1
|
Lazic D, Geßner C, Liepe KJ, Lesur-Kupin I, Mader M, Blanc-Jolivet C, Gömöry D, Liesebach M, González-Martínez SC, Fladung M, Degen B, Müller NA. Genomic variation of European beech reveals signals of local adaptation despite high levels of phenotypic plasticity. Nat Commun 2024; 15:8553. [PMID: 39362898 PMCID: PMC11450180 DOI: 10.1038/s41467-024-52933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Local adaptation is key for ecotypic differentiation and species evolution. Understanding underlying genomic patterns can allow the prediction of future maladaptation and ecosystem stability. Here, we report the whole-genome resequencing of 874 individuals from 100 range-wide populations of European beech (Fagus sylvatica L.), an important forest tree species in Europe. We show that genetic variation closely mirrors geography with a clear pattern of isolation-by-distance. Genome-wide analyses for genotype-environment associations (GEAs) identify relatively few potentially adaptive variants after correcting for an overwhelming signal of statistically significant but non-causal GEAs. We characterize the single high confidence genomic region and pinpoint a candidate gene possibly involved in winter temperature adaptation via modulation of spring phenology. Surprisingly, allelic variation at this locus does not result in any apparent fitness differences in a common garden. More generally, reciprocal transplant experiments across large climate distances suggest extensive phenotypic plasticity. Nevertheless, we find indications of polygenic adaptation which may be essential in natural ecosystems. This polygenic signal exhibits broad- and fine-scale variation across the landscape, highlighting the relevance of spatial resolution. In summary, our results emphasize the importance, but also exemplify the complexity, of employing natural genetic variation for forest conservation under climate change.
Collapse
Affiliation(s)
- Desanka Lazic
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | | | | | - Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Dušan Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | | | | | | | - Bernd Degen
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| |
Collapse
|
2
|
Sánchez-Gómez D, Aranda I. Unveiling intra-population functional variability patterns in a European beech (Fagus sylvatica L.) population from the southern range edge: drought resistance, post-drought recovery and phenotypic plasticity. TREE PHYSIOLOGY 2024; 44:tpae107. [PMID: 39163264 PMCID: PMC11412075 DOI: 10.1093/treephys/tpae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Understanding covariation patterns of drought resistance, post-drought recovery and phenotypic plasticity, and their variability at the intra-population level are crucial for predicting forest vulnerability to increasing aridity. This knowledge is particularly urgent at the trailing range edge since, in these areas, tree species are proximal to their ecological niche boundaries. While this proximity increases their susceptibility, these populations are recognized as valuable genetic reservoirs against environmental stressors. The conservation of this genetic variability is critical for the adaptive capacity of the species in the current context of climate change. Here we examined intra-population patterns of stem basal growth, gas exchange and other leaf functional traits in response to an experimental drought in seedlings of 16 open-pollinated families within a marginal population of European beech (Fagus sylvatica L.) from its southern range edge. We found a high degree of intra-population variation in leaf functional traits, photosynthetic performance, growth patterns and phenotypic plasticity in response to water availability. Low phenotypic plasticity was associated with higher resistance to drought. Both drought resistance and post-drought recovery of photosynthetic performance varied between maternal lines. However, drought resistance and post-drought recovery exhibited independent variation. We also found intra-population variation in stomatal sensitivity to soil drying, but it was not associated with either drought resistance or post-drought recovery. We conclude that an inverse relationship between phenotypic plasticity and drought resistance is not necessarily a sign of maladaptive plasticity, but rather it may reflect stability of functional performance and hence adaptation to withstand drought. The independent variation found between drought resistance and post-drought recovery should facilitate to some extent microevolution and adaption to increasing aridity. The observed variability in stomatal sensitivity to soil drying was consistent with previous findings at other scales (e.g., inter-specific variation, inter-population variation) that challenge the iso-anisohydric concept as a reliable surrogate of drought tolerance.
Collapse
Affiliation(s)
- David Sánchez-Gómez
- Department of Ecology and Forest Genetics, Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera La Coruña Km 7.5, E-28040 Madrid, Spain
| | - Ismael Aranda
- Department of Ecology and Forest Genetics, Instituto de Ciencias Forestales (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Carretera La Coruña Km 7.5, E-28040 Madrid, Spain
| |
Collapse
|
3
|
Muffler L, Weigel R, Beil I, Leuschner C, Schmeddes J, Kreyling J. Winter and spring frost events delay leaf-out, hamper growth and increase mortality in European beech seedlings, with weaker effects of subsequent frosts. Ecol Evol 2024; 14:e70028. [PMID: 39041017 PMCID: PMC11260882 DOI: 10.1002/ece3.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
The persistence of plant populations depends crucially on successful regeneration. Yet, little is known about the effects of consecutive winter and spring frost events on the regeneration stage of trees from different seed sources, although this will partly determine the success of climate warming-driven poleward range shifts. In a common garden experiment with European beech (Fagus sylvatica) seedlings from winter 2015/2016 to autumn 2017, we studied how simulated successive spring and winter frost events affect leaf-out dates, growth performance, and survival rates of 1- to 2-year-old seedlings from provenances differing in climate at origin. We further investigated the combined effects of successive frost events. The first spring frost after germination led to a mortality rate up to 75%, resulting in reduced seedling numbers but better frost tolerance of the survivors, as reflected in a weaker impact of the following winter frost event in the survivors compared to the non-acclimated control. Final plant height was most strongly reduced by the spring frost in the second year. The winter frost event delayed leaf-out by up to 40 days, leading to severe growth impairment in 2017. Our results indicate partly successful frost acclimation and/or the selection of frost-hardier individuals, because the negative growth effects of consecutive frost events did not add up after exposure to more than one event. Both mechanisms may help to increase the frost tolerance of beech offspring. Nevertheless, mortality after the first spring frost was high, and frost exposure generally caused growth reductions. Thus, achieving higher frost tolerance may not be sufficient for beech seedlings to overcome frost-induced reductions in competitive strength caused by winter frost damage and delayed leaf enfolding.
Collapse
Affiliation(s)
- Lena Muffler
- Plant Ecology and Ecosystem ResearchUniversity of GoettingenGoettingenGermany
- Ecological‐Botanical GardenUniversity of BayreuthBayreuthGermany
| | - Robert Weigel
- Plant Ecology and Ecosystem ResearchUniversity of GoettingenGoettingenGermany
- Ecological‐Botanical GardenUniversity of BayreuthBayreuthGermany
| | - Ilka Beil
- Experimental Plant EcologyUniversity of GreifswaldGreifswaldGermany
| | - Christoph Leuschner
- Plant Ecology and Ecosystem ResearchUniversity of GoettingenGoettingenGermany
| | - Jonas Schmeddes
- Experimental Plant EcologyUniversity of GreifswaldGreifswaldGermany
| | - Juergen Kreyling
- Experimental Plant EcologyUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
4
|
Pawłowski TA, Suszka J, Mucha J, Zadworny M, Alipour S, Kurpisz B, Chmielarz P, Jagodziński AM, Chmura DJ. Climate legacy in seed and seedling traits of European beech populations. FRONTIERS IN PLANT SCIENCE 2024; 15:1355328. [PMID: 38911972 PMCID: PMC11190307 DOI: 10.3389/fpls.2024.1355328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Tree species' ability to persist within their current distribution ranges is determined by seed germination and seedling growth. Exploring variation in these traits in relation to climatic conditions helps to understand and predict tree population dynamics, and to support species management and conservation under future climate. We analyzed seeds and seedlings of 26 European beech populations from the northeastern boundary of the species range to test whether: 1) adaptation to climatic conditions is reflected in depth of dormancy and germination of seeds; 2) climatic characteristics of origin predictably affect seedling traits. The variation in seed dormancy and germination in a laboratory test, and seedling growth and morphology traits in a nursery common-garden test was examined. Populations originating from warmer and drier sites (mostly from the northern region), compared to those from the opposite end of climatic gradient, germinated later, with a lower success, and produced seedlings with shorter and tougher roots. They had deeper dormancy and poorer seed germination capacity, and are likely more vulnerable to environmental changes. The climatic conditions at the origin shape the intraspecific variation of seed germination and seedling traits, and may limit regeneration from seed and affect adaptation potential of beech to increasing temperatures and decreasing precipitation.
Collapse
Affiliation(s)
| | - Jan Suszka
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Marcin Zadworny
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Poznań, Poland
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Barbara Kurpisz
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Paweł Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | | | - Daniel J. Chmura
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| |
Collapse
|
5
|
Qian H, Qian S, Zhang J, Kessler M. Effects of climate and environmental heterogeneity on the phylogenetic structure of regional angiosperm floras worldwide. Nat Commun 2024; 15:1079. [PMID: 38316752 PMCID: PMC10844608 DOI: 10.1038/s41467-024-45155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
The tendency of species to retain ancestral ecological distributions (phylogenetic niche conservatism) is thought to influence which species from a species pool can persist in a particular environment. Thus, investigating the relationships between measures of phylogenetic structure and environmental variables at a global scale can help understand the variation in species richness and phylogenetic structure in biological assemblages across the world. Here, we analyze a comprehensive data set including 341,846 species in 391 angiosperm floras worldwide to explore the relationships between measures of phylogenetic structure and environmental variables for angiosperms in regional floras across the world and for each of individual continental (biogeographic) regions. We find that the global phylogenetic structure of angiosperms shows clear and meaningful relationships with environmental factors. Current climatic variables have the highest predictive power, especially on phylogenetic metrics reflecting recent evolutionary relationships that are also related to current environmental heterogeneity, presumably because this favors plant speciation in various ways. We also find evidence that past climatic conditions, and particularly refugial conditions, play an important role in determining the phylogenetic structure of regional floras. The relationships between environmental conditions and phylogenetic metrics differ between continents, reflecting the different evolutionary histories of their floras.
Collapse
Affiliation(s)
- Hong Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL, 62703, USA.
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jian Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Blumstein M, Oseguera M, Caso-McHugh T, Des Marais DL. Nonstructural carbohydrate dynamics' relationship to leaf development under varying environments. THE NEW PHYTOLOGIST 2024; 241:102-113. [PMID: 37882355 DOI: 10.1111/nph.19333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Leaf-out in temperate forests is a critical transition point each spring and advancing with global change. The mechanism linking phenological variation to external cues is poorly understood. Nonstructural carbohydrate (NSC) availability may be key. Here, we use branch cuttings from northern red oak (Quercus rubra) and measure NSCs throughout bud development in branch tissue. Given genes and environment influence phenology, we placed branches in an arrayed factorial experiment (three temperatures × two photoperiods, eight genotypes) to examine their impact on variation in leaf-out timing and corresponding NSCs. Despite significant differences in leaf-out timing between treatments, NSC patterns were much more consistent, with all treatments and genotypes displaying similar NSC concentrations across phenophases. Notably, the moderate and hot temperature treatments reached the same NSC concentrations and phenophases at the same growing degree days (GDD), but 20 calendar days apart, while the cold treatment achieved only half the GDD of the other two. Our results suggest that NSCs are coordinated with leaf-out and could act as a molecular clock, signaling to cells the passage of time and triggering leaf development to begin. This link between NSCs and budburst is critical for improving predictions of phenological timing.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - Miranda Oseguera
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131, USA
| | - Theresa Caso-McHugh
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - David L Des Marais
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Aihara T, Araki K, Onuma Y, Cai Y, Paing AMM, Goto S, Hisamoto Y, Tomaru N, Homma K, Takagi M, Yoshida T, Iio A, Nagamatsu D, Kobayashi H, Hirota M, Uchiyama K, Tsumura Y. Divergent mechanisms of reduced growth performance in Betula ermanii saplings from high-altitude and low-latitude range edges. Heredity (Edinb) 2023; 131:387-397. [PMID: 37940658 PMCID: PMC10673911 DOI: 10.1038/s41437-023-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
The reduced growth performance of individuals from range edges is a common phenomenon in various taxa, and considered to be an evolutionary factor that limits the species' range. However, most studies did not distinguish between two mechanisms that can lead to this reduction: genetic load and adaptive selection to harsh conditions. To address this lack of understanding, we investigated the climatic and genetic factors underlying the growth performance of Betula ermanii saplings transplanted from 11 populations including high-altitude edge and low-latitude edge population. We estimated the climatic position of the populations within the overall B. ermanii's distribution, and the genetic composition and diversity using restriction-site associated DNA sequencing, and measured survival, growth rates and individual size of the saplings. The high-altitude edge population (APW) was located below the 95% significance interval for the mean annual temperature range, but did not show any distinctive genetic characteristics. In contrast, the low-latitude edge population (SHK) exhibited a high level of linkage disequilibrium, low genetic diversity, a distinct genetic composition from the other populations, and a high relatedness coefficient. Both APW and SHK saplings displayed lower survival rates, heights and diameters, while SHK saplings also exhibited lower growth rates than the other populations' saplings. The low heights and diameters of APW saplings was likely the result of adaptive selection to harsh conditions, while the low survival and growth rates of SHK saplings was likely the result of genetic load. Our findings shed light on the mechanisms underlying the reduced growth performance of range-edge populations.
Collapse
Affiliation(s)
- Takaki Aihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kyoko Araki
- Garden Division, Maintenance and Works Department, the Imperial Household Agency, 1-1, Chiyoda, Chiyoda-ku, Tokyo, 100-8111, Japan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yunosuke Onuma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yihan Cai
- Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Aye Myat Myat Paing
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Susumu Goto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoko Hisamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Cikusa-ku, Nagoya, Aichi, 464-0804, Japan
| | - Kosuke Homma
- Sado Island Center for Ecological Sustainability, Niigata University, 1101-1, Niibokatagami, Sado, Niigata, 952-0103, Japan
| | - Masahiro Takagi
- Faculty of Agriculture, University of Miyazaki, 1-1, Gakuen kibanadai nishi, Miyazaki, Miyazaki, 889-2192, Japan
| | - Toshiya Yoshida
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Atsuhiro Iio
- Graduate School of Integrated Science and Technology, Shizuoka University, 836, Ohtani, Suruga-ku, Shizuoka, Shizuoka, 422-8017, Japan
| | - Dai Nagamatsu
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Tottori, Tottori, 680-8553, Japan
| | - Hajime Kobayashi
- Faculty of Agriculture, Shinshu University, 8304, Minamiminowa-mura, Kamiina-gun, Nagano, 399-4598, Japan
| | - Mitsuru Hirota
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1, Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Yoshihiko Tsumura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
8
|
Westergren M, Archambeau J, Bajc M, Damjanić R, Theraroz A, Kraigher H, Oddou-Muratorio S, González-Martínez SC. Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech. Mol Ecol 2023. [PMID: 37962106 DOI: 10.1111/mec.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.
Collapse
Affiliation(s)
| | | | - Marko Bajc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Rok Damjanić
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | | | | | - Sylvie Oddou-Muratorio
- INRAE, URFM, Avignon, France
- INRAE, Univ. de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | | |
Collapse
|
9
|
Vieira P, Kantor MR, Jansen A, Handoo ZA, Eisenback JD. Cellular insights of beech leaf disease reveal abnormal ectopic cell division of symptomatic interveinal leaf areas. PLoS One 2023; 18:e0292588. [PMID: 37797062 PMCID: PMC10553357 DOI: 10.1371/journal.pone.0292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The beech leaf disease nematode, Litylenchus crenatae subsp. mccannii, is recognized as a newly emergent nematode species that causes beech leaf disease (BLD) in beech trees (Fagus spp.) in North America. Changes of leaf morphology before emergence from the bud induced by BLD can provoke dramatic effects on the leaf architecture and consequently to tree performance and development. The initial symptoms of BLD appear as dark green, interveinal banding patterns of the leaf. Despite the fast progression of this disease, the cellular mechanisms leading to the formation of such aberrant leaf phenotype remains totally unknown. To understand the cellular basis of BLD, we employed several types of microscopy to provide an exhaustive characterization of nematode-infected buds and leaves. Histological sections revealed a dramatic cell change composition of these nematode-infected tissues. Diseased bud scale cells were typically hypertrophied and showed a high variability of size. Moreover, while altered cell division had no influence on leaf organogenesis, induction of cell proliferation on young leaf primordia led to a dramatic change in cell layer architecture. Hyperplasia and hypertrophy of the different leaf cell layers, coupled with an abnormal proliferation of chloroplasts especially in the mesophyll cell layers, resulted in the typical interveinal leaf banding. These discrepancies in leaf cell structure were depicted by an abnormal rate of cellular division of the leaf interveinal areas infected by the nematode, promoting significant increase of cell size and leaf thickness. The formation of symptomatic BLD leaves is therefore orchestrated by distinct cellular processes, to enhance the value of these feeding sites and to improve their nutrition status for the nematode. Our findings thus uncover relevant cellular events and provide a structural framework to understand this important disease.
Collapse
Affiliation(s)
- Paulo Vieira
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Mihail R. Kantor
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew Jansen
- Electron and Confocal Microscopy Unit, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Zafar A. Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture—Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Jonathan D. Eisenback
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
10
|
Marchesini A, Silverj A, Torre S, Rota-Stabelli O, Girardi M, Passeri I, Fracasso I, Sebastiani F, Vernesi C. First genome-wide data from Italian European beech (Fagus sylvatica L.): Strong and ancient differentiation between Alps and Apennines. PLoS One 2023; 18:e0288986. [PMID: 37471380 PMCID: PMC10358878 DOI: 10.1371/journal.pone.0288986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The European beech (Fagus sylvatica L.) is one of the most widespread forest trees in Europe whose distribution and intraspecific diversity has been largely shaped by repeated glacial cycles. Previous studies, mainly based on palaeobotanical evidence and a limited set of chloroplast and nuclear genetic markers, highlighted a complex phylogeographic scenario, with southern and western Europe characterized by a rather heterogeneous genetic structure, as a result of recolonization from different glacial refugia. Despite its ecological and economic importance, the genome of this broad-leaved tree has only recently been assembled, and its intra-species genomic diversity is still largely unexplored. Here, we performed whole-genome resequencing of nine Italian beech individuals sampled from two stands located in the Alpine and Apennine mountain ranges. We investigated patterns of genetic diversity at chloroplast, mitochondrial and nuclear genomes and we used chloroplast genomes to reconstruct a temporally-resolved phylogeny. Results allowed us to test European beech differentiation on a whole-genome level and to accurately date their divergence time. Our results showed comparable, relatively high levels of genomic diversity in the two populations and highlighted a clear differentiation at chloroplast, mitochondrial and nuclear genomes. The molecular clock analysis indicated an ancient split between the Alpine and Apennine populations, occurred between the Günz and the Riss glaciations (approximately 660 kyrs ago), suggesting a long history of separation for the two gene pools. This information has important conservation implications in the context of adaptation to ongoing climate changes.
Collapse
Affiliation(s)
- Alexis Marchesini
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
- Research Institute on Terrestrial Ecosystems (IRET), The National Research Council of Italy (CNR), Porano (Terni), Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Sara Torre
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
- Plant Protection Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Matteo Girardi
- Conservation Genomics Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| | - Iacopo Passeri
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection (IPSP), The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, S. Michele all’Adige (Trento), Italy
| |
Collapse
|
11
|
Deng Z, Zhao J, Ma P, Zhang H, Li R, Wang Z, Tang Y, Luo T. Precipitation and local adaptation drive spatiotemporal variations of aboveground biomass and species richness in Tibetan alpine grasslands. Oecologia 2023:10.1007/s00442-023-05401-1. [PMID: 37314486 DOI: 10.1007/s00442-023-05401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The Tibetan Plateau contains the highest and largest alpine pasture in the world, which is adapted to the cold and arid climate. It is challenging to understand how the vast alpine grasslands respond to climate change. We aim to test the hypothesis that there is local adaptation in elevational populations of major plant species in Tibetan alpine grasslands, and that the spatiotemporal variations of aboveground biomass (AGB) and species richness (S) can be mainly explained by climate change only when the effect of local adaptation is removed. A 7-year reciprocal transplant experiment was conducted among the distribution center (4950 m), upper (5200 m) and lower (4650 m) limits of alpine Kobresia meadow in central Tibetan Plateau. We observed interannual variations in S and AGB of 5 functional groups and 4 major species, and meteorological factors in each of the three elevations during 2012-2018. Relationships between interannual changes of AGB and climatic factors varied greatly with elevational populations within a species. Elevation of population origin generally had a greater or an equal contribution to interannual variation in AGB of the 4 major species, compared to temperature and precipitation effects. While the effect of local adaptation was removed by calculating differences in AGB and S between elevations of migration and origin, relative changes in AGB and S were mainly explained by precipitation change rather than by temperature change. Our data support the hypothesis, and further provide evidence that the monsoon-adapted alpine grasslands are more sensitive to precipitation change than to warming.
Collapse
Affiliation(s)
- Zhaoheng Deng
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Zhao
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Ma
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoze Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruicheng Li
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhong Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Tang
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianxiang Luo
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
12
|
Blumstein M, Gersony J, Martínez-Vilalta J, Sala A. Global variation in nonstructural carbohydrate stores in response to climate. GLOBAL CHANGE BIOLOGY 2023; 29:1854-1869. [PMID: 36583374 DOI: 10.1111/gcb.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 05/28/2023]
Abstract
Woody plant species store nonstructural carbohydrates (NSCs) for many functions. While known to buffer against fluctuations in photosynthetic supply, such as at night, NSC stores are also thought to buffer against environmental extremes, such as drought or freezing temperatures by serving as either back-up energy reserves or osmolytes. However, a clear picture of how NSCs are shaped by climate is still lacking. Here, we update and leverage a unique global database of seasonal NSC storage measurements to examine whether maximum total NSC stores and the amount of soluble sugars are associated with clinal patterns in low temperatures or aridity, indicating they may confer a benefit under freezing or drought conditions. We examine patterns using the average climate at each study site and the unique climatic conditions at the time and place in which the sample was taken. Altogether, our results support the idea that NSC stores act as critical osmolytes. Soluble Sugars increase with both colder and drier conditions in aboveground tissues, indicating they can plastically increase a plants' tolerance of cold or arid conditions. However, maximum total NSCs increased, rather than decreased, with average site temperature and had no relationship to average site aridity. This result suggests that the total amount of NSC a plant stores may be more strongly determined by its capacity to assimilate carbon than by environmental stress. Thus, NSCs are unlikely to serve as reservoir of energy. This study is the most comprehensive synthesis to date of global NSC variation in relation to climate and supports the idea that NSC stores likely serve as buffers against environmental stress. By clarifying their role in cold and drought tolerance, we improve our ability to predict plant response to environment.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jessica Gersony
- Department of Natural Resources, University of New Hampshire, Durham, New Hampshire, USA
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
13
|
Sugimoto S, Ishida K. Interpopulation variation in leaf out phenology of
Fagus crenata
along topographic variation associated with the late frost regime in the Hakkoda Mountains, northern Japan. Ecol Res 2022. [DOI: 10.1111/1440-1703.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Saki Sugimoto
- The United Graduate School of Agricultural Science Iwate University Morioka Japan
| | - Kiyoshi Ishida
- Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
| |
Collapse
|
14
|
Rooney R, Ishii HR, Cavaleri MA. Intra‐crown variation of leaf mass per area of
Fagus crenata
is driven by light acclimation of leaf thickness and hydraulic acclimation of leaf density. Ecol Res 2022. [DOI: 10.1111/1440-1703.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca Rooney
- College of Forest Resources and Environmental Science Michigan Technological University Houghton Michigan USA
- Department of Biology University of Minnesota Duluth Duluth Minnesota USA
| | - H. Roaki Ishii
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Molly A. Cavaleri
- College of Forest Resources and Environmental Science Michigan Technological University Houghton Michigan USA
| |
Collapse
|
15
|
Is intraspecific variability an advantage in mountain invasions? Comparing functional trait variation in an invasive and a native woody species along multiple environmental gradients. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Petit-Cailleux C, Davi H, Lefèvre F, Verkerk PJ, Fady B, Lindner M, Oddou-Muratorio S. Tree Mortality Risks Under Climate Change in Europe: Assessment of Silviculture Practices and Genetic Conservation Networks. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.706414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
General Context: Climate change can positively or negatively affect abiotic and biotic drivers of tree mortality. Process-based models integrating these climatic effects are only seldom used at species distribution scale.Objective: The main objective of this study was to investigate the multi-causal mortality risk of five major European forest tree species across their distribution range from an ecophysiological perspective, to quantify the impact of forest management practices on this risk and to identify threats on the genetic conservation network.Methods: We used the process-based ecophysiological model CASTANEA to simulate the mortality risk of Fagus sylvatica, Quercus petraea, Pinus sylvestris, Pinus pinaster, and Picea abies under current and future climate conditions, while considering local silviculture practices. The mortality risk was assessed by a composite risk index (CRIM) integrating the risks of carbon starvation, hydraulic failure and frost damage. We took into account extreme climatic events with the CRIMmax, computed as the maximum annual value of the CRIM.Results: The physiological processes' contributions to CRIM differed among species: it was mainly driven by hydraulic failure for P. sylvestris and Q. petraea, by frost damage for P. abies, by carbon starvation for P. pinaster, and by a combination of hydraulic failure and frost damage for F. sylvatica. Under future climate, projections showed an increase of CRIM for P. pinaster but a decrease for P. abies, Q. petraea, and F. sylvatica, and little variation for P. sylvestris. Under the harshest future climatic scenario, forest management decreased the mean CRIM of P. sylvestris, increased it for P. abies and P. pinaster and had no major impact for the two broadleaved species. By the year 2100, 38–90% of the European network of gene conservation units are at extinction risk (CRIMmax=1), depending on the species.Conclusions: Using a process-based ecophysiological model allowed us to disentangle the multiple drivers of tree mortality under current and future climates. Taking into account the positive effect of increased CO2 on fertilization and water use efficiency, average mortality risk may increase or decrease in the future depending on species and sites. However, under extreme climatic events, our process-based projections are as pessimistic as those obtained using bioclimatic niche models.
Collapse
|
17
|
Crow TM, Hufford KM, Burney OT. Plant performance predicted by genetic variation and environmental distance in important restoration shrub species
Cercocarpus montanus
. Restor Ecol 2021. [DOI: 10.1111/rec.13538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taylor M. Crow
- Department of Plant Sciences University of California Davis CA 95616 U.S.A
| | - Kristina M. Hufford
- Ecosystem Science and Management University of Wyoming Laramie WY 82071 U.S.A
| | - Owen T. Burney
- John T. Harrington Forestry Research Center New Mexico State University Mora NM 87732 U.S.A
| |
Collapse
|
18
|
Postolache D, Oddou-Muratorio S, Vajana E, Bagnoli F, Guichoux E, Hampe A, Le Provost G, Lesur I, Popescu F, Scotti I, Piotti A, Vendramin GG. Genetic signatures of divergent selection in European beech (Fagus sylvatica L.) are associated with the variation in temperature and precipitation across its distribution range. Mol Ecol 2021; 30:5029-5047. [PMID: 34383353 DOI: 10.1111/mec.16115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.
Collapse
Affiliation(s)
- D Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | - S Oddou-Muratorio
- INRAE, URFM, Avignon, France.,ECOBIOP Université de Pau et des Pays de l'Adour, INRAE, ECOBIOP, E2S UPPA, Saint-Pée-sur-Nivelle, France
| | - E Vajana
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F Bagnoli
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - E Guichoux
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - A Hampe
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - G Le Provost
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France
| | - I Lesur
- Université de Bordeaux, INRAE, BIOGECO, Cestas, France.,HelixVenture, Mérignac, France
| | - F Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Romania
| | | | - A Piotti
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| | - G G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
19
|
Weigel R, Henry HAL, Beil I, Gebauer G, Jurasinski G, Klisz M, van der Maaten E, Muffler L, Kreyling J. Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree. Ecosystems 2021. [DOI: 10.1007/s10021-021-00600-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe magnitude and frequency of soil frost events might increase in northern temperate regions in response to climate warming due to reduced insulation caused by declining snow cover. In temperate deciduous forests, increased soil frost severity can hamper tree growth and increase the mortality of fine roots, soil fauna and microorganisms, thus altering carbon and nutrient cycling. From single-site studies, however, it is unclear how the sensitivities of these responses change along continental gradients from regions with low to high snowfall. We conducted a gradient design snow cover and soil temperature manipulation experiment across a range of lowland beech forest sites to assess the site-specific sensitivity of tree growth and biogeochemical cycling to soil cooling. Even mild and inconsistent soil frost affected tree increment, germination, litter decomposition and the retention of added 15N. However, the sensitivity of response (treatment effect size per degree of warming or cooling) was not related to prevailing winter climate and snow cover conditions. Our results support that it may be valid to scale these responses to simulated winter climate change up from local studies to regional scales. This upscaling, however, needs to account for the fact that cold regions with historically high snowfall may experience increasingly harsh soil frost conditions, whereas in warmer regions with historically low snowfall, soil frost may diminish. Thus, despite the uniform biotic sensitivity of response, there may be opposing directions of winter climate change effects on temperate forests along continental temperature gradients due to different trends of winter soil temperature.
Collapse
|
20
|
Low Population Differentiation but High Phenotypic Plasticity of European Beech in Germany. FORESTS 2020. [DOI: 10.3390/f11121354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drought is increasingly impairing the vitality of European beech (Fagus sylvatica L.) in several regions of its distribution range. In times of climate change, adaptive traits such as plant phenology and frost tolerance are also becoming more important. Adaptive patterns of European beech seem to be complex, as contrasting results regarding the relative effect of phenotypic plasticity and genetic variation in trait variation have been reported. Here, we used a large translocation experiment comprising more than 15,500 seedlings in three regions of Germany to investigate local adaptation and phenotypic plasticity in beech. We found low population differentiation regarding plant survival, and plant height increment, but high phenotypic plasticity for these traits. Survival showed a positive correlation with temperature variables and a less pronounced and negative correlation with precipitation-related variables. This suggests a predominant effect of temperature and growing degree days on the survival of beech seedlings under moderate drought stress. The high phenotypic plasticity may help beech to cope with changing environmental conditions, albeit increasing drought stress may make adaptive changes necessary in the long term.
Collapse
|
21
|
Hällfors M, Lehvävirta S, Aandahl T, Lehtimäki IM, Nilsson LO, Ruotsalainen A, Schulman LE, Hyvärinen MT. Translocation of an arctic seashore plant reveals signs of maladaptation to altered climatic conditions. PeerJ 2020; 8:e10357. [PMID: 33240662 PMCID: PMC7682418 DOI: 10.7717/peerj.10357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023] Open
Abstract
Ongoing anthropogenic climate change alters the local climatic conditions to which species may be adapted. Information on species' climatic requirements and their intraspecific variation is necessary for predicting the effects of climate change on biodiversity. We used a climatic gradient to test whether populations of two allopatric varieties of an arctic seashore herb (Primula nutans ssp. finmarchica) show adaptation to their local climates and how a future warmer climate may affect them. Our experimental set-up combined a reciprocal translocation within the distribution range of the species with an experiment testing the performance of the sampled populations in warmer climatic conditions south of their range. We monitored survival, size, and flowering over four growing seasons as measures of performance and, thus, proxies of fitness. We found that both varieties performed better in experimental gardens towards the north. Interestingly, highest up in the north, the southern variety outperformed the northern one. Supported by weather data, this suggests that the climatic optima of both varieties have moved at least partly outside their current range. Further warming would make the current environments of both varieties even less suitable. We conclude that Primula nutans ssp. finmarchica is already suffering from adaptational lag due to climate change, and that further warming may increase this maladaptation, especially for the northern variety. The study also highlights that it is not sufficient to run only reciprocal translocation experiments. Climate change is already shifting the optimum conditions for many species and adaptation needs also to be tested outside the current range of the focal taxon in order to include both historic conditions and future conditions.
Collapse
Affiliation(s)
- Maria Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Susanna Lehvävirta
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Department of Landscape Architecture, Planning and Management, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Tone Aandahl
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Iida-Maria Lehtimäki
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Lars Ola Nilsson
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway.,Halmstad University, Halmstad, Sweden
| | - Anna Ruotsalainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Leif E Schulman
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Marko T Hyvärinen
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Csilléry K, Buchmann N, Fady B. Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir ( Abies alba Mill.) populations. Evol Appl 2020; 13:2357-2376. [PMID: 33042220 PMCID: PMC7539328 DOI: 10.1111/eva.13029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Drought is one of the most important selection pressures for forest trees in the context of climate change. Yet, the different evolutionary mechanisms, and their environmental drivers, by which certain populations become more drought tolerant than others is still little understood. We studied adaptation to drought in 16 silver fir (Abies alba Mill.) populations from the French Mediterranean Alps by combining observations on seedlings from a greenhouse experiment (N = 8,199) and on adult tress in situ (N = 315). In the greenhouse, we followed half-sib families for four growing seasons for growth and phenology traits, and tested their water stress response in a "drought until death" experiment. Adult trees in the field were assessed for δ 13C, a proxy for water use efficiency, and genotyped at 357 SNP loci. SNP data was used to generate a null expectation for seedling trait divergence between populations in order to detect the signature of selection, and 31 environmental variables were used to identify the selective environment. We found that seedlings originating from populations with low soil water capacity grew more slowly, attained a smaller stature, and resisted water stress for a longer period of time in the greenhouse. Additionally, adult trees of these populations exhibited a higher water use efficiency as evidenced by their δ 13C. These results suggest a correlated evolution of the growth-drought tolerance trait complex. Population divergence in bud break phenology was adaptive only in the second growing season, and evolved independently from the growth-drought tolerance trait complex. Adaptive divergence in bud break phenology was principally driven by the inter- and intra-annual variation in temperature at the geographic origin of the population. Our results illustrate the different evolutionary strategies used by populations to cope with drought stress at the range limits across a highly heterogeneous landscape, and can be used to inform assisted migration programs.
Collapse
Affiliation(s)
- Katalin Csilléry
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
- Biodiversity & Conservation BiologySwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Nina Buchmann
- Institute of Agricultural SciencesETH ZürichZürichSwitzerland
| | - Bruno Fady
- INRAEcology of Mediterranean Forests (URFM)UR629AvignonFrance
| |
Collapse
|
23
|
Kramer RD, Ishii HR, Carter KR, Miyazaki Y, Cavaleri MA, Araki MG, Azuma WA, Inoue Y, Hara C. Predicting effects of climate change on productivity and persistence of forest trees. Ecol Res 2020. [DOI: 10.1111/1440-1703.12127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Russell D. Kramer
- School of Environmental and Forest Science, College of the Environment University of Washington Seattle Washington USA
| | - H. Roaki Ishii
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Kelsey R. Carter
- College of Forest Resources & Environmental Science Michigan Technological University Houghton Michigan USA
- Earth and Environmental Science Division Los Alamos National Laboratory Los Alamos New Mexico USA
| | - Yuko Miyazaki
- Graduate School of Environmental and Life Science Okayama University Okayama Japan
| | - Molly A. Cavaleri
- College of Forest Resources & Environmental Science Michigan Technological University Houghton Michigan USA
| | - Masatake G. Araki
- Department of Plant Ecology, Forestry and Forest Products Research Institute Tsukuba Japan
| | - Wakana A. Azuma
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Yuta Inoue
- Department of Plant Ecology, Forestry and Forest Products Research Institute Tsukuba Japan
| | - Chinatsu Hara
- Graduate School of Agricultural Science Kobe University Kobe Japan
| |
Collapse
|
24
|
Capblancq T, Morin X, Gueguen M, Renaud J, Lobreaux S, Bazin E. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J Evol Biol 2020; 33:783-796. [PMID: 32125745 DOI: 10.1111/jeb.13610] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/23/2020] [Indexed: 01/04/2023]
Abstract
Local adaptation patterns have been found in many plants and animals, highlighting the genetic heterogeneity of species along their range of distribution. In the next decades, global warming is predicted to induce a change in the selective pressures that drive this adaptive variation, forcing a reshuffling of the underlying adaptive allele distributions. For species with low dispersion capacity and long generation time such as trees, the rapidity of the change could impede the migration of beneficial alleles and lower their capacity to track the changing environment. Identifying the main selective pressures driving the adaptive genetic variation is thus necessary when investigating species capacity to respond to global warming. In this study, we investigate the adaptive landscape of Fagus sylvatica along a gradient of populations in the French Alps. Using a double-digest restriction-site-associated DNA (ddRAD) sequencing approach, we identified 7,000 SNPs from 570 individuals across 36 different sites. A redundancy analysis (RDA)-derived method allowed us to identify several SNPs that were strongly associated with climatic gradients; moreover, we defined the primary selective gradients along the natural populations of F. sylvatica in the Alps. Strong effects of elevation and humidity, which contrast north-western and south-eastern site, were found and were believed to be important drivers of genetic adaptation. Finally, simulations of future genetic landscapes that used these findings allowed identifying populations at risk for F. sylvatica in the Alps, which could be helpful for future management plans.
Collapse
Affiliation(s)
| | - Xavier Morin
- CNRS, EPHE, CEFE UMR 5175, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Maya Gueguen
- CNRS, LECA UMR 5553, Université Grenoble Alpes, Grenoble, France
| | - Julien Renaud
- CNRS, LECA UMR 5553, Université Grenoble Alpes, Grenoble, France
| | | | - Eric Bazin
- CNRS, LECA UMR 5553, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
25
|
Goldmann K, Ammerschubert S, Pena R, Polle A, Wu BW, Wubet T, Buscot F. Early stage root-Associated fungi show a high temporal turnover, but Are independent of beech progeny. Microorganisms 2020; 8:E210. [PMID: 32033191 PMCID: PMC7074820 DOI: 10.3390/microorganisms8020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/12/2023] Open
Abstract
The relationship between trees and root-associated fungal communities is complex. By specific root deposits and other signal cues, different tree species are able to attract divergent sets of fungal species. Plant intraspecific differences can lead to variable fungal patterns in the root's proximity. Therefore, within the Beech Transplant Experiment, we analyzed the impact of three different European beech ecotypes on the fungal communities in roots and the surrounding rhizosphere soil at two time points. Beech nuts were collected in three German sites in 2011. After one year, seedlings of the different progenies were out-planted on one site and eventually re-sampled in 2014 and 2017. We applied high-throughput sequencing of the fungal ITS2 to determine the correlation between tree progeny, a possible home-field advantage, plant development and root-associated fungal guilds under field conditions. Our result showed no effect of beech progeny on either fungal OTU richness or fungal community structure. However, over time the fungal OTU richness in roots increased and the fungal communities changed significantly, also in rhizosphere. In both plant compartments, the fungal communities displayed a high temporal turnover, indicating a permanent development and functional adaption of the root mycobiome of young beeches.
Collapse
Affiliation(s)
- Kezia Goldmann
- UFZ-Helmholtz-Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Straße 4, 06120 Halle (Saale), Germany;
| | - Silke Ammerschubert
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany; (S.A.); (R.P.); (A.P.)
| | - Rodica Pena
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany; (S.A.); (R.P.); (A.P.)
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany; (S.A.); (R.P.); (A.P.)
| | - Bin-Wei Wu
- Chinese Academy of Sciences, Institute of Microbiology, State Key Laboratory of Mycology, 1 Beichen West Road, Chaoyang District, Beijing 100101, China;
| | - Tesfaye Wubet
- UFZ-Helmholtz-Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Straße 4, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - François Buscot
- UFZ-Helmholtz-Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Straße 4, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Fréjaville T, Vizcaíno-Palomar N, Fady B, Kremer A, Benito Garzón M. Range margin populations show high climate adaptation lags in European trees. GLOBAL CHANGE BIOLOGY 2020; 26:484-495. [PMID: 31642570 DOI: 10.1111/gcb.14881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
How populations of long-living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre-adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range-wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness-related traits could show similar adaptation lag patterns.
Collapse
Affiliation(s)
| | | | - Bruno Fady
- INRA, UR629, Ecologie des Forêts Méditerranéennes (URFM), Avignon, France
| | - Antoine Kremer
- BIOGECO (UMR 1202), INRA, University of Bordeaux, Cestas, France
| | | |
Collapse
|
27
|
Tóth EG, Tremblay F, Housset JM, Bergeron Y, Carcaillet C. Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evol Biol 2019; 19:190. [PMID: 31623551 PMCID: PMC6798344 DOI: 10.1186/s12862-019-1510-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background Genetic processes shape the modern-day distribution of genetic variation within and between populations and can provide important insights into the underlying mechanisms of evolution. The resulting genetic variation is often unequally partitioned within species’ distribution range and especially large differences can manifest at the range limit, where population fragmentation and isolation play a crucial role in species survival. Despite several molecular studies investigating the genetic diversity and differentiation of European Alpine mountain forests, the climatic and demographic constrains which influence the genetic processes are often unknown. Here, we apply non-coding microsatellite markers to evaluate the sporadic peripheral and continuous populations of cembra pine (Pinus cembra L.), a long-lived conifer species that inhabits the subalpine treeline ecotone in the western Alps to investigate how the genetic processes contribute to the modern-day spatial distribution. Moreover, we corroborate our findings with paleoecological records, micro and macro-remains, to infer the species’ possible glacial refugia and expansion scenarios. Results Four genetically distinct groups were identified, with Bayesian and FST based approaches, across the range of the species, situated in the northern, inner and south-western Alps. We found that genetic differentiation is substantially higher in marginal populations than at the center of the range, and marginal stands are characterized by geographic and genetic isolation due to spatial segregation and restricted gene flow. Moreover, multiple matrix regression approaches revealed effects of climatic heterogeneity in species’ spatial genetic pattern. Also, population stability tests indicated that all populations had experienced a severe historical bottleneck, no heterozygosity excess was detected, suggesting that more recently population sizes have remained relatively stable. Conclusions Our study demonstrated that cembra pine might have survived in multiple glacial refugia and subsequently recolonized the Alps by different routes. Modern-day marginal populations, at the edge of the species’ range, could maintain stable sizes over long periods without inbreeding depression and preserve high amounts of genetic variation. Moreover, our analyses indicate that climatic variability has played a major role in shaping differentiation, in addition to past historical events such as migration and demographic changes.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada. .,National Agricultural Research and Innovation Center (NARIC), Forest Research Institute (FRI), Várkerület u. 30/A, Sárvár, 9600, Hungary.
| | - Francine Tremblay
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Johann M Housset
- Centre for Forest Research (CEF), University of Québec in Montréal (UQAM), C.P. 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences & Lettres University (PSL), Paris, France.,Alcina, 10 rue des Amaryllis, 34070, Montpellier, France
| | - Yves Bergeron
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada.,Centre for Forest Research (CEF), University of Québec in Montréal (UQAM), C.P. 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Christopher Carcaillet
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences & Lettres University (PSL), Paris, France.,Laboratory for Ecology of Natural and Anthropised Hydrosystems (UMR 5023 CNRS UCBL ENTPE), Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
28
|
Manzanedo RD, Fischer M, María Navarro‐Cerrillo R, Allan E. A new approach to study local adaptation in long‐lived woody species: Virtual transplant experiments. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rubén D. Manzanedo
- Biology Department University of Washington Seattle WA USA
- Harvard Forest Harvard University Petersham MA USA
| | - Markus Fischer
- Institute of Plant Sciences University of Bern Bern Switzerland
| | | | - Eric Allan
- Institute of Plant Sciences University of Bern Bern Switzerland
| |
Collapse
|
29
|
Müller M, Gailing O. Abiotic genetic adaptation in the Fagaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:783-795. [PMID: 31081234 DOI: 10.1111/plb.13008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Fagaceae can be found in tropical and temperate regions and contain species of major ecological and economic importance. In times of global climate change, tree populations need to adapt to rapidly changing environmental conditions. The predicted warmer and drier conditions will potentially result in locally maladapted populations. There is evidence that major genera of the Fagaceae are already negatively affected by climate change-related factors such as drought and associated biotic stressors. Therefore, knowledge of the mechanisms underlying adaptation is of great interest. In this review, we summarise current literature related to genetic adaptation to abiotic environmental conditions. We begin with an overview of genetic diversity in Fagaceae species and then summarise current knowledge related to drought stress tolerance, bud burst timing and frost tolerance in the Fagaceae. Finally, we discuss the role of hybridisation, epigenetics and phenotypic plasticity in adaptation.
Collapse
Affiliation(s)
- M Müller
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
| | - O Gailing
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
30
|
Neuner G, Monitzer K, Kaplenig D, Ingruber J. Frost Survival Mechanism of Vegetative Buds in Temperate Trees: Deep Supercooling and Extraorgan Freezing vs. Ice Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:537. [PMID: 31143193 PMCID: PMC6521125 DOI: 10.3389/fpls.2019.00537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/08/2019] [Indexed: 05/08/2023]
Abstract
In temperate climates, overwintering buds of trees are often less cold hardy than adjoining stem tissues or evergreen leaves. However, data are scarce regarding the freezing resistance (FR) of buds and the underlying functional frost survival mechanism that in case of supercooling can restrict the geographic distribution. Twigs of 37 temperate woody species were sampled in midwinter 2016 in the Austrian Inn valley. After assessment of FR, infrared-video-thermography and cryo-microscopy were used to study the freezing pattern in and around overwintering vegetative buds. Only in four species, after controlled ice nucleation in the stem (-1.6 ± 0.9°C) ice was observed to immediately invade the bud. These buds tolerated extracellular ice and were the most freezing resistant (-61.8°C mean LT50). In all other species (33), the buds remained supercooled and free of ice, despite a frozen stem. A structural ice barrier prevents ice penetration. Extraorgan ice masses grew in the stem and scales but in 50% of the species between premature supercooled leaves. Two types of supercooled buds were observed: in temporary supercooling buds (14 species) ice spontaneously nucleated at -20.5 ± 4,6°C. This freezing process appeared to be intracellular as it matched the bud killing temperature (-22.8°C mean LT50). This response rendered temporarily supercooled buds as least cold hardy. In 19 species, the buds remained persistently supercooled down to below the killing temperature without indication for the cause of damage. Although having a moderate midwinter FR of -31.6°C (LT50), some species within this group attained a FR similar to ice tolerant buds. The present study represents the first comprehensive overview of frost survival mechanisms of vegetative buds of temperate trees. Except for four species that were ice tolerant, the majority of buds survive in a supercooled state, remaining free of ice. In 50% of species, extraorgan ice masses harmlessly grew between premature supercooled leaves. Despite exposure to the same environmental demand, midwinter FR of buds varied intra-specifically between -17.0 and -90.0°C. Particularly, species, whose buds are killed after temporary supercooling, have a lower maximum FR, which limits their geographic distribution.
Collapse
Affiliation(s)
- Gilbert Neuner
- Unit Functional Plant Biology, Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
31
|
Ware IM, Van Nuland ME, Schweitzer JA, Yang Z, Schadt CW, Sidak-Loftis LC, Stone NE, Busch JD, Wagner DM, Bailey JK. Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. GLOBAL CHANGE BIOLOGY 2019; 25:1514-1528. [PMID: 30659721 DOI: 10.1111/gcb.14553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
We examined the hypothesis that climate-driven evolution of plant traits will influence associated soil microbiomes and ecosystem function across the landscape. Using a foundation tree species, Populus angustifolia, observational and common garden approaches, and a base population genetic collection that spans 17 river systems in the western United States, from AZ to MT, we show that (a) as mean annual temperature (MAT) increases, genetic and phenotypic variation for bud break phenology decline; (b) soil microbiomes, soil nitrogen (N), and soil carbon (C) vary in response to MAT and conditioning by trees; and (c) with losses of genetic variation due to warming, population-level regulation of community and ecosystem functions strengthen. These results demonstrate a relationship between the potential evolutionary response of populations and subsequent shifts in ecosystem function along a large temperature gradient.
Collapse
Affiliation(s)
- Ian M Ware
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee
| | | | - Jennifer A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee
| | - Zamin Yang
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Christopher W Schadt
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| | | | - Nathan E Stone
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - Joseph D Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - Joseph K Bailey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
32
|
Differences in the Climate-Growth Relationship of Scots Pine: A Case Study from Poland and Hungary. FORESTS 2019. [DOI: 10.3390/f10030243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Scots pine is an adaptable and prevalent European tree species that grows naturally throughout Europe and has been planted in a wide range of environments. Previous studies have indicated that climatic variables affect tree-ring growth patterns in this species, but it is also possible that certain aspects of the growth environment moderate this response. In order to understand the potential impact a shifting climate has on this important species, this study compared the growth response of two populations of Scots pine. Trees from similar bioclimatic regions in Hungary and Poland were compared using the hypothesis that differences in the association between climate and growth would be reflected by the degree of tree-ring width variation. We also wanted to know how changing climatic conditions influenced the temporal stability of the climate–growth signal in the most important periods for tree growth. Clear similarities in the effect of temperature and precipitation on tree-ring width variation were found between the two sites, but there were also some interesting differences. In the late winter to early spring period both populations reacted to warming with a decreasing association with temperature. Summer precipitation was shown to be the dominant factor in controlling ring-width. A decreasing trend in summer precipitation values at both Hungarian and Polish sites resulted in a weakening in correspondence for the Hungarian trees, while the Polish trees showed a significant increase in correlation with summer precipitation. The results indicated that changes in climate influenced the studied trees in different ways which has implications for the future balance of Scots pine growth in Europe.
Collapse
|
33
|
Chakraborty D, Jandl R, Kapeller S, Schueler S. Disentangling the role of climate and soil on tree growth and its interaction with seed origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:393-401. [PMID: 30447577 DOI: 10.1016/j.scitotenv.2018.11.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
When considering options for adapting forests under climate change, climate is treated as the dominant driver of forest growth, while soil properties are often ignored mainly due to shortage of accurate data. The effects of climate and soil on forest growth may vary due to local adaptation to both climate and soil, and these local adaptations might need to be considered when transferring seed provenances under climate change. Data from 29 provenance trials of Norway spruce (Picea abies (L.) Karst.) across a wide gradient of planting conditions in Austria was used to develop Structural Equation Models (SEMs) to quantified the role of climatic and soil drivers and their interactions on juvenile growth performance and to test if provenance origin affects the relative importance of these drivers. Climate and soil of the planting site location were found to have similar direct effects on juvenile tree growth, however, climate was found to be more important because of additional indirect effects via interactions with soil parameters. Notably, the relative effects of climate and soil vary among different provenance groups. Climate constraints are dominant for seed sources originating from colder and/or high altitude locations, while test site climate and soil are equally important contributors of growth for provenances originating from warmer origin and lower elevation sites. Together with the better growth performance of the latter provenance group their plasticity allows them to utilize a wide range of soil conditions.
Collapse
Affiliation(s)
| | - Robert Jandl
- Austrian Research Centre for Forests BFW, Vienna, Austria
| | - Stefan Kapeller
- Institute of Silviculture, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
34
|
Varsamis G, Papageorgiou AC, Merou T, Takos I, Malesios C, Manolis A, Tsiripidis I, Gailing O. Adaptive Diversity of Beech Seedlings Under Climate Change Scenarios. FRONTIERS IN PLANT SCIENCE 2019; 9:1918. [PMID: 30671071 PMCID: PMC6331410 DOI: 10.3389/fpls.2018.01918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is especially important in the southern part of Europe, where environmental change is expected to be more intense. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama) that show differences in their environmental conditions and biogeographical background. Seedling survival, growth and leaf phenological traits were selected as adaptive traits and were measured under simulated controlled climate change conditions in a growth chamber. Seedling survival was also tested under current conditions in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for 3 years, under two different irrigation schemes, where the same amount of water was distributed either frequently (once every week) or non-frequently (once in 20 days). The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, changes in the duration of the growing season of seedlings were recorded in the growth chamber, allowing them to avoid environmental stress and high selection pressure. Differences were observed between populations and provenances in terms of temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.
Collapse
Affiliation(s)
- Georgios Varsamis
- Forest Genetics Laboratory, Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Orestiada, Greece
- Department of Forestry and Natural Environment Management, Eastern Macedonia and Thrace Institute of Technology, Drama, Greece
| | - Aristotelis C. Papageorgiou
- Forest Genetics Laboratory, Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Orestiada, Greece
| | - Theodora Merou
- Department of Forestry and Natural Environment Management, Eastern Macedonia and Thrace Institute of Technology, Drama, Greece
| | - Ioannis Takos
- Department of Forestry and Natural Environment Management, Eastern Macedonia and Thrace Institute of Technology, Drama, Greece
| | | | - Apostolos Manolis
- Forest Genetics Laboratory, Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Orestiada, Greece
| | - Ioannis Tsiripidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Manzanedo RD, Schanz FR, Fischer M, Allan E. Fagus sylvatica seedlings show provenance differentiation rather than adaptation to soil in a transplant experiment. BMC Ecol 2018; 18:42. [PMID: 30285730 PMCID: PMC6171197 DOI: 10.1186/s12898-018-0197-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/26/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Understanding and predicting the response of tree populations to climate change requires understanding the pattern and scale of their adaptation. Climate is often considered the major driver of local adaptation but, although biotic factors such as soil pathogens or mutualists could be as important, their role has typically been neglected. Biotic drivers might also interact with climate to affect performance and mycorrhizae, in particular, are likely to play a key role in determining drought resistance, which is important in the context of adaptation to future environmental change. To address these questions, we performed a fully reciprocal soil-plant transplant experiment using Fagus sylvatica seedlings and soils from three regions in Germany. To separate the biotic and abiotic effects of inoculation, half of the plants were inoculated with natural soil from the different origins, while the rest were grown on sterilized substrate. We also imposed a drought stress treatment to test for interactions between soil biota and climate. After 1 year of growth, we measured aboveground biomass of all seedlings, and quantified mycorrhizal colonization for a subset of the seedlings, which included all soil-plant combinations, to disentangle the effect of mycorrhiza from other agents. RESULTS We found that plant origin had the strongest effect on plant performance, but this interacted with soil origin. In general, trees showed a slight tendency to produce less aboveground biomass on local soils, suggesting soil antagonists could be causing trees to be maladapted to their local soils. Consistently, we found lower mycorrhizal colonization rate under local soil conditions. Across all soils, seedlings from low elevations produced more annual biomass than middle (+ 290%) and high (+ 97%) elevations. Interestingly, mycorrhizal colonization increased with drought in the two provenances that showed higher drought tolerance, which supports previous results showing that mycorrhizae can increase drought resistance. CONCLUSIONS Our findings suggest that soil communities play a role in affecting early performance of temperate trees, although this role may be smaller than that of seed origin. Also, other effects, such as the positive response to generalists or negative interactions with soil biota may be as important as the highly specialized mycorrhizal associations.
Collapse
Affiliation(s)
- R. D. Manzanedo
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - F. R. Schanz
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - M. Fischer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - E. Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
36
|
What Can We Learn from an Early Test on the Adaptation of Silver Fir Populations to Marginal Environments? FORESTS 2018. [DOI: 10.3390/f9070441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to determine the adaptive potential of silver fir in the southeast of Poland, the stability of the height of its five-year-old progeny was analyzed. The study was conducted in two different population groups in a total of four environments, including one ecologically marginal environment. The linear mixed model was used to evaluate the differentiation of populations in terms of height growth. The genotype and genotype-by-environment interaction biplot (GGE) were used to verify the stability of height. The climate of populations origin, in relation to actual fir distribution in Poland, was verified based on principal components analysis (PCA) of bioclimatic parameters. The highest total variability was explained by the genotype-environment interaction effect (GE) (54.50%), while the genotype effect (G) explained 41.27% and only 4.23% was explained by the site effect. The result of height growth variations revealed the Komańcza site as the most representative among study sites, while the Lesko site characterized the highest discriminating ability. The progeny occurring in climatic conditions most different from the average testing conditions showed a heterogeneous growth reaction, only adapting to the marginal environment, while the progeny of the second population in this region as well as the northernmost one was characterized by a mean but stable growth. The westernmost population revealed maladaptation. The assessment of the adaptability of silver fir depends on the broad spectrum of test conditions considering the ecologically marginal environments.
Collapse
|
37
|
Park A, Talbot C. Information Underload: Ecological Complexity, Incomplete Knowledge, and Data Deficits Create Challenges for the Assisted Migration of Forest Trees. Bioscience 2018. [DOI: 10.1093/biosci/biy001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew Park
- Department of Biology at the University of Winnipeg, in Manitoba, Canada
| | - Carolyn Talbot
- Technology and Public Policy at the University of Winnipeg
| |
Collapse
|
38
|
Augustaitis A, Augustaitienė I, Baugarten M, Bičenkienė S, Girgždienė R, Kulbokas G, Linkevičius E, Marozas V, Mikalajūnas M, Mordas G, Mozgeris G, Petrauskas E, Pivoras A, Šidlauskas G, Ulevičius V, Vitas A, Matyssek R. Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1247-1261. [PMID: 29751430 DOI: 10.1016/j.scitotenv.2017.09.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 06/08/2023]
Abstract
Global changes occurring under different environmental conditions have changed stand competition, as well as nutrient and light availability, which has resulted in changes in productivity. Therefore, in the present study, the characteristics of tree-ring width formation of the prevailing Lithuanian tree species, Norway spruce, Scots pine and silver and downy birch, and key factors resulting in their differences during the last 36-year period were investigated at forest sites located on poor mineral oligotrophic and on nutrient-rich organic mesoeutrophic soils. The aim of the study was as follows: first, to separately detect the maximum possible seasonal effect of three groups of variables - meteorology, acidifying pollutants and surface ozone on the stem basal area increment (BAI) of the evaluated tree species; second, to assess the significance of each group of variables affecting the BAI of these tree species integrally with the remaining groups of variables. Norway spruce was found to be well adapted to recent environmental changes, which makes it one of the most favourable tree species for silviculture in the northeastern part of Europe. The rapid increases recorded in growth intensity since 1980 were attributed to the increase in air temperature, precipitation amount, nitrogen deposition during the vegetative stage and reductions in SO2 concentrations and S deposition. Scots pine demonstrated the highest level of resilience and capacity to adapt to recent global changes because its reaction to both negative and favourable environmental factors was best expressed. Silver and downy birch tree reactions to the effects of air concentrations of acidifying compounds, their deposition and surface ozone concentrations were the least expressed; however, a significant decline in growth intensity indicated that these tree species experienced a reduced resistance to recent changes in environmental conditions in the mature and over-mature age groups.
Collapse
Affiliation(s)
- Algirdas Augustaitis
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | | | - Manuela Baugarten
- Chair Ecophysiology of Plants, Dep. Ecology, WZW, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Steigvilė Bičenkienė
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Raselė Girgždienė
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Gintaras Kulbokas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Edgaras Linkevičius
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Vitas Marozas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Marius Mikalajūnas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Genrik Mordas
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Gintautas Mozgeris
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Edmundas Petrauskas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Ainis Pivoras
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Giedrius Šidlauskas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Vidmantas Ulevičius
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Adomas Vitas
- Vytautas Magnum University, Centre of Environmental Research, Faculty of Nature Sciences, Vytautas Magnus University, Ž.E. Žilibero str. 2, LT-46324 Kaunas, Lithuania.
| | - Rainer Matyssek
- Chair Ecophysiology of Plants, Dep. Ecology, WZW, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| |
Collapse
|
39
|
Stojnic S, Suchocka M, Benito-Garzón M, Torres-Ruiz JM, Cochard H, Bolte A, Cocozza C, Cvjetkovic B, de Luis M, Martinez-Vilalta J, Ræbild A, Tognetti R, Delzon S. Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. TREE PHYSIOLOGY 2018; 38:173-185. [PMID: 29182720 DOI: 10.1093/treephys/tpx128] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/23/2017] [Indexed: 05/22/2023]
Abstract
Climate change is expected to increase the frequency and intensity of droughts and heatwaves in Europe, leading to effects on forest growth and major forest dieback events due to hydraulic failure caused by xylem embolism. Inter-specific variability in embolism resistance has been studied in detail, but little is known about intra-specific variability, particularly in marginal populations. We evaluated 15 European beech populations, mostly from geographically marginal sites of the species distribution range, focusing particularly on populations from the dry southern margin. We found small, but significant differences in resistance to embolism between populations, with xylem pressures causing 50% loss of hydraulic conductivity ranging from -2.84 to -3.55 MPa. Significant phenotypic clines of increasing embolism resistance with increasing temperature and aridity were observed: the southernmost beech populations growing in a warmer drier climate and with lower habitat suitability have higher resistance to embolism than those from Northern Europe growing more favourable conditions. Previous studies have shown that there is little or no difference in embolism resistance between core populations, but our findings show that marginal populations have developed ways of protecting their xylem based on either evolution or plasticity.
Collapse
Affiliation(s)
- S Stojnic
- University of Novi Sad, Institute of Lowland Forestry and Environment, 21000 Novi Sad, Republic of Serbia
| | - M Suchocka
- Warsaw University of Life Sciences, Landscape University Department, 02-787 Warsaw, Poland
| | | | | | - H Cochard
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - A Bolte
- Thünen Institute of Forest Ecosystems, 16225 Eberswalde, Germany
| | - C Cocozza
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Sesto Fiorentino, Italy
| | - B Cvjetkovic
- University of Banja Luka, Faculty of Forestry, Stepe Stepanovica 75A, 78000 Banja Luka, Bosnia and Herzegovina
| | - M de Luis
- Departamento de Geografía y Ordenación del Territorio-IUCA, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - J Martinez-Vilalta
- CREAF-Université Autònoma Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A Ræbild
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg, Denmark
| | - R Tognetti
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Pesche, and The EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach Foundation, San Michele all'Adige, Italy
| | - S Delzon
- BIOGECO INRA, University Bordeaux, 33615 Pessac, France
| |
Collapse
|
40
|
Barbeta A, Peñuelas J. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests. GLOBAL CHANGE BIOLOGY 2017; 23:5054-5068. [PMID: 28544424 DOI: 10.1111/gcb.13770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 05/17/2023]
Abstract
Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ13 C and δ18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO2 . Tree-ring δ18 O for both species were mostly correlated with δ18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ18 O but had a positive effect on Q. ilex tree-ring δ18 O. Furthermore, tree-ring δ18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions.
Collapse
Affiliation(s)
- Adrià Barbeta
- ISPA, Bordeaux Science Agro, INRA, Villenave d'Ornon, 33140, France
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, E-08193, Bellaterra, Catalonia, Spain
- CREAF, E-08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, E-08193, Bellaterra, Catalonia, Spain
- CREAF, E-08193, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
41
|
Rubert-Nason KF, Couture JJ, Gryzmala EA, Townsend PA, Lindroth RL. Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions. PLANT, CELL & ENVIRONMENT 2017; 40:2743-2753. [PMID: 28755489 DOI: 10.1111/pce.13042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Anticipated consequences of climate change in temperate regions include early spring warmup punctuated by intermittent hard freezes. Warm weather accelerates leaf flush in perennial woody species, potentially exposing vulnerable young tissues to damaging frosts. We employed a 2 × 6 randomized factorial design to examine how the interplay of vernal (springtime) freeze damage and genetic variation in a hardwood species (Populus tremuloides) influences tree growth, phytochemistry, and interactions with an insect herbivore (Chaitophorus stevensis). Acute effects of freezing included defoliation and mortality. Surviving trees exhibited reduced growth and altered biomass distribution. Reflushed leaves on these trees had lower mass per area, lower lignin concentrations, and higher nitrogen concentrations, altered chemical defence profiles, and supported faster aphid population growth. Many effects varied among plant genotypes and were related with herbivore performance. This study suggests that a single damaging vernal freeze event can alter tree-insect interactions through effects on plant growth and chemistry. Differential responses of various genotypes to freeze damage suggest that more frequent vernal freeze events could also influence natural selection, favouring trees with greater freeze hardiness, and more resistance or tolerance to herbivores following damage.
Collapse
Affiliation(s)
| | - John J Couture
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Elizabeth A Gryzmala
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
42
|
Vitra A, Lenz A, Vitasse Y. Frost hardening and dehardening potential in temperate trees from winter to budburst. THE NEW PHYTOLOGIST 2017; 216:113-123. [PMID: 28737248 DOI: 10.1111/nph.14698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/10/2017] [Indexed: 05/08/2023]
Abstract
We investigated how deciduous trees can adjust their freezing resistance in response to temperature during the progress of the ecodormancy phase, from midwinter to budburst. We regularly sampled twigs of four different temperate deciduous tree species from January to the leaf-out date. Using computer-controlled freezers and climate chambers, the freezing resistance of buds was measured directly after sampling and also after the application of artificial hardening and dehardening treatments, simulating cold and warm spells. The thermal time to budburst in forcing conditions (c. 20°C) was also quantified at each sampling as a proxy for dormancy depth. Earlier flushing species showed higher freezing resistance than late flushing species at either similar bud development stage or similar dormancy depth. Overall, freezing resistance and its hardening and dehardening potential dramatically decreased during the progress of ecodormancy and became almost nil during budburst. Our results suggest that extreme cold events in winter are not critical for trees, as freezing resistance can be largely enhanced during this period. By contrast, the timing of budburst is a critical component of tree fitness. Our results provide quantitative values of the freezing resistance dynamics during ecodormancy, particularly valuable in process-based species distribution models.
Collapse
Affiliation(s)
- Amarante Vitra
- Institute of Botany, University of Basel, 4056, Basel, Switzerland
- Research Unit Community Ecology, WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, CH-1015, Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Ecological Systems (ECOS), School of Architecture, Civil and Environmental Engineering (ENAC), Station 2, CH-1015, Lausanne, Switzerland
| | - Armando Lenz
- Institute of Botany, University of Basel, 4056, Basel, Switzerland
| | - Yann Vitasse
- Institute of Botany, University of Basel, 4056, Basel, Switzerland
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 2000, Neuchâtel, Switzerland
- Institute of Geography, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| |
Collapse
|
43
|
Putnam RC, Reich PB. Climate and competition affect growth and survival of transplanted sugar maple seedlings along a 1700-km gradient. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rachel C. Putnam
- Department of Ecology, Evolution, and Behavior; University of Minnesota; 1987 Upper Buford Circle St. Paul Minnesota 55108 USA
| | - Peter B. Reich
- Department of Forest Resources; University of Minnesota; 1530 Cleveland Avenue North St. Paul Minnesota 55108 USA
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith New South Wales 2753 Australia
| |
Collapse
|
44
|
Cocozza C, de Miguel M, Pšidová E, Ditmarová L, Marino S, Maiuro L, Alvino A, Czajkowski T, Bolte A, Tognetti R. Variation in Ecophysiological Traits and Drought Tolerance of Beech (Fagus sylvatica L.) Seedlings from Different Populations. FRONTIERS IN PLANT SCIENCE 2016; 7:886. [PMID: 27446118 PMCID: PMC4916223 DOI: 10.3389/fpls.2016.00886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/06/2016] [Indexed: 05/29/2023]
Abstract
Frequency and intensity of heat waves and drought events are expected to increase in Europe due to climate change. European beech (Fagus sylvatica L.) is one of the most important native tree species in Europe. Beech populations originating throughout its native range were selected for common-garden experiments with the aim to determine whether there are functional variations in drought stress responses among different populations. One-year old seedlings from four to seven beech populations were grown and drought-treated in a greenhouse, replicating the experiment at two contrasting sites, in Italy (Mediterranean mountains) and Germany (Central Europe). Experimental findings indicated that: (1) drought (water stress) mainly affected gas exchange describing a critical threshold of drought response between 30 and 26% SWA for photosynthetic rate and Ci/Ca, respectively; (2) the Ci to Ca ratio increased substantially with severe water stress suggesting a stable instantaneous water use efficiency and an efficient regulation capacity of water balance achieved by a tight stomatal control; (3) there was a different response to water stress among the considered beech populations, differently combining traits, although there was not a well-defined variability in drought tolerance. A combined analysis of functional and structural traits for detecting stress signals in beech seedlings is suggested to assess plant performance under limiting moisture conditions and, consequently, to estimate evolutionary potential of beech under a changing environmental scenario.
Collapse
Affiliation(s)
- Claudia Cocozza
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle RicercheSesto Fiorentino, Italy
| | | | - Eva Pšidová
- Institute of Forest Ecology, Slovak Academy of ScienceZvolen, Slovak Republic
| | - L'ubica Ditmarová
- Institute of Forest Ecology, Slovak Academy of ScienceZvolen, Slovak Republic
| | - Stefano Marino
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del MoliseCampobasso, Italy
| | - Lucia Maiuro
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del MoliseCampobasso, Italy
| | - Arturo Alvino
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del MoliseCampobasso, Italy
| | - Tomasz Czajkowski
- Johann Heinrich von Thünen Institute, Institute of Forest EcosystemsEberswalde, Germany
| | - Andreas Bolte
- Johann Heinrich von Thünen Institute, Institute of Forest EcosystemsEberswalde, Germany
| | - Roberto Tognetti
- Dipartimento di Bioscienze e Territorio, Università degli Studi del MolisePesche, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach FoundationSan Michele all'Adige, Italy
| |
Collapse
|
45
|
Bolte A, Czajkowski T, Cocozza C, Tognetti R, de Miguel M, Pšidová E, Ditmarová Ĺ, Dinca L, Delzon S, Cochard H, Ræbild A, de Luis M, Cvjetkovic B, Heiri C, Müller J. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions. FRONTIERS IN PLANT SCIENCE 2016; 7:751. [PMID: 27379105 PMCID: PMC4906631 DOI: 10.3389/fpls.2016.00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/17/2016] [Indexed: 05/24/2023]
Abstract
European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5-17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.
Collapse
Affiliation(s)
- Andreas Bolte
- Thünen Institute of Forest EcosystemsEberswalde, Germany
| | | | - Claudia Cocozza
- Instituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle RicercheSesto Fiorentino, Italy
| | - Roberto Tognetti
- Dipartimento di Bioscienze e Territorio, Università del MolisePesche, Italy
- EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach FoundationSan Michele all'Adige, Italy
| | | | - Eva Pšidová
- Institute of Forest Ecology, Slovak Academy of ScienceZvolen, Slovakia
| | - Ĺubica Ditmarová
- Institute of Forest Ecology, Slovak Academy of ScienceZvolen, Slovakia
| | - Lucian Dinca
- Marin Dracea National Forest Research-Development InstituteBucharest, Romania
| | | | - Hervè Cochard
- PIAF, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Anders Ræbild
- Department of Geosciences and Natural Resource Management, University of CopenhagenFrederiksberg C, Denmark
| | - Martin de Luis
- Grupo de Clima, Agua, Cambio Global y Sistemas Naturales, Departamento de Geografía y Ordenación del Territorio, Facultad de Filosofía y Letras, Instituto de Investigación en Ciencias Ambientales, Universidad de ZaragozaZaragoza, Spain
| | | | - Caroline Heiri
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Jürgen Müller
- Thünen Institute of Forest EcosystemsEberswalde, Germany
| |
Collapse
|
46
|
Hällfors MH, Liao J, Dzurisin J, Grundel R, Hyvärinen M, Towle K, Wu GC, Hellmann JJ. Addressing potential local adaptation in species distribution models: implications for conservation under climate change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1154-69. [PMID: 27509755 DOI: 10.1890/15-0926] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate Max-Ent models, one considering the species as a single population and two of disjunct populations. Principal component analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species vs. population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.
Collapse
|
47
|
Pluess AR, Frank A, Heiri C, Lalagüe H, Vendramin GG, Oddou-Muratorio S. Genome-environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. THE NEW PHYTOLOGIST 2016; 210:589-601. [PMID: 26777878 DOI: 10.1111/nph.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/12/2015] [Indexed: 05/09/2023]
Abstract
The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome-environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural Fagus sylvatica populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150 m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC.
Collapse
Affiliation(s)
- Andrea R Pluess
- Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903, Birmensdorf, Switzerland
- Swiss Federal Institute of Technology ETH, Universitatstrasse 16, 8092, Zurich, Switzerland
| | - Aline Frank
- Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Caroline Heiri
- Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Zurcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Hadrien Lalagüe
- INRA, UR629 Ecologie des Forêts Méditerranéennes (URFM), F-84914, Avignon, France
- INRA, Institut National de la Recherche Agronomique, Avenue the France, 97310, Kourou, France
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | | |
Collapse
|
48
|
Lenz A, Hoch G, Vitasse Y. Fast acclimation of freezing resistance suggests no influence of winter minimum temperature on the range limit of European beech. TREE PHYSIOLOGY 2016; 36:490-501. [PMID: 26888891 DOI: 10.1093/treephys/tpv147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/27/2015] [Indexed: 05/07/2023]
Abstract
Low temperature extremes drive species distribution at a global scale. Here, we assessed the acclimation potential of freezing resistance in European beech (Fagus sylvaticaL.) during winter. We specifically asked (i) how do beech populations growing in contrasting climates differ in their maximum freezing resistance, (ii) do differences result from genetic differentiation or phenotypic plasticity to preceding temperatures and (iii) is beech at risk of freezing damage in winter across its distribution range. We investigated the genetic and environmental components of freezing resistance in buds of adult beech trees from three different populations along a natural large temperature gradient in north-western Switzerland, including the site holding the cold temperature record in Switzerland. Freezing resistance of leaf primordia in buds varied significantly among populations, with LT50values (lethal temperature for 50% of samples) ranging from -25 to -40 °C, correlating with midwinter temperatures of the site of origin. Cambial meristems and the pith of shoots showed high freezing resistance in all three populations, with only a trend to lower freezing resistance at the warmer site. After hardening samples at -6 °C for 5 days, freezing resistance of leaf primordia increased in all provenances by up to 4.5 K. After additional hardening at -15 °C for 3 days, all leaf primordia were freezing resistant to -40 °C. We demonstrate that freezing resistance ofF. sylvaticahas a high ability to acclimate to temperature changes in winter, whereas the genetic differentiation of freezing resistance among populations seems negligible over this small geographic scale but large climatic gradient. In contrast to the assumption made in most of the species distribution models, we suggest that absolute minimum temperature in winter is unlikely to shape the cold range limit of beech. We conclude that the rapid acclimation of freezing resistance to winter temperatures allows beech to track changing climatic conditions, especially during unusually warm winters interrupted by very cold weather.
Collapse
Affiliation(s)
- Armando Lenz
- Institute of Botany, University of Basel, 4056 Basel, Switzerland
| | - Günter Hoch
- Institute of Botany, University of Basel, 4056 Basel, Switzerland
| | - Yann Vitasse
- Institute of Botany, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
49
|
Roulin AC, Mariadassou M, Hall MD, Walser JC, Haag C, Ebert D. High genetic variation in resting-stage production in a metapopulation: Is there evidence for local adaptation? Evolution 2015; 69:2747-56. [DOI: 10.1111/evo.12770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Anne C. Roulin
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Institute of Plant Biology; University of Zurich; Zollikerstrasse 107 8008 Zurich Switzerland
| | | | - Matthew D. Hall
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- School of Biological Sciences; Monash University; Melbourne 3800 Australia
| | - Jean-Claude Walser
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Genetic Diversity Centre; Universitätstrasse 16, CHN E 55 8092 Zürich Switzerland
| | - Christoph Haag
- CNRS-UMR5175 CEFE; 1919, Route de Mende 34293 Montpellier France
| | - Dieter Ebert
- Zoological Institute; Basel University; Vesalgasse 1 4051 Basel Switzerland
- Tvärminne Zoological Station; Helsinki University; Hanko Finland
| |
Collapse
|
50
|
Charrier G, Ngao J, Saudreau M, Améglio T. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. FRONTIERS IN PLANT SCIENCE 2015; 6:259. [PMID: 25972877 PMCID: PMC4411886 DOI: 10.3389/fpls.2015.00259] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 04/01/2015] [Indexed: 05/02/2023]
Abstract
Freezing stress is one of the most important limiting factors determining the ecological distribution and production of tree species. Assessment of frost risk is, therefore, critical for forestry, fruit production, and horticulture. Frost risk is substantial when hazard (i.e., exposure to damaging freezing temperatures) intersects with vulnerability (i.e., frost sensitivity). Based on a large number of studies on frost resistance and frost occurrence, we highlight the complex interactive roles of environmental conditions, carbohydrates, and water status in frost risk development. To supersede the classical empirical relations used to model frost hardiness, we propose an integrated ecophysiologically-based framework of frost risk assessment. This framework details the individual or interactive roles of these factors, and how they are distributed in time and space at the individual-tree level (within-crown and across organs). Based on this general framework, we are able to highlight factors by which different environmental conditions (e.g., temperature, light, flood, and drought), and management practices (pruning, thinning, girdling, sheltering, water aspersion, irrigation, and fertilization) influence frost sensitivity and frost exposure of trees.
Collapse
Affiliation(s)
| | - Jérôme Ngao
- INRA, Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France
| | - Marc Saudreau
- INRA, Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France
| | - Thierry Améglio
- INRA, Clermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France
| |
Collapse
|