1
|
Yan X, Quan S, Guo R, Li Z, Bai M, Wang B, Su P, Xu E, Li Y. Calycosin‑7‑O‑β‑D‑glucoside downregulates mitophagy by mitigating mitochondrial fission to protect HT22 cells from oxygen‑glucose deprivation/reperfusion‑induced injury. Mol Med Rep 2025; 31:71. [PMID: 39820475 PMCID: PMC11751592 DOI: 10.3892/mmr.2025.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function. The results demonstrated that mitochondrial function was restored after treatment with CG, as indicated by reduced mitochondrial reactive oxygen species levels, increased mitochondrial membrane potential and improved mitochondrial morphology. Overactivated mitophagy was revealed to be inhibited by the regulation of proteins involved in fission [phosphorylated‑dynamin‑related protein 1 (Drp1) and Drp1] and mitophagy (LC3, p62 and translocase of outer mitochondrial membrane 20), and mitochondrial biogenesis was demonstrated to be enhanced by increased levels of sirtuin 1 (SIRT1) and peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α). In addition, neuronal apoptosis was ameliorated by CG, as determined by a decreased rate of apoptosis, and levels of caspase‑3 and Bcl‑2/Bax. In conclusion, the present study demonstrated that CG may alleviate OGD/R‑induced injury by upregulating SIRT1 and PGC‑1α protein expression, and reducing excessive mitochondrial fission and overactivation of mitophagy.
Collapse
Affiliation(s)
- Xiangli Yan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Siqi Quan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Roujia Guo
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Zibo Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Baoying Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
2
|
Xu J, Dai P, Zhang C, Dong N, Li C, Tang C, Jin Z, Lin S, Ye L, Sun T, Jin Y, Wu F, Luo L, Wu P, Li S, Li X, Hsu S, Jiang D, Wang Z. Injectable Hierarchical Bioactive Hydrogels with Fibroblast Growth Factor 21/Edaravone/Caffeic Acid Asynchronous Delivery for Treating Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412020. [PMID: 39630931 PMCID: PMC11775539 DOI: 10.1002/advs.202412020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Parkinson's disease (PD) is one of the most common long-term neurodegenerative disorders, with multiple comorbid psychiatric and behavioral abnormalities. The combination of clinical drugs targeting different symptoms with smart hydrogels to achieve asynchronous releases is highly translational and challenging. Here, a hierarchical bioactive hydrogel (OACDP) is designed with asynchronous release based on PD pathology. The hydrogel with caffeic acid-grafted polymer main chain is crosslinked using a micellar nanocrosslinker, with sufficient modulus (≈167 Pa), antioxidant activity (> 50%), injectability (30-gauge syringe needle), and shape-adaptability. Each of the three drugs (caffeic acid, fibroblast growth factor 21, and Edaravone) is separately engaged in different micro- or nanostructures of the hydrogel and released with asynchronous kinetics of first-order release, zero-order release, or matching Korsmeyer-Peppas model. The triple-loaded hydrogel is injected into the brains of PD rats, showing behavioral improvement. Histological analysis revealed that the triple-loaded OACDP hydrogels are effective in achieving immediate neuroprotection, i.e., reduction the loss of tyrosine hydroxylase in substantia nigra compacta and striatum (retained ≈10-fold versus control), decreasing oxidative stress, reducing astrocyte and microglia activation, and stimulating the AMPK/PGC-1α axis to regulate the mitochondrial function, providing a multi-dimensional PD therapy. The asynchronous release of OACDP hydrogel provides a new conception for PD treatment and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Junpeng Xu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chen Zhang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Na Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chonghui Tang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Zhihao Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shih‐Ho Lin
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
| | - Luyang Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Tianmiao Sun
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Yukai Jin
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Fenzan Wu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Lihua Luo
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shengcun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- Rehabilitation Medicine CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shan‐hui Hsu
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan350401Republic of China
| | - Dawei Jiang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhouguang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
3
|
Zhang M, Liu R, Wang Y, Zhu X, Wang Z, Li X, Zheng L. Safety, tolerability, and pharmacokinetic of HY0721 in Chinese healthy subjects: A first-in-human randomized, double-blind, placebo-controlled dose escalation phase I study. Eur J Pharm Sci 2024; 200:106832. [PMID: 38878907 DOI: 10.1016/j.ejps.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND HY0721 is a novel inhibitor of sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) for the treatment of acute ischemic stroke. This study aimed to evaluate the safety, tolerability, and pharmacokinetic (PK) profiles of single and multiple intravenous administration of HY0721 in Chinese healthy subjects. METHODS The study enrolled 48 and 30 healthy volunteers in the single-ascending dose (SAD) cohort (20, 60, 120, 240, and 320 mg) and multiple-ascending dose (MAD) cohort (60, 120, and 160 mg/bid), respectively, to receive the corresponding dosage of HY0721 or placebo. Safety monitoring included but was not limited to recording adverse events (AEs), vital signs, electrocardiograms, and laboratory tests. The blood samples were collected from subjects to determine the concentrations of HY0721 for PK evaluation. RESULTS The administration of HY0721 showed good safety and tolerability up to 320 mg in the SAD study and up to 160 mg twice daily in the MAD study. The most common AE was injection site reaction, and no AE led to discontinuation of administration or subject dropout. The exposures of HY0721 increased greater than dose proportional manner at the dosages of 20 to 320 mg in the SAD study. A linear PK profile was observed following multiple doses ranging from 60 to 160 mg twice daily, with no evidence of accumulation. Additionally, the human effective dose of HY0721 was estimated to be 120 mg. CONCLUSION This study demonstrated the intravenous administration of HY0721 is safe and well-tolerated in Chinese healthy subjects and provided 60 to 160 mg b.i.d. as the recommended dosing range for further clinical trials. TRIAL REGISTRATION ChinaDrugTrials.Org.cn; No. CTR20202604, 18 December 2020.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Runhan Liu
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Ying Wang
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Xiaohong Zhu
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Zhenlei Wang
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Xiaoyu Li
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China
| | - Li Zheng
- Department of Neurology, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; Clinical Trial Center, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, No.5 Telecom Road, Wuhou District, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
4
|
Díaz-Maroto I, Castro-Robles B, Villar M, García-García J, Ayo-Martín Ó, Serrano-Heras G, Segura T. Plasma Levels of Neuron/Glia-Derived Apoptotic Bodies, an In Vivo Biomarker of Apoptosis, Predicts Infarct Growth and Functional Outcome in Patients with Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01283-4. [PMID: 39090486 DOI: 10.1007/s12975-024-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Evidence demonstrating the involvement of apoptosis in the death of the potentially salvageable area (penumbra zone) in patients during stroke remains limited. Our aim was to investigate whether apoptotic processes occur in penumbral brain tissue by analyzing circulating neuron- and glia-derived apoptotic bodies (CNS-ApBs), which are vesicles released into the bloodstream during the late stage of apoptosis. We have also assessed the clinical utility of plasma neuronal and glial apoptotic bodies in predicting early neurological evolution and functional outcome. The study included a total of 71 patients with acute hemispheric ischemic stroke (73 ± 10 years; 30 women). Blood samples were collected from these patients immediately upon arrival at the hospital (within 9 h) and at 24 and 72 h after symptom onset. Subsequently, isolation, quantification, and phenotypic characterization of CNS-ApBs during the first 72 h post-stroke were performed using centrifugation and flow cytometry techniques. We found a correlation between infarct growth and final infarct size with the amount of plasma CNS-ApBs detected in the first 72 h after stroke. In addition, patients with neurological worsening (progressive ischemic stroke) had higher plasma levels of CNS-ApBs at 24 h after symptom onset than those with a stable or improving course. Circulating CNS-ApB concentration was further associated with patients' functional prognosis. In conclusion, apoptosis may play an important role in the growth of the cerebral infarct area and plasma CNS-ApB quantification could be used as a predictive marker of penumbra death, neurological deterioration, and functional outcome in patients with ischemic stroke.
Collapse
Affiliation(s)
- Inmaculada Díaz-Maroto
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain
| | - Beatriz Castro-Robles
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008, Albacete, Spain
| | - Miguel Villar
- Department of Radiology, General University Hospital of Albacete, Albacete, Spain
| | - Jorge García-García
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain
| | - Óscar Ayo-Martín
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain
| | - Gemma Serrano-Heras
- Research Unit, General University Hospital of Albacete, Laurel, s/n, 02008, Albacete, Spain.
| | - Tomás Segura
- Department of Neurology, General University Hospital of Albacete, Hermanos Falcó, 37, 02008, Albacete, Spain.
- Instituto de Biomedicina (IB-UCLM), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
5
|
Cong J, Li JY, Zou W. Mechanism and treatment of intracerebral hemorrhage focus on mitochondrial permeability transition pore. Front Mol Neurosci 2024; 17:1423132. [PMID: 39156127 PMCID: PMC11328408 DOI: 10.3389/fnmol.2024.1423132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
Collapse
Affiliation(s)
- Jing Cong
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing-Yi Li
- The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Qian K, Hu J, Wang C, Xu C, Chen Y, Feng Q, Feng Y, Wu Y, Yu X, Ji Q. Dynamic change of neutrophil-to-lymphocyte ratio and its predictive value of prognosis in acute ischemic stroke. Brain Behav 2024; 14:e3616. [PMID: 38988102 PMCID: PMC11237173 DOI: 10.1002/brb3.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE The present research aimed to explore the dynamic change of the neutrophil-to-lymphocyte ratio (NLR) and its relationship with functional outcome following an acute ischemic stroke (AIS), whether receiving intravenous thrombolysis (IVT) or not. METHODS We retrospectively analyzed data that were prospectively acquired from patients with AIS treated with IVT or not. For patients receiving IVT, the NLR was based on a blood test performed prior to IVT (d0) and at different time points after disease onset (d1, d3, d7). In addition, in the non-IVT group, the NLR was obtained at different time points after disease onset (d1, d3, d7). Follow-ups were performed 3 months after onset via telephone. In addition, a good outcome was defined as a modified Rankin scale (mRS) ≤1; a poor outcome means 2 ≤ mRS ≤ 6. RESULTS A total of 204 AIS patients were included in this study. The NLR presented a dynamic change as it increased to its peak at day 1 and gradually declined to its baseline at day 7, no matter whether patients were receiving IVT or not. Patients with poor outcomes have a higher NLR at various time points. The results of multivariate logistic regression analysis demonstrated that the National Institutes of Health Stroke Scale (NIHSS), NLR d1, NLR d3, and NLR d7 were independently associated with functional outcomes. The area under the receiver operating characteristic curve of NLR in predicting outcomes was as follows: NLR d3 demonstrated robust predictive power within the IVT therapy cohort, whereas NLR d7 was predictive in the non-IVT cohort. However, the most potent predictor emerged as the combination of NIHSS and NLR. CONCLUSION NLR has the potential to predicate diagnosis for AIS, especially when combined with the NIHSS score.
Collapse
Affiliation(s)
- Kai Qian
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Jie Hu
- Department of Emergency, Dongtai People's Hospital, Dongtai, China
| | - Chunyan Wang
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Chunxiang Xu
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Yanguo Chen
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Qing Feng
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Yu
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
7
|
Ji Y, Chen Y, Tan X, Huang X, Gao Q, Ma Y, Yang S, Yin M, Yu M, Fang C, Wang Y, Shi Z, Chang J. Integrated transcriptomic and proteomic profiling reveals the key molecular signatures of brain endothelial reperfusion injury. CNS Neurosci Ther 2024; 30:e14483. [PMID: 37789643 PMCID: PMC11017417 DOI: 10.1111/cns.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Reperfusion therapy after ischemic stroke often causes brain microvascular injury. However, the underlying mechanisms are unclear. METHODS Transcriptomic and proteomic analyses were performed on human cerebral microvascular endothelial cells following oxygen-glucose deprivation (OGD) or OGD plus recovery (OGD/R) to identify molecules and signaling pathways dysregulated by reperfusion. Major findings were further validated in a mouse model of cerebral ischemia and reperfusion. RESULTS Transcriptomic analysis identified 390 differentially expressed genes (DEGs) between the OGD/R and OGD group. Pathway analysis indicated that these genes were mostly associated with inflammation, including the TNF signaling pathway, TGF-β signaling pathway, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and NF-κB signaling pathway. Proteomic analysis identified 201 differentially expressed proteins (DEPs), which were primarily associated with extracellular matrix destruction and remodeling, impairment of endothelial transport function, and inflammatory responses. Six genes (DUSP1, JUNB, NFKBIA, NR4A1, SERPINE1, and THBS1) were upregulated by OGD/R at both the mRNA and protein levels. In mice with cerebral ischemia and reperfusion, brain TNF signaling pathway was activated by reperfusion, and inhibiting TNF-α with adalimumab significantly attenuated reperfusion-induced brain endothelial inflammation. In addition, the protein level of THBS1 was substantially upregulated upon reperfusion in brain endothelial cells and the peri-endothelial area in mice receiving cerebral ischemia. CONCLUSION Our study reveals the key molecular signatures of brain endothelial reperfusion injury and provides potential therapeutic targets for the treatment of brain microvascular injury after reperfusion therapy in ischemic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yiman Chen
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Xixi Tan
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Department of NeurologyYangjiang People's HospitalYangjiangChina
| | - Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Meifang Yin
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Zhu Shi
- Department of Neurology10th Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)DongguanChina
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
8
|
Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, Yan X, Fan K. A Thrombin-Activated Peptide-Templated Nanozyme for Remedying Ischemic Stroke via Thrombolytic and Neuroprotective Actions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210144. [PMID: 36730098 DOI: 10.1002/adma.202210144] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Ischemic stroke (IS) is one of the most common causes of disability and death. Thrombolysis and neuroprotection are two current major therapeutic strategies to overcome ischemic and reperfusion damage. In this work, a novel peptide-templated manganese dioxide nanozyme (PNzyme/MnO2 ) is designed that integrates the thrombolytic activity of functional peptides with the reactive oxygen species scavenging ability of nanozymes. Through self-assembled polypeptides that contain multiple functional motifs, the novel peptide-templated nanozyme is able to bind fibrin in the thrombus, cross the blood-brain barrier, and finally accumulate in the ischemic neuronal tissues, where the thrombolytic motif is "switched-on" by the action of thrombin. In mice and rat IS models, the PNzyme/MnO2 prolongs the blood-circulation time and exhibits strong thrombolytic action, and reduces the ischemic damages in brain tissues. Moreover, this peptide-templated nanozyme also effectively inhibits the activation of astrocytes and the secretion of proinflammatory cytokines. These data indicate that the rationally designed PNzyme/MnO2 nanozyme exerts both thrombolytic and neuroprotective actions. Giving its long half-life in the blood and ability to target brain thrombi, the biocompatible nanozyme may serve as a novel therapeutic agent to improve the efficacy and prevent secondary thrombosis during the treatment of IS.
Collapse
Affiliation(s)
- Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yue Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Yaxin Hou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, 212200, P. R. China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Fu Y, Tang R, Chen R, Wang A, Ren J, Zhu S, Feng X, Fan D. Efficacy and safety of Y-2 sublingual tablet for patients with acute ischaemic stroke: protocol of a phase III randomised double-blind placebo-controlled multicentre trial. Stroke Vasc Neurol 2024; 9:90-95. [PMID: 37308251 PMCID: PMC10956111 DOI: 10.1136/svn-2022-002014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/02/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Clinical studies have demonstrated that edaravone dexborneol can improve the functional outcomes in patients with acute ischaemic stroke (AIS). The present clinical trial aimed at testing the efficacy and safety of Y-2 sublingual tablet on 90-day functional outcome in patients with AIS. METHODS AND DESIGN This is a randomised, double-blind, placebo-controlled, multicentre, parallel-group trial of Y-2 sublingual tablet on patients with AIS.An estimated 914 patients at age of 18-80 years with AIS within 48 hours after symptom onset from 40 hospitals will be randomly assigned to receive Y-2 sublingual tablet or placebo for 14 days. Patients are at score 6-20 points on National Institutes of Health Stroke Scale (NIHSS) and had a modified Rankin Scale (mRS) ≤1 before this stroke, except mechanical thrombectomy and neuroprotective agents treatment. STUDY OUTCOMES The primary outcome is the proportion of patients with mRS ≤1 on day 90 after randomisation. Secondary efficacy outcomes include mRS score on day 90, the proportion of patients with mRS ≤2 on day 90; the change of NIHSS score from baseline to day 14 and the proportion of patients with NIHSS score ≤1 at the days 14, 30 and 90. DISCUSSION This trial will provide valuable evidence for the efficacy and safety of Y-2 sublingual table for improving 90 days the functional outcomes in patients with AIS. TRIAL REGISTRATION NUMBER NCT04950920.
Collapse
Affiliation(s)
- Yu Fu
- Deparment of Neurology, Peking University Third Hospital, Beijing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Rong Chen
- Neurodawn Pharmaceutical Co., Ltd, Nanjing, Jiangsu, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsheng Ren
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Shunwei Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Xiaofei Feng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Dongsheng Fan
- Deparment of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Li R, Hu X, Li W, Wu W, Xu J, Lin Y, Shi S, Dong C. Nebulized pH-Responsive Nanospray Combined with Pentoxifylline and Edaravone to Lungs for Efficient Treatments of Acute Respiratory Distress Syndrome. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8310-8320. [PMID: 38343060 DOI: 10.1021/acsami.3c15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaochun Hu
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhui Li
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201100, P. R. China
| | - Wenjing Wu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jin Xu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yun Lin
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
11
|
Dong X, Li C, Yao Y, Liu F, Jiang P, Gao Y. Xingnaojing injection alleviates cerebral ischemia/reperfusion injury through regulating endoplasmic reticulum stress in Vivo and in Vitro. Heliyon 2024; 10:e25267. [PMID: 38327400 PMCID: PMC10847655 DOI: 10.1016/j.heliyon.2024.e25267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Background Xingnaojing (XNJ) injection, an extract derived from traditional Chinese medicine, is commonly used to treat ischemic stroke (IS). Previous studies have shown that XNJ has the ability to alleviate apoptosis in cerebral ischemia-reperfusion injury. However, the potential mechanisms have not been clarified. Objective To identify the neuroprotective effect of XNJ and explore whether XNJ inhibits cell apoptosis associated with endoplasmic reticulum stress (ERS) after IS. Methods In this study, cultured hippocampal neurons from mouse embryos and Sprague-Dawley rats were assigned randomly to four groups: sham, model, XNJ, and edaravone. The treatment groups were administered 2 h after modelling. Neurological deficit scores and motor performance tests were performed after 24 h of modelling. Additionally, pathomorphology, cell apoptosis and calcium content were evaluated. To ascertain the expression of ERS proteins, western blotting and polymerase chain reaction were employed. Results The results indicated that XNJ treatment resulted in a notable decrease in infarct volume, apoptosis and missteps compared with the model group. XNJ also exhibited improvements in neurological function, grip strength and motor time. The calcium content significantly reduced in XNJ group. The XNJ administration resulted in a reduction in the levels of proteins associated with ERS including CHOP, GRP78, Bax, caspase-12, caspase-9, and cleaved-caspase-3, but an increase of the Bcl-2/Bax ratio. Furthermore, the downregulation of mRNA expression of CHOP, GRP78, caspase-12, caspase-9, and caspase-3 was confirmed in both cultured neurons and rat model. Conclusion These findings suggest that XNJ may alleviate apoptosis by modulating the ERS-induced apoptosis pathway, making it a potential novel therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Xinglu Dong
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chuanpeng Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
| | - Yaoyao Yao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
| | - Fengzhi Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
| | - Ping Jiang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Rauf A, Khalil AA, Awadallah S, Khan SA, Abu‐Izneid T, Kamran M, Hemeg HA, Mubarak MS, Khalid A, Wilairatana P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review. Food Sci Nutr 2024; 12:675-693. [PMID: 38370049 PMCID: PMC10867483 DOI: 10.1002/fsn3.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 02/20/2024] Open
Abstract
Reactive oxygen species (ROS) are produced under normal physiological conditions and may have beneficial and harmful effects on biological systems. ROS are involved in many physiological processes such as differentiation, proliferation, necrosis, autophagy, and apoptosis by acting as signaling molecules or regulators of transcription factors. In this case, maintaining proper cellular ROS levels is known as redox homeostasis. Oxidative stress occurs because of the imbalance between the production of ROS and antioxidant defenses. Sources of ROS include the mitochondria, auto-oxidation of glucose, and enzymatic pathways such as nicotinamide adenine dinucleotide phosphate reduced (NAD[P]H) oxidase. The possible ROS pathways are NF-κB, MAPKs, PI3K-Akt, and the Keap1-Nrf2-ARE signaling pathway. This review covers the literature pertaining to the possible ROS pathways and strategies to inhibit them. Additionally, this review summarizes the literature related to finding ROS inhibitors.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarPakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical SciencesZarqa UniversityZarqaJordan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural SciencesNational University of Science and Technology (NUST)IslamabadPakistan
| | - Tareq Abu‐Izneid
- Pharmaceutical Sciences, College of PharmacyAl Ain UniversityAl Ain, Abu DhabiUAE
| | - Muhammad Kamran
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical SciencesTaibah UniversityAl‐Medinah Al‐MonawaraSaudi Arabia
| | | | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| |
Collapse
|
13
|
Liu Y, Wang S, Quan C, Luan S, Shi H, Wang L. Metal-organic framework-based platforms for implantation applications: recent advances and challenges. J Mater Chem B 2024; 12:637-649. [PMID: 38165820 DOI: 10.1039/d3tb02620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of minimally invasive technology has promoted the widespread use of implant interventional materials, which play an important role in alleviating patients' pain during and after surgery. Metal-organic frameworks (MOFs) and their related hybrids formed by bridging ligands and metal nodes via covalent bonds represent one of the smart platforms in implant interventional fields due to their large surface area, adjustable compositions and structures, biodegradability, etc. Significant progresses in the implantation application of MOF-based materials have been achieved recently, but these studies are still in the initial stage. This review highlights the recent advances of MOFs and their related hybrids in orthopedic implantation, cardio-vascular implantation, neural tissue engineering, and biochemical sensing. Each correction between the structural features of MOFs and their corresponding implanted works is highlighted. Finally, the confronting challenges and future perspectives in the implant interventional field are discussed.
Collapse
Affiliation(s)
- Yifan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuteng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhua Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
14
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
15
|
Kukaliia ON, Ageev SV, Petrov AV, Kirik OV, Korzhevskii DE, Meshcheriakov AA, Jakovleva AA, Poliakova LS, Novikova TA, Kolpakova ME, Vlasov TD, Molchanov OE, Maistrenko DN, Murin IV, Sharoyko VV, Semenov KN. C 60 adduct with L-arginine as a promising nanomaterial for treating cerebral ischemic stroke. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102698. [PMID: 37507062 DOI: 10.1016/j.nano.2023.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
The work aimed to investigate the biocompatibility and biological activity of the water-soluble fullerene adduct C60-Arg. It was found that the material is haemocompatible, is not cyto- and genotoxic, possesses pronounced antioxidant activity. Additionally, this paper outlines the direction of application of water-soluble fullerene adducts in the creation of neuroprotectors. It has been suggested that a putative mechanism of the protective action of the C60-Arg adduct is associated with its antioxidant properties, the ability to penetrate the blood-brain barrier, and release nitrogen monoxide as a result of the catabolism of L-arginine residues, which promote vascular relaxation. The action of the C60-Arg adduct was compared with the action of such an antioxidant as Edaravone, which is approved in Japan for the treatment of ischemic and haemorrhagic strokes.
Collapse
Affiliation(s)
- Olegi N Kukaliia
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia
| | - Olga V Kirik
- Institute of Experimental Medicine, 12 Akademika Pavlova Str., Saint Petersburg, 197022, Russia
| | - Dmitrii E Korzhevskii
- Institute of Experimental Medicine, 12 Akademika Pavlova Str., Saint Petersburg, 197022, Russia
| | - Anatolii A Meshcheriakov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Anastasia A Jakovleva
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Liudmila S Poliakova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Tatiana A Novikova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Maria E Kolpakova
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Timur D Vlasov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia
| | - Oleg E Molchanov
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia
| | - Dmitriy N Maistrenko
- A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia.
| | - Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, 6-8 L'va Tolstogo Str., Saint Petersburg, 197022, Russia; Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr., Saint Petersburg, 198504, Russia; A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaia Str., Saint Petersburg, 197758, Russia.
| |
Collapse
|
16
|
Zhao J, Guo F, Hou L, Zhao Y, Sun P. Electron transfer-based antioxidant nanozymes: Emerging therapeutics for inflammatory diseases. J Control Release 2023; 355:273-291. [PMID: 36731800 DOI: 10.1016/j.jconrel.2023.01.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Inflammatory diseases are usually featured with relatively high level of reactive oxygen species (ROS). The excess ROS facilitate the polarization of microphages into proinflammatory M1 phenotype, and cause DNA damage, protein carbonylation, and lipid peroxidation, resulting in further deterioration of inflammatory diseases. Therefore, alleviating oxidative stress by ROS scavenging has been an effective strategy for reversing inflammation. Inspired by the natural antioxidant enzymes, electron transfer-based artificial antioxidant nanozymes have been emerging therapeutics for the treatment of inflammatory diseases. The present review starts with the basic knowledge of ROS and diseases, followed by summarizing the possible active centers for the preparation of antioxidant nanozymes. The strategies for the design of antioxidant nanozymes on the purpose of higher catalytic activity are provided, and the applications of the developed antioxidant nanozymes on the therapy of inflammatory diseases are discussed. A perspective is included for the design and applications of artificial antioxidant nanozymes in biomedicine as well.
Collapse
Affiliation(s)
- Jingnan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Fanfan Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongxing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, PR China
| | - Pengchao Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Liu YS, Zhang GY, Hou Y. Theoretical and Experimental Investigation of the Antioxidation Mechanism of Loureirin C by Radical Scavenging for Treatment of Stroke. Molecules 2023; 28:380. [PMID: 36615573 PMCID: PMC9822359 DOI: 10.3390/molecules28010380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023] Open
Abstract
Recent pharmacological studies have shown that dragon's blood has an anti-cerebral ischemia effect. Loureirin C (LC), a kind of dihydrochalcone compound in dragon's blood, is believed to be play an important role in the treatment of ischemia stroke, but fewer studies for LC have been done. In this paper, we report the first experimental and theoretical studies on the antioxidation mechanism of LC by radical scavenging. The experimental studies show that LC has almost no effect on cell viability under 15 μM for the SH-SY5Y cells without any treatments. For the SH-SY5Y cells with oxygen and glucose deprivation-reperfusion (OGD/R) treatment, LC increased the viability of SH-SY5Y cells. The results of 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox Red experiments indicate that LC is very efficient in inhibiting the generation of the intracellular/mitochondrial reactive oxygen species (ROS) or removing these two kinds of generated ROS. The density functional theory (DFT) calculations allowed us to elucidate the antioxidation mechanisms of LC. Fukui function analysis reveals the radical scavenging of LC by hydrogen abstraction mechanism, the complex formation by e-transfer, and radical adduct formation (RAF) mechanism. Among the H-abstraction, the complex formation by e-transfer, and radical adduct formation (RAF) reactions on LC, the H-abstraction at O-H35 position by OH• is favorable with the smallest energy difference between the product and two reactants of the attack of OH• to LC of -0.0748 Ha. The bond dissociation enthalpies (BDE), proton affinities (PA), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE) were calculated to determine thermodynamically preferred reaction pathway for hydrogen abstraction mechanism. In water, IP and the lowest PDE value at O3-H35 position are lower than the lowest BDE value at O3-H35 position; 41.8986 and 34.221 kcal/mol, respectively, indicating that SEPT mechanism is a preferred one in water in comparison with the HAT mechanism. The PA value of O3-H35 of LC in water is -17.8594 kcal/mol, thus the first step of SPLET would occur spontaneously. The minimum value of ETE is higher than the minimum value of PDE at O3-H35 position and IP value, 14.7332 and 22.4108 kcal/mol, respectively, which suggests that the SEPT mechanism is a preferred one in water in comparison with the SPLET mechanism. Thus, we can draw a conclusion that the SEPT mechanism of is the most favorite hydrogen abstraction mechanism in water, and O-H35 hydroxyl group has the greatest ability to donate H-atoms.
Collapse
Affiliation(s)
- Ye-Shu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| | - Guo-Ying Zhang
- College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| |
Collapse
|
18
|
Zhao Z, Pan Z, Zhang S, Ma G, Zhang W, Song J, Wang Y, Kong L, Du G. Neutrophil extracellular traps: A novel target for the treatment of stroke. Pharmacol Ther 2023; 241:108328. [PMID: 36481433 DOI: 10.1016/j.pharmthera.2022.108328] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a threatening cerebrovascular disease caused by thrombus with high morbidity and mortality rates. Neutrophils are the first to be recruited in the brain after stroke, which aggravate brain injury through multiple mechanisms. Neutrophil extracellular traps (NETs), as a novel regulatory mechanism of neutrophils, can trap bacteria and secret antimicrobial molecules, thereby degrading pathogenic factors and killing bacteria. However, NETs also exacerbate certain non-infectious diseases by activating autoimmune or inflammatory responses. NETs have been found to play important roles in the pathological process of stroke in recent years. In this review, the mechanisms of NETs formation, the physiological roles of NETs, and the dynamic changes of NETs after stroke are summarized. NETs participate in stroke through various mechanisms. NETs promote the coagulation cascade and interact with platelets to induce thrombosis. tPA induces the degranulation of neutrophils to form NETs, leading to hemorrhagic transformation and thrombolytic resistance. NETs aggravate stroke by mediating inflammation, atherosclerosis and vascular injury. In addition, the regulation of NETs in stroke, the potential of NETs as biomarker and the treatment of stroke targeting NETs are discussed. The increasing evidences suggest that NETs may be a potential target for stroke treatment. Inhibition of NETs formation or promotion of NETs degradation plays protective effects in stroke. However, how to avoid the adverse effects of NETs-targeted therapy deserves further study. In summary, this review provides a reference for the pathogenesis, drug targets, biomarkers and drug development of NETs in stroke.
Collapse
Affiliation(s)
- Ziyuan Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
19
|
Dumbali SP, Wenzel PL. Mitochondrial Permeability Transition in Stem Cells, Development, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:1-22. [PMID: 35739412 DOI: 10.1007/5584_2022_720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mitochondrial permeability transition (mPT) is a process that permits rapid exchange of small molecules across the inner mitochondrial membrane (IMM) and thus plays a vital role in mitochondrial function and cellular signaling. Formation of the pore that mediates this flux is well-documented in injury and disease but its regulation has also emerged as critical to the fate of stem cells during embryonic development. The precise molecular composition of the mPTP has been enigmatic, with far more genetic studies eliminating molecular candidates than confirming them. Rigorous studies in the recent decade have implicated central involvement of the F1Fo ATP synthase, or complex V of the electron transport chain, and continue to confirm a regulatory role for Cyclophilin D (CypD), encoded by Ppif, in modulating the sensitivity of the pore to opening. A host of endogenous molecules have been shown to trigger flux characteristic of mPT, including positive regulators such as calcium ions, reactive oxygen species, inorganic phosphate, and fatty acids. Conductance of the pore has been described as low or high, and reversibility of pore opening appears to correspond with the relative abundance of negative regulators of mPT such as adenine nucleotides, hydrogen ion, and divalent cations that compete for calcium-binding sites in the mPTP. Current models suggest that distinct pores could be responsible for differing reversibility and conductance depending upon cellular context. Indeed, irreversible propagation of mPT inevitably leads to collapse of transmembrane potential, arrest of ATP synthesis, mitochondrial swelling, and cell death. Future studies should clarify ambiguities in mPTP structure and reveal new roles for mPT in dictating specialized cellular functions beyond cell survival that are tied to mitochondrial fitness including stem cell self-renewal and fate. The focus of this review is to describe contemporary models of the mPTP and highlight how pore activity impacts stem cells and development.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
20
|
Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway. Biosci Rep 2022; 42:232083. [PMID: 36367210 PMCID: PMC9744719 DOI: 10.1042/bsr20221443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cerebral ischemic/reperfusion injury (CIRI) is a key factor for the prognosis of ischemic stroke (IS), the leading disease in terms of global disability and fatality rates. Recent studies have shown that endoplasmic reticulum stress (ERS) may be a target against CIRI and that leptin, a peptide hormone, has neuroprotective activity to mitigate CIRI. METHODS An in vitro CIRI model was induced in primary cortical neurons by oxygen-glucose deprivation and reoxygenation (OGD/R) after pretreatment with LY294002 (10 µmol/L) and/or leptin (0.4 mg/L), and cell viability, neuronal morphology and endoplasmic reticulum (ER) dysfunction were evaluated. An in vivo CIRI model was established in rats by middle cerebral artery occlusion and reperfusion (MCAO/R) after the injection of LY294002 (10 μmol/L) and/or leptin (1 mg/kg), and neurological function, infarct volume, cerebral pathological changes, the expression of ERS-related proteins and cell apoptosis were examined. RESULTS In vitro, leptin treatment improved the cell survival rate, ameliorated neuronal pathological morphology and alleviated OGD/R-induced ERS. In vivo, administration of leptin significantly reduced the infarct volume, neurological deficit scores and neuronal apoptosis as well as pathological alterations. In addition, leptin suppressed MCAO/R-induced ERS and may decrease apoptosis by inhibiting ERS-related death and caspase 3 activation. It also regulated expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the cortex. Furthermore, the inhibitory effect of leptin on ERS was significantly decreased by the effective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. CONCLUSIONS These results confirm that ERS plays an important role in CIRI and that leptin can inhibit the activation of ERS through the PI3K/Akt pathway, thereby alleviating CIRI. These findings provide novel therapeutic targets for IS.
Collapse
|
21
|
Wang W, Zhang Z, Liu Y, Kong L, Li W, Hu W, Wang Y, Liu X. Nano-integrated cascade antioxidases opsonized by albumin bypass the blood-brain barrier for treatment of ischemia-reperfusion injury. Biomater Sci 2022; 10:7103-7116. [PMID: 36341569 DOI: 10.1039/d2bm01401g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Potent antioxidative drugs are urgently needed to treat ischemia-reperfusion (I/R) induced reactive oxygen species (ROS)-mediated cerebrovascular and neural injury during ischemia strokes. However, current antioxidative agents have limited application in such disease due to low blood-brain barrier (BBB) penetration. We herein designed a "neutrophil piggybacking" strategy based on albumin opsonized nanoparticles co-encapsulated with antioxidases catalase (CAT) and superoxide dismutase 1 (SOD1). The system utilized the natural potential of neutrophils to target inflamed tissues to deliver antioxidases to injured sites in the brain. In addition, the system was integrated with a selenium (Se)-containing crosslinker to inhibit ferroptosis. We showed that the nanoparticles opsonized in the hybrid form rather than with an albumin-shell structure exhibited enhanced neutrophil targeting and efficient BBB penetration in vitro and in vivo. We further showed that the neutrophil-mediated delivery of antioxidases effectively reduced oxidative damage and apoptosis of neurons in brain tissue in a transient middle cerebral artery occlusion (tMCAO) mouse model. Moreover, the successful delivery of Se with the nanoparticles increased the expression of glutathione peroxidase 4 (GPX4) and effectively inhibited neuronal ferroptosis, achieving a satisfactory neuroprotective effect in I/R injury mice. Our study demonstrated that the rationally designed nanomedicines using the "neutrophil piggybacking" strategy can efficiently penetrate the BBB, greatly expanding the application of nanomedicines in the treatment of central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Wuxuan Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Zheng Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences University of Science and Technology of China, Hefei, Anhui 230027, China. .,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yi Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Lingqi Kong
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Wenyu Li
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Wei Hu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Xinfeng Liu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China.
| |
Collapse
|
22
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Potential Diets to Improve Mitochondrial Activity in Amyotrophic Lateral Sclerosis. Diseases 2022; 10:diseases10040117. [PMID: 36547203 PMCID: PMC9777491 DOI: 10.3390/diseases10040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, the pathogenesis of which is based on alternations in the mitochondria of motor neurons, causing their progressive death. A growing body of evidence shows that more efficient mitophagy could prevent and/or treat this disorder by suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. Mitophagy has been considered one of the main mechanisms responsible for mitochondrial quality control. Since ALS is characterized by enormous oxidative stress, several edible phytochemicals that can activate mitophagy to remove damaged mitochondria could be considered a promising option to treat ALS by providing neuroprotection. Therefore, it is of great significance to explore the mechanisms of mitophagy in ALS and to understand the effects and/or molecular mechanisms of phytochemical action, which could translate into a treatment for neurodegenerative diseases, including ALS.
Collapse
|
23
|
Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, Xu W, Wu H, Pan Y, Shao A, Zhang J. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis 2022; 13:1823-1844. [PMID: 36465183 PMCID: PMC9662272 DOI: 10.14336/ad.2022.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 08/22/2023] Open
Abstract
Stroke is a devastating disease associated with high mortality and disability worldwide, and is generally classified as ischemic or hemorrhagic, which share certain similar pathophysiological processes. Oxidative stress is a critical factor involved in stroke-induced injury, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, brain edema, and neuronal death. To alleviate these serious secondary brain injuries, neuroprotective agents targeting oxidative stress inhibition may serve as a promising treatment strategy. Melatonin is a hormone secreted by the pineal gland, and has various properties, such as antioxidation, anti-inflammation, circadian rhythm modulation, and promotion of tissue regeneration. Numerous animal experiments studying stroke have confirmed that melatonin exerts considerable neuroprotective effects, partially via anti-oxidative stress. In this review, we introduce the possible role of melatonin as an antioxidant in the treatment of stroke based on the latest published studies of animal experiments and clinical research.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
| | - Yichen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Wei Z, Xie Y, Wei M, Zhao H, Ren K, Feng Q, Xu Y. New insights in ferroptosis: Potential therapeutic targets for the treatment of ischemic stroke. Front Pharmacol 2022; 13:1020918. [PMID: 36425577 PMCID: PMC9679292 DOI: 10.3389/fphar.2022.1020918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 10/22/2023] Open
Abstract
Stroke is a common disease in clinical practice, which seriously endangers people's physical and mental health. The neurovascular unit (NVU) plays a key role in the occurrence and development of ischemic stroke. Different from other classical types of cell death such as apoptosis, necrosis, autophagy, and pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form of cell death. Interestingly, the function of NVU and stroke development can be regulated by activating or inhibiting ferroptosis. This review systematically describes the NVU in ischemic stroke, provides a comprehensive overview of the regulatory mechanisms and key regulators of ferroptosis, and uncovers the role of ferroptosis in the NVU and the progression of ischemic stroke. We further discuss the latest progress in the intervention of ferroptosis as a therapeutic target for ischemic stroke and summarize the research progress and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion, ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is expected to become a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. A New Concept of Associations between Gut Microbiota, Immunity and Central Nervous System for the Innovative Treatment of Neurodegenerative Disorders. Metabolites 2022; 12:1052. [PMID: 36355135 PMCID: PMC9692629 DOI: 10.3390/metabo12111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.
Collapse
|
26
|
Lv X, Lu X. Significance of Edaravone Combined with Emotion Management Model in Promoting the Recovery Process and Improving Negative Psychology in Patients with Type 2 Diabetes Mellitus Combined with Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8099997. [PMID: 36262976 PMCID: PMC9576390 DOI: 10.1155/2022/8099997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
Methods Eighty-one patients with T2DM combined with CS who attended our hospital and received rehabilitation treatment from March 2020 to May 2021 were enrolled to a prospective nonrandomized controlled analysis. Among them, 46 patients received EDA combined with emotional management model and were regarded as the observation group (OG), and 35 received EDA combined with conventional care and were seen as the control group (CG). The clinical efficacy and glycemic function of the two groups were compared, and the scores of the Activities of Daily Living (ADL), Pittsburgh Sleep Quality Index (PSQI), and Self-Assessment Scale for Anxiety and Depression (SAS and SDS) were investigated before and after treatment. At the time of discharge, patient satisfaction with care was counted. Within six months after prognosis, T2DM self-management behavior and CS self-management behavior score surveys were conducted. Results There was no difference in clinical efficacy between both groups (P > 0.05); The posttreatment glucose, PSQI, SAS, and SDS scores were lower in the OG than in the CG, while ADL and emotional management scores were higher than in the CG (P < 0.05). In addition, both nursing satisfaction and prognosis disease self-management behavior scores were also higher in the OG than in the CG (P < 0.05). Conclusion The EDA combined with emotion management model can effectively promote the recovery process of patients with type II T2DM combined with CS, while improving their negative psychology and enhancing their self-management ability, which has high potential for clinical application.
Collapse
Affiliation(s)
- Xiaoyun Lv
- Department of Nephrology, Taicang Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215400, China
| | - Xiaolan Lu
- Department of Encephalopathy, Taicang Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215400, China
| |
Collapse
|
27
|
Lin H, Zhang Y, Dong S, Cai X, Jiang H, Fan Y, Ying K, Du B, Yu P, Yang W. Targeted Therapy of Ischemic Stroke via Crossing the Blood-Brain Barrier Using Edaravone-Loaded Multiresponsive Microgels. ACS APPLIED BIO MATERIALS 2022; 5:4165-4178. [PMID: 36083038 DOI: 10.1021/acsabm.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic stroke, as a prevalent neurological disorder, often results in rapid increases in the production of reactive oxygen species (ROS) and inflammatory factors in the focal ischemic area. Though edaravone is an approved treatment, its effect is limited due to its weak ability to cross the blood-brain barrier (BBB) and short half-life. Other effective pharmacological treatment options are clearly lacking. In this study, PNIVDBrF-3-Eda (also named MG-3-Eda) was prepared using a thermo- and pH dual-responsive PNIVDBrF microgel. These were designed with a positively charged network, as synthesized by simultaneous quaternization cross-linking and surfactant-free emulsion copolymerization, to be loaded with the negatively charged edaravone. We then investigated whether such a targeted delivery of edaravone could provide enhanced neuroprotection. Cytotoxicity assays confirmed that the microgel (<1 mg/mL) exhibited promising cytocompatibility with no remarkable effect on cell viability, cell cycle regulation, or apoptosis levels. In vitro and in vivo experiments demonstrated that the microgels could successfully penetrate the blood-brain barrier where efficient BBB crossing was observed after disruption of the BBB due to ischemic injury. This enabled MG-3-Eda to target the cerebral ischemic area and achieve local release of edaravone. Treatment with MG-3-Eda significantly reduced the cerebral infarct area in transient middle cerebral artery occlusion (tMCAO) mice and significantly improved behavioral scores. MG-3-Eda treatment also prevented the reduction in NF200 expression, a neuronal marker protein, and attenuated microglia activation (as detected by Iba1) in the local ischemic area via local antioxidant and anti-inflammatory effects. A superior neuroprotective effect was noted for MG-3-Eda compared to that for free edaravone. Our results indicate that MG-3-Eda administration represents a clear potential treatment for cerebral ischemia via its targeted delivery of edaravone to ischemic areas where it provides significant local antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hongwei Lin
- Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yi Zhang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shunni Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310012, China
| | - Xiaobo Cai
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hui Jiang
- Department of Toxicology and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yang Fan
- Department of Toxicology and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Kaiyue Ying
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310012, China
| | - Peilin Yu
- Department of Toxicology and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
28
|
Liu W, Wang L, Liu C, Dai Z, Li T, Tang B. Edaravone Ameliorates Cerebral Ischemia–Reperfusion Injury by Downregulating Ferroptosis <i>via</i> the Nrf2/FPN Pathway in Rats. Biol Pharm Bull 2022; 45:1269-1275. [DOI: 10.1248/bpb.b22-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenpeng Liu
- Medical School, Hunan University of Chinese Medicine
| | - Linlin Wang
- Medical School, Hunan University of Chinese Medicine
| | - Canwen Liu
- Medical School, Hunan University of Chinese Medicine
| | - Ziwei Dai
- Medical School, Hunan University of Chinese Medicine
| | - Tenglong Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine
| | - Biao Tang
- Medical School, Hunan University of Chinese Medicine
| |
Collapse
|
29
|
Fernández-Serra R, Martínez-Alonso E, Alcázar A, Chioua M, Marco-Contelles J, Martínez-Murillo R, Ramos M, Guinea GV, González-Nieto D. Postischemic Neuroprotection of Aminoethoxydiphenyl Borate Associates Shortening of Peri-Infarct Depolarizations. Int J Mol Sci 2022; 23:ijms23137449. [PMID: 35806455 PMCID: PMC9266990 DOI: 10.3390/ijms23137449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.
Collapse
Affiliation(s)
- Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
| | - Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | | | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-910679280
| |
Collapse
|
30
|
Ghozy S, Reda A, Varney J, Elhawary AS, Shah J, Murry K, Sobeeh MG, Nayak SS, Azzam AY, Brinjikji W, Kadirvel R, Kallmes DF. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol 2022; 13:870141. [PMID: 35711268 PMCID: PMC9195142 DOI: 10.3389/fneur.2022.870141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States.,Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | - Mohamed Gomaa Sobeeh
- Faculty of Physical Therapy, Sinai University, Cairo, Egypt.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Sandeep S Nayak
- Department of Internal Medicine, NYC Health + Hospitals/Metropolitan, New York, NY, United States
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Waleed Brinjikji
- Department of Neurosurgery, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - David F Kallmes
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
31
|
Bottero V, Santiago JA, Quinn JP, Potashkin JA. Key Disease Mechanisms Linked to Amyotrophic Lateral Sclerosis in Spinal Cord Motor Neurons. Front Mol Neurosci 2022; 15:825031. [PMID: 35370543 PMCID: PMC8965442 DOI: 10.3389/fnmol.2022.825031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no modifying treatments available. The molecular mechanisms underpinning disease pathogenesis are not fully understood. Recent studies have employed co-expression networks to identify key genes, known as “switch genes”, responsible for dramatic transcriptional changes in the blood of ALS patients. In this study, we directly investigate the root cause of ALS by examining the changes in gene expression in motor neurons that degenerate in patients. Co-expression networks identified in ALS patients’ spinal cord motor neurons revealed 610 switch genes in seven independent microarrays. Switch genes were enriched in several pathways, including viral carcinogenesis, PI3K-Akt, focal adhesion, proteoglycans in cancer, colorectal cancer, and thyroid hormone signaling. Transcription factors ELK1 and GATA2 were identified as key master regulators of the switch genes. Protein-chemical network analysis identified valproic acid, cyclosporine, estradiol, acetaminophen, quercetin, and carbamazepine as potential therapeutics for ALS. Furthermore, the chemical analysis identified metals and organic compounds including, arsenic, copper, nickel, and benzo(a)pyrene as possible mediators of neurodegeneration. The identification of switch genes provides insights into previously unknown biological pathways associated with ALS.
Collapse
Affiliation(s)
- Virginie Bottero
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
| | | | | | - Judith A. Potashkin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
- *Correspondence: Judy A. Potashkin
| |
Collapse
|
32
|
NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin 2022; 43:529-540. [PMID: 34168317 PMCID: PMC8888674 DOI: 10.1038/s41401-021-00705-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022] Open
Abstract
Our previous studies confirm that exogenous reduced nicotinamide adenine dinucleotide phosphate (NADPH) exerts a neuroprotective effect in animal models of ischemic stroke, and its primary mechanism is related to anti-oxidative stress and improved energy metabolism. However, it is unknown whether nicotinamide adenine dinucleotide (NADH) also plays a neuroprotective role and whether NADPH is superior to NADH against ischemic stroke? In this study we compared the efficacy of NADH, NADPH, and edaravone in ameliorating brain injury and metabolic stress in ischemic stroke. Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) mouse model and in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model were established. The mice were intravenously administered the optimal dose of NADPH (7.5 mg/kg), NADH (22.5 mg/kg), or edaravone (3 mg/kg) immediately after reperfusion. We showed that the overall efficacy of NADPH in ameliorating ischemic injury was superior to NADH and edaravone. NADPH had a longer therapeutic time window (within 5 h) after reperfusion than NADH and edaravone (within 2 h) for ischemic stroke. In addition, NADPH and edaravone were better in alleviating the brain atrophy, while NADH and NADPH were better in increasing the long-term survival rate. NADPH showed stronger antioxidant effects than NADH and edaravone; but NADH was the best in terms of maintaining energy metabolism. Taken together, this study demonstrates that NADPH exerts better neuroprotective effects against ischemic stroke than NADH and edaravone.
Collapse
|
33
|
Exploring the Mechanism of Edaravone for Oxidative Stress in Rats with Cerebral Infarction Based on Quantitative Proteomics Technology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8653697. [PMID: 35027937 PMCID: PMC8752268 DOI: 10.1155/2022/8653697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/23/2021] [Accepted: 11/10/2021] [Indexed: 01/01/2023]
Abstract
Objective To explore the mechanism of edaravone in the treatment of oxidative stress in rats with cerebral infarction based on quantitative proteomics technology. Method The modified Zea Longa intracavitary suture blocking method was utilized to make rat CI model. After modeling, the rat was intragastrically given edaravone for 7 days, once a day. After the 7-day intervention, the total proteins of serum were extracted. After proteomics analysis, the differentially expressed proteins are analyzed by bioinformatics. Then chemoinformatics methods were used to explore the biomolecular network of edaravone intervention in CI. Result The neurological scores and pathological changes of rats were improved after the intervention of edaravone. Proteomics analysis showed that in the model/sham operation group, 90 proteins in comparison group were upregulated, and 26 proteins were downregulated. In the edaravone/model group, 21 proteins were upregulated, and 41 proteins were downregulated. Bioinformatics analysis and chemoinformatics analysis also show that edaravone is related to platelet activation and aggregation, oxidative stress, intercellular adhesion, glycolysis and gluconeogenesis, iron metabolism, hypoxia, inflammatory chemokines, their mediated signal transduction, and so on. Conclusion The therapeutic mechanism of edaravone in the treatment of CI may involve platelet activation and aggregation, oxidative stress, intercellular adhesion, glycolysis and gluconeogenesis, iron metabolism, hypoxia, and so on. This study revealed the serum protein profile of edaravone in the treatment of cerebral infarction rats through serum TMT proteomics and discovered the relevant mechanism of edaravone regulating iron metabolism in cerebral infarction, which provides new ideas for the study of edaravone intervention in cerebral infarction and also provides reference information for future research on the mechanism of edaravone intervention in iron metabolism-related diseases.
Collapse
|
34
|
γ-Glutamylcysteine Alleviates Ischemic Stroke-Induced Neuronal Apoptosis by Inhibiting ROS-Mediated Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2961079. [PMID: 34824669 PMCID: PMC8610689 DOI: 10.1155/2021/2961079] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Ischemic stroke is a severe and acute neurological disorder with limited therapeutic strategies currently available. Oxidative stress is one of the critical pathological factors in ischemia/reperfusion injury, and high levels of reactive oxygen species (ROS) may drive neuronal apoptosis. Rescuing neurons in the penumbra is a potential way to recover from ischemic stroke. Endogenous levels of the potent ROS quencher glutathione (GSH) decrease significantly after cerebral ischemia. Here, we aimed to investigate the neuroprotective effects of γ-glutamylcysteine (γ-GC), an immediate precursor of GSH, on neuronal apoptosis and brain injury during ischemic stroke. Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) were used to mimic cerebral ischemia in mice, neuronal cell lines, and primary neurons. Our data indicated that exogenous γ-GC treatment mitigated oxidative stress, as indicated by upregulated GSH and decreased ROS levels. In addition, γ-GC attenuated ischemia/reperfusion-induced neuronal apoptosis and brain injury in vivo and in vitro. Furthermore, transcriptomics approaches and subsequent validation studies revealed that γ-GC attenuated penumbra neuronal apoptosis by inhibiting the activation of protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α) in the endoplasmic reticulum (ER) stress signaling pathway in OGD/R-treated cells and ischemic brain tissues. To the best of our knowledge, this study is the first to report that γ-GC attenuates ischemia-induced neuronal apoptosis by suppressing ROS-mediated ER stress. γ-GC may be a promising therapeutic agent for ischemic stroke.
Collapse
|
35
|
Edaravone Combined with Clopidogrel Is Beneficial to Improve Efficacy, Neurological Impairment, and Life Function in Acute Cerebral Infarction Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8030521. [PMID: 34691225 PMCID: PMC8531786 DOI: 10.1155/2021/8030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Objective This research aimed at investigating the efficacy of edaravone combined with clopidogrel on acute cerebral infarction (ACI) and its influence on the neurological deficit and life function. Methods Totally, 154 ACI cases were included and then divided into the control group (CG) (n = 71) and research group (RG) (n = 83) according to the treatment methods. Patients in the CG were treated with clopidogrel alone, and those in the RG were under edaravone-clopidogrel combination therapy. The efficacy, adverse reactions, NIHSS score, cerebral hemodynamic indexes, and Fugl-Meyer scale (FMA) and Barthel index (BI) of activities of daily living (ADL) scores were observed. Results Compared with before treatment, the symptoms of both groups were improved after treatment: the NIHSS scores decreased, FMA and ADL scores increased, and cerebral hemodynamic indexes were improved. Compared with the CG, the efficacy and cerebral hemodynamic indexes of the RG were better, the adverse reactions were equivalent, the NIHSS score was lower, and the ADL and FMA scores were higher. Conclusion Edaravone combined with clopidogrel can effectively treat ACI and improve the neurological deficit and life function of patients.
Collapse
|
36
|
An H, Tao W, Liang Y, Li P, Li M, Zhang X, Chen K, Wei D, Xie D, Zhang Z. Dengzhanxixin Injection Ameliorates Cognitive Impairment Through a Neuroprotective Mechanism Based on Mitochondrial Preservation in Patients With Acute Ischemic Stroke. Front Pharmacol 2021; 12:712436. [PMID: 34526899 PMCID: PMC8435665 DOI: 10.3389/fphar.2021.712436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Acute ischemic stroke (AIS) is a global health burden and cognitive impairment is one of its most serious complication. Adequate interventions for AIS may have the potential to improve cognitive outcomes. In the present study, we selected Erigeron breviscapus (Vaniot) Hand.-Mazz. injection (Dengzhanxixin injection, DZXI), a widely used Chinese herbal injection, in contrast to edaravone as the positive control drug to test its potential to ameliorates neurological and cognitive impairments caused by AIS. We performed a 2-week randomized trial with these two drugs in AIS patients presenting mild to moderate cognitive impairments. Neuropsychological tests and MRI examinations showed that DZXI attenuated the neurological and cognitive impairments of patients and protected the grey matter in specific regions from ischemic damage. Notably, DZXI exerted better effects than edaravone in some neuropsychological tests, probably due to the protective effect of DZXI on grey matter. To explore the therapeutic mechanisms, we carried out an experiment with a middle cerebral artery occlusion rat model. We found that DZXI decreased the infarct volume and increased the survival of neuronal cells in the ischemic penumbra; furthermore, DZXI modulated the mitochondrial respiratory chain process and preserved the mitochondrial structure in the brain tissue. Overall, our data suggested that the administration of DZXI is effective at ameliorating neurological and cognitive impairments in AIS, and the underlying mechanisms are related to the protective effects of DZXI on cerebral neurons and neuronal mitochondria.
Collapse
Affiliation(s)
- Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Wuhai Tao
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Peng Li
- Institute of Basic Medicine Research, Xi Yuan Hospital affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Kewei Chen
- Banner Good Samaritan PET Center, Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daojun Xie
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Zhou Q, Yuan M, Qiu W, Cao W, Xu R. Preclinical studies of mesenchymal stem cells transplantation in amyotrophic lateral sclerosis: a systemic review and metaanalysis. Neurol Sci 2021; 42:3637-3646. [PMID: 33433755 DOI: 10.1007/s10072-020-05036-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To assess the quality of preclinical evidence for mesenchymal stromal cell (MSCs) therapy of amyotrophic lateral sclerosis (ALS), decide the effect size of MSCs treatment, and identify clinical parameters that associate with differences in MSCs effects. METHODS A literature search identified studies of MSCs in animal models of ALS. Four main indicators (age of onset, disease progression deceleration, survival time, hazard ratio reduction) obtained through specific neurobehavioral assessment, and 14 relative clinical parameters were extracted for metaanalysis and systematic review. Subgroup analysis and metaregression were performed to explore sources of heterogeneity. RESULTS A total of 25 studies and 41 independent treated arms were used for systematic review and metaanalysis. After adjusted by sensitivity analysis, the mean effect sizes were significantly improved by 0.28 for the age of onset, 0.25 for the disease progression deceleration, 0.54 for the survival time, and 0.48 for hazard ratio reduction. With further analysis, we demonstrated that both the clinical parameter of animal gender and immunosuppressive drug of cyclosporin A (CSA) had a close correlation with disease progression deceleration effect size. CONCLUSIONS These results showed that MSCs transplantation was beneficial for neurobehavioral improvement in the treatment of ALS animal model and recommended that all potential reparative roles of MSCs postdelivery, should be carefully considered and fused to maximize the effectiveness of MSCs therapy in ALS.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Min Yuan
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Weiwen Qiu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Wenfeng Cao
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China.
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, No. 152, Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
38
|
Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang K, Li N, Liu N, Liang W, Huang H, Chen W, Wang B, Xie Z. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6:2854-2869. [PMID: 33718667 PMCID: PMC7905263 DOI: 10.1016/j.bioactmat.2021.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is still a serious threat to human life and health, but there are few therapeutic options available to treat stroke because of limited blood-brain penetration. The development of nanotechnology may overcome some of the problems related to traditional drug development. In this review, we focus on the potential applications of nanotechnology in stroke. First, we will discuss the main molecular pathological mechanisms of ischemic stroke to develop a targeted strategy. Second, considering the important role of the blood-brain barrier in stroke treatment, we also delve mechanisms by which the blood-brain barrier protects the brain, and the reasons why the therapeutics must pass through the blood-brain barrier to achieve efficacy. Lastly, we provide a comprehensive review related to the application of nanomaterials to treat stroke, including liposomes, polymers, metal nanoparticles, carbon nanotubes, graphene, black phosphorus, hydrogels and dendrimers. To conclude, we will summarize the challenges and future prospects of nanomedicine-based stroke treatments.
Collapse
Affiliation(s)
- Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wentian Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Nan Li
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Ning Liu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Hao Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Bing Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, 518116, Shenzhen, Guangdong, China
| |
Collapse
|
39
|
Xu Y, Peng S, Cao X, Qian S, Shen S, Luo J, Zhang X, Sun H, Shen WL, Jia W, Ye J. High doses of butyrate induce a reversible body temperature drop through transient proton leak in mitochondria of brain neurons. Life Sci 2021; 278:119614. [PMID: 34022200 DOI: 10.1016/j.lfs.2021.119614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
AIMS Sodium butyrate (SB) is a major product of gut microbiota with signaling activity in the human body. It has become a dietary supplement in the treatment of intestinal disorders. However, the toxic effect of overdosed SB and treatment strategy remain unknown. The two issues are addressed in current study. MATERIALS AND METHODS SB (0.3-2.5 g/kg) was administrated through a single peritoneal injection in mice. The core body temperature and mitochondrial function in the brown adipose tissue and brain were monitored. Pharmacodynamics, targeted metabolomics, electron microscope, oxygen consumption rate and gene knockdown were employed to dissect the mechanism for the toxic effect. KEY FINDINGS The temperature was reduced by SB (1.2-2.5 g/kg) in a dose-dependent manner in mice for 2-4 h. In the brain, the effect was associated with SB elevation and neurotransmitter reduction. Metabolites changes were seen in the glycolysis, TCA cycle and pentose phosphate pathways. Adenine nucleotide translocase (ANT) was activated by butyrate for proton transportation leading to a transient potential collapse through proton leak. The SB activity was attenuated by ANT inhibition from gene knockdown or pharmacological blocker. ROS was elevated by SB for the increased ANT activity in proton leak in Neuro-2a. SIGNIFICANCE Excessive SB generated an immediate and reversible toxic effect for inhibition of body temperature through transient mitochondrial dysfunction in the brain. The mechanism was quick activation of ANT proteins for potential collapse in mitochondria. ROS may be a factor in the ANT activation by SB.
Collapse
Affiliation(s)
- Yanhong Xu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Neurology department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xinyu Cao
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shengnan Qian
- Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shuang Shen
- Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Juntao Luo
- Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaoying Zhang
- Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hongbin Sun
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Wei L Shen
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
40
|
Kaushik P, Ali M, Salman M, Tabassum H, Parvez S. Harnessing the mitochondrial integrity for neuroprotection: Therapeutic role of piperine against experimental ischemic stroke. Neurochem Int 2021; 149:105138. [PMID: 34284077 DOI: 10.1016/j.neuint.2021.105138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Ischemic stroke (IS) is a rapidly increasing global burden and is associated with severe neurological decline and mortality. There is urgent requirement of the efforts, aimed to identify therapeutic strategies that are effective in clinic to promote significant recovery from IS. Studies have shown that mitochondria mediated neuroprotection can be a competent target against ischemic damage. Therefore, we examined whether mitochondrial impairment is regulated by Piperine (PIP), an alkaloid of Piper Longum, which has neuroprotective activity against ischemic brain injury. In this study, transient middle cerebral artery occlusion (tMCAO) surgery was performed on male Wistar rats for 90 min followed by 22.5 h of reperfusion for mimicking the IS condition. This study consisted of three groups: sham, tMCAO and tMCAO + PIP (10 mg/kg b.wt., p.o/day for 15 days), and studied for behavioral tests, infarct volume, brain pathological changes, mitochondrial dysfunction, inflammation alongwith cell survival status. PIP pre-treatment showed reduction in neurological alterations and infarct volume. In addition, PIP pre-treatment suppressed the mitochondrial dysfunction and might have anti-apoptotic potential by preventing Cytochrome c (Cyt c) release from mitochondria to cytoplasm and caspase 3 activation. It also regulates pro-apoptotic, Bax and anti-apoptotic, Bcl-2 proteins accompanied by glial fibrillary acidic protein (GFAP) positive cells in cortex region. Quantitative Reverse transcription-polymerase chain reaction (qRT-PCR) results also showed that PIP reduced the expression of pro-inflammatory protein, interleukin-1 β (IL-1β) and enhanced cell survival by restoring the activity of brain derived neurotrophic factor (BDNF) and its transcription protein, cAMP response element binding protein (CREB). Taken together, PIP reduced the mitochondrial dysfunction, neurological impairment, and enhanced neuronal survival. In conclusion, our findings reinforce PIP as an effective neuroprotective agent and provide important evidence about its role as a potential target to serve as a promising therapy for treatment of IS.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
41
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
42
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
43
|
Meftahi GH, Bayat M, Zarifkar AH, Akbari S, Borhani Haghighi A, Naseh M, Yousefi Nejad A, Haghani M. Treatment with edaravone improves the structure and functional changes in the hippocampus after chronic cerebral hypoperfusion in rat. Brain Res Bull 2021; 174:122-130. [PMID: 34116172 DOI: 10.1016/j.brainresbull.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to find out cellular and electrophysiological effects of the edaravone (EDR) administration following induction of vascular dementia (VaD) via bilateral-carotid vessel occlusion (2VO). The rats were randomly divided into control, sham, 2VO + V (vehicle), and 2VO + EDR groups. EDR was administered once a day from day 0-28 after surgery. The passive-avoidance, Morris water-maze, and open-field tests were used for evaluation of memory, locomotor, and anxiety. The field-potential recording was used for assessment of electrophysiological properties of the hippocampus; and after sacrificing, the cerebral hemispheres were removed for stereological study and evaluation of MDA levels. The long-term potentiation (LTP), paired-pulse ratio (PPR), and input-output (I/O) curves were evaluated as indexes for long-term and short-term synaptic plasticity, and basal-synaptic transmission (BST), respectively. The 2VO led to increases in MDA level with considerable neuronal loss and decreases in the volume of the hippocampus, along with a reduction in the BST and LTP induction which was associated with a decrement in PPR and ultimate loss in memory with higher anxiety behavior. However, administration of EDR caused a decline in MDA and prevented the neural loss and volume of the hippocampus, rescued BST and LTP depression, improved memory and anxiety without any effects on PPR. Therefore, most likely through the improvement of MDA level, and the hippocampal cell number and volume, EDR leads to recovery of synaptic plasticity and behavioral performance. Because of the LTP rescue, without recovery of PPR, it is likely that the EDR improved LTP through the post-synaptic neurons.
Collapse
Affiliation(s)
- Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Hossein Zarifkar
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Somaye Akbari
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Maryam Naseh
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Yousefi Nejad
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Islamic Azad University of Kazeroon, Shiraz, Iran.
| | - Masoud Haghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
44
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
45
|
Shan H, Jiao G, Cheng X, Dou Z. Safety and efficacy of edaravone for patients with acute stroke: A protocol for randomized clinical trial. Medicine (Baltimore) 2021; 100:e24811. [PMID: 33663100 PMCID: PMC7909220 DOI: 10.1097/md.0000000000024811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We performed a randomized clinical trial protocol to assess the effectiveness of edaravone for acute stroke. We hypothesized that edaravone is beneficial in improving neurological impairment resulting from acute stroke. METHOD The protocol was reviewed and approved by the Research Ethics Board of Affiliated Hospital of Chengde Medical University (0092-2394), each participant signed a written consent before participating, and SPIRIT guidelines were followed throughout. The inclusion criteria for patients were as follows: diagnosed as acute stroke (ischemic stroke or intracerebral hemorrhage) by head CT or MRI within 72 hours; age greater than 18; motor function disorder; Glasgow Coma Scale greater than 12. Patients with the following symptoms were excluded: concurrent serious complications, such as coma, drug allergy, mental disorder, and other severe organic lesions in the brain. Sixty patients were finally included in the study. The control group accepted conventional treatment, while the treatment group received edaravone treatment on top of the conventional treatment of the control group. After treatment, the differences in functional movement, living ability score, neurological score, treatment effect, and adverse reaction of these 2 groups were tested and compared. DISCUSSION As aging worsens, the incidence of acute stroke continues to increase. Brain damage will induce the production of oxygen radicals, which can damage the cytomembrane of brain cells and finally damage the nervous system and cause cerebral injury as well as the cerebral edema. Edaravone is an antioxidant and oxygen radical scavenger that can inhibit lipid peroxidation during the scavenging of oxygen free radicals. Besides, it can also elicit anti-inflammatory protective effects for nerve cells, increase cerebral blood flow volume, prevent the aggravation of cerebral hypoperfusion toward necrosis, reduce nerve damage, and improve neurological functions and prognosis. This is the first randomized controlled trial to assess the efficacy of edaravone for treating acute stroke. High quality, large sample size, multicenter randomized trials are still required. TRIAL REGISTRATION researchregistry6492.
Collapse
|
46
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
47
|
Sun T, Wang P, Deng T, Tao X, Li B, Xu Y. Effect of Panax notoginseng Saponins on Focal Cerebral Ischemia-Reperfusion in Rat Models: A Meta-Analysis. Front Pharmacol 2021; 11:572304. [PMID: 33643030 PMCID: PMC7908036 DOI: 10.3389/fphar.2020.572304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
With the increase of the aging population, the high mortality and disability rates caused by ischemic stroke are some of the major problems facing the world, and they dramatically burden the society. Panax notoginseng (Burk) F. H. Chen, a traditional Chinese medicine, is commonly used for promoting blood circulation and removing blood stasis, and its main bioactive components are Panax notoginseng saponins (PNS). Therefore, we performed a meta-analysis on focal cerebral ischemia-reperfusion animal models established with middle cerebral artery occlusion (MCAO) surgery to evaluate the therapeutic effect of PNS. We systematically searched the reports of PNS in MCAO animal experiments in seven databases. We assessed the study quality using two literature quality evaluation criteria; evaluated the efficacy of PNS treatment based on the outcomes of the neurological deficit score (NDS), cerebral infarct volume (CIV), and biochemical indicators via a random/fixed-effects model; and performed a subgroup analysis utilizing ischemia duration, drug dosage, intervention time, and administration duration. We also compared the efficacy of PNS with positive control drugs or combination treatment. As a result, we selected 14 eligible studies from the 3,581 searched publications based on the predefined exclusion-inclusion criteria. PNS were significantly associated with reduced NDS, reduced CIV, and inhibited release of the inflammatory factors IL-1β and TNF-α in the focal MCAO rat models. The PNS combination therapy outperformed the PNS alone. In addition, ischemia time, drug dosage, intervention time, and administration duration in the rat models all had significant effects on the efficacy of PNS. Although more high-quality studies are needed to further determine the clinical efficacy and guiding parameters of PNS, our results also confirmed that PNS significantly relieves the focal cerebral ischemia-reperfusion in rat models. In the animal trials, it was suggested that an early intervention had significant efficacy with PNS alone or PNS combination treatment at a dosage lower than 25 mg/kg or 100–150 mg/kg for 4 days or longer. These findings further guide the therapeutic strategy for clinical cerebral ischemic stroke.
Collapse
Affiliation(s)
- Tao Sun
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingbao Tao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Kent AC, El Baradie KBY, Hamrick MW. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626484. [PMID: 33574977 PMCID: PMC7861926 DOI: 10.1155/2021/6626484] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aβ) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
Collapse
Affiliation(s)
- Andrew C. Kent
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- University of Georgia, Athens, GA, USA
| | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
49
|
Drew CJG, Sharouf F, Randell E, Brookes-Howell L, Smallman K, Sewell B, Burrell A, Kirby N, Mills L, Precious S, Pallmann P, Gillespie D, Hood K, Busse M, Gray WP, Rosser A. Protocol for an open label: phase I trial within a cohort of foetal cell transplants in people with Huntington's disease. Brain Commun 2021; 3:fcaa230. [PMID: 33543141 PMCID: PMC7850012 DOI: 10.1093/braincomms/fcaa230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder characterized by motor, cognitive and psychiatric symptoms. Currently, no disease-modifying therapies are available to slow or halt disease progression. Huntington's disease is characterized by relatively focal and specific loss of striatal medium spiny neurons, which makes it suitable for cell-replacement therapy, a process involving the transplantation of donor cells to replace those lost due to disease. TRIal DEsigns for delivery of Novel Therapies in neurodegeneration is a phase I Trial Within a Cohort designed to assess safety and feasibility of transplanting human foetal striatal cells into the striatum of people with Huntington's disease. A minimum of 18 participants will be enrolled in the study cohort, and up to five eligible participants will be randomly selected to undergo transplantation of 12-22 million foetal cells in a dose escalation paradigm. Independent reviewers will assess safety outcomes (lack of significant infection, bleeding or new neurological deficit) 4 weeks after surgery, and ongoing safety will be established before conducting each subsequent surgery. All participants will undergo detailed clinical and functional assessment at baseline (6 and 12 months). Surgery will be performed 1 month after baseline, and transplant participants will undergo regular clinical follow-up for at least 12 months. Evaluation of trial processes will also be undertaken. Transplant participants and their carers will be interviewed ∼1 month before and after surgery. Interviews will also be conducted with non-transplanted participants and healthcare staff delivering the intervention and involved in the clinical care of participants. Evaluation of clinical and functional efficacy outcomes and intervention costs will be carried out to explore plausible trial designs for subsequent randomized controlled trials aimed at evaluating efficacy and cost-effectiveness of cell-replacement therapy. TRIal DEsigns for delivery of Novel Therapies in neurodegeneration will enable the assessment of the safety, feasibility, acceptability and cost of foetal cell transplants in people with Huntington's disease. The data collected will inform trial designs for complex intra-cranial interventions in a range of neurodegenerative conditions and facilitate the development of stable surgical pipelines for delivery of future stem cell trials. Trial Registration: ISRCTN52651778.
Collapse
Affiliation(s)
- Cheney J G Drew
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Feras Sharouf
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
- Department of Neurosurgery, University Hospital Wales, Cardiff, CF14 4XW, UK
| | - Elizabeth Randell
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | | | - Kim Smallman
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Bernadette Sewell
- Swansea Centre for Health Economics, Swansea University, Swansea, SA2 8PP, UK
| | - Astrid Burrell
- Public and Patient Representative, BRAIN Involve, Cardiff University, Cardiff, UK
| | - Nigel Kirby
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Laura Mills
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Sophie Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Ave, Cardiff, CF10 3AX, UK
| | - Philip Pallmann
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - David Gillespie
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Kerry Hood
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
| | - William P Gray
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
- Department of Neurosurgery, University Hospital Wales, Cardiff, CF14 4XW, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Anne Rosser
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Ave, Cardiff, CF10 3AX, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
50
|
Zhang M, He Q, Chen G, Li PA. Suppression of NLRP3 Inflammasome, Pyroptosis, and Cell Death by NIM811 in Rotenone-Exposed Cells as an in vitro Model of Parkinson's Disease. NEURODEGENER DIS 2020; 20:73-83. [PMID: 33176317 DOI: 10.1159/000511207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the selective death of dopaminergic neurons in the substantia nigra. Recently, NLRP3 inflammasome and pyroptosis were found to be associated with PD. Cyclosporine A (CsA), an immunosuppressant, reduces neuronal death in PD. However, CsA could hardly pass through the blood-brain barrier (BBB) and high dose is associated with severe side effects and toxicity. N-methyl-4-isoleucine-cyclosporine (NIM811) is a CsA derivate that can pass through the BBB. However, little is known about its effect on PD. OBJECTIVE The objectives of this study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of NIM811 on the neurotoxicity of a Parkinson-like in vitro model induced by rotenone. METHODS Murine hippocampal HT22 cells were cultured with the mitochondrial complex I inhibitor rotenone, a widely used pesticide that has been used for many years as a tool to induce a PD model in vitro and in vivo and proven to be reproducible. NIM811 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by resazurin assay, reactive oxygen species (ROS) production by dihydroethidine (DHE), and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). TUNEL and caspase-1 immunofluorescent double staining was used to detect pyroptosis. NLRP3, caspase-1, pro-caspase-1, GSDMD, and interleukin-18 (IL-18) were measured using Western blotting after 24 h of rotenone incubation. The reactivity of interleukin-1β (IL-1β) was determined by ELISA. RESULTS Our results demonstrated that rotenone caused more than 40% of cell death, increased ROS production, and reduced mitochondrial membrane potential, while NIM811 reversed these alterations. Immunofluorescent double staining showed that rotenone increased the percentage of caspase-1 and TUNEL double-labelled cells, an indication of pyroptosis, after 24 h of incubation. The protein expression of NLRP3, caspase-1, pro-caspase-1, GSDMD, IL-18, and IL-1β was significantly increased after 24 h of rotenone incubation. NIM811 suppressed rotenone-induced pyroptosis and downregulated the protein expression of NLRP3, caspase-1, pro-caspase-1, GSDMD, IL-1β, and IL-18. CONCLUSION These results provide evidence that rotenone activates the NLRP3 inflammomere and induces pyroptosis. NIM811 protects the cell from rotenone-induced damage and inhibits NLRP3 inflammasome and pyroptosis. NIM811 might serve as a potential therapeutic drug in the treatment of PD.
Collapse
Affiliation(s)
- Minghao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qingping He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Guisheng Chen
- Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, Key Laboratory of Craniocerebral Diseases, Yinchuan, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, North Carolina, USA,
| |
Collapse
|