1
|
Li Y, Zhao J, Wei J, Zhang Y, Zhang H, Li Y, Liao T, Hu Y, Yuan B, Zhang X, Liu W, Liu C, Cui Q, Wu S, Jiang H, Liu W, Liu W, Xu H, Li G, Cai Y, Chen L, Chen B, Zhang D. Neutrophil elastase inhibitor (Sivelestat) in the treatment of acute respiratory distress syndrome induced by COVID-19: a multicenter retrospective cohort study. Respir Res 2025; 26:28. [PMID: 39827089 PMCID: PMC11743030 DOI: 10.1186/s12931-025-03100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Recent studies suggest that neutrophil elastase inhibitor (Sivelestat) may improve pulmonary function and reduce mortality in patients with acute respiratory distress syndrome. We examined the association between receipt of sivelestat and improvement in oxygenation among patients with acute respiratory distress syndrome (ARDS) induced by COVID-19. METHODS A large multicentre cohort study of patients with ARDS induced by COVID-19 who had been admitted to intensive care units (ICUs). We used propensity score matching to compare the outcomes of patients treated with sivelestat to those who were not. The differences in continuous outcomes were assessed with the Wilcoxon signed-rank test. Kaplan-Meier method was used to show the 28-day survival curves in the matched cohorts. A log-rank P-test stratified on the matched pairs was used to test the equality of the estimated survival curves. A Cox proportional hazards model that incorporated a robust sandwich-type variance estimator to account for the matched nature of the data was used to estimate hazard ratios (HR). All statistical analyses were performed with SPSS 26.0 and R 4.2.3. A two-sided p-value of < 0.05 was considered statistically significant. RESULTS A total of 387 patients met inclusion criteria, including 259 patients (66.9%) who were treated with sivelestat. In 158 patients matched on the propensity for treatment, receipt of sivelestat was associated with improved oxygenation, decreased Murray lung injury score, increased non-mechanical ventilation time within 28 days, increased alive and ICU-free days within 28 days (HR, 1.85; 95% CI 1.29 to 2.64; log-rank p < 0.001), shortened ICU stay and ultimately improved survival (HR, 2.78; 95% CI 1.32 to 5.88; log-rank p = 0.0074). CONCLUSIONS Among patients with ARDS induce by COVID-19, sivelestat administration is associated with improved clinical outcomes.
Collapse
Affiliation(s)
- Yuting Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jianjun Zhao
- Respiratory Intensive Care Unit, Sino-Japanese Friendship Hospital of Jilin Province, Changchun, 130033, Jilin, China
| | - Jiahui Wei
- Respiratory Intensive Care Unit, Sino-Japanese Friendship Hospital of Jilin Province, Changchun, 130033, Jilin, China
| | - Yanhong Zhang
- Emergency Department, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Haitao Zhang
- Department of Critical Care Medicine, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Ying Li
- Department of Critical Care Medicine, Tonghua People's Hospital, Tonghua, 134001, Jilin, China
| | - Ting Liao
- Department of Critical Care Medicine, Tonghua People's Hospital, Tonghua, 134001, Jilin, China
| | - Yang Hu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130118, Jilin, China
| | - Bo Yuan
- Respiratory Intensive Care Unit, Siping City Central People's Hospital, Siping, 136099, Jilin, China
| | - Xinmei Zhang
- Department of Critical Care Medicine, Siping City Central People's Hospital, Siping, 136099, Jilin, China
| | - Wanyan Liu
- Department of Critical Care Medicine, Jilin Hospital of Integrative Chinese and Western Medicine, Jilin, 132012, Jilin, China
| | - Changgang Liu
- Department of Critical Care Medicine, Tonghua Central Hospital, Tonghua, 134099, Jilin, China
| | - Qingsong Cui
- Department of Critical Care Medicine, Yanbian University Affiliated Hospital, Yanji, 133099, Jilin, China
| | - Shunzi Wu
- Department of Critical Care Medicine, People's Hospital of Hunchun City, Hunchun, 133399, Jilin, China
| | - Hongmei Jiang
- Department of Critical Care Medicine, Baicheng City Hospital, Baicheng, 137099, Jilin, China
| | - Wenge Liu
- Department of Critical Care Medicine, Jilin City Central Hospital, Jilin, 132011, Jilin, China
| | - Weiheng Liu
- Department of Critical Care Medicine, Jilin City Central Hospital, Jilin, 132011, Jilin, China
| | - Hongguang Xu
- Department of Critical Care Medicine, Jilin City Central Hospital, Jilin, 132011, Jilin, China
| | - Gang Li
- Department of Critical Care Medicine, Changchun Central Hospital, Changchun, 130041, Jilin, China
| | - Yuyan Cai
- Department of Critical Care Medicine, Jilin City People's Hospital, Jilin, 132001, Jilin, China
| | - Liting Chen
- Respiratory Intensive Care Unit, Jilin City People's Hospital, Jilin, 132001, Jilin, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Dong Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Zhu Z, Zhang Y, Chen H, Zhang H. Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome. Tissue Barriers 2025:2452082. [PMID: 39798076 DOI: 10.1080/21688370.2025.2452082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli. The aim of this review is to provide a summary and discussion of recent advances in the understanding of the importance of cell-cell crosstalk in the pathogenesis of ALI/ARDS, with a specific focus on the cell-cell interactions that may offer prospective therapeutic avenues for ALI/ARDS.
Collapse
Affiliation(s)
- Zhenzhen Zhu
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Ying Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huan Chen
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| | - Huali Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
3
|
Chowdhury CS, Kinsella RL, McNehlan ME, Naik SK, Lane DS, Talukdar P, Smirnov A, Dubey N, Rankin AN, McKee SR, Woodson R, Hii A, Chavez SM, Kreamalmeyer D, Beatty W, Mattila JT, Stallings CL. Type I IFN-mediated NET release promotes Mycobacterium tuberculosis replication and is associated with granuloma caseation. Cell Host Microbe 2024; 32:2092-2111.e7. [PMID: 39637864 PMCID: PMC11637906 DOI: 10.1016/j.chom.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Neutrophils are the most abundant cell type in the airways of tuberculosis patients. Mycobacterium tuberculosis (Mtb) infection induces the release of neutrophil extracellular traps (NETs); however, the molecular regulation and impact of NET release on Mtb pathogenesis are unknown. We find that during Mtb infection in neutrophils, PAD4 citrullinates histones to decondense chromatin that gets released as NETs in a manner that can maintain neutrophil viability and promote Mtb replication. Type I interferon promotes the formation of chromatin-containing vesicles that allow NET release without compromising plasma membrane integrity. Analysis of nonhuman primate granulomas supports a model where neutrophils are exposed to type I interferon from macrophages as they migrate into the granuloma, thereby enabling the release of NETs associated with necrosis and caseation. Our data reveal NET release as a promising target to inhibit Mtb pathogenesis.
Collapse
Affiliation(s)
- Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E McNehlan
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sumanta K Naik
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Lane
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Priyanka Talukdar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ananda N Rankin
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abigail Hii
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA; UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Akimov VE, Tychinin DI, Antonova OA, Shaymardanov AM, Voronina MD, Deinichenko KA, Fateev OD, Yudin VS, Yudin SM, Mukhin VE, Romanova SV, Nekrasova AI, Zhdanova AS, Tsypkina AV, Vladimirov IS, Makhotenko AV, Keskinov AA, Kraevoy SA, Snigir EA, Svetlichnyy DV, Skvortsova VI. Remodeling of the chromatin landscape in peripheral blood cells in patients with severe Delta COVID-19. Front Immunol 2024; 15:1415317. [PMID: 39712003 PMCID: PMC11662282 DOI: 10.3389/fimmu.2024.1415317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 12/24/2024] Open
Abstract
COVID-19 is characterized by systemic pro-inflammatory shifts with the development of serious alterations in the functioning of the immune system. Investigations of the gene expression changes accompanying the infection state provide insight into the molecular and cellular processes depending on the sickness severity and virus variants. Severe Delta COVID-19 has been characterized by the appearance of a monocyte subset enriched for proinflammatory gene expression signatures and a shift in ligand-receptor interactions. We profiled the chromatin accessibility landscape of 140,000 nuclei in PBMC samples from healthy individuals or individuals with COVID-19. We investigated cis-regulatory elements and identified the core transcription factors governing gene expression in immune cells during COVID-19 infection. In severe cases, we discovered that regulome and chromatin co-accessibility modules were significantly altered across many cell types. Moreover, cases with the Delta variant were accompanied by a specific monocyte subtype discovered using scATAC-seq data. Our analysis showed that immune cells of individuals with severe Delta COVID-19 underwent significant remodeling of the chromatin accessibility landscape and development of the proinflammatory expression pattern. Using a gene regulatory network modeling approach, we investigated the core transcription factors governing the cell state and identified the most pronounced chromatin changes in CD14+ monocytes from individuals with severe Delta COVID-19. Together, our results provide novel insights into cis-regulatory module organization and its impact on gene activity in immune cells during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vasiliy E. Akimov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Dmitriy I. Tychinin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Olga A. Antonova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Abusaid M. Shaymardanov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Maria D. Voronina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Kseniia A. Deinichenko
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Oleg D. Fateev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Vladimir S. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Sergey M. Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Vladimir E. Mukhin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Svetlana V. Romanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Aleksandra I. Nekrasova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anastasia S. Zhdanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anastasia V. Tsypkina
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Ivan S. Vladimirov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Antonida V. Makhotenko
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Anton A. Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Sergey A. Kraevoy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Ekaterina A. Snigir
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | - Dmitry V. Svetlichnyy
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency (Centre for Strategic Planning of FMBA of Russia), Moscow, Russia
| | | |
Collapse
|
5
|
Hortion J, Perthame E, Lafoux B, Soyer L, Reynard S, Journeaux A, Germain C, Lopez-Maestre H, Pietrosemoli N, Baillet N, Croze S, Rey C, Legras-Lachuer C, Baize S. Fatal Lassa fever in cynomolgus monkeys is associated with systemic viral dissemination and inflammation. PLoS Pathog 2024; 20:e1012768. [PMID: 39652618 DOI: 10.1371/journal.ppat.1012768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
The pathogenesis of Lassa fever has not yet been fully deciphered, particularly as concerns the mechanisms determining whether acute infection is controlled or leads to catastrophic illness and death. Using a cynomolgus monkey model of Lassa virus (LASV) infection reproducing the different outcomes of the disease, we performed histological and transcriptomic studies to investigate the dynamics of LASV infection and the immune mechanisms associated with survival or death. Lymphoid organs are an early major reservoir for replicating virus during Lassa fever, with LASV entering through the cortical sinus of draining lymph nodes regardless of disease outcome. However, subsequent viral tropism varies considerably with disease severity, with viral dissemination limited almost entirely to lymphoid organs and immune cells during nonfatal Lassa fever. By contrast, the systemic dissemination of LASV to all organs and diverse cell types, leading to infiltrations with macrophages and neutrophils and an excessive inflammatory response, is associated with a fatal outcome. These results provide new insight into early viral dynamics and the host response to LASV infection according to disease outcome.
Collapse
Affiliation(s)
- Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Emeline Perthame
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Blaise Lafoux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Laura Soyer
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Hélène Lopez-Maestre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Nicolas Baillet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | | | | | | | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| |
Collapse
|
6
|
Hernández-Cedeño M, Rodríguez-Ulloa A, Ramos Y, González LJ, Serrano-Díaz A, Zettl K, Wiśniewski JR, Martinez-Donato G, Guillen-Nieto G, Besada V, Domínguez-Horta MDC. Proteomic Profile Regulated by the Immunomodulatory Jusvinza Drug in Neutrophils Isolated from Rheumatoid Arthritis Patients. Biomedicines 2024; 12:2740. [PMID: 39767648 PMCID: PMC11727316 DOI: 10.3390/biomedicines12122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 01/16/2025] Open
Abstract
Jusvinza is an immunomodulatory drug composed of an altered peptide ligand (APL) designed from a novel CD4+ T cell epitope of human heat shock protein 60 (HSP60), an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). The peptide induces regulatory T cells and decreases levels of TNF-α and IL-17; pre-clinical and phase I clinical studies support its use for the treatment of RA. This peptide was repositioned for the treatment of COVID-19 patients with signs of hyperinflammation. Neutrophils play a pathogenic role in both RA and severe forms of COVID-19. To add novel evidence about the mechanism of action of Jusvinza, the proteomic profile regulated by this peptide of neutrophils isolated from four RA patients was investigated using LC-MS/MS and bioinformatics analysis. A total of 149 proteins were found to be differentially modulated in neutrophils treated with Jusvinza. The proteomic profile regulated by Jusvinza is characterized by the presence of proteins related to RNA splicing, phagocytosis, endocytosis, and immune functions. In response to Jusvinza treatment, several proteins that regulate the NF-κB signaling pathway were differentially modulated, supporting the peptide's anti-inflammatory effect. Proteins related to metabolic pathways that supply ATP for cellular functions or lipid metabolites with immunoregulatory properties were also identified. Additionally, several structural components of neutrophil extracellular traps (NETs) were decreased in Jusvinza-treated cells, supporting its impairment of this biological process. Of note, these findings were validated by in vitro experiments which confirmed that Jusvinza decreased NET formation. Such results provide evidence of the molecular mechanism of action and support the therapeutic potentialities of Jusvinza to treat other diseases characterized by hyperinflammation besides RA and COVID-19.
Collapse
Affiliation(s)
- Mabel Hernández-Cedeño
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Anabel Serrano-Díaz
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Gillian Martinez-Donato
- Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (G.M.-D.); (G.G.-N.)
| | - Gerardo Guillen-Nieto
- Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (G.M.-D.); (G.G.-N.)
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - María del Carmen Domínguez-Horta
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
- Latin American School of Medicine, Havana 19108, Cuba
| |
Collapse
|
7
|
Regmi S, Ganguly A, Pathak S, Primavera R, Chetty S, Wang J, Patel S, Thakor AS. Evaluating the therapeutic potential of different sources of mesenchymal stem cells in acute respiratory distress syndrome. Stem Cell Res Ther 2024; 15:385. [PMID: 39468662 PMCID: PMC11520775 DOI: 10.1186/s13287-024-03977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) have attracted interest as a potential therapy given their anti-inflammatory and immunomodulatory properties. However, clinical trials using MSCs for acute respiratory distress syndrome (ARDS) have produced mixed and inconclusive data. In previous work, we performed a "head-to-head" comparison between different sources of MSCs and showed that each source had a unique genomic and proteomic "signature". METHOD This study investigated which sources of MSC: bone marrow derived-MSCs (BM-MSCs), adipose tissue derived-MSCs (AD-MSCs) and umbilical cord derived-MSCs (UC-MSCs) would be the optimal candidate to be used as a therapy in an LPS-induced mouse model of ARDS. Immune cells assessment, tissue transcriptomics, animal survival, and endothelial-epithelial barrier assessment were used to evaluate their effects. RESULTS When comparing the three most commonly used MSC sources, we found that UC-MSCs exhibited greater efficacy compared to other MSCs in improving animal survival, mitigating epithelial/endothelial damage, decreasing lung inflammation via reducing neutrophil infiltration, T cell proliferation, and M1 polarization. Bulk RNA sequencing of lung tissue also showed that UC-MSCs have the capability to downregulate extracellular trap formation, by the downregulation of key genes like Elane and Padi4. Notably, treatment with UC-MSCs demonstrated a significant reduction in Fc-γ R mediated phagocytosis, which has been associated with monocyte pyroptosis and intense inflammation in the context of COVID-19. CONCLUSION Our findings suggest that UC-MSCs are an optimal source of MSC to treat acute inflammatory conditions in the lungs, such as ARDS.
Collapse
Affiliation(s)
- S Regmi
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - A Ganguly
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S Pathak
- Division of Blood and Marrow Transplantation and Cellular Therapy, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - R Primavera
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - S Chetty
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - J Wang
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Shaini Patel
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA
| | - A S Thakor
- Interventional Radiology Innovation at Stanford, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94304, USA.
| |
Collapse
|
8
|
Zhou K, Lu J. Progress in cytokine research for ARDS: A comprehensive review. Open Med (Wars) 2024; 19:20241076. [PMID: 39479463 PMCID: PMC11524396 DOI: 10.1515/med-2024-1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a critical form of acute respiratory failure characterized by diffuse alveolar damage, refractory hypoxemia, and non-cardiogenic pulmonary edema, resulting in high mortality. Dysregulated inflammation, driven by cytokines, is central to ARDS pathogenesis, progression, and prognosis. Objective This review synthesizes current knowledge on the role of cytokines in ARDS and evaluates their potential as therapeutic targets, offering new insights for clinical management. Methods A comprehensive analysis of recent studies was conducted to explore the roles of pro-inflammatory cytokines (e.g., IL-1β, IL-6, IL-8) and anti-inflammatory cytokines (e.g., IL-10, IL-22) in ARDS pathogenesis and to assess current and emerging therapies targeting these cytokines. Results Pro-inflammatory cytokines are crucial in initiating inflammatory responses and lung injury in early ARDS, while anti-inflammatory cytokines help regulate and resolve inflammation. Targeted therapies, such as IL-1 and IL-6 inhibitors, show potential in managing ARDS, particularly in COVID-19, but their clinical efficacy is still debated. Combination therapy strategies may enhance outcomes, but further large-scale, multicenter randomized controlled trials are required to establish their safety and efficacy. Conclusion Understanding cytokine regulation in ARDS could lead to innovative therapeutic approaches. Future research should focus on cytokine roles across ARDS subtypes and stages and develop biomarker-driven, individualized treatments.
Collapse
Affiliation(s)
- Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxuedong Road, Nanning, Guangxi 530007, China
| |
Collapse
|
9
|
Xuan W, Wu X, Zheng L, Jia H, Zhang X, Zhang X, Cao B. Gut microbiota-derived acetic acids promoted sepsis-induced acute respiratory distress syndrome by delaying neutrophil apoptosis through FABP4. Cell Mol Life Sci 2024; 81:438. [PMID: 39453486 PMCID: PMC11511807 DOI: 10.1007/s00018-024-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1β, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Longcheng Zheng
- People's Hospital of Henan University, Department of Respiratory and Critical Care Medicine, People's Hospital of Henan Province, Zhengzhou, 450003, China
| | - Huayun Jia
- Hunan Province Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Potaczek DP, van Tol BDM, Falck D, Krolczik C, Zlatina K, Bertrams W, Wilhelm J, Schmeck B, Seeliger B, David S, Skevaki C, Mack E, Seeger W, Schaefer L, Galuska SP, Wuhrer M, Wygrecka M. Glycosylation signature of plasma IgA of critically ill COVID-19 patients. Front Immunol 2024; 15:1439248. [PMID: 39512344 PMCID: PMC11541231 DOI: 10.3389/fimmu.2024.1439248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/28/2024] [Indexed: 11/15/2024] Open
Abstract
Thromboembolic complications are common in severe COVID-19 and are thought to result from excessive neutrophil-extracellular-trap (NET)-driven immunothrombosis. Glycosylation plays a vital role in the efficiency of immunoglobulin A (IgA) effector functions, with significant implications for NET formation in infectious diseases. This study represents the first comprehensive analysis of plasma IgA glycosylation during severe SARS-CoV-2 or Influenza A infection, revealing lower sialylation and higher galactosylation of IgA1 O-glycans in acute respiratory distress syndrome (ARDS), regardless of the underlying cause of the disease. Importantly, N-glycans displayed an infection-specific pattern, with N47 of IgA2 showing diminished sialylation and bisection, and N340/N327 of IgA1/2 demonstrating lower fucosylation and antennarity along with higher non-complex glycans in COVID-19 compared to Influenza. Notably, COVID-19 IgA possessed strong ability to induce NET formation and its glycosylation patterns correlated with extracellular DNA levels in plasma of critically ill COVID-19 patients. Our data underscores the necessity of further research on the role of IgA glycosylation in the modulation of pathogen-specific immune responses in COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Daniel P. Potaczek
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps-University Marburg, Marburg, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Bianca D. M. van Tol
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Christina Krolczik
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Kristina Zlatina
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Philipps-University Marburg, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health, Justus-Liebig University, German Center for Lung Research, Giessen, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Philipps-University Marburg, Marburg, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - Sascha David
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Elisabeth Mack
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Marburg, Germany
| | - Werner Seeger
- Institute for Lung Health, Justus-Liebig University, German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Justus-Liebig University, German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
11
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2024:10.1038/s41577-024-01098-2. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
12
|
Zhang D, Gou Z, Qu Y, Su X. Understanding how methyltransferase-like 3 functions in lung diseases: From pathogenesis to clinical application. Biomed Pharmacother 2024; 179:117421. [PMID: 39241568 DOI: 10.1016/j.biopha.2024.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Lung diseases have complex pathogenesis and treatment challenges, showing an obvious increase in the rate of diagnosis and death every year. Therefore, elucidating the mechanism for their pathogenesis and treatment ineffective from novel views is essential and urgent. Methyltransferase-like 3 (METTL3) is a novel post-transcriptional regulator for gene expression that has been implicated in regulating lung diseases, including that observed in chronic conditions such as pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), and chronic obstructive pulmonary disease (COPD), as well as acute conditions such as pneumonia, severe acute respiratory syndrome coronavirus 2 infection, and sepsis-induced acute respiratory distress syndrome. Notably, a comprehensive summary and analysis of findings from these studies might help understand lung diseases from the novel view of METTL3-regulated mechanism, however, such a review is still lacking. Therefore, this review aims to bridge such shortage by summarising the roles of METTL3 in lung diseases, establishing their interrelationships, and elucidating the potential applications of METTL3 regarding diagnosis, treatment, and prognosis. The analysis collectively suggests METTL3 is contributable to the onset and progression of these lung diseases, thereby prospecting METTL3 as a valuable biomarker for their diagnosis, treatment, and prognosis. In conclusion, this review offers elucidation into the correlation between METTL3 and lung diseases in both research and clinical settings and highlights potential avenues for exploring the roles of METTL3 in the respiratory system.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yi Qu
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Cerdeira CD, Brigagão MRPL. Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest 2024; 53:1030-1091. [PMID: 38913937 DOI: 10.1080/08820139.2024.2367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation. METHODS This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses. RESULTS AND DISCUSSION It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
Collapse
|
14
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Gunasekara S, Tamil Selvan M, Murphy CL, Shatnawi S, Cowan S, More S, Ritchey J, Miller CA, Rudd JM. Characterization of Neutrophil Functional Responses to SARS-CoV-2 Infection in a Translational Feline Model for COVID-19. Int J Mol Sci 2024; 25:10054. [PMID: 39337543 PMCID: PMC11432149 DOI: 10.3390/ijms251810054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
There is a complex interplay between viral infection and host innate immune response regarding disease severity and outcomes. Neutrophil hyperactivation, including excessive release of neutrophil extracellular traps (NETs), is linked to exacerbated disease in acute COVID-19, notably in hospitalized patients. Delineating protective versus detrimental neutrophil responses is essential to developing targeted COVID-19 therapies and relies on high-quality translational animal models. In this study, we utilize a previously established feline model for COVID-19 to investigate neutrophil dysfunction in which experimentally infected cats develop clinical disease that mimics acute COVID-19. Specific pathogen-free cats were inoculated with SARS-CoV-2 (B.1.617.2; Delta variant) (n = 24) or vehicle (n = 6). Plasma, bronchoalveolar lavage fluid, and lung tissues were collected at various time points over 12 days post-inoculation. Systematic and temporal evaluation of the kinetics of neutrophil activation was conducted by measuring markers of activation including myeloperoxidase (MPO), neutrophil elastase (NE), and citrullinated histone H3 (citH3) in SARS-CoV-2-infected cats at 4 and 12 days post-inoculation (dpi) and compared to vehicle-inoculated controls. Cytokine profiling supported elevated innate inflammatory responses with specific upregulation of neutrophil activation and NET formation-related markers, namely IL-8, IL-18, CXCL1, and SDF-1, in infected cats. An increase in MPO-DNA complexes and cell-free dsDNA in infected cats compared to vehicle-inoculated was noted and supported by histopathologic severity in respiratory tissues. Immunofluorescence analyses further supported correlation of NET markers with tissue damage, especially 4 dpi. Differential gene expression analyses indicated an upregulation of genes associated with innate immune and neutrophil activation pathways. Transcripts involved in activation and NETosis pathways were upregulated by 4 dpi and downregulated by 12 dpi, suggesting peak activation of neutrophils and NET-associated markers in the early acute stages of infection. Correlation analyses conducted between NET-specific markers and clinical scores as well as histopathologic scores support association between neutrophil activation and disease severity during SARS-CoV-2 infection in this model. Overall, this study emphasizes the effect of neutrophil activation and NET release in SARS-CoV-2 infection in a feline model, prompting further investigation into therapeutic strategies aimed at mitigating excessive innate inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chelsea L Murphy
- Department of Mathematical Sciences, College of Arts and Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer M Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
16
|
Hou M, Wu J, Li J, Zhang M, Yin H, Chen J, Jin Z, Dong R. Immunothrombosis: A bibliometric analysis from 2003 to 2023. Medicine (Baltimore) 2024; 103:e39566. [PMID: 39287275 PMCID: PMC11404911 DOI: 10.1097/md.0000000000039566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Immunothrombosis is a physiological process that constitutes an intravascular innate immune response. Abnormal immunothrombosis can lead to thrombotic disorders. With the outbreak of COVID-19, there is increasing attention to the mechanisms of immunothrombosis and its critical role in thrombotic events, and a growing number of relevant research papers are emerging. This article employs bibliometrics to discuss the current status, hotspots, and trends in research of this field. METHODS Research papers relevant to immunothrombosis published from January 1, 2003, to May 29, 2023, were collected from the Web of Science Core Collection database. VOSviewer and the R package "Bibliometrix" were employed to analyze publication metrics, including the number of publications, authors, countries, institutions, journals, and keywords. The analysis generated visual results, and trends in research topics and hotspots were examined. RESULTS A total of 495 target papers were identified, originating from 58 countries and involving 3287 authors from 1011 research institutions. Eighty high-frequency keywords were classified into 5 clusters. The current key research topics in the field of immunothrombosis include platelets, inflammation, neutrophil extracellular traps, Von Willebrand factor, and the complement system. Research hotspots focus on the mechanisms and manifestations of immunothrombosis in COVID-19, as well as the discovery of novel treatment strategies targeting immunothrombosis in cardiovascular and cerebrovascular diseases. CONCLUSION Bibliometric analysis summarizes the main achievements and development trends in research on immunothrombosis, offering readers a comprehensive understanding of the field and guiding future research directions.
Collapse
Affiliation(s)
- Mengyu Hou
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen PJ, Chen SH, Chen YL, Wang YH, Lin CY, Chen CH, Tsai YF, Hwang TL. Ribociclib leverages phosphodiesterase 4 inhibition in the treatment of neutrophilic inflammation and acute respiratory distress syndrome. J Adv Res 2024; 62:229-243. [PMID: 38548264 PMCID: PMC11331181 DOI: 10.1016/j.jare.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
INTRODUCTION Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.
Collapse
Affiliation(s)
- Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Shun-Hua Chen
- Departmentof Nursing, Fooyin University, Kaohsiung 831301, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan
| | - Cheng-Yu Lin
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
18
|
Seitz R, Gürtler L, Schramm W. COVID-19: A case for plasma derived natural anticoagulants? Biologicals 2024; 87:101781. [PMID: 38924809 DOI: 10.1016/j.biologicals.2024.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Convalescent plasma was proposed for passive immunization against COVID-19; but so far there are conflicting results and still open questions. However, besides antibodies, other plasma proteins may be good candidates for further research and application. Thromboinflammation frequently complicates severe COVID-19, and classical anticoagulants like heparins seem to have limited effect. The natural protease inhibitors antithrombin III (ATIII), α1-antitrypsin (α1-AT) and α2-macroglobulin (α2-M), which are found decreased in severe COVD-19, play a crucial role in prothrombotic and inflammatory pathways. While ATIII and α1-AT are licensed as commercially prepared therapeutic concentrates, there is no preparation of α2-M available. The diagnostic, prognostic, and even therapeutic potential of plasma protease inhibitors should be further explored.
Collapse
Affiliation(s)
| | - Lutz Gürtler
- Max von Pettenkofer Institut, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Wolfgang Schramm
- Ludwig-Maximilians-Universität München (LMU) and Rudolf Marx Stiftung C/o SOGZ München, Munich, Germany
| |
Collapse
|
19
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
20
|
Breisnes HW, Leeming DJ, Karsdal MA, Burke H, Freeman A, Wilkinson T, Fazleen A, Bülow Sand JM. Biomarkers of tissue remodelling are elevated in serum of COVID-19 patients who develop interstitial lung disease - an exploratory biomarker study. BMC Pulm Med 2024; 24:331. [PMID: 38982423 PMCID: PMC11234769 DOI: 10.1186/s12890-024-03144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a viral pneumonia that can result in serious respiratory illness. It is associated with extensive systemic inflammation, changes to the lung extracellular matrix, and long-term lung impairment such as interstitial lung disease (ILD). In this study, the aim was to investigate whether tissue remodelling, wound healing, and neutrophil activity is altered in patients with COVID-19 and how these relate to the development of post-COVID ILD. METHOD Serum samples were collected from 63 patients three months after discharge as part of the Research Evaluation Alongside Clinical Treatment study in COVID-19 (REACT COVID-19), 10 of whom developed ILD, and 16 healthy controls. Samples were quantified using neo-epitope specific biomarkers reflecting tissue stiffness and formation (PC3X, PRO-C3, and PRO-C6), tissue degradation (C1M, C3M, and C6M), wound healing (PRO-FIB and X-FIB), and neutrophil activity (CPa9-HNE and ELP-3). RESULTS Mean serum levels of PC3X (p < 0.0001), PRO-C3 (p = 0.002), C3M (p = 0.009), PRO-FIB (p < 0.0001), CPa9-HNE (p < 0.0001), and ELP-3 (p < 0.0001) were significantly elevated in patients with COVID-19 compared to healthy controls. Moreover, PC3X (p = 0.023) and PRO-C3 (p = 0.032) were significantly elevated in post-COVID ILD as compared to COVID-19. CONCLUSION Serological biomarkers reflecting type III collagen remodelling, clot formation, and neutrophil activity were significantly elevated in COVID-19 and type III collagen formation markers were further elevated in post-COVID ILD. The findings suggest an increased type III collagen remodelling in COVID-19 and warrants further investigations to assess the potential of tissue remodelling biomarkers as a tool to identify COVID-19 patients at high risk of developing ILD.
Collapse
Affiliation(s)
- Helene Wallem Breisnes
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark.
| | | | | | - Hannah Burke
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, England
| | - Anna Freeman
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, England
| | - Tom Wilkinson
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, England
- CES, Faculty of Medicine, University of Southampton, Southampton, Hampshire, England
| | - Aishath Fazleen
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, England
- CES, Faculty of Medicine, University of Southampton, Southampton, Hampshire, England
| | | |
Collapse
|
21
|
Moadab F, Wang X, Le E, Gazitt T, Najjar R, Nelson JL, Joshua V, Malmström V, Elkon K, Grönwall C, Mustelin T. Evidence of membranolytic targeting and intracellular citrullination in neutrophils isolated from patients with rheumatoid arthritis. Sci Rep 2024; 14:15511. [PMID: 38969707 PMCID: PMC11226660 DOI: 10.1038/s41598-024-66516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
Anti-citrullinated protein autoantibodies (ACPA) are diagnostic for rheumatoid arthritis (RA). The antigens recognized by these autoantibodies are produced by protein arginine deiminases (PADs), particularly PAD4. However, it remains unknown why and how PAD4 causes this aberrant citrullination in RA. Here, we report that poly-perforin pores are present on freshly isolated neutrophils from RA patients, but not on healthy donor neutrophils. Neutrophils with perforin pores also contained intracellular citrullinated proteins in the region adjacent to the pores. This response was replicated in vitro by treating neutrophils with purified perforin, which generated intense dots of anti-perforin immunofluorescence, calcium influx, and intracellular citrullination. Extensive neutrophil killing in Felty's syndrome, an aggressive form of RA, correlated with particularly high ACPA, and PAD4 autoantibodies. In contrast, other forms of death, including NETosis, apoptosis, and pyroptosis, produced minimal citrullination. We conclude that neutrophil targeting by perforin leading to intracellular citrullination takes place in patients with RA.
Collapse
Affiliation(s)
- Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Ethan Le
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Tal Gazitt
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Rayan Najjar
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - J Lee Nelson
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Vijay Joshua
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keith Elkon
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA, 99108, USA.
| |
Collapse
|
22
|
Mo CC, Richardson E, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei LJ, Rapoport AP, Díaz-Ricart M, Moraleda JM, Carlo-Stella C, Richardson PG. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev 2024; 66:101218. [PMID: 38852017 DOI: 10.1016/j.blre.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.
Collapse
Affiliation(s)
- Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Edward Richardson
- Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesco Corrado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA; Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mehmet H Kocoglu
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, and IDIBAPS, Barcelona, Spain, and Barcelona Endothelium Team, Barcelona, Spain
| | - José M Moraleda
- Department of Medicine, Faculty of Medicine, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Tsay GJ, Zouali M. Cellular pathways and molecular events that shape autoantibody production in COVID-19. J Autoimmun 2024; 147:103276. [PMID: 38936147 DOI: 10.1016/j.jaut.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
A hallmark of COVID-19 is the variety of complications that follow SARS-CoV-2 infection in some patients, and that target multiple organs and tissues. Also remarkable are the associations with several auto-inflammatory disorders and the presence of autoantibodies directed to a vast array of antigens. The processes underlying autoantibody production in COVID-19 have not been completed deciphered. Here, we review mechanisms involved in autoantibody production in COVID-19, multisystem inflammatory syndrome in children, and post-acute sequelae of COVID19. We critically discuss how genomic integrity, loss of B cell tolerance to self, superantigen effects of the virus, and extrafollicular B cell activation could underly autoantibody proaction in COVID-19. We also offer models that may account for the pathogenic roles of autoantibodies in the promotion of inflammatory cascades, thromboembolic phenomena, and endothelial and vascular deregulations.
Collapse
Affiliation(s)
- Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
Bowsher R, Marczylo TH, Gooch K, Bailey A, Wright MD, Marczylo EL. Smoking and vaping alter genes related to mechanisms of SARS-CoV-2 susceptibility and severity: a systematic review and meta-analysis. Eur Respir J 2024; 64:2400133. [PMID: 38991709 PMCID: PMC11269771 DOI: 10.1183/13993003.00133-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Rachel Bowsher
- Toxicology Department, UK Health Security Agency, Chilton, UK
- Pharmacology Section, St George's University of London, London, UK
| | | | - Karen Gooch
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Salisbury, UK
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, London, UK
| | | | - Emma L Marczylo
- Toxicology Department, UK Health Security Agency, Chilton, UK
| |
Collapse
|
25
|
Wei Z, Jin Q, Liu W, Liu T, He K, Jin Z, Chen M, Jiang Y, Qian Y, Hong H, Zhang D, Liu Q, Yang Z, Li Q. Gliotoxin elicits immunotoxicity in the early innate immune system of ducks. Poult Sci 2024; 103:103717. [PMID: 38643746 PMCID: PMC11039318 DOI: 10.1016/j.psj.2024.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
Gliotoxin (GT) belongs to the epipolythiodioxopiperazine (ETP) family, which is considered a crucial virulence determinant among the secondary metabolites produced by Aspergillus fumigatus. The metabolites are commonly found in food and feed, contributing to the invasion and immune escape of Aspergillus fumigatus, thereby posing a significant threat to the health of livestock, poultry, and humans. Heterophil extracellular traps (HETs), a novel form of innate immune defense, have been documented in the chicken's innate immune systems for capturing and eliminating invading microbes. However, the effects and mechanisms of GT on the production of duck HETs in vitro remain unknown. In this study, we first confirmed the presence of HETs in duck innate immune systems and further investigated the molecular mechanism underlying GT-induced HETs release. Our results demonstrate that GT can trigger typical release of HETs in duck. The structures of GT-induced HETs structures were characterized by DNA decoration, citrullinated histones 3, and elastase. Furthermore, NADPH oxidase, glycolysis, ERK1/2 and p38 signaling pathway were found to regulate GT-induced HETs. In summary, our findings reveal that gliotoxin activates HETs release in the early innate immune system of duck while providing new insights into the immunotoxicity of GT towards ducks.
Collapse
Affiliation(s)
- Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China.
| | - Qinqin Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Tingting Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Zha Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Meiyi Chen
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuqian Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuxiao Qian
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Hongrong Hong
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Dezhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Quan Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
26
|
Han S, Yang S, Chang Z, Wang Y. Neutrophil extracellular trap-associated protein in cerebrospinal fluid for prognosis evaluation of adult bacterial meningitis: a retrospective case-control study. BMC Infect Dis 2024; 24:534. [PMID: 38802752 PMCID: PMC11129486 DOI: 10.1186/s12879-024-09423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Central nervous system infections, typified by bacterial meningitis, stand as pivotal emergencies recurrently confronted by neurologists. Timely and precise diagnosis constitutes the cornerstone for efficacious intervention. The present study endeavors to scrutinize the influence of inflammatory protein levels associated with neutrophils in cerebrospinal fluid on the prognosis of central nervous system infectious maladies. METHODS This retrospective case series study was undertaken at the Neurology Department of the Second Hospital of Shandong University, encompassing patients diagnosed with infectious encephalitis as confirmed by PCR testing and other diagnostic modalities spanning from January 2018 to January 2024. The quantification of MPO and pertinent inflammatory proteins within patients' cerebrospinal fluid was accomplished through the utilization of ELISA. RESULTS We enlisted 25 patients diagnosed with bacterial meningitis, ascertained through PCR testing, and stratified them into two groups: those with favorable prognoses (n = 25) and those with unfavorable prognoses (n = 25). Following assessments for normality and variance, notable disparities in CSF-MPO concentrations emerged between the prognostic categories of bacterial meningitis patients (P < 0.0001). Additionally, scrutiny of demographic data in both favorable and unfavorable prognosis groups unveiled distinctions in CSF-IL-1β, CSF-IL-6, CSF-IL-8, CSF-IL-18, CSF-TNF-α levels, with correlation analyses revealing robust associations with MPO. ROC curve analyses delineated that when CSF-MPO ≥ 16.57 ng/mL, there exists an 83% likelihood of an adverse prognosis for bacterial meningitis. Similarly, when CSF-IL-1β, CSF-IL-6, CSF-IL-8, CSF-IL-18, and CSF-TNF-α levels attain 3.83pg/mL, 123.92pg/mL, 4230.62pg/mL, 35.55pg/mL, and 35.19pg/mL, respectively, there exists an 83% probability of an unfavorable prognosis for bacterial meningitis. CONCLUSION The detection of neutrophil extracellular traps MPO and associated inflammatory protein levels in cerebrospinal fluid samples holds promise in prognosticating bacterial meningitis, thereby assuming paramount significance in the prognostic evaluation of patients afflicted with this condition.
Collapse
Affiliation(s)
- Song Han
- The Second Hospital of Shandong University, Cheeloo College of Medicine,Shandong University, Jinan, 250033, China
| | - Suge Yang
- The Second Hospital of Shandong University, Cheeloo College of Medicine,Shandong University, Jinan, 250033, China
| | - Zhongzheng Chang
- The Second Hospital of Shandong University, Cheeloo College of Medicine,Shandong University, Jinan, 250033, China
| | - Yun Wang
- Department of Neurology?Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
| |
Collapse
|
27
|
Flora C, Olesnavich M, Zuo Y, Sandford E, Madhukar R, Rozwadowski M, Sugur K, Ly A, Canbaz AA, Shedeck A, Li G, Geer MJ, Yanik GA, Ghosh M, Frame DG, Bonifant CL, Jain T, Knight JS, Choi SW, Tewari M. Longitudinal plasma proteomics in CAR T-cell therapy patients implicates neutrophils and NETosis in the genesis of CRS. Blood Adv 2024; 8:1422-1426. [PMID: 38266157 PMCID: PMC10950819 DOI: 10.1182/bloodadvances.2023010728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Christopher Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Mary Olesnavich
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Yu Zuo
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Erin Sandford
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Rashmi Madhukar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Michelle Rozwadowski
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
| | - Kavya Sugur
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Andrew Ly
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ata Alpay Canbaz
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Audra Shedeck
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gen Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Marcus J. Geer
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - Gregory A. Yanik
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
| | - Monalisa Ghosh
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
| | - David G. Frame
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Challice L. Bonifant
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tania Jain
- Johns Hopkins University School of Medicine, Baltimore, MD
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason S. Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI
| | - Sung Won Choi
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Michigan, Ann Arbor, MI
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- VA Ann Arbor Healthcare System, Ann Arbor, MI
| |
Collapse
|
28
|
Huang Z, Cheng Z, Deng X, Yang Y, Sun N, Hou P, Fan R, Liu S. Integrated Bioinformatics Exploration and Preliminary Clinical Verification for the Identification of Crucial Biomarkers in Severe Cases of COVID-19. J Inflamm Res 2024; 17:1561-1576. [PMID: 38495341 PMCID: PMC10942013 DOI: 10.2147/jir.s454284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a respiratory infectious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The objective of this study is to identify reliable and accurate biomarkers for the early stratification of disease severity, a crucial aspect that is currently lacking for the impending phases of the next COVID-19 pandemic. Methods In this study, we identified important module and hub genes related to clinical severe COVID-19 using differentially expressed genes (DEGs) screening combing weighted gene co-expression network analysis (WGCNA) in dataset GSE213313. We further screened and confirmed these hub genes in another two new independent datasets (GSE172114 and GSE157103). In order to evaluate these key genes' stability and robustness for diagnosing or predicting the progression of illness, we used RT-PCR validation of selected genes in blood samples obtained from hospitalized COVID-19 patients. Results A total of 968 and 52 DEGs were identified between COVID-19 patients and normal people, critical and non-critical patients, respectively. Then, using WGCNA, 10 modules were constructed. Among them, the blue module positively associated with clinic disease severity of COVID-19. From overlapped section between DEGs and blue module, 12 intersected common differential genes were obtained. Subsequently, these hub genes were validated in another two new independent datasets as well and 9 genes that overlapped showed a highly correlation with disease severity. Finally, the mRNA expression levels of these hub genes were tested in blood samples from COVID-19 patients. In severe cases, there was increased expression of MCEMP1, ANXA3, CD177, and SCN9A. In particular, MCEMP1 increased with disease severity, which suggested an unfavorable development and a frustrating prognosis. Conclusion Using comprehensive bioinformatical analysis and the validation of clinical samples, we identified four major candidate genes, MCEMP1, ANXA3, CD177, and SCN9A, which are essential for diagnosis or development of COVID-19.
Collapse
Affiliation(s)
- Zhisheng Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, Jiangxi, People’s Republic of China
| | - Zuowang Cheng
- Department of Clinical Laboratory, Zhangqiu District People’s Hospital Affiliated to Jining Medical University, Jinan, Shandong, People’s Republic of China
| | - Xia Deng
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People’s Republic of China
| | - Na Sun
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People’s Republic of China
| | - Peibin Hou
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People’s Republic of China
| | - Ruyue Fan
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People’s Republic of China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
29
|
Tsukalov I, Sánchez-Cerrillo I, Rajas O, Avalos E, Iturricastillo G, Esparcia L, Buzón MJ, Genescà M, Scagnetti C, Popova O, Martin-Cófreces N, Calvet-Mirabent M, Marcos-Jimenez A, Martínez-Fleta P, Delgado-Arévalo C, de Los Santos I, Muñoz-Calleja C, Calzada MJ, González Álvaro I, Palacios-Calvo J, Alfranca A, Ancochea J, Sánchez-Madrid F, Martin-Gayo E. NFκB and NLRP3/NLRC4 inflammasomes regulate differentiation, activation and functional properties of monocytes in response to distinct SARS-CoV-2 proteins. Nat Commun 2024; 15:2100. [PMID: 38453949 PMCID: PMC10920883 DOI: 10.1038/s41467-024-46322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Collapse
Affiliation(s)
- Ilya Tsukalov
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Rajas
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Elena Avalos
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | | | - Laura Esparcia
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - María José Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camila Scagnetti
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Olga Popova
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martin-Cófreces
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Marcos-Jimenez
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Pedro Martínez-Fleta
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ignacio de Los Santos
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Calzada
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa. Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - José Palacios-Calvo
- Department of Pathology, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad de Alcalá. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Ancochea
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
30
|
Chen Z, Yuan Y, Hu Q, Zhu A, Chen F, Li S, Guan X, Lv C, Tang T, He Y, Cheng J, Zheng J, Hu X, Zhao J, Zhao J, Sun J. SARS-CoV-2 immunity in animal models. Cell Mol Immunol 2024; 21:119-133. [PMID: 38238440 PMCID: PMC10806257 DOI: 10.1038/s41423-023-01122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.
Collapse
Affiliation(s)
- Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Shu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xin Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Chao Lv
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yiyun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jinling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jie Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xiaoyu Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518005, China.
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, National Centre for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
31
|
Zhou X, Jin J, Lv T, Song Y. A Narrative Review: The Role of NETs in Acute Respiratory Distress Syndrome/Acute Lung Injury. Int J Mol Sci 2024; 25:1464. [PMID: 38338744 PMCID: PMC10855305 DOI: 10.3390/ijms25031464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.
Collapse
Affiliation(s)
| | | | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| |
Collapse
|
32
|
de Diego C, Lasierra AB, López-Vergara L, Torralba L, Ruiz de Gopegui P, Lahoz R, Abadía C, Godino J, Cebollada A, Jimeno B, Bello C, Tejada A, Bello S. What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir Res 2024; 25:48. [PMID: 38243237 PMCID: PMC10797938 DOI: 10.1186/s12931-023-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) have repeatedly been related to COVID-19 severity and mortality. However, there is no consensus on their quantification, and there are scarce data on their evolution during the disease. We studied circulating NET markers in patients with COVID-19 throughout their hospitalization. METHODS We prospectively included 93 patients (201 blood samples), evaluating the disease severity in 3 evolutionary phases (viral, early, and late inflammation). Of these, 72 had 180 samples in various phases. We also evaluated 55 controls with similar age, sex and comorbidities. We measured 4 NET markers in serum: cfDNA, CitH3, and MPO-DNA and NE-DNA complexes; as well as neutrophil-related cytokines IL-8 and G-CSF. RESULTS The COVID-19 group had higher CitH3 (28.29 vs 20.29 pg/mL, p = 0.022), and cfDNA, MPO-DNA, and NE-DNA (7.87 vs 2.56 ng/mL; 0.80 vs 0.52 and 1.04 vs 0.72, respectively, p < 0.001 for all) than the controls throughout hospitalisation. cfDNA was the only NET marker clearly related to severity, and it remained higher in non-survivors during the 3 phases. Only cfDNA was an independent risk factor for mortality and need for intensive care. Neutrophil count, IL-8, and G-CSF were significantly related to severity. MPO-DNA and NE-DNA showed significant correlations (r: 0.483, p < 0.001), including all 3 phases and across all severity grades, and they only remained significantly higher on days 10-16 of evolution in those who died. Correlations among the other NET markers were lower than expected. CONCLUSIONS The circulating biomarkers of NETs were present in patients with COVID-19 throughout hospitalization. cfDNA was associated with severity and mortality, but the three other markers showed little or no association with these outcomes. Neutrophil activity and neutrophil count were also associated with severity. MPO-DNA and NE-DNA better reflected NET formation. cfDNA appeared to be more associated with overall tissue damage; previous widespread use of this marker could have overestimated the relationship between NETs and severity. Currently, there are limitations to accurate NET markers measurement that make it difficult to assess its true role in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Cristina de Diego
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Lucía López-Vergara
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | - Laura Torralba
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Raquel Lahoz
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Javier Godino
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Alberto Cebollada
- Biocomputing Technical Scientific Service, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Beatriz Jimeno
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Carlota Bello
- Department of Radiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Antonio Tejada
- Intensive Care Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | - Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain.
| |
Collapse
|
33
|
Vieceli Dalla Sega F, Fortini F, Licastro D, Monego SD, Degasperi M, Ascierto A, Marracino L, Severi P, D'Accolti M, Soffritti I, Brambilla M, Camera M, Tremoli E, Contoli M, Spadaro S, Campo G, Ferrari R, Caselli E, Rizzo P. Serum from COVID-19 patients promotes endothelial cell dysfunction through protease-activated receptor 2. Inflamm Res 2024; 73:117-130. [PMID: 38117300 DOI: 10.1007/s00011-023-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Intensive Care Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Xiao SQ, Wen TZ, Chen XY, Chen HY, Li Z, He ZC, Luo T, Tang R, Fu WJ, Cao MF, Chen L, Niu Q, Wang S, Lan Y, Ge J, Li QR, Guo HT, Wang YX, Ping YF, Shen H, Wang Y, Ding YQ, Bian XW, Yao XH. Autopsy analysis reveals increased macrophage infiltration and cell apoptosis in COVID-19 patients with severe pulmonary fibrosis. Pathol Res Pract 2023; 252:154920. [PMID: 37948998 DOI: 10.1016/j.prp.2023.154920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Clinical data indicates that SARS-CoV-2 infection-induced respiratory failure is a fatal condition for severe COVID-19 patients. However, the pathological alterations of different types of respiratory failure remained unknown for severe COVID-19 patients. This study aims to evaluate whether there are differences in the performance of various types of respiratory failure in severe COVID-19 patients and investigate the pathological basis for these differences. The lung tissue sections of severe COVID-19 patients were assessed for the degree of injury and immune responses. Transcriptome data were used to analyze the molecular basis in severe COVID-19 patients. Severe COVID-19 patients with combined oxygenation and ventilatory failure presented more severe pulmonary fibrosis, airway obstruction, and prolonged disease course. The number of M2 macrophages increased with the degree of fibrosis in patients, suggesting that it may be closely related to the development of pulmonary fibrosis. The co-existence of pro-inflammatory and anti-inflammatory cytokines in the pulmonary environment could also participate in the progression of pulmonary fibrosis. Furthermore, the increased apoptosis in the lungs of COVID-19 patients with severe pulmonary fibrosis may represent a critical factor linking sustained inflammatory responses to fibrosis. Our findings indicate that during the extended phase of COVID-19, antifibrotic and antiapoptotic treatments should be considered in conjunction with the progression of the disease.
Collapse
Affiliation(s)
- Shi-Qi Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tian-Zi Wen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xin-Yu Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - He-Yuan Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhuang Li
- Department of Neurology, Armed Corps Police Hospital of Chongqing, Chongqing, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Rui Tang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Mian-Fu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Lu Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yang Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Jia Ge
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qing-Rui Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hai-Tao Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hong Shen
- Department of Pathology, Southern Medical University, Guangzhou, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yan-Qing Ding
- Department of Pathology, Southern Medical University, Guangzhou, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
35
|
Liu Y, Xiang C, Que Z, Li C, Wang W, Yin L, Chu C, Zhou Y. Neutrophil heterogeneity and aging: implications for COVID-19 and wound healing. Front Immunol 2023; 14:1201651. [PMID: 38090596 PMCID: PMC10715311 DOI: 10.3389/fimmu.2023.1201651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils play a critical role in the immune response to infection and tissue injury. However, recent studies have shown that neutrophils are a heterogeneous population with distinct subtypes that differ in their functional properties. Moreover, aging can alter neutrophil function and exacerbate immune dysregulation. In this review, we discuss the concept of neutrophil heterogeneity and how it may be affected by aging. We then examine the implications of neutrophil heterogeneity and aging for COVID-19 pathogenesis and wound healing. Specifically, we summarize the evidence for neutrophil involvement in COVID-19 and the potential mechanisms underlying neutrophil recruitment and activation in this disease. We also review the literature on the role of neutrophils in the wound healing process and how aging and neutrophil heterogeneity may impact wound healing outcomes. Finally, we discuss the potential for neutrophil-targeted therapies to improve clinical outcomes in COVID-19 and wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Wen Wang
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Lijuan Yin
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Chenyu Chu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Yin Zhou
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
de Maistre E, Savard P, Guinot PG. COVID-19 and the Concept of Thrombo-Inflammation: Review of the Relationship between Immune Response, Endothelium and Coagulation. J Clin Med 2023; 12:7245. [PMID: 38068297 PMCID: PMC10706970 DOI: 10.3390/jcm12237245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/11/2024] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, has revealed a complex interplay between inflammation and coagulation, leading to the emergence of the concept of thrombo-inflammation. This concept recognizes that COVID-19 is not solely a respiratory illness, but a systemic disease with significant vascular and hematological components. COVID-19 is associated with an unusual prothrombotic state, with intense endothelial activation leading to vasculopathy, cytokine storm, complement system activation and a hypercoagulability state (the activation of platelets and the coagulation cascade, impaired fibrinolysis). The aim of this review is to discuss the different pathological pathways described in COVID-19 that lead to thromboembolic events. Widespread vaccination and post-COVID-19 immunization allows control over the severity of this pandemic. A better understanding of the pathophysiology of COVID-19 can improve the management of frail patients who are hospitalized in intensive care units.
Collapse
Affiliation(s)
| | - Philippe Savard
- Haemostais Unit, Dijon University Hospital, F-21000 Dijon, France;
| | - Pierre-Gregoire Guinot
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, F-21000 Dijon, France;
| |
Collapse
|
37
|
Pereira EPV, da Silva Felipe SM, de Freitas RM, da Cruz Freire JE, Oliveira AER, Canabrava N, Soares PM, van Tilburg MF, Guedes MIF, Grueter CE, Ceccatto VM. Transcriptional Profiling of SARS-CoV-2-Infected Calu-3 Cells Reveals Immune-Related Signaling Pathways. Pathogens 2023; 12:1373. [PMID: 38003837 PMCID: PMC10674242 DOI: 10.3390/pathogens12111373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The COVID-19 disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in late 2019 and rapidly spread worldwide, becoming a pandemic that infected millions of people and caused significant deaths. COVID-19 continues to be a major threat, and there is a need to deepen our understanding of the virus and its mechanisms of infection. To study the cellular responses to SARS-CoV-2 infection, we performed an RNA sequencing of infected vs. uninfected Calu-3 cells. Total RNA was extracted from infected (0.5 MOI) and control Calu-3 cells and converted to cDNA. Sequencing was performed, and the obtained reads were quality-analyzed and pre-processed. Differential expression was assessed with the EdgeR package, and functional enrichment was performed in EnrichR for Gene Ontology, KEGG pathways, and WikiPathways. A total of 1040 differentially expressed genes were found in infected vs. uninfected Calu-3 cells, of which 695 were up-regulated and 345 were down-regulated. Functional enrichment analyses revealed the predominant up-regulation of genes related to innate immune response, response to virus, inflammation, cell proliferation, and apoptosis. These transcriptional changes following SARS-CoV-2 infection may reflect a cellular response to the infection and help to elucidate COVID-19 pathogenesis, in addition to revealing potential biomarkers and drug targets.
Collapse
Affiliation(s)
- Eric Petterson Viana Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Stela Mirla da Silva Felipe
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Raquel Martins de Freitas
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - José Ednésio da Cruz Freire
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | | | - Natália Canabrava
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Paula Matias Soares
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| | - Mauricio Fraga van Tilburg
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Maria Izabel Florindo Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (N.C.); (M.F.v.T.); (M.I.F.G.)
| | - Chad Eric Grueter
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Vânia Marilande Ceccatto
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (S.M.d.S.F.); (R.M.d.F.); (J.E.d.C.F.); (P.M.S.)
| |
Collapse
|
38
|
Wang L, Cao JB, Xia BB, Li YJ, Zhang X, Mo GX, Wang RJ, Guo SQ, Zhang YQ, Xiao K, Zhu GF, Liu PF, Song LC, Ma XH, Xiang PC, Wang J, Liu YH, Xie F, Zhang XD, Li XX, Sun WL, Cao Y, Wang KF, Zhang WH, Zhao WC, Yan P, Chen JC, Yang YW, Yu ZK, Tang JS, Xiao L, Zhou JM, Xie LX, Wang J. Metatranscriptome of human lung microbial communities in a cohort of mechanically ventilated COVID-19 Omicron patients. Signal Transduct Target Ther 2023; 8:432. [PMID: 37949875 PMCID: PMC10638395 DOI: 10.1038/s41392-023-01684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infected a substantial proportion of Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF) samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis for future clinical treatment and reduction of fatality.
Collapse
Affiliation(s)
- Lin Wang
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jia-Bao Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin-Bin Xia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Juan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, 014030, China
| | - Guo-Xin Mo
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Rui-Juan Wang
- Department of Respiratory Medicine, PLA Strategic Support Force Medical Center, Beijing, 100101, China
| | - Si-Qi Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Qing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Guang-Fa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Peng-Fei Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Li-Cheng Song
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Xi-Hui Ma
- Respiratory Research Institute, Department of Pulmonary & Critical Care Medicine, Beijing Key Laboratory of OTIR, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Ping-Chao Xiang
- Shougang hospital of Peking University, Beijing, 100144, China
| | - Jiang Wang
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Yu-Hong Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Fei Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Xu-Dong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Xin Li
- Department of Respiratory Medicine, Beijing Changping Hospital, Beijing, 102200, China
| | - Wan-Lu Sun
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Cao
- Pulmonary research institute, Senior Department of Respiratory and Critical Care Medicine, the 8th medical center of Chinese PLA general hospital, Beijing, 100091, China
| | - Kai-Fei Wang
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wen-Hui Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chao Zhao
- Department of Respiratory Medicine, PLA Strategic Support Force Medical Center, Beijing, 100101, China
| | - Peng Yan
- China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, China
| | - Ji-Chao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Yu-Wei Yang
- Respiratory Research Institute, Department of Pulmonary & Critical Care Medicine, Beijing Key Laboratory of OTIR, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Zhong-Kuo Yu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jing-Si Tang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Xiao
- Respiratory Research Institute, Department of Pulmonary & Critical Care Medicine, Beijing Key Laboratory of OTIR, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jie-Min Zhou
- Vision Medicals Center for Infectious Diseases, Guangzhou, 510700, China
| | - Li-Xin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Shen L, Cai N, Wan S, Chen S. Development and validation of a predictive model for early diagnosis of neonatal acute respiratory distress syndrome based on the Montreux definition. Front Pediatr 2023; 11:1276915. [PMID: 38027256 PMCID: PMC10652555 DOI: 10.3389/fped.2023.1276915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Based on the Montreux definition, we aim to develop and validate a predictive model for the early diagnosis of neonatal acute respiratory distress syndrome (ARDS). Methods A retrospective analysis of clinical data on 198 neonates with respiratory distress from January 2018 to January 2022 was conducted. Neonates meeting Montreux definition were classified as ARDS group (n = 79), while the rest were non-ARDS group (n = 119). Univariate analysis identified indicators for neonatal ARDS, followed by logistic regression to construct a predictive model for early diagnosis. The ability of predictors and models to predict neonatal ARDS was evaluated using area under the curve (AUC), and model performance was estimated through bootstrap resampling. Results Maternal prenatal fever, abnormal fetal heart beat, meconium-stained amniotic fluid (MSAF), white blood cell (WBC), absolute neutrophil count (ANC), neutrophil percentage (NE%), platelet count (PLT), C-reactive protein (CRP), procalcitonin (PCT), creatine kinase (CK), activated partial thromboplastin time (APTT), serum calcium (Ca) and sodium (Na)exhibited significant differences between the ARDS group and the non-ARDS group (P < 0.05). MSAF (OR=5.037; 95% CI: 1.523-16.657; P < 0.05), ANC (OR = 1.324; 95% CI: 1.172-1.495; P < 0.05), PLT (OR = 0.979; 95% CI: 0.971-0.986; P < 0.05), Ca (OR = 0.020; 95% CI: 0.004-0.088; P < 0.05) emerged as independent risk factors for the development of ARDS. The respective AUC values for MSAF, ANC, PLT, Ca, and the combined prediction models were 0.606, 0.691, 0.808, 0.761 and 0.931. Internal validation showed that the C-index for the model was 0.931. Conclusions Early application of the model combining MSAF, ANC, PLT and Ca may have a good predictive effect on the early diagnosis of neonatal ARDS.
Collapse
Affiliation(s)
| | | | | | - Sheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
40
|
Du Y, Chen Y, Li F, Mao Z, Ding Y, Wang W. Genetically Engineered Cellular Nanovesicle as Targeted DNase I Delivery System for the Clearance of Neutrophil Extracellular Traps in Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303053. [PMID: 37759381 PMCID: PMC10646266 DOI: 10.1002/advs.202303053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are prevalent critical illnesses with a high mortality rate among patients in intensive care units. Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of ALI/ARDS and represent a promising therapeutic target. However, the clinical application of deoxyribonuclease I (DNase I), the only drug currently available to clear NETs, is limited due to the lack of precise and efficient delivery strategies. Therefore, targeted delivery of DNase I to the inflamed lung remains a critical issue to be addressed. Herein, a novel biomimetic DNase I delivery system is developed (DCNV) that employs genetically and bioorthogonally engineered cellular nanovesicles for pulmonary NETs clearance. The CXC motif chemokine receptor 2 overexpressed cellular nanovesicles can mimic the inflammatory chemotaxis of neutrophils in ALI/ARDS, leading to enhanced lung accumulation. Furthermore, DNase I immobilized through bioorthogonal chemistry exhibits remarkable enzymatic activity in NETs degradation, thus restraining inflammation and safeguarding lung tissue in the lipopolysaccharide-induced ALI murine model. Collectively, the findings present a groundbreaking proof-of-concept in the utilization of biomimetic cellular nanovesicles to deliver DNase I for treating ALI/ARDS. This innovative strategy may usher in a new era in the development of pharmacological interventions for various inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Du
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Yining Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Fangyuan Li
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Institute of PharmaceuticsHangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouZhejiang310009China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouZhejiang310009China
- National Innovation Center for Fundamental Research on Cancer MedicineHangzhouZhejiang310009China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- ZJU‐Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic DiseaseHangzhouZhejiang310058China
| |
Collapse
|
41
|
Li S, Wang H, Shao Q. The central role of neutrophil extracellular traps (NETs) and by-products in COVID-19 related pulmonary thrombosis. Immun Inflamm Dis 2023; 11:e949. [PMID: 37647446 PMCID: PMC10461423 DOI: 10.1002/iid3.949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
Extracellular trap networks (neutrophil extracellular traps [NETs]) of polymorphonuclear neutrophils are mesh-like substances that prevent the spread of pathogens. They primarily consist of DNA skeletons, histones, granule components, and cytoplasmic proteins. NETs formation requires a certain environment and there are different pathways for NETs production. However, it is still not clear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes NETs. NETs exert antiinflammatory effects through immune response, while they can also lead to certain adverse outcomes, such as the development of immunothrombosis. Coronavirus disease 2019 (COVID-19) is an inflammatory reaction affecting various organs caused by SARS-CoV-2, especially the lungs. NETs production and disease severity are linked with unique neutrophil clusters by single-cell RNA sequencing. NETs might exert an anti-inflammatory role in the initial stage of lung tissue inflammation. Nevertheless, numerous studies and cases have shown that they can also result in pulmonary thrombosis. There is mounting evidence that NETs are tightly related with COVID-19 pulmonary thrombosis, and many studies on the mechanisms are involved. The role and mechanism of NETs in the development of pulmonary thrombosis will be the main topics of this manuscript. Additionally, we address the potential targeting of NETs in COVID-19 patients.
Collapse
Affiliation(s)
- Shi Li
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
| | - Hui Wang
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
| | - Qixiang Shao
- Department of ImmunologySchool of Medicine, Jiangsu UniversityZhenjiangJiangsuChina
- Department of Medical Microbiology and Immunology, Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory MedicineJiangsu College of NursingHuai'anJiangsuChina
| |
Collapse
|
42
|
Yu Y, Fang B, Yang XD, Zheng Y. One stone two birds: anti-inflammatory bronchodilators as a potential pharmacological strategy for COVID-19. Front Pharmacol 2023; 14:1185076. [PMID: 37214443 PMCID: PMC10192734 DOI: 10.3389/fphar.2023.1185076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed a huge threat to public health across the world. While vaccinations are essential for reducing virus transmission and attenuating disease severity, the nature of high mutation rate of SARS-CoV-2 renders vaccines less effective, urging quick development of effective therapies for COVID-19 disease. However, developing novel drugs remains extremely challenging due to the lengthy process and high cost. Alternatively, repurposing of existing drugs on the market represents a rapid and safe strategy for combating COVID-19 pandemic. Bronchodilators are first line drugs for inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Compared to other anti-inflammatory drugs repurposed for COVID-19, bronchodilators are unique in that they have both anti-inflammatory and bronchodilating properties. Whether the dual properties of bronchodilators empower them greater potential to be repurposed for COVID-19 is worth exploring. In fact, clinical and preclinical studies have recently emerged to investigate the benefits of bronchodilators such assalbutamol, formoterol and theophylline in treating COVID-19, and many of them have shown encouraging efficacy on attenuating disease severity of pneumonia and other associated symptoms. To comprehensively understand the latest progress on COVID-19 intervention with bronchodilators, this review will summarize recent findings in this area and highlight the promising clinical benefits and possible adverse effects of bronchodilators as therapeutic options for COVID-19 with a focus on β2 receptor agonists, anticholinergic drugs and theophylline.
Collapse
Affiliation(s)
- Yuanyuan Yu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8065. [PMID: 37175768 PMCID: PMC10178469 DOI: 10.3390/ijms24098065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease.
Collapse
Affiliation(s)
- Stefania Mantovani
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Barbara Oliviero
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Stefania Varchetta
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy;
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Mario U. Mondelli
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
44
|
Korb VG, Schultz IC, Beckenkamp LR, Wink MR. A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19. Int J Mol Sci 2023; 24:ijms24097865. [PMID: 37175571 PMCID: PMC10178215 DOI: 10.3390/ijms24097865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global health concern. Three years since its origin, despite the approval of vaccines and specific treatments against this new coronavirus, there are still high rates of infection, hospitalization, and mortality in some countries. COVID-19 is characterised by a high inflammatory state and coagulation disturbances that may be linked to purinergic signalling molecules such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), and purinergic receptors (P1 and P2). These nucleotides/nucleosides play important roles in cellular processes, such as immunomodulation, blood clot formation, and vasodilation, which are affected during SARS-CoV-2 infection. Therefore, drugs targeting this purinergic pathway, currently used for other pathologies, are being evaluated in preclinical and clinical trials for COVID-19. In this review, we focus on the potential of these drugs to control the release, degradation, and reuptake of these extracellular nucleotides and nucleosides to treat COVID-19. Drugs targeting the P1 receptors could have therapeutic efficacy due to their capacity to modulate the cytokine storm and the immune response. Those acting in P2X7, which is linked to NLRP3 inflammasome activation, are also valuable candidates as they can reduce the release of pro-inflammatory cytokines. However, according to the available preclinical and clinical data, the most promising medications to be used for COVID-19 treatment are those that modulate platelets behaviour and blood coagulation factors, mainly through the P2Y12 receptor.
Collapse
Affiliation(s)
- Vitoria Guero Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Iago Carvalho Schultz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Sala 304 Centro, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
45
|
Shute JK. Heparin, Low Molecular Weight Heparin, and Non-Anticoagulant Derivatives for the Treatment of Inflammatory Lung Disease. Pharmaceuticals (Basel) 2023; 16:ph16040584. [PMID: 37111341 PMCID: PMC10141002 DOI: 10.3390/ph16040584] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Unfractionated heparin has multiple pharmacological activities beyond anticoagulation. These anti-inflammatory, anti-microbial, and mucoactive activities are shared in part by low molecular weight and non-anticoagulant heparin derivatives. Anti-inflammatory activities include inhibition of chemokine activity and cytokine synthesis, inhibitory effects on the mechanisms of adhesion and diapedesis involved in neutrophil recruitment, inhibition of heparanase activity, inhibition of the proteases of the coagulation and complement cascades, inhibition of neutrophil elastase activity, neutralisation of toxic basic histones, and inhibition of HMGB1 activity. This review considers the potential for heparin and its derivatives to treat inflammatory lung disease, including COVID-19, ALI, ARDS, cystic fibrosis, asthma, and COPD via the inhaled route.
Collapse
Affiliation(s)
- Janis Kay Shute
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| |
Collapse
|