1
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Yeh H, De Cruz MA, You Y, Ikezu S, Ikezu T. Development and characterization of in vitro inducible immortalization of a murine microglia cell line for high throughput studies. Sci Rep 2025; 15:3207. [PMID: 39863723 PMCID: PMC11762310 DOI: 10.1038/s41598-025-87543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system. The addition of doxycycline facilitates rapid cell proliferation, allowing for population expansion. Upon withdrawal of doxycycline, this monoclonal microglial cell line differentiates, resembling in vivo microglial physiology as demonstrated by the expression of microglial genes, innate immune responses, chemotaxis, and phagocytic abilities. We utilized live imaging and various molecular techniques to functionally characterize the clonal 2E11murine microglial cell line. Transcriptomic analysis showed that the 2E11 line exhibited characteristics of immature, proliferative microglia during doxycycline induction, and further differentiation led to a more homeostatic phenotype. Treatment with transforming growth factor-β modified the transcriptome of the 2E11 cell line, affecting cellular immune pathways. Our findings indicate that the 2E11 inducible immortalized cell line is a practical and convenient tool for studying microglial biology in vitro.
Collapse
Affiliation(s)
- Hana Yeh
- Graduate Program in Neuroscience, Boston University, Boston, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States
| | - Matthew A De Cruz
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Yang You
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, United States.
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA.
- Regenerative Science Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
- Department of Neuroscience , Mayo Clinic Florida , 4500 San Pablo Rd S, Jacksonville, 32224, USA, FL.
| |
Collapse
|
3
|
Le S, Xu F, Luo Z, Shi W, Lu S, Zhang Z, Guo Z, Xu W, Yang M, Li T, Li X, Liang K, Zhu L. Integrated analysis of chromatin and transcriptomic profiling of the striatum after cerebral hypoperfusion in mice. BMC Genomics 2025; 26:71. [PMID: 39856551 PMCID: PMC11762485 DOI: 10.1186/s12864-025-11256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is a significant contributor to dementia, yet the precise mechanisms underlying the cognitive decline associated with chronic cerebral hypoperfusion (CCH) remain unclear. This study investigated the molecular and epigenetic changes in the striatum, a brain region critical for motor function and cognition, following chronic hypoperfusion using a bilateral common carotid artery stenosis (BCAS) model in mice. METHODS RNA-seq was utilized to identify differentially expressed genes (DEGs) associated with hypoperfusion. In parallel, ATAC-seq was used to assess changes in chromatin accessibility within the striatum, providing insight into the epigenome and potential regulatory mechanisms. The integration of these datasets allowed us to correlate chromatin accessibility with transcriptional activity and to identify key transcription factors driving the observed gene expression changes. RESULTS Analysis of striatum-specific transcriptome revealed significant upregulation of immune response genes, particularly type II interferon signaling, and downregulation of neural activation pathways. Analysis of striatum-specific epigenome showed increased chromatin accessibility at promoters of immune-related genes. Integrated analysis highlighted PU.1 as a key transcription factor in upregulated pathways, while neural pathways lacked epigenetic regulation, revealing distinct molecular responses in the striatum following chronic hypoperfusion. CONCLUSIONS Our findings indicate that upregulated pathways in the striatum following BCAS-induced CCH are driven by epigenetic changes, while downregulated pathways occur independently of these modifications. Additionally, PU.1 plays a critical role in mediating immune responses, offering a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Shijia Le
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyiyang Xu
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi Luo
- Department of Surgery, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuangshuang Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zengyu Zhang
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zimin Guo
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenshi Xu
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingqi Yang
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianyi Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Yu MC, Li XL, Ning ML, Yan ZZ, Yu WT. USP22 inhibits microglial M1 polarization by regulating the PU.1/NLRP3 inflammasome pathway. Brain Res Bull 2025; 220:111157. [PMID: 39631712 DOI: 10.1016/j.brainresbull.2024.111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/10/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE This study aimed to investigate the effect of Ubiquitin-Specific Peptidase 22 (USP22) on the inflammatory response mediated by BV-2 mouse microglia and explore the role of the PU box binding protein 1 (PU.1)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome in the USP22-induced polarization of BV-2 cells. METHODS The BV-2 mouse microglia line was cultured in vitro, and plasmid and siRNA transfection was performed to overexpress or knockdown USP22. Subsequently, BV-2 cells were treated with lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) and interleukin (IL)-4 to induce M1 and M2 polarization, respectively. Western blot was used to detect the expression levels of USP22, PU.1, M1 polarization markers [inducible nitric oxide synthase (iNOS), and cluster of differentiation (CD) 86], M2 polarization markers [arginase 1 (Arg1), and CD206], in BV-2 cells from different treatment groups. Additionally, measurement was performed on the inflammasome NLRP3, and its activation-related proteins [NIMA-related kinase7 (NEK7), cleaved-caspase 1, apoptosis-associated speck-like protein containing a CARD (ASC)]. Enzyme-linked immunosorbent (ELISA) assay was employed to determine the levels of inflammatory cytokines tumor necrosis factor-alpha (TNF-α), IL-1 β, and IL-10 in the cells. Furthermore, immunofluorescence was utilized to analyze the levels of iNOS and Arg1-positive BV-2 cells in different treatment groups. Moreover, the ubiquitination level of PU.1 was detected using immunoprecipitation. RESULTS The protein expression level of USP22 was significantly down-regulated in BV-2 cells treated with M1 polarization. Overexpression of USP22 remarkably reduced the protein levels of iNOS and CD86, but markedly increased the protein levels of Arg1 and CD206 in cells. Besides, there was a notable reduction in the levels of TNF-α and IL-1 β in the cell culture medium, while a remarkable increase was observed in the level of IL-10. Additionally, the level of iNOS-positive cells was significantly decreased, while the level of Arg1-positive cells was considerably increased. However, up-regulation of PU.1 expression could reverse the above results and promoted the expression of NLRP3 and its activation-related proteins. Notably, overexpression of USP22 significantly down-regulated the protein expression and ubiquitination level of PU.1. CONCLUSION USP22 inhibits the M1 polarization of BV-2 mouse microglia. The PU.1/NLRP3 inflammasome pathway may be a critical regulatory pathway of USP22 in BV-2 cell polarization.
Collapse
Affiliation(s)
- Ming-Chen Yu
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Xiao-Lin Li
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Ming-Liang Ning
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Zhen-Zhong Yan
- Department of Orthopedics, Changzhou Geriatric hospital affiliated to Soochow University, Changzhou 213000, China; Department of Orthopedics, Changzhou NO. 7 People's Hospital, Changzhou 213000, China
| | - Wan-Tao Yu
- Department Of Orthopdics, The First People's Hospital of Changzhou, Changzhou 213000, China.
| |
Collapse
|
5
|
McKeever PM, Sababi AM, Sharma R, Xu Z, Xiao S, McGoldrick P, Ketela T, Sato C, Moreno D, Visanji N, Kovacs GG, Keith J, Zinman L, Rogaeva E, Goodarzi H, Bader GD, Robertson J. Single-nucleus transcriptome atlas of orbitofrontal cortex in amyotrophic lateral sclerosis with a deep learning-based decoding of alternative polyadenylation mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573083. [PMID: 38187588 PMCID: PMC10769403 DOI: 10.1101/2023.12.22.573083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two age-related and fatal neurodegenerative disorders that lie on a shared disease spectrum. While both disorders involve complex interactions between neuronal and glial cells, the specific cell-type alterations and their contributions to disease pathophysiology remain incompletely understood. Here, we applied single-nucleus RNA sequencing of the orbitofrontal cortex, a region affected in ALS-FTLD, to map cell-type specific transcriptional signatures in C9orf72-related ALS (with and without FTLD) and sporadic ALS cases. Our findings reveal disease- and cell-type-specific transcriptional changes, with neurons exhibiting the most pronounced alterations, primarily affecting mitochondrial function, protein homeostasis, and chromatin remodeling. A comparison with independent datasets from different cortical regions of C9orf72 and sporadic ALS cases showed concordance in several pathways, with neuronal STMN2 and NEFL showing consistent up-regulation between brain regions and disease subtypes. We also interrogated alternative polyadenylation (APA) as an additional layer of transcriptional regulation, demonstrating that APA events are not correlated with identified gene expression changes. To interpret these events, we developed APA-Net, a deep learning model that integrates transcript sequences with RNA-binding protein expression profiles, revealing cell type-specific patterns of APA regulation. Our atlas illuminates cell type-specific pathomechanisms of ALS/FTLD, providing a valuable resource for further investigation.
Collapse
|
6
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Shi Z, Das S, Morabito S, Miyoshi E, Stocksdale J, Emerson N, Srinivasan SS, Shahin A, Rahimzadeh N, Cao Z, Silva J, Castaneda AA, Head E, Thompson L, Swarup V. Single-nucleus multi-omics identifies shared and distinct pathways in Pick's and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611761. [PMID: 39282421 PMCID: PMC11398495 DOI: 10.1101/2024.09.06.611761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The study of neurodegenerative diseases, particularly tauopathies like Pick's disease (PiD) and Alzheimer's disease (AD), offers insights into the underlying regulatory mechanisms. By investigating epigenomic variations in these conditions, we identified critical regulatory changes driving disease progression, revealing potential therapeutic targets. Our comparative analyses uncovered disease-enriched non-coding regions and genome-wide transcription factor (TF) binding differences, linking them to target genes. Notably, we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase (UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other cell types. Shared and distinct TF binding patterns were observed in neurons and glial cells across PiD and AD. We validated our findings using CRISPR to excise a predicted enhancer region in UBE3A and developed an interactive database (http://swaruplab.bio.uci.edu/scROAD) to visualize predicted single-cell TF occupancy and regulatory networks.
Collapse
Affiliation(s)
- Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Samuel Morabito
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jennifer Stocksdale
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Arshi Shahin
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Negin Rahimzadeh
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andres Alonso Castaneda
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Leslie Thompson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Motevasseli M, Darvishi M, Khoshnevisan A, Zeinalizadeh M, Saffar H, Bayat S, Najafi A, Abbaspour MJ, Mamivand A, Olson SB, Tabrizi M. Distinct tumor-TAM interactions in IDH-stratified glioma microenvironments unveiled by single-cell and spatial transcriptomics. Acta Neuropathol Commun 2024; 12:133. [PMID: 39148129 PMCID: PMC11328419 DOI: 10.1186/s40478-024-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Tumor-associated macrophages (TAMs) residing in the tumor microenvironment (TME) are characterized by their pivotal roles in tumor progression, antitumor immunity, and TME remodeling. However, a thorough comparative characterization of tumor-TAM crosstalk across IDH-defined categories of glioma remains elusive, likely contributing to mixed outcomes in clinical trials. We delineated the phenotypic heterogeneity of TAMs across IDH-stratified gliomas. Notably, two TAM subsets with a mesenchymal phenotype were enriched in IDH-WT glioblastoma (GBM) and correlated with poorer patient survival and reduced response to anti-PD-1 immune checkpoint inhibitor (ICI). We proposed SLAMF9 receptor as a potential therapeutic target. Inference of gene regulatory networks identified PPARG, ELK1, and MXI1 as master transcription factors of mesenchymal BMD-TAMs. Our analyses of reciprocal tumor-TAM interactions revealed distinct crosstalk in IDH-WT tumors, including ANXA1-FPR1/3, FN1-ITGAVB1, VEGFA-NRP1, and TNFSF12-TNFRSF12A with known contribution to immunosuppression, tumor proliferation, invasion and TAM recruitment. Spatially resolved transcriptomics further elucidated the architectural organization of highlighted communications. Furthermore, we demonstrated significant upregulation of ANXA1, FN1, NRP1, and TNFRSF12A genes in IDH-WT tumors using bulk RNA-seq and RT-qPCR. Longitudinal expression analysis of candidate genes revealed no difference between primary and recurrent tumors indicating that the interactive network of malignant states with TAMs does not drastically change upon recurrence. Collectively, our study offers insights into the unique cellular composition and communication of TAMs in glioma TME, revealing novel vulnerabilities for therapeutic interventions in IDH-WT GBM.
Collapse
Affiliation(s)
- Meysam Motevasseli
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Darvishi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshnevisan
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Bayat
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Abbaspour
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mamivand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan B Olson
- Molecular and Medical Genetics, Knight Diagnostics Laboratories, Oregon Health and Science University, Portland, OR, USA
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Molecular and Medical Genetics, Knight Diagnostics Laboratories, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
9
|
Kim B, Dabin LC, Tate MD, Karahan H, Sharify AD, Acri DJ, Al-Amin MM, Philtjens S, Smith DC, Wijeratne HRS, Park JH, Jucker M, Kim J. Effects of SPI1-mediated transcriptome remodeling on Alzheimer's disease-related phenotypes in mouse models of Aβ amyloidosis. Nat Commun 2024; 15:3996. [PMID: 38734693 PMCID: PMC11088624 DOI: 10.1038/s41467-024-48484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-β (Aβ) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.
Collapse
Affiliation(s)
- Byungwook Kim
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Luke Child Dabin
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mason Douglas Tate
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hande Karahan
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ahmad Daniel Sharify
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dominic J Acri
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Md Mamun Al-Amin
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stéphanie Philtjens
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel Curtis Smith
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - H R Sagara Wijeratne
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jung Hyun Park
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jungsu Kim
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Song Y, Zhang Y, Wang X, Han X, Shi M, Xu L, Yu J, Zhang L, Han S. SPI1 activates TGF-β1/PI3K/Akt signaling through transcriptional upregulation of FKBP12 to support the mesenchymal phenotype of glioma stem cells. Brain Pathol 2024; 34:e13217. [PMID: 37865975 PMCID: PMC11007049 DOI: 10.1111/bpa.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Glioma stem cells (GSCs) exhibit diverse molecular subtypes with the mesenchymal (MES) population representing the most malignant variant. The oncogenic potential of Salmonella pathogenicity island 1 (SPI1), an oncogenic transcription factor, has been established across various human malignancies. In this study, we explored the association between the SPI1 pathway and the MES GSC phenotype. Through comprehensive analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas glioma databases, along with patient-derived GSC cultures, we analyzed SPI1 expression. Using genetic knockdown and overexpression techniques, we assessed the functional impact of SPI1 on GSC MES marker expression, invasion, proliferation, self-renewal, and sensitivity to radiation in vitro, as well as its influence on tumor formation in vivo. Additionally, we investigated the downstream signaling cascades activated by SPI1. Our findings revealed a positive correlation between elevated SPI1 expression and the MES phenotype, which in turn, correlated with poor survival. SPI1 enhanced GSC MES differentiation, self-renewal, and radioresistance in vitro, promoting tumorigenicity in vivo. Mechanistically, SPI1 augmented the transcriptional activity of both TGF-β1 and FKBP12 while activating the non-canonical PI3K/Akt pathway. Notably, inhibition of TGF-β1/PI3K/Akt signaling partially attenuated SPI1-induced GSC MES differentiation and its associated malignant phenotype. Collectively, our results underscore SPI1's role in activating TGF-β1/PI3K/Akt signaling through transcriptional upregulation of FKBP12, thereby supporting the aggressive MES phenotype of GSCs. Therefore, SPI1 emerges as a potential therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Yifu Song
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yaochuan Zhang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaoliang Wang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaodi Han
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Mengwu Shi
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Ling Xu
- Department of Medical Oncologythe First Hospital of China Medical UniversityShenyangChina
| | - Juanhan Yu
- Department of PathologyChina Medical UniversityShenyangChina
| | - Li Zhang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Sheng Han
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
11
|
Zhang Z, Jin P, Guo Z, Tu Z, Yang H, Hu M, Li Q, Liu X, Li W, Hou S. Integrated Analysis of Chromatin and Transcriptomic Profiling Identifies PU.1 as a Core Regulatory Factor in Microglial Activation Induced by Chronic Cerebral Hypoperfusion. Mol Neurobiol 2024; 61:2569-2589. [PMID: 37917300 PMCID: PMC11043206 DOI: 10.1007/s12035-023-03734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
In addition to causing white matter lesions, chronic cerebral hypoperfusion (CCH) can also cause damage to gray matter, but the underlying molecular mechanisms remain largely unknown. In order to obtain a better understanding of the relationship between gene expression and transcriptional regulation alterations, novel upstream regulators could be identified using integration analysis of the transcriptome and epigenetic approaches. Here, a bilateral common carotid artery stenosis (BCAS) model was established for inducing CCH in mice. The spatial cognitive function of mice was evaluated, and changes in cortical microglia morphology were observed. RNA-sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were performed on isolated mouse cortical brain tissue. Then, a systematic joint analysis of BCAS hypoperfusion-induced cortex-specific RNA-seq and ATAC-seq was conducted in order to assess the extent of the correlation between the two, and PU.1 was found to be greatly enriched through motif analysis and transcription factor annotation. Also, the core regulatory factor PU.1 induced by BCAS hypoperfusion was shown to be colocalized with microglia. Based on the above analysis, PU.1 plays a key regulatory role in microglial activation induced by CCH. And the transcriptome and epigenomic data presented in this study can help identify potential targets for future research exploring chronic hypoperfusion-induced brain injury.
Collapse
Affiliation(s)
- Zengyu Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengpeng Jin
- Department of Chronic Disease Management, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zimin Guo
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhilan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Hualan Yang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Mengting Hu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qinghua Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Weiwei Li
- Institute of Pediatrics, Children's Hospital of Fudan University, Fudan University, Shanghai, China.
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
12
|
Zhang Y, Li J, Zhao Y, Huang Y, Shi Z, Wang H, Cao H, Wang C, Wang Y, Chen D, Chen S, Meng S, Wang Y, Zhu Y, Jiang Y, Gong Y, Gao Y. Arresting the bad seed: HDAC3 regulates proliferation of different microglia after ischemic stroke. SCIENCE ADVANCES 2024; 10:eade6900. [PMID: 38446877 PMCID: PMC10917353 DOI: 10.1126/sciadv.ade6900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
The accumulation of self-renewed polarized microglia in the penumbra is a critical neuroinflammatory process after ischemic stroke, leading to secondary demyelination and neuronal loss. Although known to regulate tumor cell proliferation and neuroinflammation, HDAC3's role in microgliosis and microglial polarization remains unclear. We demonstrated that microglial HDAC3 knockout (HDAC3-miKO) ameliorated poststroke long-term functional and histological outcomes. RNA-seq analysis revealed mitosis as the primary process affected in HDAC3-deficent microglia following stroke. Notably, HDAC3-miKO specifically inhibited proliferation of proinflammatory microglia without affecting anti-inflammatory microglia, preventing microglial transition to a proinflammatory state. Moreover, ATAC-seq showed that HDAC3-miKO induced closing of accessible regions enriched with PU.1 motifs. Overexpressing microglial PU.1 via an AAV approach reversed HDAC3-miKO-induced proliferation inhibition and protective effects on ischemic stroke, indicating PU.1 as a downstream molecule that mediates HDAC3's effects on stroke. These findings uncovered that HDAC3/PU.1 axis, which mediated differential proliferation-related reprogramming in different microglia populations, drove poststroke inflammatory state transition, and contributed to pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yichen Huang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hailian Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Cao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chenran Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuning Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shan Meng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yangfan Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yueyan Zhu
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan Jiang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ye Gong
- Corresponding author. (Y.Gao); (Y.Gong)
| | | |
Collapse
|
13
|
Miskovic R, Ljubicic J, Bonaci-Nikolic B, Petkovic A, Markovic V, Rankovic I, Djordjevic J, Stankovic A, Klaassen K, Pavlovic S, Stojanovic M. Case report: Rapidly progressive neurocognitive disorder with a fatal outcome in a patient with PU.1 mutated agammaglobulinemia. Front Immunol 2024; 15:1324679. [PMID: 38500873 PMCID: PMC10945545 DOI: 10.3389/fimmu.2024.1324679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction PU.1-mutated agammaglobulinemia (PU.MA) represents a recently described autosomal-dominant form of agammaglobulinemia caused by mutation of the SPI1 gene. This gene codes for PU.1 pioneer transcription factor important for the maturation of monocytes, B lymphocytes, and conventional dendritic cells. Only six cases with PU.MA, presenting with chronic sinopulmonary and systemic enteroviral infections, have been previously described. Accumulating literature evidence suggests a possible relationship between SPI1 mutation, microglial phagocytic dysfunction, and the development of Alzheimer's disease (AD). Case description We present a Caucasian female patient born from a non-consanguineous marriage, who was diagnosed with agammaglobulinemia at the age of 15 years when the immunoglobulin replacement therapy was started. During the following seventeen years, she was treated for recurrent respiratory and intestinal infections. At the age of 33 years, the diagnosis of celiac-like disease was established. Five years later progressive cognitive deterioration, unstable gait, speech disturbances, and behavioral changes developed. Comprehensive microbiological investigations were negative, excluding possible infective etiology. Brain MRI, 18FDG-PET-CT, and neuropsychological testing were suggestive for a diagnosis of a frontal variant of AD. Clinical exome sequencing revealed the presence of a novel frameshift heterozygous variant c.441dup in exon 4 of the SPI1 gene. Despite intensive therapy, the patient passed away a few months after the onset of the first neurological symptoms. Conclusion We describe the first case of PU.MA patient presenting with a rapidly progressive neurocognitive deterioration. The possible role of microglial dysfunction in patients with SPI1 mutation could explain their susceptibility to neurodegenerative diseases thus highlighting the importance of genetic testing in patients with inborn errors of immunity. Since PU.MA represents a newly described form of agammaglobulinemia, our case expands the spectrum of manifestations associated with SPI1 mutation.
Collapse
Affiliation(s)
- Rada Miskovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Ljubicic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branka Bonaci-Nikolic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Petkovic
- Diagnostic Department, Center of Sterotaxic Radiosurgery, Clinic of Neurosurgery, University Clinical Center of Serbia, Belgrade, Serbia
| | - Vladana Markovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Rankovic
- Department of Gastroenterology and Liver Unit, Royal Cornwall Hospitals NHS Trust, University of Exeter, Truro, United Kingdom
| | - Jelena Djordjevic
- Clinic of Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ana Stankovic
- Center for Radiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Stojanovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Ralvenius WT, Andresen JL, Huston MM, Penney J, Bonner JM, Fenton OS, Langer R, Tsai LH. Nanoparticle-Mediated Delivery of Anti-PU.1 siRNA via Localized Intracisternal Administration Reduces Neuroinflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309225. [PMID: 38018280 DOI: 10.1002/adma.202309225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Neuroinflammation is a hallmark of neurodegenerative disorders including Alzheimer's disease (AD). Microglia, the brain's immune cells, express many of the AD-risk loci identified in genome wide association studies and present a promising target for anti-inflammatory RNA therapeutics but are difficult to transfect with current methods. Here, several lipid nanoparticle (LNP) formulations are examined, and a lead candidate that supports efficient RNA delivery in cultures of human stem cell-derived microglia-like cells (iMGLs) and animal models of neuroinflammation is identified. The lead microglia LNP (MG-LNP) formulation shows minimal toxicity and improves delivery efficiency to inflammatory iMGLs, suggesting a preference for delivery into activated microglia. Intraperitoneal injection of the MG-LNP formulation generates widespread expression of the delivered reporter construct in all organs, whereas local intracisternal injection directly into the cerebrospinal fluid leads to preferential expression in the brain. It is shown that LNP-mediated delivery of siRNA targeting the PU.1 transcription factor, a known AD-risk locus, successfully reduces PU.1 levels in iMGLs and reduces neuroinflammation in mice injected with LPS and in CK-p25 mice that mimic the chronic neuroinflammation seen in AD patients. The LNP formulation represents an effective RNA delivery vehicle when applied intrathecally and can be broadly utilized to test potential neuroinflammation-directed gene therapies.
Collapse
Affiliation(s)
- William T Ralvenius
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jason L Andresen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Margaret M Huston
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Julia Maeve Bonner
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Owen S Fenton
- UNC Eshelman School of Pharmacy, Department of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Hu B, Zhuang XL, Zhou L, Zhang G, Cooper DN, Wu DD. Deciphering the Role of Rapidly Evolving Conserved Elements in Primate Brain Development and Exploring Their Potential Involvement in Alzheimer's Disease. Mol Biol Evol 2024; 41:msae001. [PMID: 38175672 PMCID: PMC10798191 DOI: 10.1093/molbev/msae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.
Collapse
Affiliation(s)
- Benxia Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Lin Zhuang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Long Zhou
- Center of Evolutionary and Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Guangdong, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Guangdong, China
| | - Guojie Zhang
- Center of Evolutionary and Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Guangdong, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Guangdong, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Dong-Dong Wu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
16
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Zhang G, Lu J, Zheng J, Mei S, Li H, Zhang X, Ping A, Gao S, Fang Y, Yu J. Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage. Neural Regen Res 2024; 19:161-170. [PMID: 37488863 PMCID: PMC10479839 DOI: 10.4103/1673-5374.375343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 07/26/2023] Open
Abstract
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage. The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation. However, the effect of Spi1 on intracerebral hemorrhage remains unclear. In this study, we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome. We showed that high Spi1 expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis, glycolysis, and autophagy, as well as debris clearance and sustained remyelination. Notably, microglia with higher levels of Spi1 expression were characterized by activation of pathways associated with a variety of hemorrhage-related cellular processes, such as complement activation, angiogenesis, and coagulation. In conclusion, our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage. This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuhao Mei
- Department of Neurosurgery, Huashan Hospital of Fudan University School of Medicine, Shanghai, China
| | - Huaming Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Galvis-Montes DS, van Loo KMJ, van Waardenberg AJ, Surges R, Schoch S, Becker AJ, Pitsch J. Highly dynamic inflammatory and excitability transcriptional profiles in hippocampal CA1 following status epilepticus. Sci Rep 2023; 13:22187. [PMID: 38092829 PMCID: PMC10719343 DOI: 10.1038/s41598-023-49310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Transient brain insults including status epilepticus (SE) can initiate a process termed 'epileptogenesis' that results in chronic temporal lobe epilepsy. As a consequence, the entire tri-synaptic circuit of the hippocampus is fundamentally impaired. A key role in epileptogenesis has been attributed to the CA1 region as the last relay station in the hippocampal circuit and as site of aberrant plasticity, e.g. mediated by acquired channelopathies. The transcriptional profiles of the distinct hippocampal neurons are highly dynamic during epileptogenesis. Here, we aimed to elucidate the early SE-elicited mRNA signature changes and the respective upstream regulatory cascades in CA1. RNA sequencing of CA1 was performed in the mouse pilocarpine-induced SE model at multiple time points ranging from 6 to 72 h after the initial insult. Bioinformatics was used to decipher altered gene expression, signalling cascades and their corresponding cell type profiles. Robust transcriptomic changes were detected at 6 h after SE and at subsequent time points during early epileptogenesis. Major differentially expressed mRNAs encoded primarily immediate early and excitability-related gene products, as well as genes encoding immune signalling factors. Binding sites for the transcription factors Nfkb1, Spi1, Irf8, and two Runx family members, were enriched within promoters of differentially expressed genes related to major inflammatory processes, whereas the transcriptional repressors Suz12, Nfe2l2 and Rest were associated with hyperexcitability and GABA / glutamate receptor activity. CA1 quickly responds to SE by inducing transcription of genes linked to inflammation and excitation stress. Transcription factors mediating this transcriptomic switch represent targets for new highly selected, cell type and time window-specific anti-epileptogenic strategies.
Collapse
Grants
- SCHO 820/4-1, SCHO 820/6-1, SCHO 820/7-1, SCHO 820/5-2, SPP1757, SFB1089, FOR 2715 Deutsche Forschungsgemeinschaft
- SCHO 820/4-1, SCHO 820/6-1, SCHO 820/7-1, SCHO 820/5-2, SPP1757, SFB1089, FOR 2715 Deutsche Forschungsgemeinschaft
- Promotionskolleg 'NeuroImmunology' Else Kröner-Fresenius-Stiftung
- Promotionskolleg 'NeuroImmunology' Else Kröner-Fresenius-Stiftung
- BONFOR program of the Medical Faculty, University of Bonn
- Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
Collapse
Affiliation(s)
- Daniel S Galvis-Montes
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karen M J van Loo
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | | | - Rainer Surges
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Susanne Schoch
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
19
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
20
|
Yang S, Chen D, Xie L, Zou X, Xiao Y, Rao L, Yao T, Zhang Q, Cai L, Huang F, Yang B, Huang L. Developmental dynamics of the single nucleus regulatory landscape of pig hippocampus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2614-2628. [PMID: 37428306 DOI: 10.1007/s11427-022-2345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 07/11/2023]
Abstract
The hippocampus is a brain region associated with memory, learning and spatial navigation, its aging-related dysfunction is a common sign of Alzheimer's disease. Pig is a good model for human neurodegenerative disease, but our understanding of the regulatory program of the pig hippocampus and its cross-species conservation in humans remains limited. Here, we profiled chromatin accessibility in 33,409 high-quality nuclei and gene expression in 8,122 high-quality nuclei of the pig hippocampus at four postnatal stages. We identified 510,908 accessible chromatin regions (ACRs) in 12 major cell types, among which progenitor cells such as neuroblasts and oligodendrocyte progenitor cells showed a dynamic decrease from early to later developmental stages. We revealed significant enrichment of transposable elements in cell type-specific ACRs, particularly in neuroblasts. We identified oligodendrocytes as the most prominent cell type with the greatest number of genes that showed significant changes during the development. We identified ACRs and key transcription factors underlying the trajectory of neurogenesis (such as POU3F3 and EGR1) and oligodendrocyte differentiation (RXRA and FOXO6). We examined 27 Alzheimer's disease-related genes in our data and found that 15 showed cell type-specific activity (TREM2, RIN3 and CLU), and 15 genes displayed age-associated dynamic activity (BIN1, RABEP1 and APOE). We intersected our data with human genome-wide association study results to detect neurological disease-associated cell types. The present study provides a single nucleus-accessible chromatin landscape of the pig hippocampus at different developmental stages and is helpful for the exploration of pigs as a biomedical model in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Siyu Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lei Xie
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoxiao Zou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanyuan Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Rao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tianxiong Yao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liping Cai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fei Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
21
|
Sun N, Victor MB, Park YP, Xiong X, Scannail AN, Leary N, Prosper S, Viswanathan S, Luna X, Boix CA, James BT, Tanigawa Y, Galani K, Mathys H, Jiang X, Ng AP, Bennett DA, Tsai LH, Kellis M. Human microglial state dynamics in Alzheimer's disease progression. Cell 2023; 186:4386-4403.e29. [PMID: 37774678 PMCID: PMC10644954 DOI: 10.1016/j.cell.2023.08.037] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.
Collapse
Affiliation(s)
- Na Sun
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yongjin P Park
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology and Laboratory Medicine, Department of Statistics, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Xushen Xiong
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aine Ni Scannail
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shaniah Prosper
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Soujanya Viswanathan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xochitl Luna
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carles A Boix
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin T James
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yosuke Tanigawa
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyriaki Galani
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ayesha P Ng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Muñoz EM, Martínez Cerdeño V. Editorial: Transcription regulation - Brain development and homeostasis - A finely tuned and orchestrated scenario in physiology and pathology, volume II. Front Mol Neurosci 2023; 16:1280573. [PMID: 37736114 PMCID: PMC10509287 DOI: 10.3389/fnmol.2023.1280573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Estela M. Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo (UNCuyo), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Verónica Martínez Cerdeño
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, and MIND Institute at the UC Davis Medical Center, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
23
|
Arasaratnam CJ, Song JJ, Yoshida T, Curtis MA, Graybiel AM, Faull RLM, Waldvogel HJ. DARPP-32 cells and neuropil define striosomal system and isolated matrix cells in human striatum. J Comp Neurol 2023; 531:888-920. [PMID: 37002560 PMCID: PMC10392785 DOI: 10.1002/cne.25473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 04/04/2023]
Abstract
The dorsal striatum forms a central node of the basal ganglia interconnecting the neocortex and thalamus with circuits modulating mood and movement. Striatal projection neurons (SPNs) include relatively intermixed populations expressing D1-type or D2-type dopamine receptors (dSPNs and iSPNs) that give rise to the direct (D1) and indirect (D2) output systems of the basal ganglia. Overlaid on this organization is a compartmental organization, in which a labyrinthine system of striosomes made up of sequestered SPNs is embedded within the larger striatal matrix. Striosomal SPNs also include D1-SPNs and D2-SPNs, but they can be distinguished from matrix SPNs by many neurochemical markers. In the rodent striatum the key signaling molecule, DARPP-32, is a exception to these compartmental expression patterns, thought to befit its functions through opposite actions in both D1- and D2-expressing SPNs. We demonstrate here, however, that in the dorsal human striatum, DARPP-32 is concentrated in the neuropil and SPNs of striosomes, especially in the caudate nucleus and dorsomedial putamen, relative to the matrix neuropil in these regions. The generally DARPP-32-poor matrix contains scattered DARPP-32-positive cells. DARPP-32 cell bodies in both compartments proved negative for conventional intraneuronal markers. These findings raise the potential for specialized DARPP-32 expression in the human striosomal system and in a set of DARPP-32-positive neurons in the matrix. If DARPP-32 immunohistochemical positivity predicts differential functional DARPP-32 activity, then the distributions demonstrated here could render striosomes and dispersed matrix cells susceptible to differential signaling through cAMP and other signaling systems in health and disease. DARPP-32 is highly concentrated in cells and neuropil of striosomes in post-mortem human brain tissue, particularly in the dorsal caudate nucleus. Scattered DARPP-32-positive cells are found in the human striatal matrix. Calbindin and DARPP-32 do not colocalize within every spiny projection neuron in the dorsal human caudate nucleus.
Collapse
Affiliation(s)
- Christine J Arasaratnam
- Department of Anatomy and Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jennifer J Song
- Department of Anatomy and Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Tomoko Yoshida
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ann M Graybiel
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Department of Anatomy and Medical Imaging, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Yu M, Ou Y, Wang H, Gu W. PU.1 interaction with p50 promotes microglial-mediated inflammation in secondary spinal cord injury in SCI rats. Int J Neurosci 2023; 133:389-402. [PMID: 33970748 DOI: 10.1080/00207454.2021.1923017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose/aim of the study Secondary spinal cord injury is the inflammatory damage to surrounding tissues caused by activated microglial-mediated neuroinflammatory responses. The nuclear factor-κB (p65/p50) pathway and PU.1 are closely correlated with inflammatory responses; thus, we examined the relationship and function between PU.1 and p50 in secondary spinal cord injury.Materials and methods In this study, we established an adult rat acute spinal cord injury model to simulate the pathological process of spinal cord injury.Results: We found that the expression of PU.1 was significantly increased at three days after spinal cord injury and mainly expressed in activated microglia. Moreover, p-p50 expression was increased in SCI rats and the protein interacted with PU.1. Lipopolysaccharide was used to induce microglia activation in vitro.Conclusions: The results showed that PU.1 and p-p50 expression was significantly increased and PU.1 interacted with p50 in the nucleus. The levels of tumor necrosis factor-α and interleukin-1β secreted by microglia were detected by enzyme-linked immunosorbent assay. The results showed that when both PU.1 and p50 were overexpressed, tumor necrosis factor-α and interleukin-1β secretion was significantly increased to levels higher than in cells overexpressing PU.1 or p50 alone. These results suggest that PU.1 and p50 interact to promote p65 transcription and the expression of inflammatory factors, which is an important mechanism of the microglial-mediated inflammatory response to secondary injury after spinal cord injury.
Collapse
Affiliation(s)
- Mingchen Yu
- Department of Orthopedics, Changzhou Seventh People's Hospital, Changzhou, Jiangsu Province, China.,Nantong University, Nantong, Jiangsu Province, China
| | - Yiqing Ou
- Nantong University, Nantong, Jiangsu Province, China.,The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hongmei Wang
- Nantong University, Nantong, Jiangsu Province, China
| | - Weidong Gu
- Department of Orthopedics, Changzhou Seventh People's Hospital, Changzhou, Jiangsu Province, China
| |
Collapse
|
25
|
Wiseman JA, Dragunow M, I-H Park T. Cell Type-Specific Nuclei Markers: The Need for Human Brain Research to Go Nuclear. Neuroscientist 2023; 29:41-61. [PMID: 34459315 DOI: 10.1177/10738584211037351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identifying and interrogating cell type-specific populations within the heterogeneous milieu of the human brain is paramount to resolving the processes of normal brain homeostasis and the pathogenesis of neurological disorders. While brain cell type-specific markers are well established, most are localized on cellular membranes or within the cytoplasm, with limited literature describing those found in the nucleus. Due to the complex cytoarchitecture of the human brain, immunohistochemical studies require well-defined cell-specific nuclear markers for more precise and efficient quantification of the cellular populations. Furthermore, efficient nuclear markers are required for cell type-specific purification and transcriptomic interrogation of archived human brain tissue through nuclei isolation-based RNA sequencing. To sate the growing demand for robust cell type-specific nuclear markers, we thought it prudent to comprehensively review the current literature to identify and consolidate a novel series of robust cell type-specific nuclear markers that can assist researchers across a range of neuroscientific disciplines. The following review article collates and discusses several key and prospective cell type-specific nuclei markers for each of the major human brain cell types; it then concludes by discussing the potential applications of cell type-specific nuclear workflows and the power of nuclear-based neuroscientific research.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
27
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Implications of microglial heterogeneity in spinal cord injury progression and therapy. Exp Neurol 2023; 359:114239. [PMID: 36216123 DOI: 10.1016/j.expneurol.2022.114239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Microglia are widely distributed in the central nervous system (CNS), where they aid in the maintenance of neuronal function and perform key auxiliary roles in phagocytosis, neural repair, immunological control, and nutrition delivery. Microglia in the undamaged spinal cord is in a stable state and serve as immune monitors. In the event of spinal cord injury (SCI), severe changes in the microenvironment and glial scar formation lead to axonal regeneration failure. Microglia participates in a series of pathophysiological processes and behave both positive and negative consequences during this period. A deep understanding of the characteristics and functions of microglia can better identify therapeutic targets for SCI. Technological innovations such as single-cell RNA sequencing (Sc-RNAseq) have led to new advances in the study of microglia heterogeneity throughout the lifespan. Here,We review the updated studies searching for heterogeneity of microglia from the developmental and pathological state, survey the activity and function of microglia in SCI and explore the recent therapeutic strategies targeting microglia in the CNS injury.
Collapse
|
29
|
De Chirico F, Poeta E, Babini G, Piccolino I, Monti B, Massenzio F. New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Front Cell Neurosci 2022; 16:1038721. [PMID: 36523814 PMCID: PMC9744797 DOI: 10.3389/fncel.2022.1038721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 09/17/2023] Open
Abstract
Microglia activation and neuroinflammation have been extensively studied in murine models of neurodegenerative diseases; however, to overcome the genetic differences between species, a human cell model of microglia able to recapitulate the activation profiles described in patients is needed. Here we developed human models of Parkinson's like neuroinflammation by using the human microglia clone 3 (HMC3) cells, whose activation profile in response to classic inflammatory stimuli has been controversial and reported only at mRNA levels so far. In fact, we showed the increased expression of the pro-inflammatory markers iNOS, Caspase 1, IL-1β, in response to IFN-γ plus high glucose, a non-specific disease stimulus that emphasized the dynamic polarization and heterogenicity of the microglial population. More specifically, we demonstrated the polarization of HMC3 cells through the upregulation of iNOS expression and nitrite production in response to the Parkinson's like stimuli, 6-hydroxidopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the latter depending on the NF-κB pathway. Furthermore, we identified inflammatory mediators that promote the pro-inflammatory activation of human microglia as function of different pathways that can simulate the phenotypic transition according to the stage of the pathology. In conclusion, we established and characterized different systems of HMC3 cells activation as in vitro models of Parkinson's like neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Smith AM, Park TIH, Aalderink M, Oldfield RL, Bergin PS, Mee EW, Faull RLM, Dragunow M. Distinct characteristics of microglia from neurogenic and non-neurogenic regions of the human brain in patients with Mesial Temporal Lobe Epilepsy. Front Cell Neurosci 2022; 16:1047928. [PMID: 36425665 PMCID: PMC9679155 DOI: 10.3389/fncel.2022.1047928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2023] Open
Abstract
The study of microglia isolated from adult human brain tissue provides unique insight into the physiology of these brain immune cells and their role in adult human brain disorders. Reports of microglia in post-mortem adult human brain tissue show regional differences in microglial populations, however, these differences have not been fully explored in living microglia. In this study biopsy tissue was obtained from epileptic patients undergoing surgery and consisted of both cortical areas and neurogenic ventricular and hippocampal (Hp) areas. Microglia were concurrently isolated from both regions and compared by immunochemistry. Our initial observation was that a greater number of microglia resulted from isolation and culture of ventricular/Hp tissue than cortical tissue. This was found to be due to a greater proliferative capacity of microglia from ventricular/Hp regions compared to the cortex. Additionally, ventricular/Hp microglia had a greater proliferative response to the microglial mitogen Macrophage Colony-Stimulating Factor (M-CSF). This enhanced response was found to be associated with higher M-CSF receptor expression and higher expression of proteins involved in M-CSF signalling DAP12 and C/EBPβ. Microglia from the ventricular/Hp region also displayed higher expression of the receptor for Insulin-like Growth Factor-1, a molecule with some functional similarity to M-CSF. Compared to microglia isolated from the cortex, ventricular/Hp microglia showed increased HLA-DP, DQ, DR antigen presentation protein expression and a rounded morphology. These findings show that microglia from adult human brain neurogenic regions are more proliferative than cortical microglia and have a distinct protein expression profile. The data present a case for differential microglial phenotype and function in different regions of the adult human brain and suggest that microglia in adult neurogenic regions are "primed" to an activated state by their unique tissue environment.
Collapse
Affiliation(s)
- Amy M. Smith
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Thomas In-Hyeup Park
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Miranda Aalderink
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | | | - Peter S. Bergin
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, New Zealand
| | - Edward W. Mee
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex. Nat Commun 2022; 13:6747. [PMID: 36347848 PMCID: PMC9643508 DOI: 10.1038/s41467-022-34413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell transcriptomic and chromatin accessibility (single-cell ATAC) data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult female cynomolgus monkey brain, and integrated this dataset with Stereo-seq (spatial enhanced resolution omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.
Collapse
|
32
|
Gao C, Shen X, Tan Y, Chen S. Pathogenesis, therapeutic strategies and biomarker development based on "omics" analysis related to microglia in Alzheimer's disease. J Neuroinflammation 2022; 19:215. [PMID: 36058959 PMCID: PMC9441025 DOI: 10.1186/s12974-022-02580-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and the most common cause of dementia. Among various pathophysiological aspects, microglia are considered to play important roles in the pathogenesis of AD. Genome wide association studies (GWAS) showed that the majority of AD risk genes are highly or exclusively expressed in microglia, underscoring the critical roles of microglia in AD pathogenesis. Recently, omics technologies have greatly advanced our knowledge of microglia biology in AD. Omics approaches, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics/lipidomics, present remarkable opportunities to delineate the underlying mechanisms, discover novel diagnostic biomarkers, monitor disease progression, and shape therapeutic strategies for diseases. In this review, we summarized research based on microglial "omics" analysis in AD, especially the recent research advances in the identification of AD-associated microglial subsets. This review reinforces the important role of microglia in AD and advances our understanding of the mechanism of microglia in AD pathogenesis. Moreover, we proposed the value of microglia-based omics in the development of therapeutic strategies and biomarkers for AD.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
33
|
Wang SK, Nair S, Li R, Kraft K, Pampari A, Patel A, Kang JB, Luong C, Kundaje A, Chang HY. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. CELL GENOMICS 2022; 2:100164. [PMID: 36277849 PMCID: PMC9584034 DOI: 10.1016/j.xgen.2022.100164] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Genome-wide association studies (GWASs) of eye disorders have identified hundreds of genetic variants associated with ocular disease. However, the vast majority of these variants are noncoding, making it challenging to interpret their function. Here we present a joint single-cell atlas of gene expression and chromatin accessibility of the adult human retina with more than 50,000 cells, which we used to analyze single-nucleotide polymorphisms (SNPs) implicated by GWASs of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a potentially powerful resource for interpreting noncoding variation in the eye.
Collapse
Affiliation(s)
- Sean K. Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Aman Patel
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Joyce B. Kang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christy Luong
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
34
|
Gong Y, Srinivasan SS, Zhang R, Kessenbrock K, Zhang J. scEpiLock: A Weakly Supervised Learning Framework for cis-Regulatory Element Localization and Variant Impact Quantification for Single-Cell Epigenetic Data. Biomolecules 2022; 12:874. [PMID: 35883430 PMCID: PMC9312957 DOI: 10.3390/biom12070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in single-cell transposase-accessible chromatin using a sequencing assay (scATAC-seq) allow cellular heterogeneity dissection and regulatory landscape reconstruction with an unprecedented resolution. However, compared to bulk-sequencing, its ultra-high missingness remarkably reduces usable reads in each cell type, resulting in broader, fuzzier peak boundary definitions and limiting our ability to pinpoint functional regions and interpret variant impacts precisely. We propose a weakly supervised learning method, scEpiLock, to directly identify core functional regions from coarse peak labels and quantify variant impacts in a cell-type-specific manner. First, scEpiLock uses a multi-label classifier to predict chromatin accessibility via a deep convolutional neural network. Then, its weakly supervised object detection module further refines the peak boundary definition using gradient-weighted class activation mapping (Grad-CAM). Finally, scEpiLock provides cell-type-specific variant impacts within a given peak region. We applied scEpiLock to various scATAC-seq datasets and found that it achieves an area under receiver operating characteristic curve (AUC) of ~0.9 and an area under precision recall (AUPR) above 0.7. Besides, scEpiLock's object detection condenses coarse peaks to only ⅓ of their original size while still reporting higher conservation scores. In addition, we applied scEpiLock on brain scATAC-seq data and reported several genome-wide association studies (GWAS) variants disrupting regulatory elements around known risk genes for Alzheimer's disease, demonstrating its potential to provide cell-type-specific biological insights in disease studies.
Collapse
Affiliation(s)
- Yanwen Gong
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA;
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | - Ruiyi Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA; (S.S.S.); (R.Z.)
| | - Kai Kessenbrock
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA;
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA; (S.S.S.); (R.Z.)
| |
Collapse
|
35
|
Silva TC, Young JI, Martin ER, Chen XS, Wang L. MethReg: estimating the regulatory potential of DNA methylation in gene transcription. Nucleic Acids Res 2022; 50:e51. [PMID: 35100398 PMCID: PMC9122535 DOI: 10.1093/nar/gkac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
Epigenome-wide association studies often detect many differentially methylated sites, and many are located in distal regulatory regions. To further prioritize these significant sites, there is a critical need to better understand the functional impact of CpG methylation. Recent studies demonstrated that CpG methylation-dependent transcriptional regulation is a widespread phenomenon. Here, we present MethReg, an R/Bioconductor package that analyzes matched DNA methylation and gene expression data, along with external transcription factor (TF) binding information, to evaluate, prioritize and annotate CpG sites with high regulatory potential. At these CpG sites, TF-target gene associations are often only present in a subset of samples with high (or low) methylation levels, so they can be missed by analyses that use all samples. Using colorectal cancer and Alzheimer's disease datasets, we show MethReg significantly enhances our understanding of the regulatory roles of DNA methylation in complex diseases.
Collapse
Affiliation(s)
- Tiago C Silva
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
36
|
Sudwarts A, Ramesha S, Gao T, Ponnusamy M, Wang S, Hansen M, Kozlova A, Bitarafan S, Kumar P, Beaulieu-Abdelahad D, Zhang X, Collier L, Szekeres C, Wood LB, Duan J, Thinakaran G, Rangaraju S. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Mol Neurodegener 2022; 17:33. [PMID: 35526014 PMCID: PMC9077874 DOI: 10.1186/s13024-022-00535-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The BIN1 locus contains the second-most significant genetic risk factor for late-onset Alzheimer's disease. BIN1 undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer's disease, have not been examined in depth. METHODS Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells. Bin1 expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencing Bin1 expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specific Bin1 conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss of Bin1 impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene, Ifitm3. CONCLUSIONS Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship between Bin1 and Ifitm3, two Alzheimer's disease-related genes in microglia. The requirement for BIN1 to regulate Ifitm3 upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ari Sudwarts
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Supriya Ramesha
- Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - Tianwen Gao
- Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - Moorthi Ponnusamy
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Shuai Wang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Mitchell Hansen
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Alena Kozlova
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201 USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Prateek Kumar
- Department of Neurology, Emory University, Atlanta, GA 30322 USA
| | - David Beaulieu-Abdelahad
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Xiaolin Zhang
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Lisa Collier
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Charles Szekeres
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | - Levi B. Wood
- Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Jubao Duan
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201 USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637 USA
| | - Gopal Thinakaran
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613 USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620 USA
| | | |
Collapse
|
37
|
Park TIH, Smyth LCD, Aalderink M, Woolf ZR, Rustenhoven J, Lee K, Jansson D, Smith A, Feng S, Correia J, Heppner P, Schweder P, Mee E, Dragunow M. Routine culture and study of adult human brain cells from neurosurgical specimens. Nat Protoc 2022; 17:190-221. [PMID: 35022619 DOI: 10.1038/s41596-021-00637-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
When modeling disease in the laboratory, it is important to use clinically relevant models. Patient-derived human brain cells grown in vitro to study and test potential treatments provide such a model. Here, we present simple, highly reproducible coordinated procedures that can be used to routinely culture most cell types found in the human brain from single neurosurgically excised brain specimens. The cell types that can be cultured include dissociated cultures of neurons, astrocytes, microglia, pericytes and brain endothelial and neural precursor cells, as well as explant cultures of the leptomeninges, cortical slice cultures and brain tumor cells. The initial setup of cultures takes ~2 h, and the cells are ready for further experiments within days to weeks. The resulting cells can be studied as purified or mixed population cultures, slice cultures and explant-derived cultures. This protocol therefore enables the investigation of human brain cells to facilitate translation of neuroscience research to the clinic.
Collapse
Affiliation(s)
- Thomas I-H Park
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon C D Smyth
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Miranda Aalderink
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe R Woolf
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG), Washington University, St. Louis, MO, USA
| | - Kevin Lee
- Department of Physiology, Faculty of Medical Science and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Deidre Jansson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine VISN 20 Mental Illness Research, Education and Clinical Centre (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Amy Smith
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sheryl Feng
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jason Correia
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Mike Dragunow
- Hugh Green Biobank & Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Neurosurgical Research Unit, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
38
|
Chen Y, Lin J, Schlotterer A, Kurowski L, Hoffmann S, Hammad S, Dooley S, Buchholz M, Hu J, Fleming I, Hammes HP. MicroRNA-124 Alleviates Retinal Vasoregression via Regulating Microglial Polarization. Int J Mol Sci 2021; 22:ijms222011068. [PMID: 34681723 PMCID: PMC8538759 DOI: 10.3390/ijms222011068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Microglial activation is implicated in retinal vasoregression of the neurodegenerative ciliopathy-associated disease rat model (i.e., the polycystic kidney disease (PKD) model). microRNA can regulate microglial activation and vascular function, but the effect of microRNA-124 (miR-124) on retinal vasoregression remains unclear. Transgenic PKD and wild-type Sprague Dawley (SD) rats received miR-124 at 8 and 10 weeks of age intravitreally. Retinal glia activation was assessed by immunofluorescent staining and in situ hybridization. Vasoregression and neuroretinal function were evaluated by quantitative retinal morphometry and electroretinography (ERG), respectively. Microglial polarization was determined by immunocytochemistry and qRT-PCR. Microglial motility was examined via transwell migration assays, wound healing assays, and single-cell tracking. Our data showed that miR-124 inhibited glial activation and improved vasoregession, as evidenced by the reduced pericyte loss and decreased acellular capillary formation. In addition, miR-124 improved neuroretinal function. miR-124 shifted microglial polarization in the PKD retina from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype by suppressing TNF-α, IL-1β, CCL2, CCL3, MHC-II, and IFN-γ and upregulating Arg1 and IL-10. miR-124 also decreased microglial motility in the migration assays. The transcriptional factor of C/EBP-α-PU.1 signaling, suppressed by miR-124 both in vivo (PKD retina) and in vitro (microglial cells), could serve as a key regulator in microglial activation and polarization. Our data illustrate that miR-124 regulates microglial activation and polarization. miR-124 inhibits pericyte loss and thereby alleviates vasoregression and ameliorates neurovascular function.
Collapse
Affiliation(s)
- Ying Chen
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Luke Kurowski
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
| | - Sigrid Hoffmann
- Center of Medical Research, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany;
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (S.H.); (S.D.)
| | - Malte Buchholz
- Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Hans-Meerwein-Str. 3, D-35043 Marburg, Germany;
| | - Jiong Hu
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Ingrid Fleming
- Institute for Vascular Signalling, Center for Molecular Medicine, Goethe University, D-60590 Frankfurt, Germany; (J.H.); (I.F.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (Y.C.); (J.L.); (A.S.); (L.K.)
- Correspondence: ; Tel.: +49-621-383-2663
| |
Collapse
|
39
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia/ischemia impairs CD33 (Siglec-3)/TREM2 signaling: Potential role in Alzheimer's pathogenesis. Neurochem Int 2021; 150:105186. [PMID: 34530055 DOI: 10.1016/j.neuint.2021.105186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
Recent genetic and molecular studies have indicated that the innate immune system, especially microglia, have a crucial role in the accumulation of β-amyloid plaques in Alzheimer's disease (AD). In particular, the CD33 receptor, also called Siglec-3, inhibits the TREM2 receptor-induced phagocytic activity of microglia. CD33 receptors recognize the α2,3 and α2,6-linked sialic groups in tissue glycocalyx, especially sialylated gangliosides in human brain. The CD33 receptor triggers cell-type specific responses, e.g., in microglia, CD33 inhibits phagocytosis, whereas in natural killer cells, it inhibits the cytotoxic activity of the NKG2D receptor. Nonetheless, the regulation of the activity of CD33 receptor needs to be clarified. For example, it seems that hypoxia/ischemia, a potential cause of AD pathology, increases the expression of CD33 and its downstream target SHP-1, a tyrosine phosphatase which suppresses the phagocytosis driven by TREM2. Moreover, hypoxia/ischemia increases the deposition of sialylated gangliosides, e.g., GM1, GM2, GM3, and GD1, which are ligands for inhibitory CD33/Siglec-3 receptors. In addition, β-amyloid peptides bind to the sialylated gangliosides in raft-like clusters and subsequently these gangliosides act as seeds for the formation of β-amyloid plaques in AD pathology. It is known that senile plaques contain sialylated GM1, GM2, and GM3 gangliosides, i.e., the same species induced by hypoxia/ischemia treatment. Sialylated gangliosides in plaques might stimulate the CD33/Siglec-3 receptors of microglia and thus impede TREM2-driven phagocytosis. We propose that hypoxia/ischemia, e.g., via the accumulation of sialylated gangliosides, prevents the phagocytosis of β-amyloid deposits by inhibiting CD33/TREM2 signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
40
|
Qiu S, Palavicini JP, Wang J, Gonzalez NS, He S, Dustin E, Zou C, Ding L, Bhattacharjee A, Van Skike CE, Galvan V, Dupree JL, Han X. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer's disease-like neuroinflammation and cognitive impairment. Mol Neurodegener 2021; 16:64. [PMID: 34526055 PMCID: PMC8442347 DOI: 10.1186/s13024-021-00488-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human genetic association studies point to immune response and lipid metabolism, in addition to amyloid-beta (Aβ) and tau, as major pathways in Alzheimer's disease (AD) etiology. Accumulating evidence suggests that chronic neuroinflammation, mainly mediated by microglia and astrocytes, plays a causative role in neurodegeneration in AD. Our group and others have reported early and dramatic losses of brain sulfatide in AD cases and animal models that are mediated by ApoE in an isoform-dependent manner and accelerated by Aβ accumulation. To date, it remains unclear if changes in specific brain lipids are sufficient to drive AD-related pathology. METHODS To study the consequences of CNS sulfatide deficiency and gain insights into the underlying mechanisms, we developed a novel mouse model of adult-onset myelin sulfatide deficiency, i.e., tamoxifen-inducible myelinating glia-specific cerebroside sulfotransferase (CST) conditional knockout mice (CSTfl/fl/Plp1-CreERT), took advantage of constitutive CST knockout mice (CST-/-), and generated CST/ApoE double knockout mice (CST-/-/ApoE-/-), and assessed these mice using a broad range of methodologies including lipidomics, RNA profiling, behavioral testing, PLX3397-mediated microglia depletion, mass spectrometry (MS) imaging, immunofluorescence, electron microscopy, and Western blot. RESULTS We found that mild central nervous system (CNS) sulfatide losses within myelinating cells are sufficient to activate disease-associated microglia and astrocytes, and to increase the expression of AD risk genes (e.g., Apoe, Trem2, Cd33, and Mmp12), as well as previously established causal regulators of the immune/microglia network in late-onset AD (e.g., Tyrobp, Dock, and Fcerg1), leading to chronic AD-like neuroinflammation and mild cognitive impairment. Notably, neuroinflammation and mild cognitive impairment showed gender differences, being more pronounced in females than males. Subsequent mechanistic studies demonstrated that although CNS sulfatide losses led to ApoE upregulation, genetically-induced myelin sulfatide deficiency led to neuroinflammation independently of ApoE. These results, together with our previous studies (sulfatide deficiency in the context of AD is mediated by ApoE and accelerated by Aβ accumulation) placed both Aβ and ApoE upstream of sulfatide deficiency-induced neuroinflammation, and suggested a positive feedback loop where sulfatide losses may be amplified by increased ApoE expression. We also demonstrated that CNS sulfatide deficiency-induced astrogliosis and ApoE upregulation are not secondary to microgliosis, and that astrogliosis and microgliosis seem to be driven by activation of STAT3 and PU.1/Spi1 transcription factors, respectively. CONCLUSION Our results strongly suggest that sulfatide deficiency is an important contributor and driver of neuroinflammation and mild cognitive impairment in AD pathology.
Collapse
Affiliation(s)
- Shulan Qiu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Present Address: State Key Lab. of Environmental & Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hongkong, China
| | - Nancy S Gonzalez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Sijia He
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Elizabeth Dustin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Lin Ding
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Anindita Bhattacharjee
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
- Research Division, McGuire Veterans Affairs Medical Center, Richmond, Virginia, 23249, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
41
|
Jones RE, Andrews R, Holmans P, Hill M, Taylor PR. Modest changes in Spi1 dosage reveal the potential for altered microglial function as seen in Alzheimer's disease. Sci Rep 2021; 11:14935. [PMID: 34294785 PMCID: PMC8298495 DOI: 10.1038/s41598-021-94324-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic association studies have identified multiple variants at the SPI1 locus that modify risk and age of onset for Alzheimer's Disease (AD). Reports linking risk variants to gene expression suggest that variants denoting higher SPI1 expression are likely to have an earlier AD onset, and several other AD risk genes contain PU.1 binding sites in the promoter region. Overall, this suggests the level of SPI1 may alter microglial phenotype potentially impacting AD. This study determined how the microglial transcriptome was altered following modest changes to Spi1 expression in primary mouse microglia. RNA-sequencing was performed on microglia with reduced or increased Spi1/PU.1 expression to provide an unbiased approach to determine transcriptomic changes affected by Spi1. In summary, a reduction in microglial Spi1 resulted in the dysregulation of transcripts encoding proteins involved in DNA replication pathways while an increased Spi1 results in an upregulation of genes associated with immune response pathways. Additionally, a subset of 194 Spi1 dose-sensitive genes was identified and pathway analysis suggests that several innate immune and interferon response pathways are impacted by the concentration of Spi1. Together these results suggest Spi1 levels can alter the microglial transcriptome and suggests interferon pathways may be altered in individuals with AD related Spi1 risk SNPs.
Collapse
Affiliation(s)
- Ruth E Jones
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Robert Andrews
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Matthew Hill
- UK Dementia Research Institute at Cardiff, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Philip R Taylor
- Division of Infection and Immunity, Cardiff University, Cardiff, UK.
- UK Dementia Research Institute at Cardiff, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
42
|
Dysregulation of miR-15a-5p, miR-497a-5p and miR-511-5p Is Associated with Modulation of BDNF and FKBP5 in Brain Areas of PTSD-Related Susceptible and Resilient Mice. Int J Mol Sci 2021; 22:ijms22105157. [PMID: 34068160 PMCID: PMC8153003 DOI: 10.3390/ijms22105157] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder occurring in susceptible individuals following a traumatic event. Understanding the mechanisms subserving trauma susceptibility/resilience is essential to develop new effective treatments. Increasing evidence suggests that non-coding RNAs, such as microRNAs (miRNAs), may play a prominent role in mediating trauma susceptibility/resilience. In this study, we evaluated the transcriptional expression of two key PTSD-related genes (FKBP5 and BDNF) and the relative targeting miRNAs (miR-15a-5p, miR-497a-5p, miR-511-5p, let-7d-5p) in brain areas of PTSD-related susceptible and resilient mice identified through our recently developed mouse model of PTSD (arousal-based individual screening (AIS) model). We observed lower transcript levels of miR-15a-5p, miR-497a-5p, and miR-511a-5p in the hippocampus and hypothalamus of susceptible mice compared to resilient mice, suggesting that the expression of these miRNAs could discriminate the two different phenotypes of stress-exposed mice. These miRNA variations could contribute, individually or synergically, to the inversely correlated transcript levels of FKBP5 and BDNF. Conversely, in the medial prefrontal cortex, downregulation of miR-15a-5p, miR-511-5p, and let-7d-5p was observed both in susceptible and resilient mice, and not accompanied by changes in their mRNA targets. Furthermore, miRNA expression in the different brain areas correlated to stress-induced behavioral scores (arousal score, avoidance-like score, social memory score and PTSD-like score), suggesting a linear connection between miRNA-based epigenetic modulation and stress-induced phenotypes. Pathway analysis of a miRNA network showed a statistically significant enrichment of molecular processes related to PTSD and stress. In conclusion, our results indicate that PTSD susceptibility/resilience might be shaped by brain-area-dependent modulation of miRNAs targeting FKBP5, BDNF, and other stress-related genes.
Collapse
|
43
|
Chen SW, Hung YS, Fuh JL, Chen NJ, Chu YS, Chen SC, Fann MJ, Wong YH. Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors. Stem Cell Reports 2021; 16:1363-1380. [PMID: 33836143 PMCID: PMC8185376 DOI: 10.1016/j.stemcr.2021.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia, the immune cells of the central nervous system, play critical roles in brain physiology and pathology. We report a novel approach that produces, within 10 days, the differentiation of human induced pluripotent stem cells (hiPSCs) into microglia (iMG) by forced expression of both SPI1 and CEBPA. High-level expression of the main microglial markers and the purity of the iMG cells were confirmed by RT-qPCR, immunostaining, and flow cytometry analyses. Whole-transcriptome analysis demonstrated that these iMGs resemble human fetal/adult microglia but not human monocytes. Moreover, these iMGs exhibited appropriate physiological functions, including various inflammatory responses, ADP/ATP-evoked migration, and phagocytic ability. When co-cultured with hiPSC-derived neurons, the iMGs respond and migrate toward injured neurons. This study has established a protocol for the rapid conversion of hiPSCs into functional iMGs, which should facilitate functional studies of human microglia using different disease models and also help with drug discovery. Efficient generation of human iMGs from iPSCs by forced expression of SPI1 and CEBPA The transcriptome profile of iMGs resembles that of human primary microglia The iMG cells possess appropriate physiological functioning An iN-iMG co-culture model is established for studying neuron-microglia interactions
Collapse
Affiliation(s)
- Shih-Wei Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC); Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC)
| | - Yu-Sheng Hung
- Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC)
| | - Jong-Ling Fuh
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC); Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan (ROC)
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC)
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC)
| | - Shu-Cian Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC)
| | - Ming-Ji Fann
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC); Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC)
| | - Yu-Hui Wong
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC); Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan (ROC).
| |
Collapse
|
44
|
Zimmer TS, Korotkov A, Zwakenberg S, Jansen FE, Zwartkruis FJT, Rensing NR, Wong M, Mühlebner A, van Vliet EA, Aronica E, Mills JD. Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathol 2021; 31:e12949. [PMID: 33786950 PMCID: PMC8412124 DOI: 10.1111/bpa.12949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a congenital disorder characterized by cortical malformations and concomitant epilepsy caused by loss‐of‐function mutations in the mTOR suppressors TSC1 or TSC2. While the underlying molecular changes caused by mTOR activation in TSC have previously been investigated, the drivers of these transcriptional change have not been fully elucidated. A better understanding of the perturbed transcriptional regulation could lead to the identification of novel pathways for therapeutic intervention not only in TSC, but other genetic epilepsies in which mTOR activation plays a key role, such as focal cortical dysplasia 2b (FCD). Here, we analyzed RNA sequencing data from cortical tubers and a tsc2−/− zebrafish. We identified differential expression of the transcription factors (TFs) SPI1/PU.1, IRF8, GBX2, and IKZF1 of which SPI1/PU.1 and IRF8 targets were enriched among the differentially expressed genes. Furthermore, for SPI1/PU.1 these findings were conserved in TSC zebrafish model. Next, we confirmed overexpression of SPI1/PU.1 on the RNA and protein level in a separate cohort of surgically resected TSC tubers and FCD tissue, in fetal TSC tissue, and a Tsc1GFAP−/− mouse model of TSC. Subsequently, we validated the expression of SPI1/PU.1 in dysmorphic cells with mTOR activation in TSC tubers. In fetal TSC, we detected SPI1/PU.1 expression prenatally and elevated RNA Spi1 expression in Tsc1GFAP−/− mice before the development of seizures. Finally, in vitro, we identified that in astrocytes and neurons SPI1 transcription was driven by H2O2‐induced oxidative stress, independent of mTOR. We identified SPI1/PU.1 as a novel TF involved in the pro‐inflammatory gene expression of malformed cells in TSC and FCD 2b. This transcriptional program is activated in response to oxidative stress and already present prenatally. Importantly, SPI1/PU.1 protein appears to be strictly limited to malformed cells, as we did not find SPI1/PU.1 protein expression in mice nor in our in vitro models.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Michael Wong
- Department of Neurology, Washington University, Saint Louis, MO, USA
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Clinical and Experimental Epilepsy, UCL, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
45
|
Chen Y, Ding X, Wang S, Ding P, Xu Z, Li J, Wang M, Xiang R, Wang X, Wang H, Feng Q, Qiu J, Wang F, Huang Z, Zhang X, Tang G, Tang S. A single-cell atlas of mouse olfactory bulb chromatin accessibility. J Genet Genomics 2021; 48:147-162. [PMID: 33926839 DOI: 10.1016/j.jgg.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
Olfaction, the sense of smell, is a fundamental trait crucial to many species. The olfactory bulb (OB) plays pivotal roles in processing and transmitting odor information from the environment to the brain. The cellular heterogeneity of the mouse OB has been studied using single-cell RNA sequencing. However, the epigenetic landscape of the mOB remains mostly unexplored. Herein, we apply single-cell assay for transposase-accessible chromatin sequencing to profile the genome-wide chromatin accessibility of 9,549 single cells from the mOB. Based on single-cell epigenetic signatures, mOB cells are classified into 21 clusters corresponding to 11 cell types. We identify distinct sets of putative regulatory elements specific to each cell cluster from which putative target genes and enriched potential functions are inferred. In addition, the transcription factor motifs enriched in each cell cluster are determined to indicate the developmental fate of each cell lineage. Our study provides a valuable epigenetic data set for the mOB at single-cell resolution, and the results can enhance our understanding of regulatory circuits and the therapeutic capacity of the OB at the single-cell level.
Collapse
Affiliation(s)
- Yin Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangning Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyou Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Peiwen Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Zaoxu Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiankang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Mingyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Rong Xiang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoling Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Haoyu Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Qikai Feng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiaying Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Feiyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xingliang Zhang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gen Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China.
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Zunyi Medical University, Zunyi, Guizhou 563099, China; China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
46
|
Chen MJ, Ramesha S, Weinstock LD, Gao T, Ping L, Xiao H, Dammer EB, Duong DD, Levey AI, Lah JJ, Seyfried NT, Wood LB, Rangaraju S. Extracellular signal-regulated kinase regulates microglial immune responses in Alzheimer's disease. J Neurosci Res 2021; 99:1704-1721. [PMID: 33729626 DOI: 10.1002/jnr.24829] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
The importance of mitogen-activated protein kinase (MAPK) pathway signaling in regulating microglia-mediated neuroinflammation in Alzheimer's disease (AD) remains unclear. We examined the role of MAPK signaling in microglia using a preclinical model of AD pathology and quantitative proteomics studies of postmortem human brains. In multiplex immunoassay analyses of MAPK phosphoproteins in acutely isolated microglia and brain tissue from 5xFAD mice, we found phosphorylated extracellular signal-regulated kinase (ERK) was the most strongly upregulated phosphoprotein within the MAPK pathway in acutely isolated microglia, but not whole-brain tissue from 5xFAD mice. The importance of ERK signaling in primary microglia cultures was next investigated using transcriptomic profiling and functional assays of amyloid-β and neuronal phagocytosis, which confirmed that ERK is a critical regulator of IFNγ-mediated pro-inflammatory activation of microglia, although it was also partly important for constitutive microglial functions. Phospho-ERK was an upstream regulator of disease-associated microglial gene expression (Trem2, Tyrobp), as well as several human AD risk genes (Bin1, Cd33, Trem2, Cnn2), indicative of the importance of microglial ERK signaling in AD pathology. Quantitative proteomic analyses of postmortem human brain showed that ERK1 and ERK2 were the only MAPK proteins with increased protein expression and positive associations with neuropathological grade. In a human brain phosphoproteomic study, we found evidence for increased flux through the ERK signaling pathway in AD. Overall, our analyses strongly suggest that ERK phosphorylation, particularly in microglia in mouse models, is a regulator of pro-inflammatory immune responses in AD pathogenesis.
Collapse
Affiliation(s)
- Michael J Chen
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Laura D Weinstock
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tianwen Gao
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Lingyan Ping
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Duc D Duong
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Levi B Wood
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
47
|
Pimenova AA, Herbinet M, Gupta I, Machlovi SI, Bowles KR, Marcora E, Goate AM. Alzheimer's-associated PU.1 expression levels regulate microglial inflammatory response. Neurobiol Dis 2021; 148:105217. [PMID: 33301878 PMCID: PMC7808757 DOI: 10.1016/j.nbd.2020.105217] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
More than forty loci contribute to genetic risk for Alzheimer's disease (AD). These risk alleles are enriched in myeloid cell enhancers suggesting that microglia, the brain-resident macrophages, contribute to AD risk. We have previously identified SPI1/PU.1, a master regulator of myeloid cell development in the brain and periphery, as a genetic risk factor for AD. Higher expression of SPI1 is associated with increased risk for AD, while lower expression is protective. To investigate the molecular and cellular phenotypes associated with higher and lower expression of PU.1 in microglia, we used stable overexpression and knock-down of PU.1 in BV2, an immortalized mouse microglial cell line. Transcriptome analysis suggests that reduced PU.1 expression suppresses expression of homeostatic genes similar to the disease-associated microglia response to amyloid plaques in mouse models of AD. Moreover, PU.1 knock-down resulted in activation of protein translation, antioxidant action and cholesterol/lipid metabolism pathways with a concomitant decrease of pro-inflammatory gene expression. PU.1 overexpression upregulated and knock-down downregulated phagocytic uptake in BV2 cells independent of the nature of the engulfed material. However, cells with reduced PU.1 expression retained their ability to internalize myelin similar to control albeit with a delay, which aligns with their anti-inflammatory profile. Here we identified several microglial responses that are modulated by PU.1 expression levels and propose that risk association of PU.1 to AD is driven by increased pro-inflammatory response due to increased viability of cells under cytotoxic conditions. In contrast, low expression of PU.1 leads to increased cell death under cytotoxic conditions accompanied by reduced pro-inflammatory signaling that decreased A1 reactive astrocytes signature supporting the protective effect of SPI1 genotype in AD. These findings inform future in vivo validation studies and design of small molecule screens for therapeutic discovery in AD.
Collapse
Affiliation(s)
- Anna A Pimenova
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manon Herbinet
- Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India
| | - Saima I Machlovi
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn R Bowles
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
48
|
Ihnatovych I, Birkaya B, Notari E, Szigeti K. iPSC-Derived Microglia for Modeling Human-Specific DAMP and PAMP Responses in the Context of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21249668. [PMID: 33352944 PMCID: PMC7765962 DOI: 10.3390/ijms21249668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Neuroinflammation in Alzheimer’s disease (AD) has been the focus for identifying targetable pathways for drug development. The role of amyloid beta (Aβ), a prototype of damage-associated molecular patterns (DAMPs), has been implicated in triggering an inflammatory response. As alpha7 nicotinic acetylcholine receptor (α7 nAChR) binds Aβ with high affinity, α7 nAChR may play a role in Aβ-induced neuroinflammation. The conundrum of how α7 nAChR as the mediator of the cholinergic anti-inflammatory response may trigger an inflammatory response has not been resolved. CHRFAM7A, the uniquely human fusion gene between ULK4 and CHRNA7, is a negative regulator of α7 nAChR ionotropic function. To provide the human context, isogenic induced pluripotent stem cell (iPSC) lines were developed from CHRFAM7A null and carrier individuals by genome-editing the null line using TALENs to knock-in CHRFAM7A. In iPSC-derived microglia-like cells, CHRFAM7A mitigated Aβ uptake through the α7 nAChR. Despite the lower Aβ uptake, the presence of CHRFAM7A was associated with an innate immune response that was characterized by NF-κB activation and NF-κB target transcription (TNFA, IL6, and IL1B). LPS, a prototype PAMP, induced a heightened immune response in CHRFAM7A carriers. CHRFAM7A modified the dynamics of NF-κB translocation by prolonging its nuclear presence. CHRFAM7A modified the α7 nAChR metabotropic function, resulting in a human-specific innate immune response. This iPSC model provided an opportunity to elucidate the mechanism and establish high throughput screens.
Collapse
|
49
|
Martins-Ferreira R, Leal B, Costa PP, Ballestar E. Microglial innate memory and epigenetic reprogramming in neurological disorders. Prog Neurobiol 2020; 200:101971. [PMID: 33309803 DOI: 10.1016/j.pneurobio.2020.101971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023]
Abstract
Microglia are myeloid-derived cells recognized as brain-resident macrophages. They act as the first and main line of immune defense in the central nervous system (CNS). Microglia have high phenotypic plasticity and are essential for regulating healthy brain homeostasis, and their dysregulation underlies the onset and progression of several CNS pathologies through impaired inflammatory responses. Aberrant microglial activation, following an inflammatory insult, is associated with epigenetic dysregulation in various CNS pathologies. Emerging data suggest that certain stimuli to myeloid cells determine enhanced or attenuated responses to subsequent stimuli. These phenomena, generally termed innate immune memory (IIM), are highly dependent on epigenetic reprogramming. Microglial priming has been reported in several neurological diseases and corresponds to a state of increased permissiveness or exacerbated response, promoted by continuous exposure to a chronic pro-inflammatory environment. In this article, we provide extensive evidence of these epigenetic-mediated phenomena under neurological conditions and discuss their contribution to pathogenesis and their clinical implications, including those concerning potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain; Immunogenetics Lab, Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto De Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Barbara Leal
- Immunogenetics Lab, Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto De Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Paulo Pinho Costa
- Immunogenetics Lab, Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto De Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
50
|
Glia in Neurodegeneration: The Housekeeper, the Defender and the Perpetrator. Int J Mol Sci 2020; 21:ijms21239188. [PMID: 33276471 PMCID: PMC7730416 DOI: 10.3390/ijms21239188] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
Over the past decade, research has unveiled the intimate relationship between neuroinflammation and neurodegeneration. Microglia and astrocytes react to brain insult by setting up a multimodal inflammatory state and act as the primary defenders and executioners of neuroinflammatory structural and functional changes. Microglia and astrocytes also play critical roles in the maintenance of normal brain function. This intricate balance of homeostatic and neuroinflammatory functions can influence the onset and the course of neurodegenerative diseases. The emergent role of the microglial-astrocytic axis in neurodegenerative disease presents many druggable targets that may have broad therapeutic benefits across neurodegenerative disease. Here, we provide a brief review of the basal function of both microglia and astrocytes, how they are changed in disease states, the significant differences between mouse and human glia, and use of human induced pluripotent stem cells derived from patients to study cell autonomous changes in human astrocytes and microglia.
Collapse
|