1
|
Alharbi K, Hafez EM, Elhawat N, Omara AED, Rashwan E, Mohamed HH, Alshaal T, Gadow SI. Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR. PLANTS (BASEL, SWITZERLAND) 2024; 13:3550. [PMID: 39771248 PMCID: PMC11680020 DOI: 10.3390/plants13243550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha-1), PGPRs (Bradyrhizobium japonicum (USDA 110) + Trichoderma harzianum at 1:1 ratio), and Si-NPs (25 mg L-1) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues. The trio-combination reduced Cd bioavailability in the soil by 39.1% and Cd accumulation in plant roots, shoots, and seeds by 61.0%, 69.3%, and 61.1%, respectively. Physiological improvements in soybean plants were also observed, including 197.8% increase in root growth, 209.3% increase in chlorophyll content, and 297.4% increase in carotenoid levels. The trio-combination significantly improved soil physicochemical characteristics, enhanced soil microbial indicators and boosted soil enzymes activity, which in turn facilitated nutrient uptake and increased antioxidant enzymes activity. These positive outcomes enhanced photosynthesis, improved productivity and increased seed nutritional value. Overall, the trio-combination of biochar with PGPRs and Si-NPs are considered a reliable approach not only for revitalizing soybean growth but also for immobilizing Cd and improving soil health under wastewater irrigation.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Emad M. Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nevien Elhawat
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Faculty of Agriculture (for Girls), Al-Azhar University, Tanta 31732, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt;
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Hossam H. Mohamed
- Agronomy Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Tarek Alshaal
- Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Samir I. Gadow
- Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt;
| |
Collapse
|
2
|
Zhang Z, Fang J, Jin H, Zhang L, Fang S. Application of oxide nanoparticles mitigates the salt-induced effects on photosynthesis and reduces salt injury in Cyclocarya paliurus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176333. [PMID: 39304156 DOI: 10.1016/j.scitotenv.2024.176333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Salinization is very detrimental to photosynthetic processes and plant growth, while nanoparticles (NPs) are considered to be the emerging materials to improve plant adaptability to salt stress. Cyclocarya paliurus is being planted on saline-alkali soils to meet the growing demand for its leaves and medicinal products. However, this species exhibits low salt tolerance and little information is available on whether NPs application would mitigate the salt-induced effects. This study explored the influence of three oxide NPs and their application doses on improving salt tolerance in C. paliurus under simulated natural conditions. The results showed that these oxide NPs could modify the salt tolerance in C. paliurus seedlings, but the alleviating effects varied in the NPs types and their application doses. Under the salt stress, foliar applications of SiO2-NPs with 500 mg L-1 and MnO2-NPs with 50 mg L-1 significantly increased net photosynthetic rate and seedling height by 52.0-59.5 %, and reduced the salt injury index by 67.6-70.7 %. Transcriptomic analysis revealed that the genes related to photosynthesis pathway were well responsive to both salt stress and NPs application, while the applications of high-dose SiO2- and MnO2-NPs up-regulated the expression of 50 photosynthesis-related genes. Weighted gene co-expression network analysis (WGCNA) indicated there existed a close relationship between physiological parameters and gene expression patterns, and the nine key genes in mitigating salt stress in C. paliurus were identified after the NPs application. Our findings suggested that the effects of NPs on mitigating salt-induced damages depending on the NP type and applied dose. The applications of SiO2-NPs and MnO2-NPs with an appropriate dose hold great promise for mitigating the salt-induced photosynthetic dysfunction via regulation of related key genes, and ultimately promoting plant growth and ameliorating the salt-tolerance.
Collapse
Affiliation(s)
- Zijie Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyin Jin
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Chen L, Fang L, Tan W, Bing H, Zeng Y, Chen X, Li Z, Hu W, Yang X, Shaheen SM, White JC, Xing B. Nano-enabled strategies to promote safe crop production in heavy metal(loid)-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174505. [PMID: 38971252 DOI: 10.1016/j.scitotenv.2024.174505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nanobiotechnology is a potentially safe and sustainable strategy for both agricultural production and soil remediation, yet the potential of nanomaterials (NMs) application to remediate heavy metal(loid)-contaminated soils is still unclear. A meta-analysis with approximately 6000 observations was conducted to quantify the effects of NMs on safe crop production in soils contaminated with heavy metal(loid) (HM), and a machine learning approach was used to identify the major contributing features. Applying NMs can elevate the crop shoot (18.2 %, 15.4-21.2 %) and grain biomass (30.7 %, 26.9-34.9 %), and decrease the shoot and grain HM concentration by 31.8 % (28.9-34.5 %) and 46.8 % (43.7-49.8 %), respectively. Iron-NMs showed a greater potential to inhibit crop HM uptake compared to other types of NMs. Our result further demonstrates that NMs application substantially reduces the potential health risk of HM in crop grains by human health risk assessment. The NMs-induced reduction in HM accumulation was associated with decreasing HM bioavailability, as well as increased soil pH and organic matter. A random forest model demonstrates that soil pH and total HM concentration are the two significant features affecting shoot HM accumulation. This analysis of the literature highlights the significant potential of NMs application in promoting safe agricultural production in HM-contaminated agricultural lands.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China.
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China
| | - Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 71000, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China
| | - Xing Yang
- College of Ecology and Environment, Hainan University, Haikou 570100, China
| | - Sabry M Shaheen
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, University of Wuppertal, Wuppertal, Germany; Faculty of Environmental Sciences, Department of Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Faculty of Agriculture, Department of Soil and Water Sciences, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, USA
| |
Collapse
|
4
|
Guaca-Cruz L, Sterling A, Clavijo A, Suárez-Salazar JC. Leaf antioxidant activity in Colombian elite Hevea brasiliensis genotypes as a breeding strategy for water deficit tolerance under Amazonia conditions. PLoS One 2024; 19:e0306083. [PMID: 39264875 PMCID: PMC11392401 DOI: 10.1371/journal.pone.0306083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
This study evaluated the foliar antioxidant activity in nine Hevea brasiliensis genotypes from the ECC-1 (Élite Caquetá Colombia) selection and IAN 873 cultivar (control) in trees in the growth stage in two large-scale clonal trials in response to different climatic (semi-humid warm and humid warm sites) and seasonal (dry and rainy periods) conditions in the Colombian Amazon. The results indicated that Reactive Oxygen Species (ROS) production increased under conditions of lower water availability (dry period), leading to lipid peroxidation, high defense of photosynthetic pigments, and development of better osmotic adjustment capacity in the ECC 64, IAN 873, ECC 90, and ECC 35 genotypes due to high concentrations of carotenoids (0.40 mg g-1), reducing sugars (65.83 μg mg-1), and malondialdehyde (MDA) (2.44 nmol ml-1). In contrast, during the rainy period, a post-stress action was observed due to high contents of proline and total sugars (39.43 μg g-1 and 173.03 μg g-1, respectively). At the site level, with high Photosynthetically Active Radiation (PAR) values (1143 moles photons m-2 s-1), temperature (32.11°C), and lower precipitation (135 mm), higher antioxidant activity (chlorophylls a, b and total, carotenoids, and proline) was recorded at the humid warm site, demonstrating that the ECC 90, ECC 64, and ECC 66 genotypes are tolerant to water deficit compared to IAN 873. The ECC 64 genotype, independent of seasonal changes and site conditions, presented the highest contents in Chl a, total Chl, reducing sugars, total sugars, and MDA, showing a tendency to adapt to fluctuating conditions. This study showed that water fluctuations do not cause the same metabolic responses, these vary within the same species, depending on their developmental stage and the climatic and seasonal variations characteristic of the Colombian Amazon.
Collapse
Affiliation(s)
- Lised Guaca-Cruz
- Doctorado en Ciencias Naturales y Desarrollo Sostenible, Facultad de Ciencias Agropecuarias, Universidad de la Amazonía, Florencia, Caquetá, Colombia
| | - Armando Sterling
- Laboratorio de Fitopatología, Instituto Amazónico de Investigaciones Científicas Sinchi-Facultad de Ciencias Básicas-Universidad de la Amazonía, Florencia, Colombia
| | - Andrés Clavijo
- Laboratorio de Fitopatología, Instituto Amazónico de Investigaciones Científicas Sinchi-Facultad de Ciencias Básicas-Universidad de la Amazonía, Florencia, Colombia
| | - Juan Carlos Suárez-Salazar
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia, Colombia
| |
Collapse
|
5
|
Hashem S, AbdElgawad H, Mohamed F, Hegab MM, AlGarawi AM, Okla MK, Sayed M. Zn-Al and Mg-Al layered double hydroxide nanoparticles improved primary and secondary metabolism of geranium plants. RSC Adv 2024; 14:28376-28389. [PMID: 39239289 PMCID: PMC11375793 DOI: 10.1039/d4ra04280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024] Open
Abstract
Layer double hydroxide (LDH) nanoparticles (NPs) have been applied to enhance plant growth and productivity. However, their effects on carbon and nitrogen metabolism of aromatic plants, are not well understood. Therefore, we investigated the impact of foliar application of Zn-Al LDH and Mg-Al LDH NPs (10 ppm) on the growth and metabolism of geranium plants. Zn-Al LDH and Mg-Al LDH NPs significantly increased the dry biomass, photosynthetic pigment, and Zn and Mg uptake by treated plants. These increases were consistent with increased primary metabolism such as soluble sugars and their metabolic enzymes (invertase and amylase). The supply of high sugar levels induced TCA organic accumulation, providing a pathway for amino acid biosynthesis. Among amino acids, proline level and its biosynthetic enzymes such as pyrroline-5-carboxylate reductase (P5CR), ornithine aminotransferase (OAT), and pyrroline-5-carboxylate synthetase (P5CS), glutamine synthetase (GS), and arginase were increased. Increased primary metabolites can then be channeled into secondary metabolic pathways, leading to higher levels of secondary metabolites including tocopherols, phenolics, and flavonoids. These observed increases in primary and secondary metabolites also improve the biological value of geranium plants. Overall, our research highlights the potential of Zn-Al LDH and Mg-Al LDH NPs as elicitors to enhance metabolism in geranium plants, thereby improving their growth bioactivity.
Collapse
Affiliation(s)
- Shimaa Hashem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University Egypt
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp Antwerpen Belgium
| | - Fatma Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Nanophotonic and Applications (NPA) Lab, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Materials Science Research Lab, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Momtaz M Hegab
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University Egypt
| | - Amal Mohamed AlGarawi
- Botany and Microbiology Department, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Mona Sayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University Egypt
| |
Collapse
|
6
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
7
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
8
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
9
|
Hatami M, Ghorbanpour M. Metal and metal oxide nanoparticles-induced reactive oxygen species: Phytotoxicity and detoxification mechanisms in plant cell. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108847. [PMID: 38889532 DOI: 10.1016/j.plaphy.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Nanotechnology is advancing rapidly in this century and the industrial use of nanoparticles for new applications in the modernization of different industries such as agriculture, electronic, food, energy, environment, healthcare and medicine is growing exponentially. Despite applications of several nanoparticles in different industries, they show harmful effects on biological systems, especially in plants. Various mechanisms for the toxic effects of nanoparticles have already been proposed; however, elevated levels of reactive oxygen species (ROS) molecules including radicals [(e.g., superoxide (O2•‒), peroxyl (HOO•), and hydroxyl (HO•) and non-radicals [(e.g., hydrogen peroxide (H2O2) and singlet oxygen (1O2) is more important. Excessive production/and accumulation of ROS in cells and subsequent induction of oxidative stress disrupts the normal functioning of physiological processes and cellular redox reactions. Some of the consequences of ROS overproduction include peroxidation of lipids, changes in protein structure, DNA strand breaks, mitochondrial damage, and cell death. Key enzymatic antioxidants with ROS scavenging ability comprised of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR), and non-enzymatic antioxidant systems including alpha-tocopherol, flavonoids, phenolic compounds, carotenoids, ascorbate, and glutathione play vital role in detoxification and maintaining plant health by balancing redox reactions and reducing the level of ROS. This review provides compelling evidence that phytotoxicity of nanoparticles, is mainly caused by overproduction of ROS after exposure. In addition, the present review also summarizes the intrinsic detoxification mechanisms in plants in response to nanoparticles accumulation within plant cells.
Collapse
Affiliation(s)
- Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanoscience and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
10
|
Sales HBE, de S. Carolino A, de A. Nunes RZ, Macalia CMA, Ruzo CM, da C. Pinto C, de A. Bezerra J, Campelo PH, Ţălu Ș, de Souza LKC, Sanches EA. Advances in Agricultural Technology: A Review of Slow-Release Nanofertilizers and Innovative Carriers. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS 2024; 55:1849-1882. [DOI: 10.1080/00103624.2024.2326145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/26/2024] [Indexed: 12/06/2024]
Affiliation(s)
- Helder B. E. Sales
- Graduate Program in Chemistry (PPGQ), Federal University of Amazonas (UFAM), Manaus, Brazil
- Laboratory Yvonne Mascarenhas (LabYM), Federal University of Amazonas (UFAM), Manaus, Brazil
| | - Adriano de S. Carolino
- Laboratory Yvonne Mascarenhas (LabYM), Federal University of Amazonas (UFAM), Manaus, Brazil
| | - Ronald Z. de A. Nunes
- Laboratory Yvonne Mascarenhas (LabYM), Federal University of Amazonas (UFAM), Manaus, Brazil
| | - Célio M. A. Macalia
- Laboratory Yvonne Mascarenhas (LabYM), Federal University of Amazonas (UFAM), Manaus, Brazil
| | - Camila M. Ruzo
- Graduate Program in Chemistry (PPGQ), Federal University of Amazonas (UFAM), Manaus, Brazil
| | - Camila da C. Pinto
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, Brazil
| | - Jaqueline de A. Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, Brazil
| | - Pedro H. Campelo
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Ștefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Luiz K. C. de Souza
- Graduate Program in Chemistry (PPGQ), Federal University of Amazonas (UFAM), Manaus, Brazil
| | - Edgar A. Sanches
- Laboratory Yvonne Mascarenhas (LabYM), Federal University of Amazonas (UFAM), Manaus, Brazil
| |
Collapse
|
11
|
Tripathi S, Tiwari K, Mahra S, Victoria J, Rana S, Tripathi DK, Sharma S. Nanoparticles and root traits: mineral nutrition, stress tolerance and interaction with rhizosphere microbiota. PLANTA 2024; 260:34. [PMID: 38922515 DOI: 10.1007/s00425-024-04409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shweta Rana
- Departments of Physical and Natural Sciences, FLAME University, Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
12
|
Tritean N, Trică B, Dima ŞO, Capră L, Gabor RA, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Mechanistic insights into the plant biostimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. FRONTIERS IN PLANT SCIENCE 2024; 15:1349573. [PMID: 38835865 PMCID: PMC11148368 DOI: 10.3389/fpls.2024.1349573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.
Collapse
Affiliation(s)
- Naomi Tritean
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Ştefan-Ovidiu Dima
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Luiza Capră
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Raluca-Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | | | - Florin Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | | |
Collapse
|
13
|
Soni S, Jha AB, Dubey RS, Sharma P. Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171433. [PMID: 38458469 DOI: 10.1016/j.scitotenv.2024.171433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Soil salinization significantly affects crop production by reducing crop quality and decreasing yields. Climate change can intensify salinity-related challenges, making the task of achieving global food security more complex. To address the problem of elevated salinity stress in crops, nanoparticles (NPs) have emerged as a promising solution. NPs, characterized by their small size and extensive surface area, exhibit remarkable functionality and reactivity. Various types of NPs, including metal and metal oxide NPs, carbon-based NPs, polymer-based NPs, and modified NPs, have displayed potential for mitigating salinity stress in plants. However, the effectiveness of NPs application in alleviating plant stress is dependent upon multiple factors, such as NPs size, exposure duration, plant species, particle composition, and prevailing environmental conditions. Moreover, alterations to NPs surfaces through functionalization and coating also play a role in influencing plant tolerance to salinity stress. NPs can influence cellular processes by impacting signal transduction and gene expression. They counteract reactive oxygen species (ROS), regulate the water balance, enhance photosynthesis and nutrient uptake and promote plant growth and yield. The objective of this review is to discuss the positive impacts of diverse NPs on alleviating salinity stress within plants. The intricate mechanisms through which NPs accomplish this mitigation are also discussed. Furthermore, this review addresses existing research gaps, recent breakthroughs, and prospective avenues for utilizing NPs to combat salinity stress.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
14
|
Nanehkaran FM, Razavi SM, Ghasemian A, Ghorbani A, Zargar M. Foliar applied potassium nanoparticles (K-NPs) and potassium sulfate on growth, physiological, and phytochemical parameters in Melissa officinalis L. under salt stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31108-31122. [PMID: 38625474 DOI: 10.1007/s11356-024-33306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Salinity stress significantly constrains agricultural productivity and vegetation decline worldwide, particularly in Iran. Potassium, the second most prevalent nutrient in plants, is well known to be essential for cell metabolism. Here, the effects of potassium fertilizer in two biogenic nanoparticles (K-NPs) and conventional (potassium sulfate) forms (0.1 mg/ml) on Melissa officinalis L. under salinity (0, 50, 100, and 150 mM) were investigated. The results demonstrated that stress markers (electrolyte leakage, malondialdehyde, and hydrogen peroxide) increased as salinity levels increased. Plant growth parameters (shoot and root length, fresh and dry weight of shoot and root) and physiological and photosynthetic parameters (stomatal conductance, relative water content, chlorophyll fluorescence, and photosynthetic pigments) were reduced in salinized plants. The highest reduction in fresh weight root, dry weight root, fresh weight shoot, dry weight shoot, root length, and shoot length was recorded under 150 mM NaCl by 30.2%, 51.6%, 30.5%, 24.7%, 26.4%, and 21%, respectively. In contrast, bulk potassium sulfate and K-NPs increased these parameters. Furthermore, K-NPs improved M. officinalis tolerance to NaCl toxicity by enhancing the content of osmolytes such as proline, soluble sugars, and antioxidant enzymes, improving antioxidant contents such as phenols, tannins, anthocyanins, and flavonoids; increasing total protein; and lowering stress markers in plant tissues. Given the results of the physiological, biochemical, and phytochemical parameters obtained from this study, it can be stated that K-NPs, in comparison to the conventional form of potassium fertilizer, exhibit a greater potential to mitigate damages caused by salinity stress in M. officinalis plants.
Collapse
Affiliation(s)
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Alireza Ghasemian
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abazar Ghorbani
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| |
Collapse
|
15
|
Yan G, Huang Q, Zhao S, Xu Y, He Y, Nikolic M, Nikolic N, Liang Y, Zhu Z. Silicon nanoparticles in sustainable agriculture: synthesis, absorption, and plant stress alleviation. FRONTIERS IN PLANT SCIENCE 2024; 15:1393458. [PMID: 38606077 PMCID: PMC11006995 DOI: 10.3389/fpls.2024.1393458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.
Collapse
Affiliation(s)
- Guochao Yan
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingying Huang
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuaijing Zhao
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yunmin Xu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yong He
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
16
|
Channab BE, El Idrissi A, Ammar A, Dardari O, Marrane SE, El Gharrak A, Akil A, Essemlali Y, Zahouily M. Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis. NANOSCALE 2024; 16:4484-4513. [PMID: 38314867 DOI: 10.1039/d3nr05012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayyoub Ammar
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca B.P. 146, Morocco.
| | - Othmane Dardari
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Salah Eddine Marrane
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Abdelouahed El Gharrak
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Adil Akil
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Youness Essemlali
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
17
|
Singh V, Mandal T, Mishra SR, Singh A, Khare P. Development of amine-functionalized fluorescent silica nanoparticles from coal fly ash as a sustainable source for nanofertilizer. Sci Rep 2024; 14:3069. [PMID: 38321035 PMCID: PMC10847091 DOI: 10.1038/s41598-024-53122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
Scaling up the synthesis of fluorescent silica nanoparticles to meet the current demand in diverse applications involves technological limitations. The present study relates to the hydrothermal synthesis of water-soluble, crystalline, blue-emitting amine-functionalized silica nanoparticles from coal fly ash sustainably and economically. This study used tertiary amine (trimethylamine) to prepare amine-functionalized fluorescent silica nanoparticles, enhancing fluorescence quantum yield and nitrogen content for nanofertilizer application. The TEM and FESEM studies show that the silica nanoparticles have a spherical morphology with an average diameter of 4.0 nm. The x-ray photoelectron and Fourier transform infrared spectroscopy studies reveal the presence of the amine group at the surface of silica nanoparticles. The silica nanoparticles exhibit blue fluorescence with an emission maximum of 454 nm at 370 nm excitation and show excitation-dependent emission properties in the aqueous medium. With the perfect spectral overlap between silica nanoparticle emission (donor) and chlorophyll absorption (acceptor), fluorescent silica nanoparticles enhance plant photosynthesis rate by resonance energy transfer. This process accelerates the photosynthesis rate to improve the individual plant's quality and growth. These findings suggested that the fly ash-derived functionalized silica nanoparticles could be employed as nanofertilizers and novel delivery agents.
Collapse
Affiliation(s)
- Vikram Singh
- Environment Emission and CRM Division, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand, 828108, India.
- Coal to Hydrogen Energy for Sustainable Solutions, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand, 828108, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Tuhin Mandal
- Environment Emission and CRM Division, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Rag Mishra
- Environment Emission and CRM Division, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anupama Singh
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Puja Khare
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| |
Collapse
|
18
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
19
|
Alenazi MM, El-Ebidy AM, El-shehaby OA, Seleiman MF, Aldhuwaib KJ, Abdel-Aziz HMM. Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in Phaseolus vulgaris L. Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:398. [PMID: 38337931 PMCID: PMC10857083 DOI: 10.3390/plants13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024]
Abstract
Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate salinity stress (i.e., 25, 50, 100, and 200 mM NaCl) and improve pigment fractions, carbohydrates content, ions content, proline, hydrogen peroxide, lipid peroxidation, electrolyte leakage content, and the antioxidant system of Phaseolus vulgaris L. grown in clay-sandy soil. Methacrylic acid was used to synthesize CsNPs, with an average size of 40 ± 2 nm. Salinity stress negatively affected yield traits, pigment fractions, and carbohydrate content. However, in plants grown under salt stress, the application of either Cs or CsNPs significantly improved yield, pigment fractions, carbohydrate content, proline, and the antioxidant system, while these treatments reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage. The positive effects of CsNPs were shown to be more beneficial than Cs when applied exogenously to plants grown under salt stress. In this context, it could be concluded that CsNPs could be used to mitigate salt stress effects on Phaseolus vulgaris L. plants grown in saline soils.
Collapse
Affiliation(s)
- Mekhled M. Alenazi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Aya M. El-Ebidy
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Omar A. El-shehaby
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
20
|
Wang Q, Shan C, Zhang P, Zhao W, Zhu G, Sun Y, Wang Q, Jiang Y, Shakoor N, Rui Y. The combination of nanotechnology and potassium: applications in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1890-1906. [PMID: 38079036 DOI: 10.1007/s11356-023-31207-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Potassium fertilizer is indispensable for ensuring crop production, which in turn supports global food supply and safe farming practices. Potassium resources are primarily located in the Northern Hemisphere, leading to a current shortage of affordable potash and severe soil deficiencies in certain regions of the Southern Hemisphere. There is a shift away from mined salts in favor of locally available potassium resources. Utilizing potassium-rich silicates, for instance, could be a viable option to address this situation. The imperative of enhancing crop productivity and quality necessitates either increasing potassium availability or utilizing potassium more efficiently. Geneticists may find the development of plants that use potassium more effectively to be a valuable pursuit. Nanomaterials are increasingly becoming part of people's professional lives as a novel material category. This technology is gradually finding applications in agriculture to boost crop yields while reducing environmental pollution. This paper reviews the applications of common potassium-containing materials, explores the effects and mechanisms of nano-fertilizers on plants, and offers insights into future applications of nano-potassium fertilizers in agriculture. All in all, the application of nanotechnology in the production and utilization of potassium fertilizers is both necessary and effective. However, there are still many gaps in the current field of nano-potassium fertilizer application that require further research. It is hoped that this review can serve as a valuable reference for researchers working in this field.
Collapse
Affiliation(s)
- Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Shan
- Department of Plant Nutrition, College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China.
- China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
21
|
Xu Z, Liu H, Yu Y, Gao D, Leng C, Zhang S, Yan P. MWCNTs Alleviated saline-alkali stress by optimizing photosynthesis and sucrose metabolism in rice seedling. PLANT SIGNALING & BEHAVIOR 2023; 18:2283357. [PMID: 38053501 PMCID: PMC10761102 DOI: 10.1080/15592324.2023.2283357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Saline and alkali stress affects the growth and development, survival rate, and final yield of rice, while new nano materials can have a positive effect on rice growth. In order to investing the effects of carboxymethyl multi walled carbon nanotubes (MWCNTs) on the growth and development of rice seedlings under salt alkali stress, rice seedlings were cultured using rice variety "Songjing 3" using nutrient solution water culture method. The effects of MWCNTs on water absorption capacity, leaf photosynthesis, and sucrose metabolism of rice seedlings under 50 mmol/L saline-alkali stress (1NaCl: 9Na2SO4: 9NaHCO3: 1Na2CO3) conditions were investigated. The results showed that MWCNTs can improve the water use ability of roots and leaves, especially the water absorption ability of roots, which provides a guarantee for the improvement of rice biomass and the enhancement of leaf photosynthetic capacity under adverse conditions. After treatment with MWCNTs, the photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr) of leaves increased significantly, and the photochemical quenching value (qP), photochemical quantum efficiency value (Fv/Fm), and electron transfer rate value (ETR) of chlorophyll fluorescence parameters increased significantly, which is beneficial to the improvement of the PSII photosynthetic system. MWCNTs treatment promoted the increase of photosynthetic pigment content in leaves under salt and alkali stress, improved the ratio of Chla and Chlb parameters, increased the activities of key photosynthetic enzymes (RUBPCase and PEPCase) in leaves, increased the value of total lutein cycle pool (VAZ), and significantly enhanced the deepoxidation effect of lutein cycle (DEPS), which can effectively alleviate the stomatal and non stomatal constraints on leaf photosynthesis caused by salt and alkali stress. MWCNTs treatment significantly enhanced the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SS) under salt and alkali stress, and decreased the activities of soluble acid invertase (SAInv) and alkaline/neutral invertase (A/N-Inv), indicating that MWCNTs promoted sucrose synthesis while inhibiting sucrose decomposition, thereby promoting sucrose accumulation in rice leaves. This study can provide theoretical and experimental basis for the application of MWCNTs to the production of rice under salt and alkali stress, and can find a new way for rice production in saline and alkaline lands.
Collapse
Affiliation(s)
- Zhenhua Xu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Haiying Liu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yanmin Yu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Dawei Gao
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Chunxu Leng
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Shuli Zhang
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Ping Yan
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| |
Collapse
|
22
|
Weisany W, Razmi J, Pashang D. Improving seed germination and physiological characteristics of maize seedlings under osmotic stress through potassium nano-silicate treatment. FRONTIERS IN PLANT SCIENCE 2023; 14:1274396. [PMID: 38179480 PMCID: PMC10765601 DOI: 10.3389/fpls.2023.1274396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Introduction Osmotic stress can significantly affect the survival and functioning of living organisms, particularly during vulnerable stages such as seed germination and seedling growth. To address this issue, advanced technologies like nanofertilizers have been developed to improve soil conditions and enhance plant growth in stressed ecosystems due to their multiple effects and efficient consumption. Methods The objective of this study was to investigate the impact of potassium nano-silicate (PNS) on the physiological characteristics of maize seedlings and seed germination under various levels of osmotic stress induced by polyethylene glycol (PEG). The study considered two factors: two levels of PNS concentration (500 and 1000 ppm) and PEG-6000 solution with different osmotic stress levels (-2, -4, -6, and -8 bars). Results and discussion The results demonstrated that the application of PNS at a concentration of 1000 ppm led to increased radicle length and hypocotyl length as well as fresh weight of maize seedlings. Furthermore, PNS at a concentration of 1000 ppm had a more beneficial effect on the germination rate of maize seedlings under osmotic stress compared to 500 ppm. Additionally, the application of PNS under osmotic stress conditions resulted in an increase in various physiological parameters, including protein content, chlorophyll a, chlorophyll b, total chlorophyll content, proline content, and the activity of catalase (CAT) and ascorbate peroxidase (AXPO) enzymes. These findings indicate that the use of PNS can have a positive impact on the physiological characteristics of maize seedlings and seed germination under osmotic stress conditions. Overall, this technology has the potential to enhance crop growth and yield in stressed ecosystems. By improving the survival and function of plants during vulnerable stages, such as seed germination and seedling growth, the application of PNS can contribute to more resilient agricultural practices and promote sustainable food production in challenging environments.
Collapse
Affiliation(s)
- Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Razmi
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danial Pashang
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Miguel-Rojas C, Pérez-de-Luque A. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture. Emerg Top Life Sci 2023; 7:229-238. [PMID: 37921102 PMCID: PMC10754331 DOI: 10.1042/etls20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
In the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs). Nanobiosensors can help detect biotic and abiotic stresses in plants before they affect plant production, while NFs can make agrochemicals, more efficient and less polluting. NFs are becoming new-age materials with a wide variety of nanoparticle-based formulations such as fertilisers, herbicides, insecticides, and fungicides. They facilitate the site-targeted controlled delivery of agrochemicals enhancing their efficiency and reducing dosages. Smart farming aims to monitor and detect parameters related to plant health and environmental conditions in order to help sustainable agriculture. Nanobiosensors can provide real-time analytical data, including detection of nutrient levels, metabolites, pesticides, presence of pathogens, soil moisture, and temperature, aiding in precision farming practices, and optimising resource usage. In this review, we summarise recent innovative uses of NFs and nanobiosensors in agriculture that may boost crop protection and production, as well as reducing the negative environmental impact of agricultural activities. However, successful implementation of these smart technologies would require two special considerations: (i) educating farmers about appropriate use of nanotechnology, (ii) conducting field trials to ensure effectiveness under real conditions.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
24
|
Hussain B, Riaz L, Li K, Hayat K, Akbar N, Hadeed MZ, Zhu B, Pu S. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122689. [PMID: 37804901 DOI: 10.1016/j.envpol.2023.122689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Kun Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | | | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
25
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
26
|
Aqeel U, Parwez R, Aftab T, Khan MMA, Naeem M. Silicon dioxide nanoparticles suppress copper toxicity in Mentha arvensis L. by adjusting ROS homeostasis and antioxidant defense system and improving essential oil production. ENVIRONMENTAL RESEARCH 2023; 236:116851. [PMID: 37558115 DOI: 10.1016/j.envres.2023.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants; however, the excessive accumulation of Cu due to various anthropogenic activities generates progressive pollution of agricultural land and that causes a major constraint for crop production. Excess Cu (80 mg kg-1) in the soil diminished growth and biomass, photosynthetic efficiency and essential oil (EO) content in Mentha arvensis L., while amplifying the antioxidant enzyme's function and reactive oxygen species (ROS) production. Therefore, there is a pressing need to explore effective approaches to overcome Cu toxicity in M. arvensis plants. Thus, the present study unveils the potential of foliar supplementation of two distinct forms of silicon dioxide nanoparticles (SiO2 NPs) i.e., Aerosil 200F and Aerosil 300 to confer Cu stress tolerance attributes to M. arvensis. The experiment demonstrated that applied forms of SiO2 NPs (120 mg L-1), enhanced plants' growth and augmented the photosynthetic efficiency along with the activities of CA (carbonic anhydrase) and NR (nitrate reductase), however, the effects were more accentuated by Aerosil 200F application. Supplementation of SiO2 NPs also exhibited a beneficial effect on the antioxidant machinery of Cu-disturbed plants by raising the level of proline and total phenol as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR), thereby lowering ROS and electrolytic leakage (EL). Interestingly, SiO2 NPs supplementation upscaled EO production in Cu-stressed plants with more pronounced effects received in the case of Aerosil 200F over Aerosil 300. We concluded that the nano form (Aerosil 200F) of SiO2 proved to be the best in improving the Cu-stress tolerance in plants.
Collapse
Affiliation(s)
- Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Rukhsar Parwez
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India.
| |
Collapse
|
27
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Liang Y, Liu H, Fu Y, Li P, Li S, Gao Y. Regulatory effects of silicon nanoparticles on the growth and photosynthesis of cotton seedlings under salt and low-temperature dual stress. BMC PLANT BIOLOGY 2023; 23:504. [PMID: 37864143 PMCID: PMC10589941 DOI: 10.1186/s12870-023-04509-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Silicon nanoparticles (SiO2-NPs) play a crucial role in plants mitigating abiotic stress. However, the regulatory mechanism of SiO2-NPs in response to multiple stress remains unclear. The objectives of this study were to reveal the regulatory mechanism of SiO2-NPs on the growth and photosynthesis in cotton seedlings under salt and low-temperature dual stress. It will provide a theoretical basis for perfecting the mechanism of crop resistance and developing the technology of cotton seedling preservation and stable yield in arid and high salt areas. RESULTS The results showed that the salt and low-temperature dual stress markedly decreased the plant height, leaf area, and aboveground biomass of cotton seedlings by 9.58%, 15.76%, and 39.80%, respectively. While SiO2-NPs alleviated the damage of the dual stress to cotton seedling growth. In addition to reduced intercellular CO2 concentration, SiO2-NPs significantly improved the photosynthetic rate, stomatal conductance, and transpiration rate of cotton seedling leaves. Additionally, stomatal length, stomatal width, and stomatal density increased with the increase in SiO2-NPs concentration. Notably, SiO2-NPs not only enhanced chlorophyll a, chlorophyll b, and total chlorophyll content, but also slowed the decrease of maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and the increase in non-photochemical quenching. Moreover, SiO2-NPs enhanced the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, improved leaf water potential, and decreased abscisic acid and malondialdehyde content. All the parameters obtained the optimal effects at a SiO2-NPs concentration of 100 mg L- 1, and significantly increased the plant height, leaf area, and aboveground biomass by 7.68%, 5.37%, and 43.00%, respectively. Furthermore, significant correlation relationships were observed between photosynthetic rate and stomatal conductance, stomatal length, stomatal width, stomatal density, chlorophyll content, maximum photochemical efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and Rubisco activity. CONCLUSION The results suggested that the SiO2-NPs improved the growth and photosynthesis of cotton seedlings might mainly result from regulating the stomatal state, improving the light energy utilization efficiency and electron transport activity of PSII reaction center, and inducing the increase of Rubisco activity to enhance carbon assimilation under the salt and low-temperature dual stress.
Collapse
Affiliation(s)
- Yueping Liang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Hao Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Yuanyuan Fu
- College of Agronomy, Tarim University, Alaer, 843300, China
| | - Penghui Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Shuang Li
- Shandong Academy of Agricultural Machinery Science, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China.
| |
Collapse
|
29
|
Rao D, Yadav S, Choudhary R, Singh D, Bhardwaj R, Barthakur S, Yadav SK. Silicic and Humic Acid Priming Improves Micro- and Macronutrient Uptake, Salinity Stress Tolerance, Seed Quality, and Physio-Biochemical Parameters in Lentil ( Lens culinaris spp. culinaris). PLANTS (BASEL, SWITZERLAND) 2023; 12:3539. [PMID: 37896003 PMCID: PMC10609776 DOI: 10.3390/plants12203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
Lentil is an important grain legume crop which is mostly grown on marginal soils that hamper its productivity. Improvement of salt tolerance in lentils is considered to be a useful strategy of utilizing salt-affected lands in an economic manner. This study was conducted to evaluate the effectiveness of seed priming using silicic acid and humic acid both seperately and in combination to improve salt stress tolerance among three different lentil varieties: IPL-316 (tolerant), PSL-9, and PDL-1 (susceptible). The concentrations and durations of treatments were standardized under the normal condition and the salinity stress condition. Salt stress hindered seedling emergence and biomass production and accelerated Na+ toxicity and oxidative damage at the seedling stage in untreated seeds. Nevertheless, chemical priming improved early seedling emergence, increased root length, shoot length, and seed vigor index I and II, and reduced the mean germination time. A significant quantitative change in biochemical parameters under normal and salinity stress conditions was observed in IPL-316,viz. Specifically, for IPL-316, the following parameters were observed (values under the normal condition and values under salt stress conditions, respectively): chlorophyll-a (16 and 13 mg/g Fw), chlorophyll-b (25 and 16 mg/g FW), total chlorophyll content (42 and 30 mg/g FW), relative leaf water content (92% and 82%), total soluble sugars (26 and 33 ug/g FW), free amino acid (10 and 7 mg/g FW), total phenol (26 and 24 mg of GAE/g FW), total protein (35 and 29 mg/g FW), carbohydrate (208 and 173 mg/g FW), superoxide dismutase (SOD) (29 and 35 unit/min./g FW), proline (0.28 and 0.32 u mol/g FW), catalase (CAT) (84 and 196 unit/mL/g FW), and peroxidase (POX) (217 and 738 unit/mL/g FW). Furthermore, histochemical analysis of H2O2 and O2-, micronutrients, and macronutrients also increased, while malondialdehyde (MDA) (0.31 and 0.47 nmol/mL FW) content decreased using silicic and humic acid priming under salt stress conditions. The combination of silicic and humic acids improved seedling growth and reduced oxidative damage in lentil plants under salt stress conditions. The combination of silicic and humic acid priming hastened seedling emergence, seed quality parameters, and biochemical parameters under salt stress over respective control. To the best of our knowledge, this is the first report of integrated chemical priming in lentils for salinity stress. In conclusion, chemical priming using a combination of silicic and humic acid performed better in terms of seed quality due to enhanced antioxidant machinery, better membrane stability and osmolyte protection, and enhanced nutrient uptake under salt stress conditions.
Collapse
Affiliation(s)
- Deepak Rao
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| | - Sangita Yadav
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| | - Dharmendra Singh
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Rakesh Bhardwaj
- ICAR—National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India;
| | | | - Shiv Kumar Yadav
- Division of Seed Science and Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (D.R.); (R.C.)
| |
Collapse
|
30
|
Rizwan A, Zia-Ur-Rehman M, Rizwan M, Usman M, Anayatullah S, Alharby HF, Bamagoos AA, Alharbi BM, Ali S. Effects of silicon nanoparticles and conventional Si amendments on growth and nutrient accumulation by maize (Zea mays L.) grown in saline-sodic soil. ENVIRONMENTAL RESEARCH 2023; 227:115740. [PMID: 36997044 DOI: 10.1016/j.envres.2023.115740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Salinity is one of the major abiotic stresses in arid and semiarid climates which threatens the food security of the world. Present study had been designed to assess the efficacy of different abiogenic sources of silicon (Si) to mitigate the salinity stress on maize crop grown on salt-affected soil. Abiogenic sources of Si including silicic acid (SA), sodium silicate (Na-Si), potassium silicate (K-Si), and nanoparticles of silicon (NPs-Si) were applied in saline-sodic soil. Two consecutive maize crops with different seasons were harvested to evaluate the growth response of maize under salinity stress. Post-harvest soil analysis showed a significant decrease in soil electrical conductivity of soil paste extract (ECe) (-23.0%), sodium adsorption ratio (SAR) (-47.7%) and pH of soil saturated paste (pHs) (-9.5%) by comparing with salt-affected control. Results revealed that the maximum root dry weight was recorded in maize1 by the application of NPs-Si (149.3%) and maize2 (88.6%) over control. The maximum shoot dry weight was observed by the application of NPs-Si in maize1 (42.0%) and maize2 (7.4%) by comparing with control treatment. The physiological parameters like chlorophyll contents (52.5%), photosynthetic rate (84.6%), transpiration (100.2%), stomatal conductance (50.5%), and internal CO2 concentration (61.6%) were increased by NPs-Si in the maize1 crop when compared with the control treatment. The application of an abiogenic source (NPs-Si) of Si significantly increased the concentration of phosphorus (P) in roots (223.4%), shoots (22.3%), and cobs (130.3%) of the first maize crop. The current study concluded that the application of NPs-Si and K-Si improved the plant growth by increasing the availability of nutrients like P and potassium (K), physiological attributes, and by reducing the salts stress and cationic ratios in maize after maize crop rotation..
Collapse
Affiliation(s)
- Ali Rizwan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
31
|
Nawaz A, Rehman HU, Usman M, Wakeel A, Shahid MS, Alam S, Sanaullah M, Atiq M, Farooq M. Nanobiotechnology in crop stress management: an overview of novel applications. DISCOVER NANO 2023; 18:74. [PMID: 37382723 PMCID: PMC10214921 DOI: 10.1186/s11671-023-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/30/2023]
Abstract
Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.
Collapse
Affiliation(s)
- Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Sardar Alam
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
32
|
Naidu S, Pandey J, Mishra LC, Chakraborty A, Roy A, Singh IK, Singh A. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114783. [PMID: 36963184 DOI: 10.1016/j.ecoenv.2023.114783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In the current scenario of global warming and climate change, plants face many biotic stresses, which restrain growth, development and productivity. Nanotechnology is gaining precedence over other means to deal with biotic and abiotic constraints for sustainable agriculture. One of nature's most beneficial metalloids, silicon (Si) shows ameliorative effect against environmental challenges. Silicon/Silica nanoparticles (Si/SiO2NPs) have gained special attention due to their significant chemical and optoelectronic capabilities. Its mesoporous nature, easy availability and least biological toxicity has made it very attractive to researchers. Si/SiO2NPs can be synthesised by chemical, physical and biological methods and supplied to plants by foliar, soil, or seed priming. Upon uptake and translocation, Si/SiO2NPs reach their destined cells and cause optimum growth, development and tolerance against environmental stresses as well as pest attack and pathogen infection. Using Si/SiO2NPs as a supplement can be an eco-friendly and cost-effective option for sustainable agriculture as they facilitate the delivery of nutrients, assist plants to mitigate biotic stress and enhances plant resistance. This review aims to present an overview of the methods of formulation of Si/SiO2NPs, their application, uptake, translocation and emphasize the role of Si/SiO2NPs in boosting growth and development of plants as well as their conventional advantage as fertilizers with special consideration on their mitigating effects towards biotic stress.
Collapse
Affiliation(s)
- Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jyotsna Pandey
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India
| | - Lokesh C Mishra
- Department of Zoology, Hansraj College, University of Delhi, Delhi 110007, India
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic.
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
33
|
Hao Y, Yu Y, Sun G, Gong X, Jiang Y, Lv G, Zhang Y, Li L, Zhao Y, Sun D, Gu W, Qian C. Effects of Multi-Walled Carbon Nanotubes and Nano-Silica on Root Development, Leaf Photosynthesis, Active Oxygen and Nitrogen Metabolism in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:1604. [PMID: 37111828 PMCID: PMC10142641 DOI: 10.3390/plants12081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Carbon nanotubes (MWCNTs) and nano-silica (nano-SiO2) are widely used in the field of life science because of their special physical and chemical properties. In this study, the effects of different concentrations of MWCNTs (0 mg·L-1, 200 mg·L-1, 400 mg·L-1, 800 mg·L-1 and 1200 mg·L-1) and nano-SiO2 (0 mg·L-1, 150 mg·L-1, 800 mg·L-1, 1500 mg·L-1 and 2500 mg·L-1) on maize seedling growth and relative mechanisms were explored. The main results are as follows: MWCNTs and nano-SiO2 can promote the growth of maize seedlings, and promote plant height, root length, the dry and fresh weight of seedlings, root-shoot ratio and so on. The ability to accumulate dry matter increased, the relative water content of leaves increased, the electrical conductivity of leaves decreased, the stability of cell membranes improved and the water metabolism ability of maize seedlings increased. The treatment of MWCNTs with 800 mg·L-1 and nano-SiO2 with 1500 mg·L-1 had the best effect on seedling growth. MWCNTs and nano-SiO2 can promote the development of root morphology, increase root length, root surface area, average diameter, root volume and total root tip number and improve root activity, so as to improve the absorption capacity of roots to water and nutrition. After MWCNT and nano-SiO2 treatment, compared with the control, the contents of O2·- and H2O2 decreased, and the damage of reactive oxygen free radicals to cells decreased. MWCNTs and nano-SiO2 can promote the clearance of reactive oxygen species and maintain the complete structure of cells, so as to slow down plant aging. The promoting effect of MWCNTs treated with 800 mg·L-1 and nano-SiO2 treated with 1500 mg·L-1 had the best effect. After treatment with MWCNTs and nano-SiO2, the activities of key photosynthesis enzymes PEPC, Rubisco, NADP-ME, NADP-MDH and PPDK of maize seedlings increased, which promoted the opening of stomata, improved the fixation efficiency of CO2, improved the photosynthetic process of maize plants and promoted plant growth. The promoting effect was the best when the concentration of MWCNTs was 800 mg·L-1 and the concentration of nano-SiO2 was 1500 mg·L-1. MWCNTs and nano-SiO2 can increase the activities of the enzymes GS, GOGAT, GAD and GDH related to nitrogen metabolism in maize leaves and roots, and can increase the content of pyruvate, so as to promote the synthesis of carbohydrates and the utilization of nitrogen and promote plant growth.
Collapse
Affiliation(s)
- Yubo Hao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yang Yu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guangyan Sun
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Gong
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yubo Jiang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guoyi Lv
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yiteng Zhang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Liang Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yang Zhao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Dan Sun
- Institute of Crop Resource, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chunrong Qian
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| |
Collapse
|
34
|
Shi MT, Zhang TJ, Fang Y, Pan CP, Fu HY, Gao SJ, Wang JD. Nano-selenium enhances sugarcane resistance to Xanthomonas albilineans infection and improvement of juice quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114759. [PMID: 36950993 DOI: 10.1016/j.ecoenv.2023.114759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important trace element that is beneficial to human health and can enhance plant resistance and crop quality. The occurrence of up-to-date nanotechnology greatly promotes the beneficial efficiency of this trace element on crops. The discovery of nano-Se increased the crop quality and reduced plant disease in different plant. In this study, we reduced sugarcane leaf scald disease incidence by exogenously spraying different concentrations (5 mg/L and 10 mg/L) of nano-Se. Additional studies revealed that spraying of nano-Se reduced reactive oxygen species (ROS) and H2O2 accumulation, and increased antioxidant enzyme activities in sugarcane. The nano-selenium treatments also increased the content of jasmonic acid (JA) and the expression of JA pathway genes. Furthermore, we also found that use nano-Se treatment in an appropriate way can enhance the quality of cane juice. The brix of the cane juice of the selenium-enriched treatment was significantly higher than that of the control group, which was 10.98% and 20.81% higher than that of the CK group, respectively. Meanwhile, the content of certain beneficial amino acids was increased, with the highest being 3.9 times higher than the control. Taken together, our findings inferred that nano-Se could act as a potential eco-fungicide to protect sugarcane from can be used as a potential ecological bactericide to protect sugarcane from Xanthomonas albilineans infections, and improve sugarcane quality. The results arising from this study not only introduces an ecological method to control X. albilineans, but also provides a deep insight into this trace elements for improving juice quality.
Collapse
Affiliation(s)
- Meng-Ting Shi
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tian-Jie Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha 410125, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China.
| | - Can-Ping Pan
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
35
|
Surendran S, Prasannan P, Jeyaram Y, Palanivel V, Pandian A, Ramasubbu R. Knowledge on ethnogynaecology of Indian Tribes- a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115880. [PMID: 36368564 DOI: 10.1016/j.jep.2022.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnogynaecology is an emerging branch of science dealing with the treatment of gynaecological ailments by tribals, local healers, and traditional practitioners. The ethnogynaecological importance of medicinal plants in India is a fertile area to conduct more scientific studies to evaluate their potentialities, to isolate bioactive compounds, and thereby to develop drugs for the common gynaecological health-related issues faced by women everywhere. OBJECTIVES The Indigenous medical knowledge systems of India have not been properly documented with special reference to ethnogynaecology. This review aims to document the knowledge of ethnogynaecology among tribals, villagers, and local people inhabiting different parts of India and the bioactive compounds responsible for the action. This review provides a vast record of medicinal plants and their parts used, types of formulations, dosage, and ethno-gynaecological usage. MATERIALS AND METHODS The detailed investigation of ethnobotanical and ethnogynaecological-related literature published between 1985 and 2021 by different scientific tools such as journals, books, and current electronic databases like Springer Link, SciFinder, Google Scholar, Web of Science, Wiley, ACS, Science Direct and Pubmed have been considered for the present study. The study included 300 articles published between 1985 and 2021 by scientific search using various standard databases. The tribals, vaidyas, traditional practitioners, indigenous medical healers, and local people of different regions in India have recognized the importance of ethnogynaecological uses of plants. The study on ethnogynaecology is limited to a few common but significant gynaecological issues including abortion, contraception, infertility, menstruation, leucorrhoea, and obstetrics. The phytocompound compounds isolated from various parts of the plants and responsibility for the gynaecological action were documented. RESULTS The major ethnogynaecological disorders recorded by various studies are leucorrhoea, abortion, contraceptives, infertility and related issues, and obstetrics including the irregular physiological process of menstruation. The ethnogynaecological and ethnobotanical information has been recorded from almost all the states of India; the highest number of records on ethnogynaecology was reported from the state of Madhya Pradesh. The most explored tribal populations to record ethnogynaecological knowledge belong to the following tribes: Bhil, Munda, Irula, Kani, Malayali, Meena, Paliyar, Muthuvar, Oraon, Narikuravar, Mannan, Malayarayan, and Malapandaram. Moreover, limited or no study has been attempted to prove the knowledge of ethnogynaecology of these tribes and the efficiency of their crude drugs against pharmacological actions. The paste prepared from various parts of the plants has been used widely as primary health care materials for abortion, obstetrics, menstruation, female infertility and male infertility. Phenols, glucoside, steroids and fatty acids reported with cytotoxic activities are connected to several gynaecological disorders whereas flavonoid, coumarin, sitosterol disrupt pregnancy. The phenolic compounds induced spontaneous abortion due to the major composition aristolochic acid, ceryl alcohol, β-sitosterol. Coreopsin, butin, isobutrin, monospermoside, palastrin, butrin. Mucunine, lecithin, prurieninine, gluthione and luteolin, Indicine, kaempferol, apigenin and quercetin effected therapeutic activity against leucorrhoea. Lignin, friedelin and beta-sitosterol are reported with abortifacient properties and therapeutic ability for leucorrhoea and menorrhagia. Tannins, mimusopsic acids, taraxerol and spinaserol effected fertility problems in women and tannins, saponins, flavonoids, steroids, terpenoids and alkaloids which effected infertility. CONCLUSION This review reported comprehensive data on ethnogynaecological knowledge published from available literature and evident that the indigenous medical system of Indian tribes has also contributed considerably to the healthcare system and drug development of India. The fresh plant parts were identified as effective materials against various gynaecological illnesses including infertility. The root is considered an excellent plant part against obstetrics followed by abortion, menstruation, and leucorrhoea. These studies need experimental proof as well as standardization to confirm their efficiency. Promoting the sustainable use and the equitable sharing of benefits to the knowledge provider is a pathway for harnessing the conservation of this knowledge.
Collapse
Affiliation(s)
- Saranya Surendran
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India
| | - Priya Prasannan
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India
| | - Yasotha Jeyaram
- Department of Botany, PRIST Deemed University, Thanjavur, Tamil Nadu, India
| | - Venkatesh Palanivel
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India
| | - Arjun Pandian
- Department of Biotechnology, PRIST Deemed University, Thanjavur, Tamil Nadu, India; Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Raju Ramasubbu
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, India.
| |
Collapse
|
36
|
Nandini B, Mawale KS, Giridhar P. Nanomaterials in agriculture for plant health and food safety: a comprehensive review on the current state of agro-nanoscience. 3 Biotech 2023; 13:73. [PMID: 36748014 PMCID: PMC9898490 DOI: 10.1007/s13205-023-03470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
In the modern epoch, nanotechnology took forward the agriculture and food industry with new tools that promise to increase food production sustainably. It also anticipated that it would become a driving economic force shortly. Nanotechnology has the potential to reduce agricultural inputs, enrich the soil by absorbing nutrients, manage plant diseases, and detect diseases. The aim of the present review is to cover the potential aspects of nanoscience and its trend-setting appliances in modern agriculture and food production. This review focuses on the impact of various nanomaterials on plant health to improve agricultural production and its cooperative approach to food production. Nanotechnology has great potential compared to conventional approaches. The appealing path of nanotrends in the farming sector raises hopes and illuminates the route of innovative technologies to overcome various diseases in plants with an enhanced yield to meet the growing global population's need for food security.
Collapse
Affiliation(s)
- Boregowda Nandini
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
| | - Kiran S. Mawale
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka 570020 India
| |
Collapse
|
37
|
Zhang J, Kothalawala S, Yu C. Engineered silica nanomaterials in pesticide delivery: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121045. [PMID: 36639042 DOI: 10.1016/j.envpol.2023.121045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Over the past decade, nanopesticide has been developed rapidly for exploring effective and safe alternatives to conventional pesticides with significant drawbacks and risks. Many nanotechnologies, including pesticide nanoemulsions, polymer-based nanopesticides, and metal/metal oxide nanoparticle-based pesticides have emerged and are extensively reviewed. Engineered silica nanomaterials (ESNs) have also shown promising potential as carriers in nanopesticides for modern agriculture. However, there are limited reviews specifically on ESN-based nanopesticides. Herein, we provide a comprehensive review on the recent progress of ESN-based nanopesticide technologies. An introduction of synthetic technology, formation mechanism, and surface engineering technology is firstly presented. Then, the advantages of ESN-based pesticide formulation and their structure-function-relationship are illustrated in detail. Finally, our perspectives on challenges and future research in ESN-based nanopesticide development are discussed.
Collapse
Affiliation(s)
- Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sukitha Kothalawala
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
38
|
Gohari G, Panahirad S, Mohammadi A, Kulak M, Dadpour MR, Lighvan ZM, Sharifi S, Eftekhari-Sis B, Szafert S, Fotopoulos V, Akbari A. Characterization of Octa-aminopropyl polyhedral oligomeric silsesquioxanes (OA-POSS) nanoparticles and their effect on sweet basil (Ocimum basilicum L.) response to salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:89-102. [PMID: 36706695 DOI: 10.1016/j.plaphy.2023.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Salt stress is of the most detrimental abiotic stress factors on either crop or non-crop species. Of the strategies employed to boost the performance of the plants against harmful impacts of salt stress; application of novel nano-engineered particles have recently gained great attention as a promising tool. Octa-aminopropyl polyhedral oligomeric silsesquioxanes nanoparticles (OA-POSS NPs) were synthesized and then a foliar-application of OA-POSS NPs were carried out on sweet basil plants subjected to the salt stress. In that context, interactive effects of OA-POSS NPs (25, 50 and 100 mg L-1) and salinity stress (50 and 100 mM NaCl) were assayed by estimating a series of agronomic, physiological, biochemical and analytical parameters. OA-POSS NPs decreased the harmful effects of salinity by increasing photosynthetic pigment content, adjusting chlorophyll fluorescence, and triggering non-enzymatic (phenolic content) and enzymatic antioxidant components. The findings suggested that 25 mg L-1 OA-POSS NPs is the optimum concentration for sweet basil grown under salt stress. Considering the essential oil profile, estragole was the predominant compound with a percentage higher than 50% depending on the treatment. In comparison to the control group, 50 mM NaCl did not significantly affect estragole content, whilst 100 mM NaCl caused a substantial increase in estragole content. Regarding OA-POSS NPs treatments, increments by 16.8%, 11.8% and 17.5% were observed following application with 25, 50 and 100 mg L-1, respectively. Taken together, the current study provides evidence that POSS NPs can be employed as novel, 'green' growth promoting agents in combating salt stress in sweet basil.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Asghar Mohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Turkiye
| | - Mohamad Reza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zohreh Mehri Lighvan
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot Curie 14, 50383 Wrocław, Poland
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Cyprus
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
39
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
40
|
Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Sci Rep 2023; 13:2700. [PMID: 36792788 PMCID: PMC9931706 DOI: 10.1038/s41598-023-29784-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Silicon nanoparticles (Si-NPs) have shown their potential for use in farming under water-deficient conditions. Thus, the experiment was accomplished to explore the impacts of seed priming of Si-NPs on wheat (Triticum aestivum L.) growth and yield under different drought levels. The plants were grown in pots under natural ecological environmental conditions and were harvested on 25th of April, 2020. The results revealed that seed priming of Si-NPs (0, 300, 600, and 900 mg/L) suggestively improved, the spike length, grains per spike, 1000 grains weight, plant height, grain yield, and biological yield by 12-42%, 14-54%, 5-49%, 5-41%, 17-62%, and 21-64%, respectively, relative to the control. The Si-NPs improved the leaf gas trade ascribes and chlorophyll a and b concentrations, though decreased the oxidative pressure in leaves which was demonstrated by the diminished electrolyte leakage and upgrade in superoxide dismutase and peroxidase activities in leaf under Si-NPs remedies over the control. The outcomes proposed that Si-NPs could improve the yield of wheat under a dry spell. In this manner, the utilization of Si-NPs by seed priming technique is a practical methodology for controlling the drought stress in wheat. These findings will provide the basis for future research and helpful to improve the food security under drought and heat related challenges.
Collapse
|
41
|
Faraz A, Faizan M, D. Rajput V, Minkina T, Hayat S, Faisal M, Alatar AA, Abdel-Salam EM. CuO Nanoparticle-Mediated Seed Priming Improves Physio-Biochemical and Enzymatic Activities of Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2023; 12:803. [PMID: 36840152 PMCID: PMC9959013 DOI: 10.3390/plants12040803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The use of nanoparticles (NPs) in agricultural fields has risen to a level where people are considering NPs as an alternative to commercial fertilizers. The input of copper oxide NPs (CuO NPs) as seed primers was investigated in this study, and the growth indices of Brassica juncea such as phenotypic parameters, photosynthetic attributes, and biochemical parameters were measured during maximum vegetative growth stage, i.e., at 45 days after sowing. Surface sterilized seeds were soaked in varying concentrations (0, 2, 4, 8 and 16 mg/L) of CuO NPs for 15, 30, and/or 45 min. After those priming periods, the seeds were planted in pots and allowed to grow naturally. Among the different tested concentrations of CuO NPs, 4 mg/L of CuO NPs for 30 min seed priming proved to be best, and considerably increased the, shoot length (30%), root length (27%), net photosynthetic rate (30%), internal CO2 concentration (28%), and proline content (41%). Besides, the performance of the antioxidant enzymes, viz, superoxide dismutase, catalase, peroxidase, and biochemical parameters such as nitrate reductase and carbonic anhydrase were also increased by several folds after the application of CuO NPs in B. juncea. The present study suggests that CuO NPs can be effectively used to increase the performance of B. juncea and may also be suitable for testing on other crop species.
Collapse
Affiliation(s)
- Ahmad Faraz
- Department of Biotechnology, School of Life Sciences, Glocal University, Saharanpur 247121, India
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Eslam M. Abdel-Salam
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
42
|
Zanelli D, Candotto Carniel F, Fortuna L, Pavoni E, Jehová González V, Vázquez E, Prato M, Tretiach M. Interactions of airborne graphene oxides with the sexual reproduction of a model plant: When production impurities matter. CHEMOSPHERE 2023; 312:137138. [PMID: 36343732 DOI: 10.1016/j.chemosphere.2022.137138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of graphene-related materials (GRMs) in everyday-life products raises concerns for their possible release into the environment and consequent impact on organisms. GRMs have widely varying effects on plants and, according to recent evidences, graphene oxide (GO) has the potential to interfere with the sexual reproduction owing to its acidic properties and production residues. Here, stigmas of the model plant Cucurbita pepo (summer squash) were subjected to simulated dry depositions of GO and GO purified from production residues (PGO). Stigmas were then hand-pollinated and GRM deposition was checked by ESEM and confocal microscopy. Analysis of stigma integrity, pH homeostasis and pollen-stigma interactions did not reveal negative effects. Fruit and seed production were not affected, but GO depositions of 22.1 ± 7.2 ng mm-2 affected the normal development of seeds, decreasing seed dimensions, seed germination and germination speed. The elemental analysis revealed that GO has significant quantities of production residues, such as strong acids and oxidants, while PGO has only traces, which justifies the differences observed in the effects caused by the two materials. Our results show that GO depositions of up to 11.1 ± 3.6 ng mm-2, which fall within the variation range of total dry particulate matter depositions reported in the literature, are safe for reproduction of C. pepo. This is the first "safety" limit ever recorded for depositions of "out-of-the-box" GO concerning the reproduction of a seed plant. If confirmed for wind-pollinated species, it might be considered for policymaking of GRMs emissions in the air.
Collapse
Affiliation(s)
- Davide Zanelli
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | | - Lorenzo Fortuna
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Elena Pavoni
- Department of Mathematics and Geosciences, University of Trieste, 34128, Trieste, Italy
| | - Viviana Jehová González
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain; Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, 13071, Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013, Bilbao, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
43
|
Sujata, Goyal V, Baliyan V, Avtar R, Mehrotra S. Alleviating Drought Stress in Brassica juncea (L.) Czern & Coss. by Foliar Application of Biostimulants-Orthosilicic Acid and Seaweed Extract. Appl Biochem Biotechnol 2023; 195:693-721. [PMID: 35986841 DOI: 10.1007/s12010-022-04085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Agricultural productivity is negatively impacted by drought stress. Brassica is an important oilseed crop, and its productivity is often limited by drought. Biostimulants are known for their role in plant growth promotion, increased yields, and tolerance to environmental stresses. Silicon in its soluble form of orthosilicic acid (OSA) has been established to alleviate deteriorative effects of drought. Seaweed extract (SWE) also positively influence plant survival and provide dehydration tolerance under stressed environments. The present study was conducted to evaluate the efficacy of OSA and SWE on mitigating adverse effects of drought stress on Brassica genotype RH-725. Foliar application of OSA (2 ml/L and 4 ml/L) and SWE of Ascophyllum nodosum (3 ml/L and 4 ml/L) in vegetative stages in Brassica variety RH 725 under irrigated and rainfed condition revealed an increase in photosynthetic rate, stomatal conductance, transpirational rate, relative water content, water potential, osmotic potential, chlorophyll fluorescence, chlorophyll stability index, total soluble sugars, total protein content, and antioxidant enzyme activity; and a decrease in canopy temperature depression, proline, glycine-betaine, H2O2, and MDA content. Application of 2 ml/L OSA and 3 ml/L SWE at vegetative stage presented superior morpho-physiological and biochemical characteristics and higher yields. The findings of the present study will contribute to developing a sustainable cropping system by harnessing the benefits of OSA and seaweed extract as stress mitigators.
Collapse
Affiliation(s)
- Sujata
- CCS Haryana Agricultural University, Hisar-125004, India
| | - Vinod Goyal
- CCS Haryana Agricultural University, Hisar-125004, India.
| | - Vaibhav Baliyan
- Indian Council of Agricultural Research, New Delhi-110012, India
| | - Ram Avtar
- CCS Haryana Agricultural University, Hisar-125004, India
| | - Shweta Mehrotra
- Indian Council of Agricultural Research, New Delhi-110012, India.
| |
Collapse
|
44
|
Shi Y, Guo S, Zhao X, Xu M, Xu J, Xing G, Zhang Y, Ahammed GJ. Comparative physiological and transcriptomics analysis revealed crucial mechanisms of silicon-mediated tolerance to iron deficiency in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1094451. [PMID: 36618612 PMCID: PMC9811145 DOI: 10.3389/fpls.2022.1094451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/07/2023]
Abstract
Iron (Fe) deficiency is a common abiotic stress in plants grown in alkaline soil that causes leaf chlorosis and affects root development due to low plant-available Fe concentration. Silicon (Si) is a beneficial element for plant growth and can also improve plant tolerance to abiotic stress. However, the effect of Si and regulatory mechanisms on tomato plant growth under Fe deficiency remain largely unclear. Here, we examined the effect of Si application on the photosynthetic capacity, antioxidant defense, sugar metabolism, and organic acid contents under Fe deficiency in tomato plants. The results showed that Si application promoted plant growth by increasing photosynthetic capacity, strengthening antioxidant defense, and reprogramming sugar metabolism. Transcriptomics analysis (RNA-seq) showed that Si application under Fe deficiency up-regulated the expression of genes related to antioxidant defense, carbohydrate metabolism and organic acid synthesis. In addition, Si application under Fe deficiency increased Fe distribution to leaves and roots. Combined with physiological assessment and molecular analysis, these findings suggest that Si application can effectively increase plant tolerance to low Fe stress and thus can be implicated in agronomic management of Fe deficiency for sustainable crop production. Moreover, these findings provide important information for further exploring the genes and underlying regulatory mechanisms of Si-mediated low Fe stress tolerance in crop plants.
Collapse
Affiliation(s)
- Yu Shi
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuxun Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xin Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mengzhu Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, Henan, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, Henan, China
| |
Collapse
|
45
|
Sarkar MM, Mukherjee S, Mathur P, Roy S. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:143-161. [PMID: 36242906 DOI: 10.1016/j.plaphy.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Lentil is one of the highly nutritious legumes but is highly susceptible to salinity stress. Silicon has been known to reduce the effect of various environmental stresses including salinity. Moreover, silicon when applied in its nano-form is expected to augment the beneficial attributes of silicon. However, very little is known regarding the prospect of nano-silicon (nSi) application for alleviating the effect of salinity stress in non-silicified plants like lentil. In this study, the primary objective was to evaluate the efficacy of nSi in the alleviation of NaCl stress during germination and early vegetative stages. In this context, different concentrations of nSi (0, 1, 5, 10 g L-1) was applied along with four different concentrations of NaCl (0, 100, 200, 300 mM). The results indicated the uptake of nSi which was confirmed by the better accumulation of silica in the plant tissues. Most importantly, the enhanced accumulation of silica increased the K+/Na+ ratio of the NaCl-stressed seedlings. Moreover, nSi efficiently improved germination, growth, photosynthetic pigments, and osmotic balance. On the other hand, the relatively reduced activities of antioxidative enzymes were surmounted by the higher activity of non-enzymatic antioxidants which mainly scavenged the increased ROS. Reduced ROS accumulation in return ensured better membrane integrity and reduced electrolyte leakage up on nSi application. Therefore, it can be concluded that the application of nSi (more specifically at 10 g L-1) facilitated the uptake of silica and improved the K+/Na+ ratio to reclaim the growth and physiological status of NaCl-stressed seedlings.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, Kalyani University, West Bengal, 742213, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
46
|
Verma KK, Song XP, Singh M, Huang HR, Bhatt R, Xu L, Kumar V, Li YR. Influence of nanosilicon on drought tolerance in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:1014816. [PMID: 36531341 PMCID: PMC9751589 DOI: 10.3389/fpls.2022.1014816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Insufficient availability of water is a major global challenge that plants face and that can cause substantial losses in plant productivity and quality, followed by complete crop failure. Thus, it becomes imperative to improve crop cultivation/production in unsuitable agricultural fields and integrate modern agri-techniques and nanoparticles (NPs)-based approaches to extend appropriate aid to plants to handle adverse environmental variables. Nowadays, NPs are commonly used with biological systems because of their specific physicochemical characteristics, viz., size/dimension, density, and surface properties. The foliar/soil application of nanosilicon (nSi) has been shown to have a positive impact on plants through the regulation of physiological and biochemical responses and the synthesis of specific metabolites. Reactive oxygen species (ROS) are produced in plants in response to drought/water scarcity, which may enhance the ability for adaptation in plants/crops to withstand adverse surroundings. The functions of ROS influenced by nSi and water stress have been assessed widely. However, detailed information about their association with plants and stress is yet to be explored. Our review presents an update on recent developments regarding nSi and water stress in combination with ROS accumulation for sustainable agriculture and an eco-friendly environment.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Hai-Rong Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajan Bhatt
- Punjab Agricultural University, Regional Research Station, Kapurthala, Punjab, India
| | - Lin Xu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban, India
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
47
|
Abdelsalam IM, Ghosh S, AlKafaas SS, Bedair H, Malloum A, ElKafas SS, Saad-Allah KM. Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ESM, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AAM, Abd El-Mageed TA, Elrys AS, Elbadawi AA, El-Tarabily KA, AbuQamar SF. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:946717. [PMID: 36407622 PMCID: PMC9670308 DOI: 10.3389/fpls.2022.946717] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Plants are subjected to a wide range of abiotic stresses, such as heat, cold, drought, salinity, flooding, and heavy metals. Generally, abiotic stresses have adverse impacts on plant growth and development which affects agricultural productivity, causing food security problems, and resulting in economic losses. To reduce the negative effects of environmental stress on crop plants, novel technologies, such as nanotechnology, have emerged. Implementing nanotechnology in modern agriculture can also help improve the efficiency of water usage, prevent plant diseases, ensure food security, reduce environmental pollution, and enhance sustainability. In this regard, nanoparticles (NPs) can help combat nutrient deficiencies, promote stress tolerance, and improve the yield and quality of crops. This can be achieved by stimulating the activity of certain enzymes, increasing the contents (e.g., chlorophyll) and efficiency of photosynthesis, and controlling plant pathogens. The use of nanoscale agrochemicals, including nanopesticides, nanoherbicides, and nanofertilizers, has recently acquired increasing interest as potential plant-enhancing technologies. This review acknowledges the positive impacts of NPs in sustainable agriculture, and highlights their adverse effects on the environment, health, and food chain. Here, the role and scope of NPs as a practical tool to enhance yield and mitigate the detrimental effects of abiotic stresses in crops are described. The future perspective of nanoparticles in agriculture has also been discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmad O. Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amira M. El-Tahan
- Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Omar M. Ibrahim
- Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Alia A. M. Ebrahim
- School of Life Sciences, Jiangsu Key Laboratory for Microbes and Genomics, Nanjing Normal University, Nanjing, China
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Alaa A. Elbadawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
49
|
Adrees M, Khan ZS, Rehman MZU, Rizwan M, Ali S. Foliar spray of silicon nanoparticles improved the growth and minimized cadmium (Cd) in wheat under combined Cd and water-limited stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77321-77332. [PMID: 35672649 DOI: 10.1007/s11356-022-21238-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The effects of foliar supply of silicon nanoparticles (Si-NPs) on growth, physiology, and cadmium (Cd) uptake by wheat (Triticum aestivum L.) were examined in different soil moisture levels. Seeds were sown in soil containing excess Cd (7.67 mg kg-1) and Si-NPs were applied through foliar dressing with various levels (0, 25, 50, 100 mg L-1) at different time intervals during growth period. Initially, all pots were irrigated with normal moisture level (70% water-holding capacity) and two moisture levels (35%, 70% WHC) were initiated after 6 weeks of plant growth for remaining growth duration and harvesting was done after 124 days of sowing. The results demonstrated the lowest plant growth, yield, and chlorophyll concentrations while the highest oxidative stress and Cd concentrations in plant tissues in water-stressed control (35% WHC) followed by normal control (75% WHC). Si-NPs enhanced the growth, photosynthesis, leaf defense system, and Si concentrations in tissues while minimized the Cd in wheat parts particularly in grains either soil normal or water-stressed conditions. Of the foliar spray, 100 mg L-1 of Si-NPs showed the best results with respect to growth, Cd and Si uptake by plants, and soil post-harvest bioavailable Cd irrespective of soil water levels. In grain, Cd concentration was below threshold limit (0.2 mg kg-1) for cereals in 100-mg kg-1 Si-NPs treatment irrespective of soil water levels. Si-NPs foliar dressing under Cd and water-limited stress might be an effective strategy in increasing growth, yield, and decreasing Cd concentration in wheat grains under experimental conditions. Thus, foliar dressing of Si-NPs minimized the Cd risk in food crops and NPs entry to surroundings, which might be possible after harvesting of crops in soil-applied NPs.
Collapse
Affiliation(s)
- Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Zahra Saeed Khan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
50
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|