1
|
Jin B, W Gongwer M, A DeNardo L. Developmental changes in brain-wide fear memory networks. Neurobiol Learn Mem 2025; 219:108037. [PMID: 40032133 DOI: 10.1016/j.nlm.2025.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Memory retrieval involves coordinated activity across multiple brain regions. Yet how the organization of memory networks evolves throughout development remains poorly understood. In this study, we compared whole-brain functional networks that are active during contextual fear memory recall in infant, juvenile, and adult mice. Our analyses revealed that long-term memory networks change significantly across postnatal development. Infant fear memory networks are dense and heterogeneous, whereas adult networks are sparse and have a small-world topology. While hippocampal subregions were highly connected nodes at all ages, the cortex gained many functional connections across development. Different functional connections matured at different rates, but their developmental timing fell into three major categories: stepwise change between two ages, linear change across all ages, or inverted-U, with elevated functional connectivity in juveniles. Our work highlights how a subset of brain regions likely maintain important roles in fear memory encoding, but the functional connectivity of fear memory networks undergoes significant reorganization across development. Together, these results provide a blueprint for studying how correlated cellular activity in key areas distinctly regulates memory storage and retrieval across development.
Collapse
Affiliation(s)
- Benita Jin
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Program in Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael W Gongwer
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Sakurai K. Rethinking c-Fos for understanding drug action in the brain. J Biochem 2024; 175:377-381. [PMID: 38153290 DOI: 10.1093/jb/mvad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 12/29/2023] Open
Abstract
Understanding the mechanisms of drug action in the brain, from the genetic to the neural circuit level, is crucial for the development of new agents that act upon the central nervous system. Determining the brain regions and neurons affected by a drug is essential for revealing its mechanism of action in the brain. c-Fos, a marker of neuronal activation, has been widely used to detect neurons activated by stimuli with high spatial resolution. In this review, the use of c-Fos for the visualization and manipulation of activated neurons is introduced. I also explain that a higher temporal resolution can be achieved by changing the staining method for visualization of c-Fos. Moreover, a new method that allows labeling and manipulating commonly activated neurons using two different stimuli is proposed.
Collapse
Affiliation(s)
- Katsuyasu Sakurai
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
4
|
Jiao F, Hu X, Yin H, Yuan F, Zhou Z, Wu W, Chen S, Liu Z, Guo F. Inhibition of c-Jun in AgRP neurons increases stress-induced anxiety and colitis susceptibility. Commun Biol 2023; 6:50. [PMID: 36641530 PMCID: PMC9840628 DOI: 10.1038/s42003-023-04425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders, such as anxiety, are associated with inflammatory bowel disease (IBD), however, the neural mechanisms regulating this comorbidity are unknown. Here, we show that hypothalamic agouti-related protein (AgRP) neuronal activity is suppressed under chronic restraint stress (CRS), a condition known to increase anxiety and colitis susceptibility. Consistently, chemogenic activation or inhibition of AgRP neurons reverses or mimics CRS-induced increase of anxiety-like behaviors and colitis susceptibility, respectively. Furthermore, CRS inhibits AgRP neuronal activity by suppressing the expression of c-Jun. Moreover, overexpression of c-Jun in these neurons protects against the CRS-induced effects, and knockdown of c-Jun in AgRP neurons (c-Jun∆AgRP) promotes anxiety and colitis susceptibility. Finally, the levels of secreted protein thrombospondin 1 (THBS1) are negatively associated with increased anxiety and colitis, and supplementing recombinant THBS1 rescues colitis susceptibility in c-Jun∆AgRP mice. Taken together, these results reveal critical roles of hypothalamic AgRP neuron-derived c-Jun in orchestrating stress-induced anxiety and colitis susceptibility.
Collapse
Affiliation(s)
- Fuxin Jiao
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiaoming Hu
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Hanrui Yin
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Feixiang Yuan
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Ziheng Zhou
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wei Wu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Shanghai Chen
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Zhanju Liu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Feifan Guo
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
5
|
Lara Aparicio SY, Laureani Fierro ÁDJ, Aranda Abreu GE, Toledo Cárdenas R, García Hernández LI, Coria Ávila GA, Rojas Durán F, Aguilar MEH, Manzo Denes J, Chi-Castañeda LD, Pérez Estudillo CA. Current Opinion on the Use of c-Fos in Neuroscience. NEUROSCI 2022; 3:687-702. [PMID: 39483772 PMCID: PMC11523728 DOI: 10.3390/neurosci3040050] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 11/03/2024] Open
Abstract
For years, the biochemical processes that are triggered by harmful and non-harmful stimuli at the central nervous system level have been extensively studied by the scientific community through numerous techniques and animal models. For example, one of these techniques is the use of immediate expression genes, which is a useful, accessible, and reliable method for observing and quantifying cell activation. It has been shown that both the c-fos gene and its protein c-Fos have rapid activation after stimulus, with the length of time that they remain active depending on the type of stimulus and the activation time depending on the stimulus and the structure studied. Fos requires the participation of other genes (such as c-jun) for its expression (during hetero-dimer forming). c-Fos dimerizes with c-Jun protein to form factor AP-1, which promotes the transcription of various genes. The production and removal of c-Fos is part of cellular homeostasis, but its overexpression results in increased cell proliferation. Although Fos has been used as a marker of cellular activity since the 1990s, which molecular mechanism participates in the regulation of the expression of this protein is still unknown because the gene and the protein are not specific to neurons or glial cells. For these reasons, this work has the objective of gathering information about this protein and its use in neuroscience.
Collapse
Affiliation(s)
- Sandra Yasbeth Lara Aparicio
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Av. Luis Castelazo S/N, Col. Industrial Las Ánimas, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | | | - Rebeca Toledo Cárdenas
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Luis Isauro García Hernández
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Genaro Alfonso Coria Ávila
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Fausto Rojas Durán
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | - Jorge Manzo Denes
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Lizbeth Donají Chi-Castañeda
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | |
Collapse
|
6
|
Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022; 14:862098. [PMID: 35592695 PMCID: PMC9110804 DOI: 10.3389/fnagi.2022.862098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Abolfazl Golgol
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
7
|
Su Q, Yu XJ, Wang XM, Li HB, Li Y, Bai J, Qi J, Zhang N, Liu KL, Zhang Y, Zhu GQ, Kang YM. Bilateral Paraventricular Nucleus Upregulation of Extracellular Superoxide Dismutase Decreases Blood Pressure by Regulation of the NLRP3 and Neurotransmitters in Salt-Induced Hypertensive Rats. Front Pharmacol 2021; 12:756671. [PMID: 34899311 PMCID: PMC8656229 DOI: 10.3389/fphar.2021.756671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Aims: Long-term salt diet induces the oxidative stress in the paraventricular nucleus (PVN) and increases the blood pressure. Extracellular superoxide dismutase (Ec-SOD) is a unique antioxidant enzyme that exists in extracellular space and plays an essential role in scavenging excessive reactive oxygen species (ROS). However, the underlying mechanism of Ec-SOD in the PVN remains unclear. Methods: Sprague-Dawley rats (150-200 g) were fed either a high salt diet (8% NaCl, HS) or normal salt diet (0.9% NaCl, NS) for 6 weeks. Each group of rats was administered with bilateral PVN microinjection of AAV-Ec-SOD (Ec-SOD overexpression) or AAV-Ctrl for the next 6 weeks. Results: High salt intake not only increased mean arterial blood pressure (MAP) and the plasma noradrenaline (NE) but also elevated the NAD(P)H oxidase activity, the NAD(P)H oxidase components (NOX2 and NOX4) expression, and ROS production in the PVN. Meanwhile, the NOD-like receptor protein 3 (NLRP3)-dependent inflammatory proteins (ASC, pro-cas-1, IL-β, CXCR, CCL2) expression and the tyrosine hydroxylase (TH) expression in the PVN with high salt diet were higher, but the GSH level, Ec-SOD activity, GAD67 expression, and GABA level were lower than the NS group. Bilateral PVN microinjection of AAV-Ec-SOD decreased MAP and the plasma NE, reduced NAD(P)H oxidase activity, the NOX2 and NOX4 expression, and ROS production, attenuated NLRP3-dependent inflammatory expression and TH, but increased GSH level, Ec-SOD activity, GAD67 expression, and GABA level in the PVN compared with the high salt group. Conclusion: Excessive salt intake not only activates oxidative stress but also induces the NLRP3-depensent inflammation and breaks the balance between inhibitory and excitability neurotransmitters in the PVN. Ec-SOD, as an essential anti-oxidative enzyme, eliminates the ROS in the PVN and decreases the blood pressure, probably through inhibiting the NLRP3-dependent inflammation and improving the excitatory neurotransmitter release in the PVN in the salt-induced hypertension.
Collapse
Affiliation(s)
- Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Juan Bai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Nianping Zhang
- Department of Clinical Medicine, Medical School of Shanxi Datong University, Datong, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| |
Collapse
|
8
|
Garcia-Lopez R, Pombero A, Estirado A, Geijo-Barrientos E, Martinez S. Interneuron Heterotopia in the Lis1 Mutant Mouse Cortex Underlies a Structural and Functional Schizophrenia-Like Phenotype. Front Cell Dev Biol 2021; 9:693919. [PMID: 34327202 PMCID: PMC8313859 DOI: 10.3389/fcell.2021.693919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
LIS1 is one of the principal genes related to Type I lissencephaly, a severe human brain malformation characterized by an abnormal neuronal migration in the cortex during embryonic development. This is clinically associated with epilepsy and cerebral palsy in severe cases, as well as a predisposition to developing mental disorders, in cases with a mild phenotype. Although genetic variations in the LIS1 gene have been associated with the development of schizophrenia, little is known about the underlying neurobiological mechanisms. We have studied how the Lis1 gene might cause deficits associated with the pathophysiology of schizophrenia using the Lis1/sLis1 murine model, which involves the deletion of the first coding exon of the Lis1 gene. Homozygous mice are not viable, but heterozygous animals present abnormal neuronal morphology, cortical dysplasia, and enhanced cortical excitability. We have observed reduced number of cells expressing GABA-synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) in the hippocampus and the anterior cingulate area, as well as fewer parvalbumin-expressing cells in the anterior cingulate cortex in Lis1/sLis1 mutants compared to control mice. The cFOS protein expression (indicative of neuronal activity) in Lis1/sLis1 mice was higher in the medial prefrontal (mPFC), perirhinal (PERI), entorhinal (ENT), ectorhinal (ECT) cortices, and hippocampus compared to control mice. Our results suggest that deleting the first coding exon of the Lis1 gene might cause cortical anomalies associated with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | - Ana Pombero
- Instituto de Neurociencias, UMH-CSIC, Alicante, Spain
| | | | | | - Salvador Martinez
- Instituto de Neurociencias, UMH-CSIC, Alicante, Spain.,Centro de Investigación Biomédica En Red en Salud Mental-CIBERSAM-ISCIII, Valencia, Spain
| |
Collapse
|
9
|
Zhang M, Spencer HF, Berman RY, Radford KD, Choi KH. Effects of subanesthetic intravenous ketamine infusion on neuroplasticity-related proteins in male and female Sprague-Dawley rats. IBRO Neurosci Rep 2021; 11:42-51. [PMID: 34286313 PMCID: PMC8273220 DOI: 10.1016/j.ibneur.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/30/2022] Open
Abstract
Although ketamine, a multimodal dissociative anesthetic, is frequently used for analgesia and treatment-resistant major depression, molecular mechanisms of ketamine remain unclear. Specifically, differences in the effects of ketamine on neuroplasticity-related proteins in the brains of males and females need further investigation. In the current study, adult male and female Sprague-Dawley rats with an indwelling jugular venous catheter received an intravenous ketamine infusion (0, 10, or 40 mg/kg, 2-h), starting with a 2 mg/kg bolus for ketamine groups. Spontaneous locomotor activity was monitored by infrared photobeams during the infusion. Two hours after the infusion, brain tissue was dissected to obtain the medial prefrontal cortex (mPFC), hippocampus including the CA1, CA3, and dentate gyrus, and amygdala followed by Western blot analyses of a transcription factor (c-Fos), brain-derived neurotrophic factor (BDNF), and phosphorylated extracellular signal-regulated kinase (pERK). The 10 mg/kg ketamine infusion suppressed locomotor activity in male and female rats while the 40 mg/kg infusion stimulated activity only in female rats. In the mPFC, 10 mg/kg ketamine reduced pERK levels in male rats while 40 mg/kg ketamine increased c-Fos levels in male and female rats. Female rats in proestrus/estrus phases showed greater ketamine-induced c-Fos elevation as compared to those in diestrus phase. In the amygdala, 10 and 40 mg/kg ketamine increased c-Fos levels in female, but not male, rats. In the hippocampus, 10 mg/kg ketamine reduced BDNF levels in male, but not female, rats. Taken together, the current data suggest that subanesthetic doses of intravenous ketamine infusions produce differences in neuroplasticity-related proteins in the brains of male and female rats.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Haley F Spencer
- Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Rina Y Berman
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Kwang H Choi
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Program in Neuroscience, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.,Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Bartlett T. Fusion of single-cell transcriptome and DNA-binding data, for genomic network inference in cortical development. BMC Bioinformatics 2021; 22:301. [PMID: 34088262 PMCID: PMC8176738 DOI: 10.1186/s12859-021-04201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Network models are well-established as very useful computational-statistical tools in cell biology. However, a genomic network model based only on gene expression data can, by definition, only infer gene co-expression networks. Hence, in order to infer gene regulatory patterns, it is necessary to also include data related to binding of regulatory factors to DNA. RESULTS We propose a new dynamic genomic network model, for inferring patterns of genomic regulatory influence in dynamic processes such as development. Our model fuses experiment-specific gene expression data with publicly available DNA-binding data. The method we propose is computationally efficient, and can be applied to genome-wide data with tens of thousands of transcripts. Thus, our method is well suited for use as an exploratory tool for genome-wide data. We apply our method to data from human fetal cortical development, and our findings confirm genomic regulatory patterns which are recognised as being fundamental to neuronal development. CONCLUSIONS Our method provides a mathematical/computational toolbox which, when coupled with targeted experiments, will reveal and confirm important new functional genomic regulatory processes in mammalian development.
Collapse
Affiliation(s)
- Thomas Bartlett
- University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
12
|
Longueville S, Nakamura Y, Brami-Cherrier K, Coura R, Hervé D, Girault JA. Long-lasting tagging of neurons activated by seizures or cocaine administration in Egr1-CreER T2 transgenic mice. Eur J Neurosci 2020; 53:1450-1472. [PMID: 33226686 DOI: 10.1111/ejn.15060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Permanent tagging of neuronal ensembles activated in specific experimental situations is an important objective to study their properties and adaptations. In the context of learning and memory, these neurons are referred to as engram neurons. Here, we describe and characterize a novel mouse line, Egr1-CreERT2 , which carries a transgene in which the promoter of the immediate early gene Egr1 drives the expression of the CreERT2 recombinase that is only active in the presence of tamoxifen metabolite, 4-hydroxy-tamoxifen (4-OHT). Egr1-CreERT2 mice were crossed with various reporter mice, Cre-dependently expressing a fluorescent protein. Without tamoxifen or 4-OHT, no or few tagged neurons were observed. Epileptic seizures induced by pilocarpine or pentylenetetrazol in the presence of tamoxifen or 4-OHT elicited the persistent tagging of many neurons and some astrocytes in the dentate gyrus of hippocampus, where Egr1 is transiently induced by seizures. One week after cocaine and 4-OHT administration, these mice displayed a higher number of tagged neurons in the dorsal striatum than saline/4-OHT controls, with differences between reporter lines. Cocaine-induced tagging required ERK activation and tagged neurons were more likely than others to exhibit ERK phosphorylation or Fos induction after a second injection. Interestingly neurons tagged in saline-treated mice also had an increased propensity to express Fos, suggesting the existence of highly responsive striatal neurons susceptible to be re-activated by cocaine repeated administration, which may contribute to the behavioral adaptations. Our report validates a novel transgenic mouse model for permanently tagging activated neurons and studying long-term alterations of Egr1-expressing cells.
Collapse
Affiliation(s)
- Sophie Longueville
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Karen Brami-Cherrier
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Renata Coura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
13
|
Maturational phase of hippocampal neurogenesis and cognitive flexibility. Neurosci Lett 2019; 711:134414. [PMID: 31430544 DOI: 10.1016/j.neulet.2019.134414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Pattern separation aids cognitive flexibility by reducing interference between closely related memories. Dentate gyrus (DG) neurogenesis may facilitate pattern separation by blocking memory retrieval via inhibition of non-neurogenic downstream CA3 neurons. We hypothesized that immature adult-born DG neurons would be associated with decreased CA3 activation and increased cognitive flexibility. METHOD Two groups of adult male rats were tested either on the place avoidance task (PAT) (unflipped condition) or a subtly altered-PAT (flipped condition). Four weeks prior, the rats were injected with the mitotic marker BrdU. Immature new neurons were detected by the microtubule protein doublecortin (DCX). Cells that took up BrdU and expressed NeuN were identified as relatively more mature neurons. Synaptic activation was determined by c-Fos expression. Adaptation to the flipped versus unflipped condition reflected a measure of cognitive flexibility. RESULTS CA3 but not DG c-Fos was lower in the flipped versus unflipped condition [p = 0.002]. CA3 c-Fos correlated inversely with flipped task performance and immature (DCX) neurons with primary and secondary but not tertiary dendrites or more mature (BrdU + NeuN) new neurons. CA3 c-Fos was a significant predictor for the flipped versus unflipped condition specifically for DCX versus BrdU-NeuN neurons. CONCLUSION Immature new neurons (DCX+) without tertiary dendrites may be preferentially implicated in cognitive flexibility relative to more mature new neurons (BrdU-NeuN). In combination with decreased CA3 activation in the flipped PAT, the functional contribution of these immature DG neurons may involve the inhibition of postsynaptic CA3 neurons containing traces of previously salient conditioned memories.
Collapse
|
14
|
Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 2018; 12:79. [PMID: 29755331 PMCID: PMC5932360 DOI: 10.3389/fnbeh.2018.00079] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
Many psychiatric disorders, despite their specific characteristics, share deficits in the cognitive domain including executive functions, emotional control and memory. However, memory deficits have been in many cases undervalued compared with other characteristics. The expression of Immediate Early Genes (IEGs) such as, c-fos, Egr1 and arc are selectively and promptly upregulated in learning and memory among neuronal subpopulations in regions associated with these processes. Changes in expression in these genes have been observed in recognition, working and fear related memories across the brain. Despite the enormous amount of data supporting changes in their expression during learning and memory and the importance of those cognitive processes in psychiatric conditions, there are very few studies analyzing the direct implication of the IEGs in mental illnesses. In this review, we discuss the role of some of the most relevant IEGs in relation with memory processes affected in psychiatric conditions.
Collapse
Affiliation(s)
- Francisco T Gallo
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juan F Morici
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos (UBA), Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
15
|
Early activation of Egr-1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson's disease. Exp Neurol 2018; 302:145-154. [DOI: 10.1016/j.expneurol.2018.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
|
16
|
Thomas ME, Friedman NHM, Cisneros-Franco JM, Ouellet L, de Villers-Sidani É. The Prolonged Masking of Temporal Acoustic Inputs with Noise Drives Plasticity in the Adult Rat Auditory Cortex. Cereb Cortex 2018; 29:1032-1046. [DOI: 10.1093/cercor/bhy009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Nathan H M Friedman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J Miguel Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Lydia Ouellet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| |
Collapse
|
17
|
Eagle AL, Gajewski PA, Robison AJ. Role of hippocampal activity-induced transcription in memory consolidation. Rev Neurosci 2018; 27:559-73. [PMID: 27180338 DOI: 10.1515/revneuro-2016-0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/26/2016] [Indexed: 01/15/2023]
Abstract
Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease.
Collapse
|
18
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
19
|
Kumar JR, Rajkumar R, Lee LC, Dawe GS. Nucleus incertus contributes to an anxiogenic effect of buspirone in rats: Involvement of 5-HT1A receptors. Neuropharmacology 2016; 110:1-14. [PMID: 27436722 DOI: 10.1016/j.neuropharm.2016.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 12/16/2022]
Abstract
The nucleus incertus (NI), a brainstem structure with diverse anatomical connections, is implicated in anxiety, arousal, hippocampal theta modulation, and stress responses. It expresses a variety of neurotransmitters, neuropeptides and receptors such as 5-HT1A, D2 and CRF1 receptors. We hypothesized that the NI may play a role in the neuropharmacology of buspirone, a clinical anxiolytic which is a 5-HT1A receptor partial agonist and a D2 receptor antagonist. Several preclinical studies have reported a biphasic anxiety-modulating effect of buspirone but the precise mechanism and structures underlying this effect are not well-understood. The present study implicates the NI in the anxiogenic effects of a high dose of buspirone. Systemic buspirone (3 mg/kg) induced anxiogenic effects in elevated plus maze, light-dark box and open field exploration paradigms in rats and strongly activated the NI, as reflected by c-Fos expression. This anxiogenic effect was reproduced by direct infusion of buspirone (5 μg) into the NI, but was abolished in NI-CRF-saporin-lesioned rats, indicating that the NI is present in neural circuits driving anxiogenic behaviour. Pharmacological studies with NAD 299, a selective 5-HT1A antagonist, or quinpirole, a D2/D3 agonist, were conducted to examine the receptor system in the NI involved in this anxiogenic effect. Opposing the 5-HT1A agonism but not the D2 antagonism of buspirone in the NI attenuated the anxiogenic effects of systemic buspirone. In conclusion, 5-HT1A receptors in the NI contribute to the anxiogenic effect of an acute high dose of buspirone in rats and may be functionally relevant to physiological anxiety.
Collapse
Affiliation(s)
- Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Liying Corinne Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore.
| |
Collapse
|
20
|
Herdegen T. REVIEW ■ : Jun, Fos, and CREB/ATF Transcription Factors in the Brain: Control of Gene Expression under Normal and Pathophysiological Conditions. Neuroscientist 2016. [DOI: 10.1177/107385849600200310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression and activation of transcription factors and the control of gene transcription in the nervous system is a recent and rapidly expanding field in neurosciences. This research area may provide insights concerning the information transfer that arises from postsynaptic potentials or ligand-coupling of membrane receptors and terminates in gene expression. Visualization of both de novo synthesis of inducible transcription factors (ITFs) and phosphorylation of preexisting transcription factors have been used to mark neurons, pathways, and networks excited by various stimuli. This article summarizes basics of the transcription process and the complex functions of Jun, Fos, and CREB/ATF proteins, as well as the use of ITFs as experimental instruments in neurophysiology and neurobiology. The major focus is on the alterations in ITF expression following acute or chronic pathophysiological stimuli as mirrors of alterations in neuronal programs underlying adaptation, dysfunctions, or the development of diseases affecting the nervous system. NEUROSCIENTIST 2:153-161, 1996
Collapse
|
21
|
Radley JJ, Sawchenko PE. Evidence for involvement of a limbic paraventricular hypothalamic inhibitory network in hypothalamic-pituitary-adrenal axis adaptations to repeated stress. J Comp Neurol 2015; 523:2769-87. [PMID: 26010947 DOI: 10.1002/cne.23815] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Abstract
Emotional stressors activate a stereotyped set of limbic forebrain cell groups implicated in constraining stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation by inhibiting hypophysiotropic neurons in the paraventricular hypothalamic nucleus (PVH). We previously identified a circumscribed, anterior part of the bed nuclei of the stria terminalis (aBST) that houses stress-sensitive, PVH-projecting, γ-aminobutyric acid (GABA)-ergic neurons as representing a site of convergence of stress-inhibitory influences originating from medial prefrontal and hippocampal cortices. Here we investigate whether exaggerated HPA axis responses associated with chronic variable stress (CVS; daily exposure to different stressors at unpredictable times over 14 days, followed by restraint stress on day 15) and diminished HPA output seen following repeated (14 days) restraint-stress exposure are associated with differential engagement of the limbic modulatory network. Relative to acutely restrained rats, animals subjected to CVS showed the expected increase (sensitization) in HPA responses and diminished levels of activation (Fos) of GABAergic neurons and glutamic acid decarboxylase (GAD) mRNA expression in the aBST. By contrast, repeated restraint stress produced habituation in HPA responses, maintained levels of activation of GABAergic neurons, and increased GAD expression in the aBST. aBST-projecting neurons in limbic sites implicated in HPA axis inhibition tended to show diminished activational responses in both repeated-stress paradigms, with the exception of the paraventricular thalamic nucleus, in which responsiveness was maintained in repeatedly restrained animals. The results are consistent with the view that differential engagement of HPA inhibitory mechanisms in the aBST may contribute to alterations in HPA axis responses to emotional stress in sensitization and habituation paradigms.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Psychological and Brain Sciences and Neuroscience Program, University of Iowa, Iowa City, Iowa, 52242
| | - Paul E Sawchenko
- Laboratory of Neuronal Structure and Function and The Clayton Medical Research Foundation, The Salk Institute for Biological Studies, La Jolla, California, 92037
| |
Collapse
|
22
|
Sugimoto K, Ohmomo H, Shutoh F, Nogami H, Hisano S. Presentation of noise during acute restraint stress attenuates expression of immediate early genes and arginine vasopressin in the hypothalamic paraventricular nucleus but not corticosterone secretion in rats. Neurosci Res 2014; 96:20-9. [PMID: 25496933 DOI: 10.1016/j.neures.2014.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/12/2014] [Accepted: 11/28/2014] [Indexed: 11/16/2022]
Abstract
The present study investigated the effect of acoustic stimulation on the activation of the hypothalamic-pituitary-adrenal (HPA) axis in rats submitted to acute restraint stress, through semi-quantitative histochemical analysis of expression of immediate early gene products (c-Fos, JunB and phosphorylated c-Jun) and arginine vasopressin (AVP) hnRNA in the paraventricular nucleus (PVN). Simultaneous presentation of white or pink noise with restraint resulted in a significant attenuation of stress-induced c-Fos and JunB expression in the dorsal body of dorsal medial parvicellular subdivision (mpdd) of the PVN, as compared with restraint without noise. However, this presentation did not change phosphorylation of c-Jun and the plasma corticosterone level. Moreover, white noise presentation during restraint led to a reduction in the number of c-Fos- or JunB-expressing corticotropin-releasing hormone (CRH) neurons and the number of neurons expressing AVP hnRNA in the mpdd. Dual-histochemical labeling revealed co-expression of c-Fos and JunB, as well as JunB and AVP hnRNA in mpdd neurons. These data suggest that acoustic stimuli have an attenuation effect on the restraint-induced activation of neuroendocrine CRH neurons, resulting in the reduction in AVP production as an adaptation of HPA axis to repeated stress.
Collapse
Affiliation(s)
- Koji Sugimoto
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Fumihiro Shutoh
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Laboratory of Neuroendocrinology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruo Nogami
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Laboratory of Neuroendocrinology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Setsuji Hisano
- Laboratory of Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Laboratory of Neuroendocrinology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
23
|
Cadet JL, Brannock C, Jayanthi S, Krasnova IN. Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol Neurobiol 2014; 51:696-717. [PMID: 24939695 PMCID: PMC4359351 DOI: 10.1007/s12035-014-8776-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023]
Abstract
Methamphetamine use disorder is a chronic neuropsychiatric disorder characterized by recurrent binge episodes, intervals of abstinence, and relapses to drug use. Humans addicted to methamphetamine experience various degrees of cognitive deficits and other neurological abnormalities that complicate their activities of daily living and their participation in treatment programs. Importantly, models of methamphetamine addiction in rodents have shown that animals will readily learn to give themselves methamphetamine. Rats also accelerate their intake over time. Microarray studies have also shown that methamphetamine taking is associated with major transcriptional changes in the striatum measured within a short or longer time after cessation of drug taking. After a 2-h withdrawal time, there was increased expression of genes that participate in transcription regulation. These included cyclic AMP response element binding (CREB), ETS domain-containing protein (ELK1), and members of the FOS family of transcription factors. Other genes of interest include brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor, type 2 (TrkB), and synaptophysin. Methamphetamine-induced transcription was found to be regulated via phosphorylated CREB-dependent events. After a 30-day withdrawal from methamphetamine self-administration, however, there was mostly decreased expression of transcription factors including junD. There was also downregulation of genes whose protein products are constituents of chromatin-remodeling complexes. Altogether, these genome-wide results show that methamphetamine abuse might be associated with altered regulation of a diversity of gene networks that impact cellular and synaptic functions. These transcriptional changes might serve as triggers for the neuropsychiatric presentations of humans who abuse this drug. Better understanding of the way that gene products interact to cause methamphetamine addiction will help to develop better pharmacological treatment of methamphetamine addicts.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA,
| | | | | | | |
Collapse
|
24
|
Nagelová V, Pirník Z, Železná B, Maletínská L. CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Res 2013; 1547:16-24. [PMID: 24378198 DOI: 10.1016/j.brainres.2013.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 01/10/2023]
Abstract
CART (cocaine- and amphetamine-regulated transcript) peptide is a neuropeptide with a powerful central anorexigenic effect. Specific CART peptide binding sites, most likely CART peptide receptors, have been found in PC12 cells. This study further characterizes the CART peptide binding sites in PC12 cells. After differentiation to a neuronal phenotype with nerve growth factor, the number of CART peptide binding sites in PC12 cells tripled. Following dexamethasone treatment, which transforms PC12 cells into chromaffin-like cells, the number of CART peptide binding sites substantially decreased. CART peptide did not affect the differentiation or acetylcholinesterase activity of PC12 cells, indicating that CART peptide does not participate in differentiation or neuronal activity. CART peptide increased the phosphorylation of SAPK/JNK (stress-activated protein kinase/c-Jun-amino-terminal kinase) and subsequent c-Jun protein expression. These effects were reversed by SP600125, a specific JNK-kinase inhibitor. CART peptide did not significantly affect ERK (extracellular signal-regulated kinase), CREB (cAMP responsive element binding protein), or p38 phosphorylation and c-Fos protein expression. Central administration of CART peptide into mice also resulted in increased c-Jun positive cells in dorsomedial hypothalamic nucleus and nucleus of the solitary tract, areas involved in food intake regulation. Activation of c-Jun by CART peptide might indicate a possible role of CART peptide in managing stress conditions rather than a role in cell proliferation or differentiation as well as the more complex and/or specific regulation ways by transcription factors in some nuclei involved in food intake regulation. The characteristics of stress that CART peptide potentially mediates should be further studied.
Collapse
Affiliation(s)
- Veronika Nagelová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Zdeno Pirník
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska str. 3, 833 06 Bratislava, Slovak Republic; Department of Human and Clinical Pharmacology, University of Veterinary Medicine, Komenskeho 73, 041 81 Kosice, Slovak Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague, Czech Republic.
| |
Collapse
|
25
|
Perera TD, Thirumangalakudi L, Glennon E, Park S, Insanally M, Persky M, Fonseka J, Dwork AJ, Sackeim HA, Coplan JD, Fenton AA. Role of hippocampal neurogenesis in mnemonic segregation: implications for human mood disorders. World J Biol Psychiatry 2013; 14:602-10. [PMID: 23398296 DOI: 10.3109/15622975.2013.768356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Although hippocampal neurogenesis has been implicated in mood disorders, the precise role new neurons play in mood regulation is not fully elucidated. Here we examine whether neurogenesis improves mood by facilitating segregation of novel experiences that conflict with older maladaptive memories. METHODS Study 1: Four groups (N = 9 each) of adult male rats (exposed to stress or control conditions plus antidepressant or placebo) underwent active training on the place-avoidance task (PAT) on week 0; tested on recalling the "Initial PAT" on weeks 4 and 8; learning a subtly "Altered PAT" on week 8; and euthanazed on week 9. Study-2: Two groups (N = 12 each) rats tested either on the Initial-PAT or Altered-PAT 3 days post-training and immediately euthanized. RESULTS Stressed subjects treated with placebo were slower in learning the week 8 Altered Task and had lower neurogenesis rates than non-stressed animals and Stressed subjects given drug (Study 1). Synaptic activation of mature hippocampal neurons inversely correlated with Altered-PAT performance and with neurogenesis rates (Study 2). CONCLUSIONS Increasing neurogenesis enhances acquisition of novel experiences possibly by suppressing activation of mature hippocampal neurons that mediate established, conflicting memories. Therefore, antidepressants may improve mood by stimulating new hippocampal neurogenesis that facilitate detection of positive experiences while suppressing interference from recurring depressogenic thought patterns.
Collapse
Affiliation(s)
- Tarique D Perera
- Department of Psychiatry Columbia University/New York State Psychiatric Institute , New York, NY , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Effect of acute and chronic bilateral visual deafferentation on c-Fos immunoreactivity in the visual system of adult rats. Exp Brain Res 2013; 229:595-607. [DOI: 10.1007/s00221-013-3623-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 06/12/2013] [Indexed: 12/24/2022]
|
27
|
Salomons AR, Arndt SS, Lavrijsen M, Kirchhoff S, Ohl F. Expression of CRFR1 and Glu5R mRNA in different brain areas following repeated testing in mice that differ in habituation behaviour. Behav Brain Res 2013; 246:1-9. [DOI: 10.1016/j.bbr.2013.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 01/11/2023]
|
28
|
Grasselli G, Strata P. Structural plasticity of climbing fibers and the growth-associated protein GAP-43. Front Neural Circuits 2013; 7:25. [PMID: 23441024 PMCID: PMC3578352 DOI: 10.3389/fncir.2013.00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/03/2013] [Indexed: 01/12/2023] Open
Abstract
Structural plasticity occurs physiologically or after brain damage to adapt or re-establish proper synaptic connections. This capacity depends on several intrinsic and extrinsic determinants that differ between neuron types. We reviewed the significant endogenous regenerative potential of the neurons of the inferior olive (IO) in the adult rodent brain and the structural remodeling of the terminal arbor of their axons, the climbing fiber (CF), under various experimental conditions, focusing on the growth-associated protein GAP-43. CFs undergo remarkable collateral sprouting in the presence of denervated Purkinje cells (PCs) that are available for new innervation. In addition, severed olivo-cerebellar axons regenerate across the white matter through a graft of embryonic Schwann cells. In contrast, CFs undergo a regressive modification when their target is deleted. In vivo knockdown of GAP-43 in olivary neurons, leads to the atrophy of their CFs and a reduction in the ability to sprout toward surrounding denervated PCs. These findings demonstrate that GAP-43 is essential for promoting denervation-induced sprouting and maintaining normal CF architecture.
Collapse
|
29
|
Yao ST, Gouraud SS, Qiu J, Cunningham JT, Paton JFR, Murphy D. Selective up-regulation of JunD transcript and protein expression in vasopressinergic supraoptic nucleus neurones in water-deprived rats. J Neuroendocrinol 2012; 24:1542-52. [PMID: 22827527 PMCID: PMC3499652 DOI: 10.1111/j.1365-2826.2012.02362.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/29/2012] [Accepted: 07/19/2012] [Indexed: 11/29/2022]
Abstract
The magnocellular neurones (MCN) of the supraoptic nucleus (SON) undergo reversible changes during dehydration. We hypothesise that alterations in steady-state transcript levels might be partially responsible for this plasticity. In turn, regulation of transcript abundance might be mediated by transcription factors. We have previously used microarrays to identify changes in the expression of mRNAs encoding transcription factors in response to water deprivation. We observed down-regulation of 11 and up-regulation of 31 transcription factor transcripts, including members of the activator protein-1 gene family, namely c-fos, c-jun, fosl1 and junD. Because JunD expression and regulation within the SON has not been previously described, we have used in situ hybridisation and the quantitative reverse transcriptase-polymerase chain reaction to confirm the array results, demonstrating a significant increase in JunD mRNA levels following 24 and 72 h of water deprivation. Western blot and immunohistochemistry revealed a significant increase in JunD protein expression following dehydration. Double-staining fluorescence immunohistochemistry with a neurone-specific marker (NeuN) demonstrated that JunD staining is predominantly neuronal. Additionally, JunD immunoreactivity is observed primarily in vasopressin-containing neurones with markedly less staining seen in oxytocin-containing MCNs. Furthermore, JunD is highly co-expressed with c-Fos in MCNs of the SON following dehydration. These results suggest that JunD plays a role in the regulation of gene expression within MCNs of the SON in association with other Fos and Jun family members.
Collapse
Affiliation(s)
- S T Yao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Kress S, Wullimann MF. Correlated basal expression of immediate early gene egr1 and tyrosine hydroxylase in zebrafish brain and downregulation in olfactory bulb after transitory olfactory deprivation. J Chem Neuroanat 2012; 46:51-66. [DOI: 10.1016/j.jchemneu.2012.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023]
|
31
|
Pérez-Cadahía B, Drobic B, Davie JR. Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 2011; 89:61-73. [PMID: 21326363 DOI: 10.1139/o10-138] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immediate-early genes have important roles in processes such as brain development, learning, and responses to drug abuse. Further, immediate-early genes play an essential role in cellular responses that contribute to long-term neuronal plasticity. Neuronal plasticity is a characteristic of the nervous system that is not limited to the first stages of brain development but persists in adulthood and seems to be an inherent feature of everyday brain function. The plasticity refers to the neuron's capability of showing short- or long-lasting phenotypic changes in response to different stimuli and cellular scenarios. In this review, we focus on the immediate-early genes encoding transcription factors (AP-1 and Egr) that are relevant for neuronal responses. Our current understanding of the mechanisms involved in the induction of the immediate-early genes is presented.
Collapse
Affiliation(s)
- Beatriz Pérez-Cadahía
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain
| | | | | |
Collapse
|
32
|
Nucleus incertus--an emerging modulatory role in arousal, stress and memory. Neurosci Biobehav Rev 2011; 35:1326-41. [PMID: 21329721 DOI: 10.1016/j.neubiorev.2011.02.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 02/01/2011] [Accepted: 02/08/2011] [Indexed: 01/09/2023]
Abstract
A major challenge in systems neuroscience is to determine the underlying neural circuitry and associated neurotransmitters and receptors involved in psychiatric disorders, such as anxiety and depression. A focus of many of these studies has been specific brainstem nuclei that modulate levels of arousal via their ascending monoaminergic projections (e.g. the serotonergic dorsal raphé, noradrenergic locus ceruleus and cholinergic laterodorsal tegmental nucleus). After years of relative neglect, the subject of recent studies in this context has been the GABAergic nucleus incertus, which is located in the midline periventricular central gray in the 'prepontine' hindbrain, with broad projections throughout the forebrain. Nucleus incertus neurons express receptors for the stress hormone, corticotropin-releasing factor (CRF), are activated by psychological stressors, and project to key nuclei involved in stress responses and behavioral activation. The nucleus incertus is also a node in neural circuits capable of modulating hippocampal theta rhythm, which is related to control of spatial navigation and memory. A significant population of nucleus incertus neurons express the recently discovered, highly conserved neuropeptide, relaxin-3; and the recent availability of structurally-related, chimeric peptides that selectively activate or inhibit the relaxin-3 receptor, RXFP3, is facilitating studies of relaxin-3/RXFP3 networks and associated GABA and CRF systems. It is predicted that such targeted research will help elucidate the functions of ascending nucleus incertus pathways, including their possible involvement in arousal (sleep/wakefulness), stress reponses, and learning and memory; and in the pathology of related psychiatric diseases such as insomnia, anxiety and depression, and cognitive deficits.
Collapse
|
33
|
Vinit S, Darlot F, Aoulaïche H, Boulenguez P, Kastner A. Distinct Expression of c-Jun and HSP27 in Axotomized and Spared Bulbospinal Neurons After Cervical Spinal Cord Injury. J Mol Neurosci 2010; 45:119-33. [DOI: 10.1007/s12031-010-9481-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 12/19/2022]
|
34
|
Burger T, Lucová M, Moritz RE, Oelschläger HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Nemec P. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J R Soc Interface 2010; 7:1275-92. [PMID: 20219838 DOI: 10.1098/rsif.2009.0551] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal-hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit.
Collapse
Affiliation(s)
- Tomás Burger
- Department of Zoology, Faculty of Science Charles University in Prague, Vinicna 7, CZ-12844 Praha 2, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rana SA, Mallet PE, Robertson BA, Wainwright PE. Effect of complete maternal and littermate deprivation on morphine-induced Fos-immunoreactivity in the adult male rat brain. Pediatr Res 2010; 67:263-7. [PMID: 19915516 DOI: 10.1203/pdr.0b013e3181ca0807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous research has demonstrated that rats reared in isolation from their dam and littermates show altered behavioral responsiveness to both natural and drug-mediated rewards. This study examined the effects of complete maternal deprivation through the use of artificial rearing on neural activation after acute morphine exposure in adulthood. Male rats were either artificially reared (AR) or maternally reared (MR) from postnatal day 5 to 21. In adulthood (4 mo old), rats received a single injection of morphine sulfate (10 mg/kg) or equivolume saline 2 h before perfusion and brain extraction. Neural activation was quantified using Fos immunohistochemistry. Analyses of several brain regions revealed a consistent pattern of differences between AR and MR rats. Specifically, relative to MR rats, AR rats showed significantly greater morphine-induced Fos-immunoreactivity in brain regions associated with the mesocorticolimbic "reward" pathway. These results support the hypothesis that functional activity in reward neurocircuitry can be altered by early life experience.
Collapse
Affiliation(s)
- Shadna A Rana
- Department of Health Studies and Gerontology, University of Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
36
|
Palkovits M, Sebekova K, Gallatz K, Boor P, Sebekova K, Klassen A, Bahner U, Heidland A. Neuronal activation in the CNS during different forms of acute renal failure in rats. Neuroscience 2009; 159:862-82. [DOI: 10.1016/j.neuroscience.2008.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/20/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
|
37
|
Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 2008; 32:1014-23. [PMID: 18471877 DOI: 10.1016/j.neubiorev.2008.03.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/18/2008] [Accepted: 03/28/2008] [Indexed: 01/17/2023]
Abstract
The research of the glutamatergic system in schizophrenia has advanced with the use of non-competitive antagonists of glutamate NMDA receptors (phencyclidine, ketamine, and dizocilpine), which change both human and animal behaviour and induce schizophrenia-like manifestations. Models based on both acute and chronic administration of these substances in humans and rats show phenomenological validity and are suitable for searching for new substances with antipsychotic effects. Nevertheless, pathophysiology of schizophrenia remains unexplained. In the light of the neurodevelopmental model of schizophrenia based on early administration of NMDA receptor antagonists it seems that increased cellular destruction by apoptosis or changes in function of glutamatergic NMDA receptors in the early development of central nervous system are decisive for subsequent development of psychosis, which often does not manifest itself until adulthood. Chronic administration of antagonists initializes a number of adaptation mechanisms, which correlate with findings obtained in patients with schizophrenia; therefore, this model is also suitable for research into pathophysiology of this disease.
Collapse
|
38
|
Stamp JA, Mashoodh R, van Kampen JM, Robertson HA. Food restriction enhances peak corticosterone levels, cocaine-induced locomotor activity, and ΔFosB expression in the nucleus accumbens of the rat. Brain Res 2008; 1204:94-101. [DOI: 10.1016/j.brainres.2008.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/22/2007] [Accepted: 02/03/2008] [Indexed: 10/22/2022]
|
39
|
Kells AP, Henry RA, Connor B. AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther 2008; 15:966-77. [PMID: 18323792 DOI: 10.1038/gt.2008.23] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Maintenance and plasticity of striatal neurons is dependent on brain-derived neurotrophic factor (BDNF), which is depleted in the Huntington's disease striatum due to reduced expression and disrupted corticostriatal transportation. In this study we demonstrate that overexpression of BDNF in the striatum attenuates motor impairment and reduces the extent of striatal damage following quinolinic acid lesioning. Transfer of the BDNF gene to striatal neurons using serotype 1/2 adeno-associated viral vectors enhanced BDNF protein levels in the striatum, but induced weight loss and seizure activity following long-term high-level expression. Lower concentration BDNF expression supported striatal neurons against excitotoxic insult, as demonstrated by enhanced krox-24 immunopositive neuron survival, reduction of striatal atrophy and maintenance of the patch/matrix organization. Additionally, BDNF expression attenuated motor impairment in the forelimb use cylinder test, sensorimotor neglect in the corridor food selection task and reversed apomorphine-induced rotational behaviour. Direct correlations were shown for the first time between BDNF-mediated attenuation of behavioural impairment and the integrity of the globus pallidus, seemingly independent from the severity of striatal lesioning. These results demonstrate that BDNF holds considerable therapeutic potential for alleviating both neuropathological and motor function deficits in the Huntington's disease brain, and the critical role of pallidal neurons in facilitating motor performance.
Collapse
Affiliation(s)
- A P Kells
- Department of Pharmacology and Clinical Pharmacology, Neural Repair and Neurogenesis Laboratory, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
40
|
Man PS, Wells T, Carter DA. Egr-1-d2EGFP transgenic rats identify transient populations of neurons and glial cells during postnatal brain development. Gene Expr Patterns 2007; 7:872-83. [PMID: 17698419 DOI: 10.1016/j.modgep.2007.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/09/2007] [Accepted: 06/24/2007] [Indexed: 10/23/2022]
Abstract
The inducible transcription factor Egr-1 has been extensively studied in the adult brain but potential roles during development are largely unexplored. Here we describe the analysis of a new transgenic rat model (egr-1 promoter driving a destabilized GFP molecule) that has provided novel information about the postnatal roles of Egr-1. We show that Egr-1 is more widely expressed in the neonatal brain than was previously appreciated, and is not restricted to neurons; it is expressed in glial cells in the postnatal neocortex and hippocampus. This pattern of expression has been revealed due to cellular filling by GFP, permitting co-localization with glial markers. The transgene/Egr-1 is also expressed in a novel population of cells associated with Cajal-Retzius-like neurons within the marginal zone of the postnatal neocortex. Both of these cellular populations are transient, being limited to the neonatal period, before Egr-1 expression becomes established in an adult-like pattern within neocortical neurons, CA1 hippocampus, and striatum. Another transient population of transgene/Egr-1 cells in the bed nucleus of the stria terminalis is maintained until pre-adolescence. The transient phenotype of these cells involves a low relative expression of the neuronal marker NeuN, perhaps indicating a failure to achieve full neuronal differentiation. Egr-1 is therefore present in a diverse range of cell-types during postnatal development. Transgenic expression of a destabilized fluorescent marker has permitted identification of these novel cell populations and will facilitate further analysis of the transcriptional mechanisms that underlie the specific functions and fate of these cells during postnatal brain development.
Collapse
Affiliation(s)
- P-S Man
- School of Biosciences, Cardiff University, P.O. Box 911, Museum Avenue, Cardiff CF10 3US, UK
| | | | | |
Collapse
|
41
|
Delaney J, Chiarello R, Villar D, Kandalam U, Castejon AM, Clark MA. Regulation of c-fos, c-jun and c-myc Gene Expression by Angiotensin II in Primary Cultured Rat Astrocytes: Role of ERK1/2 MAP Kinases. Neurochem Res 2007; 33:545-50. [PMID: 17763940 DOI: 10.1007/s11064-007-9474-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/14/2007] [Indexed: 11/30/2022]
Abstract
We have previously shown that angiotensin II (Ang II) stimulates astrocyte growth through activation of ERK1/2 mitogen activated protein (MAP) kinases. In the current study, we determined whether Ang II stimulates the expression of c-fos, c-jun and c-myc in brainstem astrocyte cultures. Reverse transcriptase-PCR analysis showed c-fos, c-jun, and c-myc mRNAs were induced by Ang II. The EC50 values for Ang II stimulation of c-fos, c-jun and c-myc were 1.3, 1.68 and 1.4 nM, respectively. Ang II (100 nM) induced peak stimulation for all genes by 45 min followed by a gradual decline. Inhibition of ERK1/2 by PD98059 attenuated Ang II-induced c-fos and c-myc mRNA expression (by 75% and 100%, respectively) but was ineffective in preventing Ang II induction of c-jun. These studies show for the first time in brainstem astrocytes that Ang II induces the expression of c-fos, c-myc and c-jun, and showed that ERK1/2 mediate Ang II stimulation of c-fos and c-myc. These data implicate the ERK1/2 MAP kinase pathway as a divergent point in controlling Ang II stimulation of immediate early response genes in the central nervous system.
Collapse
Affiliation(s)
- Jimmy Delaney
- College of Pharmacy, Department of Pharmaceutical and Administrative Sciences, Cardiovascular and Metabolic Research Unit, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | | | | | | | | | | |
Collapse
|
42
|
Vogel J, Weigand MA, Behrens A, Wagner EF, Schorpp-Kistner M, Zimmermann M, Schenkel J. Infarct volume after transient middle cerebral artery occlusion (MCAo) can be reduced by attenuation but not by inactivation of c-Jun action. Brain Res 2007; 1151:12-9. [PMID: 17428453 DOI: 10.1016/j.brainres.2007.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 02/01/2007] [Accepted: 03/03/2007] [Indexed: 11/15/2022]
Abstract
Stroke therapy aims to save penumbral tissue from apoptosis that is activated in response to the ischemic injury. Since the c-Jun transcription factor plays a crucial role in promoting apoptosis, inhibition of its activation might reduce the final infarct size and thus increase functional outcome. To test this hypothesis we made use of four genetically modified mouse lines influencing the c-Jun pathway at various steps. Upon transient middle cerebral artery occlusion for 90 min and 24 h of reperfusion, infarct volume and number of ATF-2-, TUNEL- and cleaved Caspase-3-positive cells were determined in conditional c-Jun knock-out mice (cond. c-Jun), mice overexpressing JunB (JunBtg), mice lacking the phosphoacceptor serines 63 and 73 of c-Jun (JunAA) and in mice overexpressing Bcl-2 (Bcl-2tg). Cond. c-Jun as well as JunAA mice did not show significant differences in the infarct size when compared to their non-mutant controls. By contrast smaller infarct volumes were detected in transgenic mice merely attenuating c-Jun action (JunBtg and Bcl-2tg). ATF-2, TUNEL or cleaved Caspase-3 staining revealed no significant differences between the experimental groups. A complete lack of functional c-Jun might be compensated by other cellular mechanisms, in contrast to its reduced function. Thus, our data suggest that attenuation rather than a complete block of c-Jun action appears to be more promising for therapy of stroke.
Collapse
Affiliation(s)
- Johannes Vogel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Singewald N. Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev 2007; 31:18-40. [PMID: 16620984 DOI: 10.1016/j.neubiorev.2006.02.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 12/21/2022]
Abstract
Pathological anxiety involves aberrant processing of emotional information that is hypothesized to reflect perturbations in fear/anxiety pathways. The affected neurobiological substrates in patients with different anxiety disorders are just beginning to be revealed. Important leads for this research can be derived from findings obtained in psychopathologically relevant rodent models of enhanced anxiety, by revealing where in the brain neuronal processing in response to diverse challenges is different to that in animals with lower anxiety levels. Different functional mapping methods in various rodent models, including psychogenetically selected lines or genetically modified animals, have been used for this purpose. These studies show that the divergent anxiety-related behavioral response of high-anxiety- vs. normal and/or low-anxiety rodents to emotional challenges is associated with differential neuronal activation in restricted parts of proposed fear/anxiety circuitries including brain areas thought to be important in stress, emotion and memory. The identification of neuronal populations showing differential activation depends in part on the applied emotional challenge, indicating that specific facets of elicited fear or anxiety preferentially engage particular parts of the fear/anxiety circuitry. Hence, only the use of an array of different challenges will reveal most affected brain areas. A number of the neuronal substrates identified are suggested as candidate mediators of dysfunctional brain activation in pathological anxiety. Indeed, key findings revealed in these rodent models show parallels to observations in human symptom provocation studies comparing anxiety disorder patients with healthy volunteers. Work to investigate exactly which of the changed neuronal activation patterns in high-anxiety rodents has to be modulated by therapeutic drugs to achieve effective anxiolysis and via which neurochemical pathways this can be accomplished is at its early stages but has identified a small number of promising candidates. Extending these approaches should help to provide further insight into these mechanisms, revealing new leads for therapeutic targets and strategies.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Lensu S, Miettinen R, Pohjanvirta R, Lindén J, Tuomisto J. Assessment by c-Fos immunostaining of changes in brain neural activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and leptin in rats. Basic Clin Pharmacol Toxicol 2006; 98:363-71. [PMID: 16623859 DOI: 10.1111/j.1742-7843.2006.pto_276.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes multiple effects in laboratory animals. One of these is a wasting syndrome (a dramatic loss of body weight over 2-5 weeks) whose mechanism is still largely unknown. We exploited the over 1000 times difference in TCDD sensitivity between Long-Evans (Turku/AB); (L-E) and Han/Wistar (Kuopio); (H/W) rats to reveal brain areas that might be activated by a single dose of TCDD (50 microg/kg) given 24 hr previously. Leptin (1.3 mg/kg intraperitoneally 2 hr before tissue harvest) was used as a reference compound, as its neural pathway for decreasing food intake in the control of energy homeostasis is fairly well known. Serial sections of the brains were immunostained with an antibody for the activity marker c-Fos, and selected areas -- primarily in the hypothalamus -- were analysed with a computer-assisted microscope. Given alone, TCDD did not elicit any major alterations in c-Fos protein levels in the hypothalamic nuclei at the early time-point studied (24 hr after administration), neither in pooled data nor in individual strains. The control substance leptin proved that the method is valid as it increased the number of c-Fos-immunopositive cells in the hypothalamic ventromedial and arcuate nuclei. Although the present findings are not suggestive of a primary role for the hypothalamus in the wasting syndrome, a time-course study covering also the feeding-active dark hours is warranted for their verification.
Collapse
Affiliation(s)
- Sanna Lensu
- National Public Health Institute, Department of Environmental Health, P.O.B. 95, FI-70701 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
45
|
Yang SJ, Liang HL, Wong-Riley MTT. Activity-dependent transcriptional regulation of nuclear respiratory factor-1 in cultured rat visual cortical neurons. Neuroscience 2006; 141:1181-92. [PMID: 16753268 DOI: 10.1016/j.neuroscience.2006.04.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/20/2006] [Accepted: 04/22/2006] [Indexed: 10/24/2022]
Abstract
Nuclear respiratory factor 1 is a transcription factor involved in the regulation of mitochondrial biogenesis by activating the transcription of subunit genes of cytochrome oxidase and other respiratory enzymes. Very little is known of its role in neurons. To determine if neuronal activity regulates nuclear respiratory factor 1 expression, cultured primary neurons from postnatal rat visual cortex were subjected to 20 mM KCl depolarizing treatment for 1, 3, 5, and 7 h, or exposed to 7 h of KCl followed by withdrawal for 1, 3, 5, and 7 h. Nuclear respiratory factor 1 expression was analyzed by immunoblots, immunocytochemistry, quantitative electron microscopy, real-time quantitative PCR, and in situ hybridization. Nuclear respiratory factor 1 protein was expressed at relatively low basal levels in both the nucleus, where it was associated primarily with euchromatin, and in the cytoplasm, where it was localized to free ribosomes and occasionally to the Golgi apparatus and the outer nuclear membrane. Depolarizing treatment progressively up-regulated both nuclear respiratory factor 1 protein and mRNA in a time-dependent manner, increasing above controls after 1 h and remaining high at 3, 5, and 7 h. Both nuclear and cytoplasmic mRNA levels increased with stimulation, and there was an apparent cytoplasmic-to-nuclear translocation of protein. Following the withdrawal of KCl, both nuclear respiratory factor 1 message and protein were significantly reduced after 1 h. The message returned to basal levels by 5 h and the protein by 7 h. These results strongly indicate that the expression and compartmental redistribution of nuclear respiratory factor 1 protein and mRNA in visual cortical neurons are dynamic processes tightly controlled by neuronal activity.
Collapse
Affiliation(s)
- S J Yang
- Department of Cell Biology, Neurobiology, and Anatomy Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
46
|
Serrats J, Sawchenko PE. CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. J Comp Neurol 2006; 495:236-54. [PMID: 16435288 DOI: 10.1002/cne.20872] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that engages the immune system in a T-lymphocyte-dependent manner and induces a cytokine profile distinct from that elicited by the better-studied bacterial pathogen analog, lipopolysaccharide (LPS). Because of reports of SEB recruiting central nervous system (CNS) host defense mechanisms via pathways in common with LPS, we sought to further characterize central systems impacted by this agent. Rats were treated with SEB at doses of 50-5,000 mug/kg, and killed 0.5-6 hours thereafter. SEB injection produced a discrete pattern of Fos induction in brain that peaked at 2-3 hours postinjection and whose strength was dose-related. Induced Fos expression was predominantly subcortical and focused in a set of interconnected central autonomic structures, including aspects of the bed n. of the stria terminalis, central amygdala and lateral parabrachial nuclei; functionally related (and LPS-responsive) cell groups in the n. solitary tract, ventrolateral medulla, and paraventricular hypothalamic n. (PVH) were, by contrast, weakly responsive. SEB also activated cell groups in the limbic forebrain (lateral septal n, medial prefrontal cortex) and hypothalamic GABAergic neurons, which could account for its failure to elicit reliable increases in Fos-ir or corticotropin-releasing factor (CRF) mRNA in the PVH. SEB nevertheless did provoke reliable pituitary-adrenal secretory responses. The identification of subsets of central autonomic and limbic forebrain structures that are sensitive to SEB provides a basis for a systems-level understanding of the physiological and behavioral effects attributed to the superantigen. Core SEB-responsive cell groups exclude a medullary-PVH circuit implicated in pituitary-adrenal responses to LPS.
Collapse
Affiliation(s)
- Jordi Serrats
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies and The Foundation for Medical Research, La Jolla, California 92037, USA
| | | |
Collapse
|
47
|
Morando L, Cesa R, Harvey RJ, Strata P. Spontaneous Electrical Activity and Structural Plasticity in the Mature Cerebellar Cortex. Ann N Y Acad Sci 2006; 1048:131-40. [PMID: 16154927 DOI: 10.1196/annals.1342.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Purkinje cell of the cerebellar cortex presents two distinct dendritic domains: a distal one, with spiny branchlets and a high density of spines innervated by many parallel fibers, and a proximal one, with a few clusters of spines innervated by a single climbing fiber terminal arbor. In adult rats, after 7 days of blocked electrical activity by the administration of TTX into the cerebellar parenchyma, the proximal dendritic domain of the Purkinje cell shows a remarkable growth of new spines that are innervated by parallel fibers. At the same time, the climbing fiber terminal arbor tends to become atrophic. In contrast, in the branchlets, spine density remains unmodified. These changes are reversible when TTX is removed. TTX treatment also leads to a decrease in spine size both in the branchlets and in the new spines of the proximal dendritic compartment. Spontaneous electrical activity should therefore be regarded not simply as noise, but as a significant signal for maintaining the typical profile of afferent innervation of the Purkinje cell and for preventing spines from shrinking.
Collapse
Affiliation(s)
- Laura Morando
- Rita Levi Montalcini Center for Brain Repair, Department of Neuroscience, University of Turin, Italy
| | | | | | | |
Collapse
|
48
|
Schulte T, Brecht S, Herdegen T, Illert M, Mehdorn HM, Hamel W. Induction of immediate early gene expression by high-frequency stimulation of the subthalamic nucleus in rats. Neuroscience 2006; 138:1377-85. [PMID: 16460881 DOI: 10.1016/j.neuroscience.2005.12.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 11/28/2005] [Accepted: 12/01/2005] [Indexed: 11/16/2022]
Abstract
Deep brain stimulation is associated with delayed improvement of parkinsonian symptoms, such as hypokinesia with subthalamic nucleus stimulation, or dystonia with globus pallidus internus stimulation. The latency observed is better explained by molecular alterations than immediate electrophysiological processes, and clinical improvement may involve adaptive gene expression. Here, we have studied immediate early gene expression as fast molecular response to subthalamic nucleus stimulation. Bipolar electrodes were implanted bilaterally into the subthalamic nucleus of anesthetized male Wistar rats. High-frequency stimulation (130 Hz or 80 Hz, 60 micros, 300 microA) or low-frequency stimulation (5 Hz, 60 micros, 300 microA) was performed with the right electrode for 15, 60, 120, and 240 min whereas the silent left electrode served as negative control. Brains were fixed by transcardial perfusion and frozen sections were stained with polyclonal antibodies directed against three immediate early gene-encoded proteins, c-Fos, c-Jun, and Krox-24 (NGFI-A, Egr-1, Zif268, Tis8, Zenk). After 120 and 240 h, c-Fos immunoreactivity was strongly upregulated in subthalamic nucleus neurons on the stimulated site. In contrast, no c-Fos immunoreactivity was detected on the non-stimulated site except for single positive cells located in close proximity to the electrode tracks. Furthermore, c-Fos immunoreactivity was induced in subthalamic nucleus projection areas, such as primary and secondary motor cortex, primary somatosensory and insular cortex, lateral and medial globus pallidus, suprageniculate thalamic nucleus, pontine nuclei, medial geniculate nucleus, and substantia nigra. Similarly, c-Jun and Krox-24 were induced at the site of stimulation and in projection areas following high-frequency subthalamic nucleus stimulation. Whereas high frequency stimulation with 80 Hz was similarly effective none of the three immediate early gene-encoded proteins was induced with low-frequency stimulation (5 Hz) for 4 h. This is in accordance with the therapeutic effects of deep brain stimulation which are only elicited with high frequency stimulation. Our data provide evidence that immediate early gene expression in the subthalamic nucleus is rapidly and substantially induced by high-frequency stimulation. The induction of immediate early genes in projection sites suggests ipsilateral transsynaptic modulation of neuronal activity.
Collapse
Affiliation(s)
- T Schulte
- Department of Neurosurgery, Universityhospital Schleswig-Holstein/Campus Kiel, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Wong-Riley MTT, Yang SJ, Liang HL, Ning G, Jacobs P. Quantitative immuno-electron microscopic analysis of nuclear respiratory factor 2 alpha and beta subunits: Normal distribution and activity-dependent regulation in mammalian visual cortex. Vis Neurosci 2005; 22:1-18. [PMID: 15842736 DOI: 10.1017/s0952523805221016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/07/2022]
Abstract
The macaque visual cortex is exquisitely organized into columns, modules, and streams, much of which can be correlated with its metabolic organization revealed by cytochrome oxidase (CO). Plasticity in the adult primate visual system has also been documented by changes in CO activity. Yet, the molecular mechanism of regulating this enzyme remains not well understood. Being one of only four bigenomic enzymes in mammalian cells, the transcriptional regulation of this enzyme necessitates a potential bigenomic coordinator. Nuclear respiratory factor 2 (NRF-2) or GA-binding protein is a transcription factor that may serve such a critical role. The goal of the present study was to determine if the two major subunits of NRF-2, 2alpha and 2beta, had distinct subcellular distribution in neurons of the rat and monkey visual cortex, if major metabolic neuronal types in the macaque exhibited different levels of the two subunits, and if they would respond differently to monocular impulse blockade. Quantitative immuno-electron microscopy was used. In both rats and monkeys, nuclear labeling of alpha and beta subunits was mainly over euchromatin rather than heterochromatin, consistent with their active participation in transcriptional activity. Cytoplasmic labeling was over free ribosomes, the Golgi apparatus, and occasionally the nuclear envelope, signifying sites of synthesis and possible posttranslational modifications. The density of both subunits was much higher in the nucleus than in the cytoplasm for all neurons examined, again indicating that their major sites of cellular action is in the nucleus.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | |
Collapse
|
50
|
Perez-Villalba A, Teruel-Martí V, Ruiz-Torner A, Olucha-Bordonau F. The effect of long context exposure on cued conditioning and c-fos expression in the rat forebrain. Behav Brain Res 2005; 161:263-75. [PMID: 15922053 DOI: 10.1016/j.bbr.2005.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 02/10/2005] [Accepted: 02/17/2005] [Indexed: 02/05/2023]
Abstract
The c-fos expression was used to study the neural substrates of the cued fear conditioning acquisition, preceded by a short exposure versus a long exposure to the conditioning context. A long-context exposure (either during the night or during the day) prior to conditioning, was associated with low freezing in the learning test. Differences in the c-fos expression of CA1, CA3, BL Amygdala, LS and BNST were found between the short- or long-context groups with a pre-exposure before cued conditioning. Ce Amygdala showed no differences in the c-fos expression labeling. We reported the hippocampal c-fos activation during the cued fear conditioning acquisition. Specifically, the CA1 activation could be related with the context-US processing during the CS-US association acquisition, which might prove that the CS-US associations cannot be made without an integrated context participating. The results showed that a long-context exposure prior to cued conditioning produces an inhibition of the CR (freezing), and this phenomenon is related with a specific c-fos expression in CA1, CA3, BL Amygdala, LS and BNST during the fear acquisition.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Department of Embryology and Human Anatomy, School of Medicine, Av Blasco Ibanez, 15, University of Valencia, 46010 Valencia, Spain.
| | | | | | | |
Collapse
|