1
|
Dhital R, Kim Y, Kim D, Hernandez-Aguirre I, Hedberg J, Martin A, Cassady KA. Ruxolitinib and oHSV combination therapy increases CD4 T cell activity and germinal center B cell populations in murine sarcoma. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200929. [PMID: 39895689 PMCID: PMC11787636 DOI: 10.1016/j.omton.2024.200929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a highly aggressive neoplasm of the peripheral nervous system and are resistant to most conventional cancer therapies. We previously showed that pretreatment with ruxolitinib (RUX) enhanced the efficacy of oncolytic herpes simplex virus (oHSV) virotherapy in this murine sarcoma model. A low abundance of tumor-infiltrating leukocytes and limitations in conventional flow cytometry restrict analyses to a narrow subset of immune cells, potentially introducing a confirmation bias. To address these limitations, we developed a 46-color spectral flow cytometry panel for the detailed analysis of immune cell dynamics following repeated oHSV dosing. Beyond the cytotoxic T lymphocyte (CTL) and regulatory T cell (Treg) changes reported in our earlier studies, RUX+oHSV treatment modulates myeloid and other lymphoid compartments, including germinal center B cell populations with enhanced activation. RUX+oHSV therapy also increased cytokine-expressing CD4(+) populations, predominantly granzyme B(+) cytotoxic-like, interferon (IFN)-γ(+) T helper type 1 (Th1)-like, and interleukin (IL)-21(+) T follicular helper (Tfh)-like phenotypes, within the tumor infiltrates, suggestive of potential tertiary lymphoid structure development in the treated tumors. Here, we illustrate the utility of a high-dimensional spectral flow cytometry panel that permits simultaneous evaluation of intratumoral CD4/CD8 T cell, Treg, γδ-T cell, natural killer T (NKT) cell, B cell, NK cell, monocyte, macrophage, granulocyte, myeloid-derived suppressor cell (MDSC), and dendritic cell functional changes from RUX+oHSV-treated MPNSTs.
Collapse
Affiliation(s)
- Ravi Dhital
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Yeaseul Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Doyeon Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ilse Hernandez-Aguirre
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jack Hedberg
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alexia Martin
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
2
|
Zhang P, Minnie SA, Hill GR. Calcineurin inhibition rescues alloantigen-specific central memory T cell subsets that promote chronic GVHD. Reply. J Clin Invest 2024; 134:e184869. [PMID: 39403932 PMCID: PMC11473142 DOI: 10.1172/jci184869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Affiliation(s)
- Ping Zhang
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
3
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Liu B, Li F, Wang Y, Gao X, Li Y, Wang Y, Zhou H. APP-CD74 axis mediates endothelial cell-macrophage communication to promote kidney injury and fibrosis. Front Pharmacol 2024; 15:1437113. [PMID: 39351084 PMCID: PMC11439715 DOI: 10.3389/fphar.2024.1437113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 10/04/2024] Open
Abstract
Background Kidney injuries often carry a grim prognosis, marked by fibrosis development, renal function loss, and macrophage involvement. Despite extensive research on macrophage polarization and its effects on other cells, like fibroblasts, limited attention has been paid to the influence of non-immune cells on macrophages. This study aims to address this gap by shedding light on the intricate dynamics and diversity of macrophages during renal injury and repair. Methods During the initial research phase, the complexity of intercellular communication in the context of kidney injury was revealed using a publicly available single-cell RNA sequencing library of the unilateral ureteral obstruction (UUO) model. Subsequently, we confirmed our findings using an independent dataset from a renal ischemia-reperfusion injury (IRI) model. We treated two different types of endothelial cells with TGF-β and co-cultured their supernatants with macrophages, establishing an endothelial cell and macrophage co-culture system. We also established a UUO and an IRI mouse model. Western blot analysis, flow cytometry, immunohistochemistry and immunofluorescence staining were used to validate our results at multiple levels. Results Our analysis revealed significant changes in the heterogeneity of macrophage subsets during both injury processes. Amyloid β precursor protein (APP)-CD74 axis mediated endothelial-macrophage intercellular communication plays a dominant role. In the in vitro co-culture system, TGF-β triggers endothelial APP expression, which subsequently enhances CD74 expression in macrophages. Flow cytometry corroborated these findings. Additionally, APP and CD74 expression were significantly increased in the UUO and IRI mouse models. Immunofluorescence techniques demonstrated the co-localization of F4/80 and CD74 in vivo. Conclusion Our study unravels a compelling molecular mechanism, elucidating how endothelium-mediated regulation shapes macrophage function during renal repair. The identified APP-CD74 signaling axis emerges as a promising target for optimizing renal recovery post-injury and preventing the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Faping Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxiong Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Wiesheu R, Edwards SC, Hedley A, Hall H, Tosolini M, Fares da Silva MGF, Sumaria N, Castenmiller SM, Wardak L, Optaczy Y, Lynn A, Hill DG, Hayes AJ, Hay J, Kilbey A, Shaw R, Whyte D, Walsh PJ, Michie AM, Graham GJ, Manoharan A, Halsey C, Blyth K, Wolkers MC, Miller C, Pennington DJ, Jones GW, Fournie JJ, Bekiaris V, Coffelt SB. IL-27 maintains cytotoxic Ly6C + γδ T cells that arise from immature precursors. EMBO J 2024; 43:2878-2907. [PMID: 38816652 PMCID: PMC11251046 DOI: 10.1038/s44318-024-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αβ-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, Ly/metabolism
- Antigens, Ly/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Interleukin-27/metabolism
- Interleukin-27/genetics
- Cell Differentiation/immunology
- Mice, Inbred C57BL
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Robert Wiesheu
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Sarah C Edwards
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Holly Hall
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Marie Tosolini
- Cancer Research Centre of Toulouse, University of Toulouse, Toulouse, France
| | | | - Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Suzanne M Castenmiller
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Leyma Wardak
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Amy Lynn
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - David G Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alan J Hayes
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Robin Shaw
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Declan Whyte
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Alison M Michie
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Anand Manoharan
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christina Halsey
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Monika C Wolkers
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Crispin Miller
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Seth B Coffelt
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Scotland Institute, Glasgow, UK.
| |
Collapse
|
6
|
Su C, Kent CL, Pierpoint M, Floyd W, Luo L, Williams NT, Ma Y, Peng B, Lazarides AL, Subramanian A, Himes JE, Perez VM, Hernansaiz-Ballesteros RD, Roche KE, Modliszewski JL, Selitsky SR, Shinohara ML, Wisdom AJ, Moding EJ, Mowery YM, Kirsch DG. Enhancing radiotherapy response via intratumoral injection of a TLR9 agonist in autochthonous murine sarcomas. JCI Insight 2024; 9:e178767. [PMID: 39133651 PMCID: PMC11383182 DOI: 10.1172/jci.insight.178767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024] Open
Abstract
Radiation therapy (RT) is frequently used to treat cancers, including soft-tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to RT in transplanted tumors, but the mechanisms of this enhancement remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft-tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and 2 doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to CpG+RT, we performed bulk RNA-Seq, single-cell RNA-Seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and IFN-γ. CpG+RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG+RT, TCR clonality analysis suggests an increase in clonal T cell dominance. Collectively, these findings demonstrate that CpG+RT significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft-tissue sarcoma.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew Pierpoint
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Warren Floyd
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Peng
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexander L Lazarides
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Jonathon E Himes
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Kimberly E Roche
- Tempus AI Inc., Durham, North Carolina, USA
- QuantBio LLC, Durham, North Carolina, USA
| | - Jennifer L Modliszewski
- QuantBio LLC, Durham, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sara R Selitsky
- Tempus AI Inc., Durham, North Carolina, USA
- QuantBio LLC, Durham, North Carolina, USA
| | - Mari L Shinohara
- Department of Integrative Immunology
- Department of Molecular Genetics and Microbiology, and
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy J Wisdom
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology and
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Kim Y, Saini U, Kim D, Hernandez-Aguirre I, Hedberg J, Martin A, Mo X, Cripe TP, Markert J, Cassady KA, Dhital R. Enhanced IL-12 transgene expression improves oncolytic viroimmunotherapy. Front Immunol 2024; 15:1375413. [PMID: 38895115 PMCID: PMC11184146 DOI: 10.3389/fimmu.2024.1375413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with unacceptably low cure rates occurring often in patients with neurofibromatosis 1 defects. To investigate oncolytic Herpes Simplex Virus (oHSV) as an immunotherapeutic approach, we compared viral replication, functional activity, and immune response between unarmed and interleukin 12 (IL-12)-armed oncolytic viruses in virus-permissive (B109) and -resistant (67C-4) murine MPNSTs. Methods This study compared two attenuated IL-12-oHSVs with γ134.5 gene deletions (Δγ134.5) and the same transgene expression cassette. The primary difference in the IL-12-oHSVs was in their ability to counter the translational arrest response in infected cells. Unlike M002 (Δγ134.5, mIL-12), C002 (Δγ134.5, mIL-12, IRS1) expresses an HCMV IRS1 gene and evades dsRNA activated translational arrest in infected cells. Results and discussion Our results show that oHSV replication and gene expression results in vitro were not predictive of oHSV direct oncolytic activity in vivo. Tumors that supported viral replication in cell culture studies resisted viral replication by both oHSVs and restricted M002 transgene expression in vivo. Furthermore, two IL-12-oHSVs with equivalent transcriptional activity differed in IL-12 protein production in vivo, and the differences in IL-12 protein levels were reflected in immune infiltrate activity changes as well as tumor growth suppression differences between the IL-12-oHSVs. C002-treated tumors exhibited sustained IL-12 production with improved dendritic cells, monocyte-macrophage activity (MHCII, CD80/CD86 upregulation) and a polyfunctional Th1-cell response in the tumor infiltrates. Conclusion These results suggest that transgene protein production differences between oHSVs in vivo, in addition to replication differences, can impact OV-therapeutic activity.
Collapse
Affiliation(s)
- Yeaseul Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Uksha Saini
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Doyeon Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ilse Hernandez-Aguirre
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jack Hedberg
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Alexia Martin
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - James Markert
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ravi Dhital
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
8
|
Su C, Kent CL, Pierpoint M, Floyd W, Luo L, Wiliams NT, Ma Y, Peng B, Lazarides AL, Subramanian A, Himes JE, Perez VM, Hernansaiz-Ballesteros RD, Roche KE, Modliszewski JL, Selitsky SR, Mari Shinohara, Wisdom AJ, Moding EJ, Mowery YM, Kirsch DG. Enhancing radiotherapy response via intratumoral injection of the TLR9 agonist CpG to stimulate CD8 T cells in an autochthonous mouse model of sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573968. [PMID: 38260522 PMCID: PMC10802286 DOI: 10.1101/2024.01.03.573968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Radiation therapy is frequently used to treat cancers including soft tissue sarcomas. Prior studies established that the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine oligodeoxynucleotide (CpG) enhances the response to radiation therapy (RT) in transplanted tumors, but the mechanism(s) remain unclear. Here, we used CRISPR/Cas9 and the chemical carcinogen 3-methylcholanthrene (MCA) to generate autochthonous soft tissue sarcomas with high tumor mutation burden. Treatment with a single fraction of 20 Gy RT and two doses of CpG significantly enhanced tumor response, which was abrogated by genetic or immunodepletion of CD8+ T cells. To characterize the immune response to RT + CpG, we performed bulk RNA-seq, single-cell RNA-seq, and mass cytometry. Sarcomas treated with 20 Gy and CpG demonstrated increased CD8 T cells expressing markers associated with activation and proliferation, such as Granzyme B, Ki-67, and interferon-γ. CpG + RT also upregulated antigen presentation pathways on myeloid cells. Furthermore, in sarcomas treated with CpG + RT, TCR clonality analysis suggests an increase in clonal T-cell dominance. Collectively, these findings demonstrate that RT + CpG significantly delays tumor growth in a CD8 T cell-dependent manner. These results provide a strong rationale for clinical trials evaluating CpG or other TLR9 agonists with RT in patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Collin L. Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Matthew Pierpoint
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Nerissa T. Wiliams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Brian Peng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jonathan E. Himes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | - Mari Shinohara
- Department of Immunology, Duke University, Durham, NC, USA
| | - Amy J. Wisdom
- Department of Radiation Oncology, Harvard University, Cambridge, MA, USA
| | - Everett J. Moding
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
9
|
Boelaars K, Goossens-Kruijssen L, Wang D, de Winde CM, Rodriguez E, Lindijer D, Springer B, van der Haar Àvila I, de Haas A, Wehry L, Boon L, Mebius RE, van Montfoort N, Wuhrer M, den Haan JMM, van Vliet SJ, van Kooyk Y. Unraveling the impact of sialic acids on the immune landscape and immunotherapy efficacy in pancreatic cancer. J Immunother Cancer 2023; 11:e007805. [PMID: 37940346 PMCID: PMC10632901 DOI: 10.1136/jitc-2023-007805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Despite the successful application of immune checkpoint blockade in a range of human cancers, immunotherapy in PDAC remains unsuccessful. PDAC is characterized by a desmoplastic, hypoxic and highly immunosuppressive tumor microenvironment (TME), where T-cell infiltration is often lacking (immune desert), or where T cells are located distant from the tumor islands (immune excluded). Converting the TME to an immune-inflamed state, allowing T-cell infiltration, could increase the success of immunotherapy in PDAC. METHOD In this study, we use the KPC3 subcutaneous PDAC mouse model to investigate the role of tumor-derived sialic acids in shaping the tumor immune landscape. A sialic acid deficient KPC3 line was generated by genetic knock-out of the CMAS (cytidine monophosphate N-acetylneuraminic acid synthetase) enzyme, a critical enzyme in the synthesis of sialic acid-containing glycans. The effect of sialic acid-deficiency on immunotherapy efficacy was assessed by treatment with anti-programmed cell death protein 1 (PD-1) and agonistic CD40. RESULT The absence of sialic acids in KPC3 tumors resulted in increased numbers of CD4+ and CD8+ T cells in the TME, and reduced frequencies of CD4+ regulatory T cells (Tregs) within the T-cell population. Importantly, CD8+ T cells were able to infiltrate the tumor islands in sialic acid-deficient tumors. These favorable alterations in the immune landscape sensitized sialic acid-deficient tumors to immunotherapy, which was ineffective in sialic acid-expressing KPC3 tumors. In addition, high expression of sialylation-related genes in human pancreatic cancer correlated with decreased CD8+ T-cell infiltration, increased presence of Tregs, and poorer survival probability. CONCLUSION Our results demonstrate that tumor-derived sialic acids mediate T-cell exclusion within the PDAC TME, thereby impairing immunotherapy efficacy. Targeting sialic acids represents a potential strategy to enhance T-cell infiltration and improve immunotherapy outcomes in PDAC.
Collapse
Affiliation(s)
- Kelly Boelaars
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Laura Goossens-Kruijssen
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Di Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Dimitri Lindijer
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Babet Springer
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Irene van der Haar Àvila
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Aram de Haas
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Laetitia Wehry
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | | | - Reina E Mebius
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Joke M M den Haan
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Molecular Cell Biology & Immunology, Amsterdam institute for Infection and Immunity, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Kare AJ, Nichols L, Zermeno R, Raie MN, Tumbale SK, Ferrara KW. OMIP-095: 40-Color spectral flow cytometry delineates all major leukocyte populations in murine lymphoid tissues. Cytometry A 2023; 103:839-850. [PMID: 37768325 PMCID: PMC10843696 DOI: 10.1002/cyto.a.24788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.
Collapse
Affiliation(s)
- Aris J. Kare
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lisa Nichols
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Zermeno
- Stanford Shared FACS Facility, Stanford University, Stanford, CA 94305, USA
| | - Marina N. Raie
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
11
|
Biswas M, So K, Bertolini TB, Krishnan P, Rana J, Muñoz-Melero M, Syed F, Kumar SRP, Gao H, Xuei X, Terhorst C, Daniell H, Cao S, Herzog RW. Distinct functions and transcriptional signatures in orally induced regulatory T cell populations. Front Immunol 2023; 14:1278184. [PMID: 37954612 PMCID: PMC10637621 DOI: 10.3389/fimmu.2023.1278184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Oral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration. Whilst both FoxP3+LAP+ and FoxP3-LAP+ CD4+ T cells express membrane-bound TGF-β (latency associated peptide, LAP), phenotypic, functional, and single cell transcriptomic analyses reveal distinct characteristics in the two subsets. As judged by an increase in IL-2Rα and TCR signaling, elevated expression of co-inhibitory receptor molecules and upregulation of the TGFβ and IL-10 signaling pathways, FoxP3+LAP+ cells are an activated form of FoxP3+LAP- Treg. Whereas FoxP3-LAP+ cells express low levels of genes involved in TCR signaling or co-stimulation, engagement of the AP-1 complex members Jun/Fos and Atf3 is most prominent, consistent with potent IL-10 production. Single cell transcriptomic analysis further reveals that engagement of the Jun/Fos transcription factors is requisite for mediating TGFβ expression. This can occur via an Il2ra dependent or independent process in FoxP3+LAP+ or FoxP3-LAP+ cells respectively. Surprisingly, both FoxP3+LAP+ and FoxP3-LAP+ cells potently suppress and induce FoxP3 expression in CD4+ conventional T cells. In this process, FoxP3-LAP+ cells may themselves convert to FoxP3+ Treg. We conclude that orally induced suppression is dependent on multiple regulatory cell types with complementary and interconnected roles.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaman So
- Department of Biostatistics and Health Data Science and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Thais B. Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Preethi Krishnan
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Farooq Syed
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sandeep R. P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Ng WH, Liu X, Ling ZL, Santos CNO, Magalhães LS, Kueh AJ, Herold MJ, Taylor A, Freitas JR, Koit S, Wang S, Lloyd AR, Teixeira MM, Merits A, Almeida RP, King NJC, Mahalingam S. FHL1 promotes chikungunya and o'nyong-nyong virus infection and pathogenesis with implications for alphavirus vaccine design. Nat Commun 2023; 14:6605. [PMID: 37884534 PMCID: PMC10603155 DOI: 10.1038/s41467-023-42330-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Arthritogenic alphaviruses are positive-strand RNA viruses that cause debilitating musculoskeletal diseases affecting millions worldwide. A recent discovery identified the four-and-a-half-LIM domain protein 1 splice variant A (FHL1A) as a crucial host factor interacting with the hypervariable domain (HVD) of chikungunya virus (CHIKV) nonstructural protein 3 (nsP3). Here, we show that acute and chronic chikungunya disease in humans correlates with elevated levels of FHL1. We generated FHL1-/- mice, which when infected with CHIKV or o'nyong-nyong virus (ONNV) displayed reduced arthritis and myositis, fewer immune infiltrates, and reduced proinflammatory cytokine/chemokine outputs, compared to infected wild-type (WT) mice. Interestingly, disease signs were comparable in FHL1-/- and WT mice infected with arthritogenic alphaviruses Ross River virus (RRV) or Mayaro virus (MAYV). This aligns with pull-down assay data, which showed the ability of CHIKV and ONNV nsP3 to interact with FHL1, while RRV and MAYV nsP3s did not. We engineered a CHIKV mutant unable to bind FHL1 (CHIKV-ΔFHL1), which was avirulent in vivo. Following inoculation with CHIKV-ΔFHL1, mice were protected from disease upon challenge with CHIKV and ONNV, and viraemia was significantly reduced in RRV- and MAYV-challenged mice. Targeting FHL1-binding as an approach to vaccine design could lead to breakthroughs in mitigating alphaviral disease.
Collapse
Affiliation(s)
- Wern Hann Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Zheng L Ling
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Camilla N O Santos
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Lucas S Magalhães
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Joseph R Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Sandra Koit
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Mauro M Teixeira
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Roque P Almeida
- Division of Immunology and Molecular Biology Laboratory, University Hospital/EBSERH, Federal University of Sergipe (UFS), Aracaju, Brazil
| | - Nicholas J C King
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
13
|
Berton RR, McGonagil PW, Jensen IJ, Ybarra TK, Bishop GA, Harty JT, Griffith TS, Badovinac VP. Sepsis leads to lasting changes in phenotype and function of naïve CD8 T cells. PLoS Pathog 2023; 19:e1011720. [PMID: 37824591 PMCID: PMC10597476 DOI: 10.1371/journal.ppat.1011720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/24/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Sepsis, an amplified immune response to systemic infection, is characterized by a transient cytokine storm followed by chronic immune dysfunction. Consequently, sepsis survivors are highly susceptible to newly introduced infections, suggesting sepsis can influence the function and composition of the naïve CD8 T cell pool and resulting pathogen-induced primary CD8 T cell responses. Here, we explored the extent to which sepsis induces phenotypic and functional changes within the naïve CD8 T cell pool. To interrogate this, the cecal ligation and puncture (CLP) mouse model of polymicrobial sepsis was used. In normal, non-septic mice, we show type-I interferon (IFN I)-mediated signaling plays an important role in driving the phenotypic and functional heterogeneity in the naïve CD8 T cell compartment leading to increased representation of Ly6C+ naïve CD8 T cells. In response to viral infection after sepsis resolution, naïve Ly6C+ CD8 T cells generated more primary effector and memory CD8 T cells with slower conversion to a central memory CD8 T cell phenotype (Tcm) than Ly6C- naïve CD8 T cells. Importantly, as a potent inducer of cytokine storm and IFN I production, sepsis leads to increased representation of Ly6C+ naïve CD8 T cells that maintained their heightened ability to respond (i.e., effector and memory CD8 T cell accumulation and cytokine production) to primary LCMV infection. Lastly, longitudinal analyses of peripheral blood samples obtained from septic patients revealed profound changes in CD8 T cell subset composition and frequency compared to healthy controls. Thus, sepsis has the capacity to alter the composition of naïve CD8 T cells, directly influencing primary CD8 T cell responses to newly introduced infections.
Collapse
Affiliation(s)
- Roger R. Berton
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick W. McGonagil
- Department of Surgery, University of Iowa, Iowa City, Iowa, United States of America
| | - Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Tiffany K. Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gail A. Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John T. Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
14
|
Miller KD, O'Connor S, Pniewski KA, Kannan T, Acosta R, Mirji G, Papp S, Hulse M, Mukha D, Hlavaty SI, Salcido KN, Bertolazzi F, Srikanth YVV, Zhao S, Wellen KE, Shinde RS, Claiborne DT, Kossenkov A, Salvino JM, Schug ZT. Acetate acts as a metabolic immunomodulator by bolstering T-cell effector function and potentiating antitumor immunity in breast cancer. NATURE CANCER 2023; 4:1491-1507. [PMID: 37723305 PMCID: PMC10615731 DOI: 10.1038/s43018-023-00636-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2023] [Indexed: 09/20/2023]
Abstract
Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.
Collapse
Affiliation(s)
- Katelyn D Miller
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Seamus O'Connor
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Katherine A Pniewski
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Toshitha Kannan
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Reyes Acosta
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Gauri Mirji
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Sara Papp
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Michael Hulse
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Dzmitry Mukha
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Sabina I Hlavaty
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Kelsey N Salcido
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Fabrizio Bertolazzi
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
- Cellular and Molecular Biology Program, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yellamelli V V Srikanth
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul S Shinde
- The Wistar Institute of Anatomy and Biology, Immunology, Microenvironment & Metastasis Program, Philadelphia, PA, USA
| | - Daniel T Claiborne
- The Wistar Institute of Anatomy and Biology, Vaccine and Immunotherapy Center, Philadelphia, PA, USA
| | - Andrew Kossenkov
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Joseph M Salvino
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Zachary T Schug
- The Wistar Institute of Anatomy and Biology, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Lee EJ, Choi JG, Han JH, Kim YW, Lim J, Chung HS. Single-Cell RNA Sequencing Reveals Immuno-Oncology Characteristics of Tumor-Infiltrating T Lymphocytes in Photodynamic Therapy-Treated Colorectal Cancer Mouse Model. Int J Mol Sci 2023; 24:13913. [PMID: 37762216 PMCID: PMC10531263 DOI: 10.3390/ijms241813913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) has shown promise in reducing metastatic colorectal cancer (CRC); however, the underlying mechanisms remain unclear. Modulating tumor-infiltrating immune cells by PDT may be achieved, which requires the characterization of immune cell populations in the tumor microenvironment by single-cell RNA sequencing (scRNA-seq). Here, we determined the effect of Chlorin e6 (Ce6)-mediated PDT on tumor-infiltrating T cells using scRNA-seq analysis. We used a humanized programmed death-1/programmed death ligand 1 (PD-1/PD-L1) MC38 cell allograft mouse model, considering its potential as an immunogenic cancer model and in combination with PD-1/PD-L1 immune checkpoint blockade. PDT treatment significantly reduced tumor growth in mice containing hPD-1/PD-L1 MC38 tumors. scRNA-seq analysis revealed that the PDT group had increased levels of CD8+ activated T cells and CD8+ cytotoxic T cells, but decreased levels of exhausted CD8+ T cells. PDT treatment also enhanced the infiltration of CD8+ T cells into tumors and increased the production of key effector molecules, including granzyme B and perforin 1. These findings provide insight into immune-therapeutic modulation for CRC patients and highlight the potential of PDT in overcoming immune evasion and enhancing antitumor immunity.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (E.-J.L.); (J.-G.C.); (J.H.H.)
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (E.-J.L.); (J.-G.C.); (J.H.H.)
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (E.-J.L.); (J.-G.C.); (J.H.H.)
| | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea; (Y.-W.K.); (J.L.)
| | - Junmo Lim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea; (Y.-W.K.); (J.L.)
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea; (E.-J.L.); (J.-G.C.); (J.H.H.)
- Korean Convergence Medical Science Major, University of Science and Technology (UST), KIOM Campus, Daegu 41062, Republic of Korea
| |
Collapse
|
16
|
Seamons A, Staucean O, Snyder JM, Brabb T, Hsu CC, Paik J. ALDH1A Inhibition Suppresses Colitis and Alters α4β7 Integrin Expression on Activated T Cells in Mdr1a-/- Mice. Nutrients 2023; 15:3883. [PMID: 37764666 PMCID: PMC10536456 DOI: 10.3390/nu15183883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
There are limited pharmacological treatment options for inflammatory bowel disease (IBD), and some of these options are expensive and administered by injection or infusion. Thus, new cheaper and easier (oral) treatment options are needed. ALDH1A enzymes produce retinoic acid that can affect intestinal diseases such as IBD by regulating immune cells in the gut. We previously demonstrated that an orally deliverable ALDH1A inhibitor, WIN 18,466, can suppress colitis in an acute mouse model of IBD. Here, we tested the efficacy of ALDH1A inhibition in a chronic mouse model of IBD. Mdr1a-/- mice were treated with a diet containing WIN 18,446 starting 1 week prior to inducing colitis by H. bilis inoculation. Treatment was continued until the study end point and colitis was monitored based on clinical symptoms and confirmed by histological analysis. Immune cell phenotypes in colon-draining lymph nodes (cMLN) were analyzed. WIN 18,446 treatment reduced clinical symptoms and improved histopathologic colitis scores. This was associated with decreased expression of the gut homing integrin, α4β7, on T cells in cMLN; increased expression of CD103, a protein associated with tissue-resident memory T cells; and changes in dendritic cells, plasmacytoid dendritic cells and B cells in inhibitor-treated mice. ALDH1A inhibition broadly influences immune cells during colitis and is a potential new target for IBD treatment. Future studies will be needed to determine the efficacy of ALDH1A inhibition on active colitis and to evaluate its relative efficacy in comparison to approved drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA; (A.S.); (O.S.); (J.M.S.); (T.B.); (C.C.H.)
| |
Collapse
|
17
|
Brandi J, Wiethe C, Riehn M, Jacobs T. OMIP-93: A 41-color high parameter panel to characterize various co-inhibitory molecules and their ligands in the lymphoid and myeloid compartment in mice. Cytometry A 2023; 103:624-630. [PMID: 37219006 DOI: 10.1002/cyto.a.24740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
This 41-color panel has been designed to characterize both the lymphoid and the myeloid compartments in mice. The number of immune cells isolated from organs is often low, whilst an increasing number of factors need to be analyzed to gain a deeper understanding of the complexity of an immune response. With a focus on T cells, their activation and differentiation status, as well as their expression of several co-inhibitory and effector molecules, this panel also allows the analysis of ligands to these co-inhibitory molecules on antigen-presenting cells. This panel enables deep phenotypic characterization of CD4+ and CD8+ T cells, regulatory T cells, γδ T cells, NK T cells, B cells, NK cells, monocytes, macrophages, dendritic cells, and neutrophils. Whilst previous panels have focused on these topics individually, this is the first panel to enable simultaneous analysis of these compartments, thus enabling a comprehensive analysis with a limited number of immune cells/sample size. This panel is designed to analyze and compare the immune response in different mouse models of infectious diseases, but can also be extended to other disease models, for example tumors or autoimmune diseases. Here, we apply this panel to C57BL/6 mice infected with Plasmodium berghei ANKA, a mouse model of cerebral malaria.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Wiethe
- Marketing and Scientific Application, BioLegend Inc, San Diego, California, USA
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
18
|
Medler TR, Kramer G, Bambina S, Gunderson AJ, Alice A, Blair T, Zebertavage L, Duhen T, Duhen R, Young K, Crittenden MR, Gough MJ. Tumor resident memory CD8 T cells and concomitant tumor immunity develop independently of CD4 help. Sci Rep 2023; 13:6277. [PMID: 37072485 PMCID: PMC10113239 DOI: 10.1038/s41598-023-33508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Tissue resident memory (Trm) CD8 T cells infiltrating tumors represent an enriched population of tumor antigen-specific T cells, and their presence is associated with improved outcomes in patients. Using genetically engineered mouse pancreatic tumor models we demonstrate that tumor implantation generates a Trm niche that is dependent on direct antigen presentation by cancer cells. However, we observe that initial CCR7-mediated localization of CD8 T cells to tumor draining lymph nodes is required to subsequently generate CD103+ CD8 T cells in tumors. We observe that the formation of CD103+ CD8 T cells in tumors is dependent on CD40L but independent of CD4 T cells, and using mixed chimeras we show that CD8 T cells can provide their own CD40L to permit CD103+ CD8 T cell differentiation. Finally, we show that CD40L is required to provide systemic protection against secondary tumors. These data suggest that CD103+ CD8 T cell formation in tumors can occur independent of the two-factor authentication provided by CD4 T cells and highlight CD103+ CD8 T cells as a distinct differentiation decision from CD4-dependent central memory.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Andrew J Gunderson
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The OH State University, Columbus, OH, 43210, USA
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Tiffany Blair
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Lauren Zebertavage
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Thomas Duhen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Kristina Young
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA.
| |
Collapse
|
19
|
Paterson CW, Gutierrez MB, Coopersmith CM, Ford ML. Impact of chronic alcohol exposure on conventional and regulatory murine T cell subsets. Front Immunol 2023; 14:1142614. [PMID: 37006296 PMCID: PMC10063870 DOI: 10.3389/fimmu.2023.1142614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Chronic alcohol use poses significant negative consequences to public health and, among its many biologic effects, is associated with significant T cell dysregulation within the adaptive immune system that has yet to be fully characterized. Novel, automated strategies for high dimensional flow cytometric analysis of the immune system are rapidly improving researchers' ability to detect and characterize rare cell types. Methods Using a murine model of chronic alcohol ingestion in conjunction with viSNE and CITRUS analysis tools, we performed a machine-driven, exploratory analysis comparing rare splenic subpopulations within the conventional CD4+, regulatory CD4+ and CD8+ T cell compartments between alcohol- and water-fed animals. Results While there were no differences in the absolute numbers of bulk CD3+ T cells, bulk CD4+ T cells, bulk CD8+ T cells, Foxp3- CD4+ conventional T cells (Tconv) or Foxp3+ CD4+ regulatory T cells (Treg), we identified populations of naïve Helios+ CD4+Tconv and naïve CD103+ CD8+ splenic T cells that were decreased in chronically alcohol exposed mice versus water-fed controls. In addition, we identified increased CD69+ Treg and decreased CD103+ effector regulatory T cell (eTreg) subsets in conjunction with increased frequency of a population that may represent a transitional phenotype between central regulatory T cell (cTreg) and eTreg. Discussion These data provide further resolution into the character of decreased naïve T cell populations known to be present in alcohol exposed mice, as well as describe alterations in effector regulatory T cell phenotypes associated with the pathogenesis of chronic alcohol-induced immune dysfunction.
Collapse
Affiliation(s)
- Cameron W. Paterson
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Medical Corps, United States Navy, Navy Reserve Officer Training Corps (NROTC), Atlanta, GA, United States
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Melissa B. Gutierrez
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Craig M. Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Mandy L. Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Ma B, Zhou Y, Hu Y, Duan H, Sun Z, Wang P, Li W, Han W, Qi H. Mapping Resident Immune Cells in the Murine Ocular Surface and Lacrimal Gland by Flow Cytometry. Ocul Immunol Inflamm 2023; 31:748-759. [PMID: 36867079 DOI: 10.1080/09273948.2023.2182327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND The ocular surface and lacrimal gland have a frontline position in mucosal immunology. However, there have been few updates to the immune cell atlas of these tissues in recent years. PURPOSE To map the immune cells in murine ocular surface tissues and lacrimal gland. METHODS Central and peripheral corneas, conjunctiva, and lacrimal gland were dissociated into single cell suspensions, followed by flow cytometry. Discrepancy of immune cells between the central and peripheral corneas was compared. In the conjunctiva and lacrimal gland, myeloid cells were clustered by tSNE and FlowSOM based on the expression of F4/80, Ly6C, Ly6G, and MHC II. ILCs, type 1 immune cells, and type 3 immune cells were analyzed. RESULTS The number of immune cells in peripheral corneas was about 16 folds of that in central corneas. B cells accounted for 8.74% of immune cells in murine peripheral corneas. In the conjunctiva and lacrimal gland, most myeloid cells tended out to be monocytes, macrophages, and classical dendritic cells (cDCs). ILC3 were 6.28% and 3.63% of ILCs in the conjunctiva and lacrimal gland, respectively. Th1, Tc1, and NK cells were predominant type 1 immune cells. γδ T17 cells and ILC3 outnumbered Th17 cells among type 3 T cells. CONCLUSION B cells resident in murine corneas were reported for the first time. Additionally, we proposed a strategy of clustering myeloid cells to better understand their heterogeneity in the conjunctiva and lacrimal gland based on tSNE and FlowSOM. Furthermore, we identified the ILC3 in the conjunctiva and lacrimal gland for the first time. Compositions of type 1 and type 3 immune cells were summarized. Our study provides a fundamental reference and novel insights for ocular surface immune homeostasis and diseases.
Collapse
Affiliation(s)
- Baikai Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Yuzhe Hu
- Department of Immunology, Peking University Health Science Center, Beijing, China.,NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hongyu Duan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Zhengze Sun
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, Peking University Health Science Center, Beijing, China.,NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Wei Li
- Eye Institute of Xiamen University, Xiamen, China.,Xiang'an Hospital of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Wenling Han
- Department of Immunology, Peking University Health Science Center, Beijing, China.,NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hong Qi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| |
Collapse
|
21
|
Du Z, Zhang H, Feng Y, Zhan D, Li S, Tu C, Liu J, Wang J. Tumour-derived small extracellular vesicles contribute to the tumour progression through reshaping the systemic immune macroenvironment. Br J Cancer 2023; 128:1249-1266. [PMID: 36755063 PMCID: PMC10050072 DOI: 10.1038/s41416-023-02175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Tumour-derived small extracellular vesicles (sEVs) play a crucial role in cancer immunomodulation. In addition to tumour immune microenvironment, the peripheral immune system also contributes significantly to cancer progression and is essential for anticancer immunity. However, a comprehensive definition of which and how peripheral immune lineages are regulated by tumour-derived sEVs during cancer development remains incomplete. METHODS In this study, we used mass cytometry with extensive antibody panels to comprehensively construct the systemic immune landscape in response to tumour development and tumour-derived sEVs. RESULTS Systemic immunity was dramatically altered by tumour growth and tumour-derived sEVs. Tumour-derived sEVs significantly and extensively affected immune cell population composition as well as intracellular pathways, resulting in an immunosuppressive peripheral and tumour immune microenvironment, characterised by increased myeloid-derived suppressor cells and decreased Ly6C+CD8 T cells. These sEVs largely promoted hematopoietic recovery and accelerate the differentiation towards myeloid-derived suppressor cells. The knockdown of Rab27a reduced sEV secretion from tumour cells and delayed tumour growth and metastasis in vivo. CONCLUSIONS These results highlight that tumour-derived sEVs function as a bridge between peripheral immunity regulation and the tumour microenvironment, and contribute to cancer progression through altering the composition and function of the global immune macroenvironment.
Collapse
Affiliation(s)
- Zhimin Du
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- School of Nursing, Guangzhou Medical University, 510182, Guangzhou, China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Yueyuan Feng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Dewen Zhan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Shuya Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
22
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
John J, Woolaver RA, Popolizio V, Chen SMY, Ge H, Krinsky AL, Vashisht M, Kramer Y, Chen Z, Wang JH. Divergent outcomes of anti-PD-L1 treatment coupled with host-intrinsic differences in TCR repertoire and distinct T cell activation states in responding versus non-responding tumors. Front Immunol 2022; 13:992630. [PMID: 36330507 PMCID: PMC9624473 DOI: 10.3389/fimmu.2022.992630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Differential responses to immune checkpoint inhibitors (ICI) may be attributed to tumor-intrinsic factors or environmental cues; however, these mechanisms cannot fully explain the variable ICI responses in different individuals. Here, we investigate the potential contribution of immunological heterogeneity with a focus on differences in T-cell receptor (TCR) repertoire to ICI responses, which has not been defined previously. To reveal additional factors underlying heterogeneous responses to ICI, we employed a squamous cell carcinoma (SCC) mouse model in which tumor-bearing recipients unambiguously diverged into responders (R) or non-responders (NR) upon anti-PD-L1 treatment. Treatment efficacy absolutely required CD8 T-cells and correlated positively with effector functions of CD8 tumor-infiltrating lymphocytes (TILs). We showed that TCR repertoires exhibited a similar magnitude of clonal expansion in R vs. NR CD8 TILs. However, the top expanded TCR clonotypes appeared to be mutually exclusive between R and NR CD8 TILs, which also occurred in a recipient-specific manner, demonstrating preferential expansion of distinct TCR clonotypes against the same SCC tumor. Unexpectedly, R vs. NR CD8 TILs reached all activation clusters and did not exhibit substantial global differences in transcriptomes. By linking single-cell transcriptomic data with unique TCR clonotypes, CD8 TILs harboring top TCR clonotypes were found to occupy distinct activation clusters and upregulate genes favoring anti-tumor immunity to different extents in R vs. NR. We conclude that stochastic differences in CD8 TIL TCR repertoire and distinct activation states of top TCR clonotypes may contribute to differential anti-PD-L1 responses. Our study suggests that host-intrinsic immunological heterogeneity may offer a new explanation for differential ICI responses in different individuals, which could impact on strategies for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Jessy John
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel A. Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| | - Vince Popolizio
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| | - Samantha M. Y. Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| | - Huaibin Ge
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexandra L. Krinsky
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| | - Monika Vashisht
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yonatan Kramer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, United States
| | - Zhangguo Chen
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jing H. Wang
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Wang Y, Xu Y, Zang Z, Wu L, Li Z. Panoramic Manifold Projection (Panoramap) for Single-Cell Data Dimensionality Reduction and Visualization. Int J Mol Sci 2022; 23:7775. [PMID: 35887125 PMCID: PMC9316349 DOI: 10.3390/ijms23147775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 12/22/2022] Open
Abstract
Nonlinear dimensionality reduction (NLDR) methods such as t-Distributed Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) have been widely used for biological data exploration, especially in single-cell analysis. However, the existing methods have drawbacks in preserving data's geometric and topological structures. A high-dimensional data analysis method, called Panoramic manifold projection (Panoramap), was developed as an enhanced deep learning framework for structure-preserving NLDR. Panoramap enhances deep neural networks by using cross-layer geometry-preserving constraints. The constraints constitute the loss for deep manifold learning and serve as geometric regularizers for NLDR network training. Therefore, Panoramap has better performance in preserving global structures of the original data. Here, we apply Panoramap to single-cell datasets and show that Panoramap excels at delineating the cell type lineage/hierarchy and can reveal rare cell types. Panoramap can facilitate trajectory inference and has the potential to aid in the early diagnosis of tumors. Panoramap gives improved and more biologically plausible visualization and interpretation of single-cell data. Panoramap can be readily used in single-cell research domains and other research fields that involve high dimensional data analysis.
Collapse
Affiliation(s)
- Yajuan Wang
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China
- School of Engineering, Westlake University, Hangzhou 310024, China; (Y.X.); (Z.Z.); (L.W.); (Z.L.)
| | - Yongjie Xu
- School of Engineering, Westlake University, Hangzhou 310024, China; (Y.X.); (Z.Z.); (L.W.); (Z.L.)
| | - Zelin Zang
- School of Engineering, Westlake University, Hangzhou 310024, China; (Y.X.); (Z.Z.); (L.W.); (Z.L.)
| | - Lirong Wu
- School of Engineering, Westlake University, Hangzhou 310024, China; (Y.X.); (Z.Z.); (L.W.); (Z.L.)
| | - Ziqing Li
- School of Engineering, Westlake University, Hangzhou 310024, China; (Y.X.); (Z.Z.); (L.W.); (Z.L.)
| |
Collapse
|
25
|
A 33-color panel of phenotypic analysis of murine organ specific immune cells. J Immunol Methods 2022; 507:113294. [DOI: 10.1016/j.jim.2022.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
26
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|
27
|
Rational administration sequencing of immunochemotherapy elicits powerful anti-tumor effect. J Control Release 2021; 341:769-781. [PMID: 34952044 DOI: 10.1016/j.jconrel.2021.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
As a research hotspot, immune checkpoint inhibitors (ICIs) is often combined with other therapeutics in order to exert better clinical efficacy. To date, extensive laboratory and clinical investigations into the combination of ICIs and chemotherapy have been carried out, demonstrating augmented effectiveness and broad application prospects in anti-tumor therapy. However, the administration of these two treatment modalities is usually randomized or fixed to a given chronological order. Nevertheless, the pharmacological effect of drug is closely related to its exposure behavior in vivo, which may consequently affect the synergistic outcomes of a combined therapy. In this study, we prepared a lipid nanoparticle encapsulating docetaxel (DTX-VNS), and associated it with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) for the treatment of malignant tumors. To identify the optimum timing and sequencing for chemotherapy and immunotherapy, we designed three administration regimes, including the simultaneous delivery of DTX-VNS and αPD-1(DTX-VNS@αPD-1), DTX-VNS delivery before (DTX-VNS plus αPD-1) or post (αPD-1 plus DTX-VNS) PD-1 blockade with an interval of two days. Analysis from mass spectrometry, multi-factor detection and other techniques indicated that DTX-VNS plus αPD-1 initiated a powerful anti-tumor response in multiple tumor models, contributing to a remarkably reshaped tumor microenvironment landscape, which may attribute to the maximum therapeutic additive effects arise from a concomitant exposure of DTX-VNS and αPD-1 at the tumor site. By profiling the exposure kinetics of nanoparticles and αPD-1 in vivo, we defined the administration schedule with utmost therapeutic benefits, which may provide a valuable clinical reference for the rational administration of immunochemotherapy.
Collapse
|
28
|
Mouchemore KA, Anderson RL. Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol 2021; 54:101512. [PMID: 34763974 DOI: 10.1016/j.smim.2021.101512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.
Collapse
Affiliation(s)
- Kellie A Mouchemore
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Rangel-Mata FJ, Ávila-Muro EE, Reyes-Martínez JE, Olmos-Ortiz LM, Brunck ME, Arriaga-Pizano LA, Cuéllar-Mata P. Immune cell arrival kinetics to peritoneum and role during murine-experimental trichomoniasis. Parasitology 2021; 148:1624-1635. [PMID: 35060469 PMCID: PMC11010205 DOI: 10.1017/s0031182021001311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Trichomonas vaginalis causes trichomoniasis, an inflammatory process related to an increased rate of HIV transmission. In order to study T. vaginalis infection response in a microorganism-free environment, an infection model was established providing a host–parasite interaction system useful to study the interplay between immune cells and the parasite. Infected mice peritoneal cells were immunophenotyped at different times after infection using flow cytometry. Neutrophils and macrophages showed the most relevant increase from third to 12th day post-infection. A high number of B lymphocytes were present on 15th day post-infection, and an increase in memory T cells was observed on sixth day post-infection. The levels of NO increased at day 10 post-infection; no significant influence was observed on T. vaginalis clearance. Increased viability of T. vaginalis was observed when the NETs inhibitors, metformin and Cl− amidine, were administrated, highlighting the importance of this mechanism to control parasite infection (43 and 86%, respectively). This report presents a comprehensive cell count of the immune cells participating against trichomoniasis in an in vivo interaction system. These data highlight the relevance of innate mechanisms such as specific population changes of innate immune cells and their impact on the T. vaginalis viability.
Collapse
Affiliation(s)
- F. J. Rangel-Mata
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - E. E. Ávila-Muro
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - L. M. Olmos-Ortiz
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - M. E. Brunck
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | | | - P. Cuéllar-Mata
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
30
|
Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, William I, Hornick NI, Fitzgerald BL, Damo M, Kasmani MY, Cui C, Fagerberg E, Monroy I, Hutchins A, Cheung JF, Foster GG, Mariuzza DL, Nader M, Zhao H, Cui W, Krishnaswamy S, Joshi NS. A reservoir of stem-like CD8 + T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci Immunol 2021; 6:eabg7836. [PMID: 34597124 PMCID: PMC8593910 DOI: 10.1126/sciimmunol.abg7836] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
“Stem-like” TCF1+ CD8+ T (TSL) cells are necessary for long-term maintenance of T cell responses and the efficacy of immunotherapy, but, as tumors contain signals that should drive T cell terminal differentiation, how these cells are maintained in tumors remains unclear. In this study, we found that a small number of TCF1+ tumor-specific CD8+ T cells were present in lung tumors throughout their development. Yet, most intratumoral T cells differentiated as tumors progressed, corresponding with an immunologic shift in the tumor microenvironment (TME) from “hot” (T cell inflamed) to “cold” (non–T cell inflamed). By contrast, most tumor-specific CD8+ T cells in tumor-draining lymph nodes (dLNs) had functions and gene expression signatures similar to TSL from chronic lymphocytic choriomeningitis virus infection, and this population was stable over time despite the changes in the TME. dLN T cells were the developmental precursors of, and were clonally related to, their more differentiated intratumoral counterparts. Our data support the hypothesis that dLN T cells are the developmental precursors of the TCF1+ T cells in tumors that are maintained by continuous migration. Last, CD8+ T cells similar to TSL were also present in LNs from patients with lung adenocarcinoma, suggesting that a similar model may be relevant in human disease. Thus, we propose that the dLN TSL reservoir has a critical function in sustaining antitumor T cells during tumor development and in protecting them from the terminal differentiation that occurs in the TME.
Collapse
Affiliation(s)
- Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Manik Kuchroo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Aarthi Venkat
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jiawei Wang
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Ivana William
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Noah I Hornick
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Brittany L Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Isabel Monroy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Amanda Hutchins
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Julie F Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Gena G Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Dylan L Mariuzza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Mursal Nader
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI 53213, USA
| | - Smita Krishnaswamy
- Department of Genetics and Computer Science, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
31
|
Jergović M, Coplen CP, Uhrlaub JL, Besselsen DG, Cheng S, Smithey MJ, Nikolich-Žugich J. Infection-induced type I interferons critically modulate the homeostasis and function of CD8 + naïve T cells. Nat Commun 2021; 12:5303. [PMID: 34489451 PMCID: PMC8421345 DOI: 10.1038/s41467-021-25645-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
Naïve T (Tn) cells require two homeostatic signals for long-term survival: tonic T cell receptor:self-peptide-MHC contact and IL-7 stimulation. However, how microbial exposure impacts Tn homeostasis is still unclear. Here we show that infections can lead to the expansion of a subpopulation of long-lived, Ly6C+ CD8+ Tn cells with accelerated effector function. Mechanistically, mono-infection with West Nile virus transiently, and polymicrobial exposure persistently, enhances Ly6C expression selectively on CD5hiCD8+ cells, which in the case of polyinfection translates into a numerical CD8+ Tn cell increase in the lymph nodes. This conversion and expansion of Ly6C+ Tn cells depends on IFN-I, which upregulates MHC class I expression and enhances tonic TCR signaling in differentiating Tn cells. Moreover, for Ly6C+CD8+ Tn cells, IFN-I-mediated signals optimize their homing to secondary sites, extend their lifespan, and enhance their effector differentiation and antibacterial function, particularly for low-affinity clones. Our results thus uncover significant regulation of Tn homeostasis and function via infection-driven IFN-I, with potential implications for immunotherapy.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christopher P Coplen
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Shu Cheng
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Megan J Smithey
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
- Vir, Inc., San Francisco, CA, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
32
|
Ager CR, Boda A, Rajapakshe K, Lea ST, Di Francesco ME, Jayaprakash P, Slay RB, Morrow B, Prasad R, Dean MA, Duffy CR, Coarfa C, Jones P, Curran MA. High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege. J Immunother Cancer 2021; 9:jitc-2021-003246. [PMID: 34341132 PMCID: PMC8330562 DOI: 10.1136/jitc-2021-003246] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Intratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking. METHODS Here, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy. RESULTS Highly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach. CONCLUSIONS This study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA,Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Akash Boda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Kimal Rajapakshe
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Spencer Thomas Lea
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyamvada Jayaprakash
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ravaen B Slay
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brittany Morrow
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Rishika Prasad
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Meghan A Dean
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Colm R Duffy
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
33
|
Nikolaou C, Muehle K, Schlickeiser S, Japp AS, Matzmohr N, Kunkel D, Frentsch M, Thiel A. High-dimensional single cell mass cytometry analysis of the murine hematopoietic system reveals signatures induced by ageing and physiological pathogen challenges. IMMUNITY & AGEING 2021; 18:20. [PMID: 33879187 PMCID: PMC8056611 DOI: 10.1186/s12979-021-00230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under 'specific-pathogen-free' (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. RESULTS We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. CONCLUSIONS Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.
Collapse
Affiliation(s)
- Christos Nikolaou
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany. .,Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany. .,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Kerstin Muehle
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- Institute for Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Alberto Sada Japp
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Matzmohr
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Frentsch
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
CD45RB Status of CD8 + T Cell Memory Defines T Cell Receptor Affinity and Persistence. Cell Rep 2021; 30:1282-1291.e5. [PMID: 32023448 DOI: 10.1016/j.celrep.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/18/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The identity of CD45 isoforms on the T cell surface changes following the activation of naive T cells and impacts intracellular signaling. In this study, we find that the anti-viral memory CD8+ T pool is unexpectedly comprised of both CD45RBhi and CD45RBlo populations. Relative to CD45RBlo memory T cells, CD45RBhi memory T cells have lower affinity and display greater clonal diversity, as well as a persistent CD27hi phenotype. The CD45RBhi memory population displays a homeostatic survival advantage in vivo relative to CD45RBlo memory, and long-lived high-affinity cells that persisted long term convert from CD45RBlo to CD45RBhi. Human CD45RO+ memory is comprised of both CD45RBhi and CD45RBlo populations with distinct phenotypes, and antigen-specific memory to two viruses is predominantly CD45RBhi. These data demonstrate that CD45RB status is distinct from the conventional central/effector T cell memory classification and has potential utility for monitoring and characterizing pathogen-specific CD8+ T cell responses.
Collapse
|
35
|
Woolaver RA, Wang X, Krinsky AL, Waschke BC, Chen SMY, Popolizio V, Nicklawsky AG, Gao D, Chen Z, Jimeno A, Wang XJ, Wang JH. Differences in TCR repertoire and T cell activation underlie the divergent outcomes of antitumor immune responses in tumor-eradicating versus tumor-progressing hosts. J Immunother Cancer 2021; 9:jitc-2020-001615. [PMID: 33414263 PMCID: PMC7797305 DOI: 10.1136/jitc-2020-001615] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Antitumor immunity is highly heterogeneous between individuals; however, underlying mechanisms remain elusive, despite their potential to improve personalized cancer immunotherapy. Head and neck squamous cell carcinomas (HNSCCs) vary significantly in immune infiltration and therapeutic responses between patients, demanding a mouse model with appropriate heterogeneity to investigate mechanistic differences. Methods We developed a unique HNSCC mouse model to investigate underlying mechanisms of heterogeneous antitumor immunity. This model system may provide a better control for tumor-intrinsic and host-genetic variables, thereby uncovering the contribution of the adaptive immunity to tumor eradication. We employed single-cell T-cell receptor (TCR) sequencing coupled with single-cell RNA sequencing to identify the difference in TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) and the unique activation states linked with different TCR clonotypes. Results We discovered that genetically identical wild-type recipient mice responded heterogeneously to the same squamous cell carcinoma tumors orthotopically transplanted into the buccal mucosa. While tumors initially grew in 100% of recipients and most developed aggressive tumors, ~25% of recipients reproducibly eradicated tumors without intervention. Heterogeneous antitumor responses were dependent on CD8 T cells. Consistently, CD8 TILs in regressing tumors were significantly increased and more activated. Single-cell TCR-sequencing revealed that CD8 TILs from both growing and regressing tumors displayed evidence of clonal expansion compared with splenic controls. However, top TCR clonotypes and TCR specificity groups appear to be mutually exclusive between regressing and growing TILs. Furthermore, many TCRα/TCRβ sequences only occur in one recipient. By coupling single-cell transcriptomic analysis with unique TCR clonotypes, we found that top TCR clonotypes clustered in distinct activation states in regressing versus growing TILs. Intriguingly, the few TCR clonotypes shared between regressors and progressors differed greatly in their activation states, suggesting a more dominant influence from tumor microenvironment than TCR itself on T cell activation status. Conclusions We reveal that intrinsic differences in the TCR repertoire of TILs and their different transcriptional trajectories may underlie the heterogeneous antitumor immune responses in different hosts. We suggest that antitumor immune responses are highly individualized and different hosts employ different TCR specificities against the same tumors, which may have important implications for developing personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Rachel A Woolaver
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoguang Wang
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexandra L Krinsky
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brittany C Waschke
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samantha M Y Chen
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vince Popolizio
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew G Nicklawsky
- Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dexiang Gao
- Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zhangguo Chen
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonio Jimeno
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jing Hong Wang
- Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
36
|
Barouni RM, Musiu C, Bronte V, Ugel S, Canè S. Phenotypical Characterization and Isolation of Tumor-Derived Mouse Myeloid-Derived Suppressor Cells. Methods Mol Biol 2021; 2236:29-42. [PMID: 33237538 DOI: 10.1007/978-1-0716-1060-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population composed of mature and immature cells of myeloid origin that play a major role in tumor progression by inhibiting the antitumor immune responses mediated by T cells. In this chapter, we describe protocols for isolation, phenotypical and functional evaluation of MDSCs isolated from mouse tumors, with the aim at unifying and standardizing protocols set up by different laboratories.
Collapse
Affiliation(s)
- Roza Maria Barouni
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Chiara Musiu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefania Canè
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
37
|
Mehmeti-Ajradini M, Bergenfelz C, Larsson AM, Carlsson R, Riesbeck K, Ahl J, Janols H, Wullt M, Bredberg A, Källberg E, Björk Gunnarsdottir F, Rydberg Millrud C, Rydén L, Paul G, Loman N, Adolfsson J, Carneiro A, Jirström K, Killander F, Bexell D, Leandersson K. Human G-MDSCs are neutrophils at distinct maturation stages promoting tumor growth in breast cancer. Life Sci Alliance 2020; 3:3/11/e202000893. [PMID: 32958605 PMCID: PMC7536824 DOI: 10.26508/lsa.202000893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
This study shows that immunosuppressive primary breast cancer patient–derived G-MDSCs (PMN-MDSCs) are neutrophils at a range of maturations stages, and provides in vivo evidence for that human G-MDSCs also promote tumor growth and myeloid immune cell exclusion. Myeloid-derived suppressor cells (MDSCs) are known to contribute to immune evasion in cancer. However, the function of the human granulocytic (G)-MDSC subset during tumor progression is largely unknown, and there are no established markers for their identification in human tumor specimens. Using gene expression profiling, mass cytometry, and tumor microarrays, we here demonstrate that human G-MDSCs occur as neutrophils at distinct maturation stages, with a disease-specific profile. G-MDSCs derived from patients with metastatic breast cancer and malignant melanoma display a unique immature neutrophil profile, that is more similar to healthy donor neutrophils than to G-MDSCs from sepsis patients. Finally, we show that primary G-MDSCs from metastatic breast cancer patients co-transplanted with breast cancer cells, promote tumor growth, and affect vessel formation, leading to myeloid immune cell exclusion. Our findings reveal a role for human G-MDSC in tumor progression and have clinical implications also for targeted immunotherapy.
Collapse
Affiliation(s)
| | - Caroline Bergenfelz
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna-Maria Larsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Jonas Ahl
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Helena Janols
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Marlene Wullt
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anders Bredberg
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Eva Källberg
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| | | | | | - Lisa Rydén
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Surgery and Gastroenterology, Skåne University Hospital, Lund, Sweden
| | - Gesine Paul
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jörgen Adolfsson
- Science for Life Laboratory Node at Linköping's University, Linköping, Sweden
| | - Ana Carneiro
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Fredrika Killander
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| |
Collapse
|
38
|
Cassidy BR, Zhang M, Sonntag WE, Drevets DA. Neuroinvasive Listeria monocytogenes infection triggers accumulation of brain CD8 + tissue-resident memory T cells in a miR-155-dependent fashion. J Neuroinflammation 2020; 17:259. [PMID: 32878636 PMCID: PMC7466815 DOI: 10.1186/s12974-020-01929-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Brain inflammation is a key cause of cognitive decline after central nervous system (CNS) infections. A thorough understanding of immune responses to CNS infection is essential for developing anti-inflammatory interventions that improve outcomes. Tissue-resident memory T cells (TRM) are non-recirculating memory T cells that provide surveillance of previously infected tissues. However, in addition to protecting the brain against reinfection, brain TRM can contribute to post-infectious neuroinflammation. We hypothesized that accumulation of CD8+TRM in the brain could be reduced by inhibiting microRNA (miR)-155, a microRNA that influences development of cytotoxic CD8+ T lymphocytes during infection. Methods C57BL/6J mice were infected by intraperitoneal injection with a lethal inoculum of Listeria monocytogenes (Lm) then treated with antibiotics. Flow cytometry was used to quantify specific populations of brain leukocytes 28–29 days (d) post-infection (p.i.). To test the degree to which miR-155 altered leukocyte influxes into the brain, infected mice were injected with a miR-155 inhibitor or locked nucleic acid (LNA) scramble control 2d, 4d, 6d, and 8d p.i. along with antibiotic treatment. Bacterial loads in spleen and liver and body weights were measured up to 7d p.i. Brain leukocytes were analyzed 14d and 28d p.i. Confirmatory studies were performed in mutated mice lacking miR-155 (miR-155−/−) Results Lm infection significantly increased the numbers of brain CD3+CD8+ lymphocytes at 28d p.i. These cells were extravascular, and displayed markers characteristic of TRM, with the predominant phenotype of CD44+CD62L-CD69+CX3CR1−. Further analysis showed that > 75% of brain TRM also expressed CD49a, PD-1, Ly6C, CD103, and CD127. Mice injected with miR-155 inhibitor lost less weight through 7d p.i. than did control mice, whereas bacterial loads in brain, liver, and spleen were not different from controls. By 28d p.i., the numbers of brain CD8+ TRM cells were significantly decreased in mice treated with the inhibitor compared with controls. Similarly, miR-155−/− mice showed significantly reduced numbers of brain CD8+TRM cells by 28d p.i. Conclusions Brain CD8+ TRM populations are established during neuroinvasive Lm infection. Accumulation of brain CD8+ TRM cells is reduced by blocking miR-155 and in miR-155−/− mice, indicating that this molecule has a critical role in development of these specialized cells. Administering anti-miR-155 during infection could provide a novel avenue for reducing post-infectious neuroinflammation.
Collapse
Affiliation(s)
- Benjamin R Cassidy
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Miao Zhang
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Douglas A Drevets
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Section of Infectious Diseases, 800 Stanton L. Young, Suite 7300, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
39
|
Reeves PM, Raju Paul S, Baeten L, Korek SE, Yi Y, Hess J, Sobell D, Scholzen A, Garritsen A, De Groot AS, Moise L, Brauns T, Bowen R, Sluder AE, Poznansky MC. Novel multiparameter correlates of Coxiella burnetii infection and vaccination identified by longitudinal deep immune profiling. Sci Rep 2020; 10:13311. [PMID: 32770104 PMCID: PMC7414860 DOI: 10.1038/s41598-020-69327-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Q-fever is a flu-like illness caused by Coxiella burnetii (Cb), a highly infectious intracellular bacterium. There is an unmet need for a safe and effective vaccine for Q-fever. Correlates of immune protection to Cb infection are limited. We proposed that analysis by longitudinal high dimensional immune (HDI) profiling using mass cytometry combined with other measures of vaccination and protection could be used to identify novel correlates of effective vaccination and control of Cb infection. Using a vaccine-challenge model in HLA-DR transgenic mice, we demonstrated significant alterations in circulating T-cell and innate immune populations that distinguished vaccinated from naïve mice within 10 days, and persisted until at least 35 days post-vaccination. Following challenge, vaccinated mice exhibited reduced bacterial burden and splenomegaly, along with distinct effector T-cell and monocyte profiles. Correlation of HDI data to serological and pathological measurements was performed. Our data indicate a Th1-biased response to Cb, consistent with previous reports, and identify Ly6C, CD73, and T-bet expression in T-cell, NK-cell, and monocytic populations as distinguishing features between vaccinated and naïve mice. This study refines the understanding of the integrated immune response to Cb vaccine and challenge, which can inform the assessment of candidate vaccines for Cb.
Collapse
Affiliation(s)
- P M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA.
| | - S Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - L Baeten
- Colorado State University, Fort Collins, CO, USA
| | - S E Korek
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Y Yi
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - J Hess
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - D Sobell
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - A Scholzen
- InnatOss Laboratories B.V, Oss, The Netherlands
| | - A Garritsen
- InnatOss Laboratories B.V, Oss, The Netherlands
| | - A S De Groot
- EpiVax, Inc, Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - L Moise
- EpiVax, Inc, Providence, RI, USA.,Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - T Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - R Bowen
- Colorado State University, Fort Collins, CO, USA
| | - A E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - M C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
40
|
Allen BM, Hiam KJ, Burnett CE, Venida A, DeBarge R, Tenvooren I, Marquez DM, Cho NW, Carmi Y, Spitzer MH. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat Med 2020; 26:1125-1134. [PMID: 32451499 PMCID: PMC7384250 DOI: 10.1038/s41591-020-0892-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Understanding of the factors governing immune responses in cancer remains incomplete, limiting patient benefit. In this study, we used mass cytometry to define the systemic immune landscape in response to tumor development across five tissues in eight mouse tumor models. Systemic immunity was dramatically altered across models and time, with consistent findings in the peripheral blood of patients with breast cancer. Changes in peripheral tissues differed from those in the tumor microenvironment. Mice with tumor-experienced immune systems mounted dampened responses to orthogonal challenges, including reduced T cell activation during viral or bacterial infection. Antigen-presenting cells (APCs) mounted weaker responses in this context, whereas promoting APC activation rescued T cell activity. Systemic immune changes were reversed with surgical tumor resection, and many were prevented by interleukin-1 or granulocyte colony-stimulating factor blockade, revealing remarkable plasticity in the systemic immune state. These results demonstrate that tumor development dynamically reshapes the composition and function of the immune macroenvironment.
Collapse
Affiliation(s)
- Breanna M Allen
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Kamir J Hiam
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Cassandra E Burnett
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Venida
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Rachel DeBarge
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Iliana Tenvooren
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
| | - Nam Woo Cho
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew H Spitzer
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Departments of Otolaryngology and Microbiology & Immunology, Helen Diller Family Comprehensive Cancer Center, Parker Institute for Cancer Immunotherapy, Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Chen H, Eling N, Martinez‐Jimenez CP, O'Brien LM, Carbonaro V, Marioni JC, Odom DT, de la Roche M. IL-7-dependent compositional changes within the γδ T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep 2019; 20:e47379. [PMID: 31283095 PMCID: PMC6680116 DOI: 10.15252/embr.201847379] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
How the age-associated decline of immune function leads to increased cancer incidence is poorly understood. Here, we have characterised the cellular composition of the γδ T-cell pool in peripheral lymph nodes (pLNs) upon ageing. We find that ageing has minimal cell-intrinsic effects on function and global gene expression of γδ T cells, and γδTCR diversity remains stable. However, ageing alters TCRδ chain usage and clonal structure of γδ T-cell subsets. Importantly, IL-17-producing γδ17 T cells dominate the γδ T-cell pool of aged mice-mainly due to the selective expansion of Vγ6+ γδ17 T cells and augmented γδ17 polarisation of Vγ4+ T cells. Expansion of the γδ17 T-cell compartment is mediated by increased IL-7 expression in the T-cell zone of old mice. In a Lewis lung cancer model, pro-tumourigenic Vγ6+ γδ17 T cells are exclusively activated in the tumour-draining LN and their infiltration into the tumour correlates with increased tumour size in aged mice. Thus, upon ageing, substantial compositional changes in γδ T-cell pool in the pLN lead to an unbalanced γδ T-cell response in the tumour that is associated with accelerated tumour growth.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-7/genetics
- Interleukin-7/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Tumor Burden/genetics
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Hung‐Chang Chen
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Nils Eling
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
| | - Celia Pilar Martinez‐Jimenez
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Helmholtz Pioneer Campus, Helmholtz Zentrum MünchenNeuherbergGermany
| | | | | | - John C Marioni
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
| | - Duncan T Odom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Division of Signalling and Functional GenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Maike de la Roche
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
42
|
Piranlioglu R, Lee E, Ouzounova M, Bollag RJ, Vinyard AH, Arbab AS, Marasco D, Guzel M, Cowell JK, Thangaraju M, Chadli A, Hassan KA, Wicha MS, Celis E, Korkaya H. Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nat Commun 2019; 10:1430. [PMID: 30926774 PMCID: PMC6441000 DOI: 10.1038/s41467-019-09015-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
Although clinically apparent metastasis is associated with late stages of cancer development, micro-metastatic dissemination may be an early event. However, the fate of these early disseminated tumor cells (DTC) remains elusive. We show that despite their capacity to disseminate into secondary organs, 4T1 tumor models develop overt metastasis while EMT6-tumor bearing mice clear DTCs shed from primary tumors as well as those introduced by intravenous (IV) injection. Following the surgical resection of primary EMT6 tumors, mice do not develop detectable metastasis and reject IV-injected tumor cells. In contrast, these cells readily grow and metastasize in immuno-deficient athymic or Rag2−/− mice, an effect mimicked by CD8+ T-cell depletion in immunocompetent mice. Furthermore, recombinant G-CSF or adoptive transfer of granulocytic-MDSCs isolated from 4T1 tumor-bearing mice, induce metastasis by suppressing CD8+ T-cells in EMT6-primed mice. Our studies support the concept of immune surveillance providing molecular insights into the immune mechanisms during tumor progression. Dissemination of tumor cells from the primary site is an early event. Here, the authors show that the early disseminated tumor cells are actively cleared by the host cytotoxic T lymphocytes induced by the primary tumor and that infiltration of granulocytic myeloid-derived suppressor cells counteracts such immune protection and allow metastasis development.
Collapse
Affiliation(s)
- Raziye Piranlioglu
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - EunMi Lee
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Maria Ouzounova
- Cancer Research Center of Lyon, 28 Rue Laennec, 69008, Lyon, France
| | - Roni J Bollag
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Alicia H Vinyard
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Ali S Arbab
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134, Naples, Italy
| | - Mustafa Guzel
- Regenerative and Restorative Research Center (REMER), Medipol University, Kavacık Mah. Ekinciler Cad. No.19 Kavacık Kavşağı - Beykoz, 34810, İstanbul Istanbul, Turkey
| | - John K Cowell
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Muthushamy Thangaraju
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Khaled A Hassan
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Esteban Celis
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA
| | - Hasan Korkaya
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Blvd. CN2136, Augusta, GA, 30912, USA.
| |
Collapse
|
43
|
DeLong JH, Hall AO, Konradt C, Coppock GM, Park J, Harms Pritchard G, Hunter CA. Cytokine- and TCR-Mediated Regulation of T Cell Expression of Ly6C and Sca-1. THE JOURNAL OF IMMUNOLOGY 2018; 200:1761-1770. [PMID: 29358280 DOI: 10.4049/jimmunol.1701154] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 02/05/2023]
Abstract
Ly6C and Sca-1 (Ly6A/E) are Ly6 family GPI-anchored surface molecules that are differentially expressed by multiple immune populations. Ly6C expression has been used to distinguish short-lived effector CD4+ T cells from memory precursor effector cells, whereas Sca-1 has been used in the identification of CD8+ memory stem cells. This study examines the expression patterns of these molecules and establishes that, in vitro, IL-27, type I IFN, and IFN-γ are potent inducers of Ly6C and Sca-1 in naive mouse CD4+ and CD8+ T cells, whereas TGF-β limits their expression. The induction of Ly6C and Sca-1 by IL-27 and IFN-γ is dependent on STAT1, but not STAT3 or T-bet. In mouse splenocytes, at homeostasis, Ly6C and Sca-1 expression was not restricted to effector cells, but was also found at various levels on naive and memory populations. However, in response to infection with Toxoplasma gondii, pathogen-specific T cells expressed high levels of these molecules and in this context, endogenous IL-27 and IFN-γ were required for the expression of Ly6C but not Sca-1. Together, these findings highlight the TCR-dependent and cytokine-mediated signals that modulate T cell expression of Ly6C and Sca-1 in vitro and in vivo during infection.
Collapse
Affiliation(s)
- Jonathan H DeLong
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aisling O'Hara Hall
- Immunology Discovery Research, Janssen Research and Development, LLC, Spring House, PA 19002
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gaia M Coppock
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Department of Nephrology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeongho Park
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
44
|
Clavijo PE, Moore EC, Chen J, Davis RJ, Friedman J, Kim Y, Van Waes C, Chen Z, Allen CT. Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget 2017; 8:55804-55820. [PMID: 28915554 PMCID: PMC5593525 DOI: 10.18632/oncotarget.18437] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Local immunosuppression remains a critical problem that limits clinically meaningful response to checkpoint inhibition in patients with head and neck cancer. Here, we assessed the impact of MDSC elimination on responses to CTLA-4 checkpoint inhibition. Experimental Design Murine syngeneic carcinoma immune infiltrates were characterized by flow cytometry. Granulocytic MDSCs (gMDSCs) were depleted and T-lymphocyte antigen-specific responses were measured. Tumor-bearing mice were treated with MDSC depletion and CTLA-4 checkpoint blockade. Immune signatures within the human HNSCC datasets from The Cancer Genome Atlas (TCGA) were analyzed and differentially expressed genes from sorted human peripheral MDSCs were examined. Results gMDSCs accumulated with tumor progression and correlated with depletion of effector immune cells. Selective depletion of gMDSC restored tumor and draining lymph node antigen-specific T-lymphocyte responses lost with tumor progression. A subset of T-cell inflamed tumors responded to CTLA-4 mAb alone, but the addition of gMDSC depletion induced CD8 T-lymphocyte-dependent rejection of established tumors in all treated mice that resulted in immunologic memory. MDSCs differentially expressed chemokine receptors. Analysis of the head and neck cancer TCGA cohort revealed high CTLA-4 and MDSC-related chemokine and an MDSC-rich gene expression profile with a T-cell inflamed phenotype in > 60% of patients. CXCR2 and CSF1R expression was validated on sorted peripheral blood MDSCs from HNSCC patients. Conclusions MDSCs are a major contributor to local immunosuppression that limits responses to checkpoint inhibition in head and neck cancer. Limitation of MDSC recruitment or function represents a rational strategy to enhance responses to CTLA-4-based checkpoint inhibition in these patients.
Collapse
Affiliation(s)
- Paul E Clavijo
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ellen C Moore
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jianhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ruth J Davis
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jay Friedman
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Young Kim
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Nanjappa SG, McDermott AJ, Fites JS, Galles K, Wüthrich M, Deepe GS, Klein BS. Antifungal Tc17 cells are durable and stable, persisting as long-lasting vaccine memory without plasticity towards IFNγ cells. PLoS Pathog 2017; 13:e1006356. [PMID: 28542595 PMCID: PMC5456400 DOI: 10.1371/journal.ppat.1006356] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/02/2017] [Accepted: 04/14/2017] [Indexed: 01/01/2023] Open
Abstract
Our understanding of persistence and plasticity of IL-17A+ memory T cells is clouded by conflicting results in models analyzing T helper 17 cells. We studied memory IL-17A+ CD8+ T-cell (Tc17) homeostasis, persistence and plasticity during fungal vaccine immunity. We report that vaccine-induced memory Tc17 cells persist with high fidelity to the type 17 phenotype. Tc17 cells persisted durably for a year as functional IL-17A+ memory cells without converting to IFNγ+ (Tc1) cells, although they produced multiple type I cytokines in the absence of residual vaccine antigen. Memory Tc17 cells were canonical CD8+ T cells with phenotypic features distinct from Tc1 cells, and were Ror(γ)thi, TCF-1hi, T-betlo and EOMESlo. In investigating the bases of Tc17 persistence, we observed that memory Tc17 cells had much higher levels of basal homeostatic proliferation than did Tc1 cells. Conversely, memory Tc17 cells displayed lower levels of anti-apoptotic molecules Bcl-2 and Bcl-xL than Tc1 cells, yet were resistant to apoptosis. Tc1 cells required Bcl-2 for their survival, but Bcl-2 was dispensable for the maintenance of Tc17 cells. Tc17 and Tc1 cells displayed different requirements for HIF-1α during effector differentiation and sustenance and memory persistence. Thus, antifungal vaccination induces durable and stable memory Tc17 cells with distinct requirements for long-term persistence that distinguish them from memory Tc1 cells. CD4+ T-cell deficient patients such as those with AIDS and idiopathic CD4+ T-cell lymphopenia are vulnerable to systemic fungal infections. We previously showed that CD8+ T cells can be exploited in CD4+ T cell deficient hosts for vaccine immunity against lethal fungal pneumonia in mice and that IL-17A production by these cells (Tc17) is essential. Existing dogma holds that IL-17A producing CD4+ T cells (Th17) are highly plastic, unstable, and convert into IFNγ producing cells, losing the capacity to produce IL-17A, which is the signature feature of Tc17 cells. Here, we show that vaccine-elicited antifungal Tc17 cells are maintained as stable and long-lasting memory cells that resist conversion into IFNγ cells (Tc1) and protect CD4+ T cell deficient hosts against lethal pulmonary fungal infection. Antifungal Tc17 cells displayed features that define classical memory cells. However, memory Tc17 exhibited different requirements than Tc1 cells in the factors that promote T cell survival, including anti-apoptotic molecules Bcl-2 and Bcl-xl, and HIF-1α, which aids survival of cells in lower oxygen conditions found during inflammation. Thus, our study reveals that fungal vaccination elicits a durable, stable population of Tc17 cells with distinct features of survival needed for preventing infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Som Gowda Nanjappa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail: (SGN); (BSK)
| | - Andrew J. McDermott
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - J. Scott Fites
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Kevin Galles
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - George S. Deepe
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail: (SGN); (BSK)
| |
Collapse
|
46
|
Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice. J Virol 2017; 91:JVI.01983-16. [PMID: 28122986 PMCID: PMC5375689 DOI: 10.1128/jvi.01983-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a significant cause of abnormal neurodevelopment and long-term neurological sequelae in infants and children. Resident cell populations of the developing brain have been suggested to be more susceptible to virus-induced cytopathology, a pathway thought to contribute to the clinical outcomes following intrauterine HCMV infection. However, recent findings in a newborn mouse model of the infection in the developing brain have indicated that elevated levels of proinflammatory mediators leading to mononuclear cell activation and recruitment could underlie the abnormal neurodevelopment. In this study, we demonstrate that treatment with tumor necrosis factor alpha (TNF-α)-neutralizing antibodies decreased the frequency of CD45+ Ly6Chi CD11b+ CCR2+ activated myeloid mononuclear cells (MMCs) and the levels of proinflammatory cytokines in the blood and the brains of murine CMV-infected mice. This treatment also normalized neurodevelopment in infected mice without significantly impacting the level of virus replication. These results indicate that TNF-α is a major component of the inflammatory response associated with altered neurodevelopment that follows murine CMV infection of the developing brain and that a subset of peripheral blood myeloid mononuclear cells represent a key effector cell population in this model of virus-induced inflammatory disease of the developing brain.IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the most common viral infection of the developing human fetus and can result in neurodevelopmental sequelae. Mechanisms of disease leading to neurodevelopmental deficits in infected infants remain undefined, but postulated pathways include loss of neuronal progenitor cells, damage to the developing vascular system of the brain, and altered cellular positioning. Direct virus-mediated cytopathic effects cannot explain the phenotypes of brain damage in most infected infants. Using a mouse model that recapitulates characteristics of the brain infection described in human infants, we have shown that TNF-α plays a key role in brain inflammation, including recruitment of inflammatory mononuclear cells. Neutralization of TNF-α normalized neurodevelopmental abnormalities in infected mice, providing evidence that virus-induced inflammation is a major component of disease in the developing brain. These results suggest that interventions limiting inflammation associated with the infection could potentially improve the neurologic outcome of infants infected in utero with HCMV.
Collapse
|
47
|
Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR, Chabon J, Bendall SC, Fong L, Nolan GP, Engleman EG. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell 2017; 168:487-502.e15. [PMID: 28111070 PMCID: PMC5312823 DOI: 10.1016/j.cell.2016.12.022] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/27/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022]
Abstract
Immune responses involve coordination across cell types and tissues. However, studies in cancer immunotherapy have focused heavily on local immune responses in the tumor microenvironment. To investigate immune activity more broadly, we performed an organism-wide study in genetically engineered cancer models using mass cytometry. We analyzed immune responses in several tissues after immunotherapy by developing intuitive models for visualizing single-cell data with statistical inference. Immune activation was evident in the tumor and systemically shortly after effective therapy was administered. However, during tumor rejection, only peripheral immune cells sustained their proliferation. This systemic response was coordinated across tissues and required for tumor eradication in several immunotherapy models. An emergent population of peripheral CD4 T cells conferred protection against new tumors and was significantly expanded in patients responding to immunotherapy. These studies demonstrate the critical impact of systemic immune responses that drive tumor rejection.
Collapse
Affiliation(s)
- Matthew H Spitzer
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Baxter Lab in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Yaron Carmi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | - Serena S Kwek
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepthi Madhireddy
- Baxter Lab in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Maria M Martins
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Pier Federico Gherardini
- Baxter Lab in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Tyler R Prestwood
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Chabon
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lawrence Fong
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Garry P Nolan
- Baxter Lab in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94305, USA.
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Memory CD8 + T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function. Immunity 2016; 44:1312-24. [DOI: 10.1016/j.immuni.2016.03.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|
49
|
Automated mapping of phenotype space with single-cell data. Nat Methods 2016; 13:493-6. [PMID: 27183440 PMCID: PMC4896314 DOI: 10.1038/nmeth.3863] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/12/2016] [Indexed: 01/20/2023]
Abstract
Accurate and rapid identification of cell populations is key to discovering novelty in multidimensional single cell experiments. We present a population finding algorithm X-shift that can process large datasets using fast KNN estimation of cell event density and automatically arranges populations by a marker-based classification system. X-shift analysis of mouse bone marrow data resolved the majority of known and several previously undescribed cell populations. Interestingly, previously known cell populations, as well as intermediate cell populations in early hematopoietic development, were described via novel marker combinations that were defined via routes to their locations in expressed marker space. X-shift provides a rapid, reliable approach to managed cell subset analysis that maximizes automation that not only best mimics human intuition, but as we show provides access to novel insights that “prior knowledge” might prevent the researcher from visualizing.
Collapse
|
50
|
Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity. Mol Immunol 2016; 71:42-53. [PMID: 26851529 DOI: 10.1016/j.molimm.2016.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 11/22/2022]
Abstract
We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation.
Collapse
|