. [PMID: 32543851 PMCID: PMC7467573 DOI: 10.1021/acs.biomac.0c00487] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Lignin-based nano- and microcarriers are a promising biodegradable drug delivery platform inside of plants. Many wood-decaying fungi are capable of degrading the wood component lignin by segregated lignases. These fungi are responsible for severe financial damage in agriculture, and many of these plant diseases cannot be treated today. However, enzymatic degradation is also an attractive handle to achieve a controlled release of drugs from artificial lignin vehicles. Herein, chemically cross-linked lignin nanocarriers (NCs) were prepared by aza-Michael addition in miniemulsion, followed by solvent evaporation. The cross-linking of lignin was achieved with the bio-based amines (spermine and spermidine). Several fungicides-namely, azoxystrobin, pyraclostrobin, tebuconazole, and boscalid-were encapsulated in situ during the miniemulsion polymerization, demonstrating the versatility of the method. Lignin NCs with diameters of 200-300 nm (determined by dynamic light scattering) were obtained, with high encapsulation efficiencies (70-99%, depending on the drug solubility). Lignin NCs successfully inhibited the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum, which are lignase-producing fungi associated with the worldwide occurring fungal grapevine trunk disease Esca. In planta studies proved their efficiency for at least 4 years after a single injection into Vitis vinifera ("Portugieser") plants on a test vineyard in Germany. The lignin NCs are of high interest as biodegradable delivery vehicles to be applied by trunk injection against the devastating fungal disease Esca but might also be promising against other fungal plant diseases.
Collapse
Affiliation(s)
- Thiago
O. Machado
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, 88040-900 Santa Catarina, Brazil
| | | | - Jochen Fischer
- Institute
for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | - Beate Müller
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Claudia Sayer
- Department
of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, 88040-900 Santa Catarina, Brazil
| | - Pedro H. H. de Araújo
- Department
of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, 88040-900 Santa Catarina, Brazil
| | | | - Frederik R. Wurm
- Max-Planck-Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
48
|
Cao Y, Lim E, Xu M, Weng J, Marelli B. Precision Delivery of Multiscale Payloads to Tissue-Specific Targets in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903551. [PMID: 32670750 PMCID: PMC7341084 DOI: 10.1002/advs.201903551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/01/2020] [Indexed: 05/23/2023]
Abstract
The precise deployment of functional payloads to plant tissues is a new approach to help advance the fundamental understanding of plant biology and accelerate plant engineering. Here, the design of a silk-based biomaterial is reported to fabricate a microneedle-like device, dubbed "phytoinjector," capable of delivering a variety of payloads ranging from small molecules to large proteins into specific loci of various plant tissues. It is shown that phytoinjector can be used to deliver payloads into plant vasculature to study material transport in xylem and phloem and to perform complex biochemical reactions in situ. In another application, it is demonstrated Agrobacterium-mediated gene transfer to shoot apical meristem (SAM) and leaves at various stages of growth. Tuning of the material composition enables the fabrication of another device, dubbed "phytosampler," which is used to precisely sample plant sap. The design of plant-specific biomaterials to fabricate devices for drug delivery in planta opens new avenues to enhance plant resistance to biotic and abiotic stresses, provides new tools for diagnostics, and enables new opportunities in plant engineering.
Collapse
Affiliation(s)
- Yunteng Cao
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Eugene Lim
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Menglong Xu
- Whitehead Institute for Biomedical ResearchCambridgeMA02142USA
| | - Jing‐Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeMA02142USA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Benedetto Marelli
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
49
|
Huang Y, Gu J, Yan Z, Hu X, He D, Zhang Y, Li Y, Zhong C, Yang J, Shi D, Abagyan R, Tan Q, Zhang J. Cytomembrane-mimicking nanocarriers with a scaffold consisting of a CD44-targeted endogenous component for effective asparaginase supramolecule delivery. NANOSCALE 2020; 12:12083-12097. [PMID: 32478361 DOI: 10.1039/d0nr02588g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Highly effective and safe delivery of therapeutic enzymes is pivotal to the success of antitumor therapy. Herein, we report on a targeted enzyme delivery system based on cytomembrane-mimicking nanocarriers (CmN) and a supramolecular technique (SmT). Specifically, each CmN had a scaffold that mainly consisted of a CD44-targeted endogenous component conjugated with polyethylene glycol 2000 (HA-g-PEG) that self-assembled with α-cyclodextrin (ACD). The CmN acted as a microbioreactor with an inner hollow space with the capacity to confine the large molecule asparaginase (Asp) in an Asp/ACD-supramolecular complex conjugated to the inner region. The supramolecular Asp loaded into the CmN (A-S-CmN) exhibited superior stability, kinetic properties, catalytic activity and antitumor effects compared to free Asp due to the dual protection of the supramolecular complex and the nanovesicle, the CD44 targeting-homing ability, the prolonged effects of HA-g-PEG, and the favorable inner microenvironment of the constructed supramolecular CmN. The A-S-CmN also showed a decrease in in vivo toxicity and immunogenicity. CmN combined with SmT therapeutics are easy to implement and extend for use in the delivery of various enzymes and for many types of cancer treatment.
Collapse
Affiliation(s)
- Yongjia Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China.
| | - Zijun Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Xueyuan Hu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Yao Li
- Division of infectious disease, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing 400042, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
50
|
Peil S, Beckers S, Fischer J, Wurm F. Biodegradable, lignin-based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases. Mater Today Bio 2020; 7:100061. [PMID: 32637910 PMCID: PMC7327927 DOI: 10.1016/j.mtbio.2020.100061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022] Open
Abstract
Antagonistic fungi such as Trichoderma reesei are promising alternatives to conventional fungicides in agriculture. This is especially true for worldwide occurring grapevine trunk diseases, causing losses of US$1.5 billion every year, at which conventional fungicides are mostly ineffective or prohibited by law. Yet, applications of Trichoderma against grapevine trunk diseases are limited to preventive measures, suffer from poor shelf life, or uncontrolled germination. Therefore, we developed a mild and spore-compatible layer-by-layer assembly to encapsulate spores of a new mycoparasitic strain of T. reesei IBWF 034-05 in a bio-based and biodegradable lignin shell. The encapsulation inhibits undesired premature germination and enables the application as an aqueous dispersion via trunk injection. First injected into a plant, the spores remain in a resting state. Second, when lignin-degrading fungi infect the plant, enzymatic degradation of the shell occurs and germination is selectively triggered by the pathogenic fungi itself, which was proven in vitro. Germinated Trichoderma antagonizes the fungal pathogens and finally supplants them from the plant. This concept enables Trichoderma spores for curative treatment of esca, one of the most infective grapevine trunk diseases worldwide.
Collapse
Affiliation(s)
- S. Peil
- Max-Planck-Insitute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - S.J. Beckers
- Max-Planck-Insitute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - J. Fischer
- Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663, Kaiserslautern, Germany
| | - F.R. Wurm
- Max-Planck-Insitute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|