1
|
Lozinski BM, Ta K, Dong Y. Emerging role of galectin 3 in neuroinflammation and neurodegeneration. Neural Regen Res 2024; 19:2004-2009. [PMID: 38227529 DOI: 10.4103/1673-5374.391181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Neuroinflammation and neurodegeneration are key processes that mediate the development and progression of neurological diseases. However, the mechanisms modulating these processes in different diseases remain incompletely understood. Advances in single cell based multi-omic analyses have helped to identify distinct molecular signatures such as Lgals3 that is associated with neuroinflammation and neurodegeneration in the central nervous system (CNS). Lgals3 encodes galectin-3 (Gal3), a β-galactoside and glycan binding glycoprotein that is frequently upregulated by reactive microglia/macrophages in the CNS during various neurological diseases. While Gal3 has previously been associated with non-CNS inflammatory and fibrotic diseases, recent studies highlight Gal3 as a prominent regulator of inflammation and neuroaxonal damage in the CNS during diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In this review, we summarize the pleiotropic functions of Gal3 and discuss evidence that demonstrates its detrimental role in neuroinflammation and neurodegeneration during different neurological diseases. We also consider the challenges of translating preclinical observations into targeting Gal3 in the human CNS.
Collapse
Affiliation(s)
- Brian M Lozinski
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Khanh Ta
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yifei Dong
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
O'Shea TM, Ao Y, Wang S, Ren Y, Cheng AL, Kawaguchi R, Shi Z, Swarup V, Sofroniew MV. Derivation and transcriptional reprogramming of border-forming wound repair astrocytes after spinal cord injury or stroke in mice. Nat Neurosci 2024; 27:1505-1521. [PMID: 38907165 PMCID: PMC11303254 DOI: 10.1038/s41593-024-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Central nervous system (CNS) lesions become surrounded by neuroprotective borders of newly proliferated reactive astrocytes; however, fundamental features of these cells are poorly understood. Here we show that following spinal cord injury or stroke, 90% and 10% of border-forming astrocytes derive, respectively, from proliferating local astrocytes and oligodendrocyte progenitor cells in adult mice of both sexes. Temporal transcriptome analysis, single-nucleus RNA sequencing and immunohistochemistry show that after focal CNS injury, local mature astrocytes dedifferentiate, proliferate and become transcriptionally reprogrammed to permanently altered new states, with persisting downregulation of molecules associated with astrocyte-neuron interactions and upregulation of molecules associated with wound healing, microbial defense and interactions with stromal and immune cells. These wound repair astrocytes share morphologic and transcriptional features with perimeningeal limitans astrocytes and are the predominant source of neuroprotective borders that re-establish CNS integrity around lesions by separating neural parenchyma from stromal and immune cells as occurs throughout the healthy CNS.
Collapse
Affiliation(s)
- Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yilong Ren
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Amy L Cheng
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Prins CA, de Oliveira FL, de Mello Coelho V, Dos Santos Ribeiro EB, de Almeida JS, Silva NMB, Almeida FM, Martinez AMB. Galectin-3 absence alters lymphocytes populations dynamics behavior and promotes functional recovery after spinal cord injury in mice. Exp Neurol 2024; 377:114785. [PMID: 38670250 DOI: 10.1016/j.expneurol.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.
Collapse
Affiliation(s)
- Caio Andrade Prins
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Leite de Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria de Mello Coelho
- Laboratório de lmunofisiologia, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuela Bezerra Dos Santos Ribeiro
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Moraes Bechelli Silva
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Anatomia Patológica, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Liddelow SA, Olsen ML, Sofroniew MV. Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders. Cold Spring Harb Perspect Biol 2024; 16:a041356. [PMID: 38316554 PMCID: PMC11216178 DOI: 10.1101/cshperspect.a041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York 10016, USA
- Department of Ophthalmology, NYU School of Medicine, New York, New York 10016, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Mohácsik P, Halmos E, Dorogházi B, Ruska Y, Wittmann G, Bianco AC, Fekete C, Gereben B. The Musashi-1-type 2 deiodinase pathway regulates astrocyte proliferation. J Biol Chem 2024; 300:107477. [PMID: 38879014 PMCID: PMC11301063 DOI: 10.1016/j.jbc.2024.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable, while tissue TH action fluctuates according to cell type-specific mechanisms. Here, we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3'UTR where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1 immunoreactivity was observed in 2 mouse Dio2-expressing cell types, that is, cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.
Collapse
Affiliation(s)
- Petra Mohácsik
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Emese Halmos
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Dorogházi
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Yvette Ruska
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, Illinois, USA
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
6
|
Koupourtidou C, Schwarz V, Aliee H, Frerich S, Fischer-Sternjak J, Bocchi R, Simon-Ebert T, Bai X, Sirko S, Kirchhoff F, Dichgans M, Götz M, Theis FJ, Ninkovic J. Shared inflammatory glial cell signature after stab wound injury, revealed by spatial, temporal, and cell-type-specific profiling of the murine cerebral cortex. Nat Commun 2024; 15:2866. [PMID: 38570482 PMCID: PMC10991294 DOI: 10.1038/s41467-024-46625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.
Collapse
Affiliation(s)
- Christina Koupourtidou
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Veronika Schwarz
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Hananeh Aliee
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Frerich
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Judith Fischer-Sternjak
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Riccardo Bocchi
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Tatiana Simon-Ebert
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
| | - Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
- German Centre for Neurodegenerative Diseases, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Jovica Ninkovic
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Adewumi HO, Berniac GI, McCarthy EA, O'Shea TM. Ischemic and hemorrhagic stroke lesion environments differentially alter the glia repair potential of neural progenitor cell and immature astrocyte grafts. Exp Neurol 2024; 374:114692. [PMID: 38244885 DOI: 10.1016/j.expneurol.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Using cell grafting to direct glia-based repair mechanisms in adult CNS injuries represents a potential therapeutic strategy for supporting functional neural parenchymal repair. However, glia repair directed by neural progenitor cell (NPC) grafts is dramatically altered by increasing lesion size, severity, and mode of injury. To address this, we studied the interplay between astrocyte differentiation and cell proliferation of NPC in vitro to generate proliferating immature astrocytes (ImA) using hysteretic conditioning. ImA maintain proliferation rates at comparable levels to NPC but showed robust immature astrocyte marker expression including Gfap and Vimentin. ImA demonstrated enhanced resistance to myofibroblast-like phenotypic transformations upon exposure to serum enriched environments in vitro compared to NPC and were more effective at scratch wound closure in vitro compared to quiescent astrocytes. Glia repair directed by ImA at acute ischemic striatal stroke lesions was equivalent to NPC but better than quiescent astrocyte grafts. While ischemic injury environments supported enhanced survival of grafts compared to healthy striatum, hemorrhagic lesions were hostile towards both NPC and ImA grafts leading to poor survival and ineffective modulation of natural wound repair processes. Our findings demonstrate that lesion environments, rather than transcriptional pre-graft states, determine the survival, cell-fate, and glia repair competency of cell grafts applied to acute CNS injuries.
Collapse
Affiliation(s)
- Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Gabriela I Berniac
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Emily A McCarthy
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA.
| |
Collapse
|
8
|
Funaki M, Nio-Kobayashi J, Suzuki R, Bando Y. Galectin-3 Plays a Role in Neuroinflammation in the Visual Pathway in Experimental Optic Neuritis. Cells 2024; 13:612. [PMID: 38607051 PMCID: PMC11011492 DOI: 10.3390/cells13070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) featuring numerous neuropathologies, including optic neuritis (ON) in some patients. However, the molecular mechanisms of ON remain unknown. Galectins, β-galactoside-binding lectins, are involved in various pathophysiological processes. We previously showed that galectin-3 (gal-3) is associated with the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the current study, we investigated the expression of gal-3 in the visual pathway in EAE mice to clarify its role in the pathogenesis of ON. Immunohistochemical analysis revealed upregulation of gal-3 in the visual pathway of the EAE mice during the peak stage of the disease, compared with naïve and EAE mice during the chronic stage. Gal-3 was detected mainly in microglia/macrophages and astrocytes in the visual pathway in EAE mice. In addition, gal-3+/Iba-1+ cells, identified as phagocytic by immunostaining for cathepsin D, accumulated in demyelinating lesions in the visual pathway during the peak disease stage of EAE. Moreover, NLRP3 expression was detected in most gal-3+/Iba-1+ cells. These results strongly suggest that gal-3 regulates NLRP3 signaling in microglia/macrophages and neuroinflammatory demyelination in ON. In astrocytes, gal-3 was expressed from the peak to the chronic disease stages. Taken together, our findings suggest a critical role of gal-3 in the pathogenesis of ON. Thus, gal-3 in glial cells may serve as a potential therapeutic target for ON.
Collapse
Affiliation(s)
- Masako Funaki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Junko Nio-Kobayashi
- Department of Functional Glycobiology in Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
9
|
Liu HZ, Song XQ, Zhang H. Sugar-coated bullets: Unveiling the enigmatic mystery 'sweet arsenal' in osteoarthritis. Heliyon 2024; 10:e27624. [PMID: 38496870 PMCID: PMC10944269 DOI: 10.1016/j.heliyon.2024.e27624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Glycosylation is a crucial post-translational modification process where sugar molecules (glycans) are covalently linked to proteins, lipids, or other biomolecules. In this highly regulated and complex process, a series of enzymes are involved in adding, modifying, or removing sugar residues. This process plays a pivotal role in various biological functions, influencing the structure, stability, and functionality of the modified molecules. Glycosylation is essential in numerous biological processes, including cell adhesion, signal transduction, immune response, and biomolecular recognition. Dysregulation of glycosylation is associated with various diseases. Glycation, a post-translational modification characterized by the non-enzymatic attachment of sugar molecules to proteins, has also emerged as a crucial factor in various diseases. This review comprehensively explores the multifaceted role of glycation in disease pathogenesis, with a specific focus on its implications in osteoarthritis (OA). Glycosylation and glycation alterations wield a profound influence on OA pathogenesis, intertwining with disease onset and progression. Diverse studies underscore the multifaceted role of aberrant glycosylation in OA, particularly emphasizing its intricate relationship with joint tissue degradation and inflammatory cascades. Distinct glycosylation patterns, including N-glycans and O-glycans, showcase correlations with inflammatory cytokines, matrix metalloproteinases, and cellular senescence pathways, amplifying the degenerative processes within cartilage. Furthermore, the impact of advanced glycation end-products (AGEs) formation in OA pathophysiology unveils critical insights into glycosylation-driven chondrocyte behavior and extracellular matrix remodeling. These findings illuminate potential therapeutic targets and diagnostic markers, signaling a promising avenue for targeted interventions in OA management. In this comprehensive review, we aim to thoroughly examine the significant impact of glycosylation or AGEs in OA and explore its varied effects on other related conditions, such as liver-related diseases, immune system disorders, and cancers, among others. By emphasizing glycosylation's role beyond OA and its implications in other diseases, we uncover insights that extend beyond the immediate focus on OA, potentially revealing novel perspectives for diagnosing and treating OA.
Collapse
Affiliation(s)
- Hong-zhi Liu
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-qiu Song
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hongmei Zhang
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Yu C, Lad EM, Mathew R, Shiraki N, Littleton S, Chen Y, Hou J, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Bowes Rickman C, Proia AD, Colonna M, Haass C, Saban DR. Microglia at sites of atrophy restrict the progression of retinal degeneration via galectin-3 and Trem2. J Exp Med 2024; 221:e20231011. [PMID: 38289348 PMCID: PMC10826045 DOI: 10.1084/jem.20231011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Eleonora M. Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Nobuhiko Shiraki
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Alan D. Proia
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Daniel R. Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Schlotterose L, Cossais F, Lucius R, Hattermann K. Resveratrol Alleviates the Early Challenges of Implant-Based Drug Delivery in a Human Glial Cell Model. Int J Mol Sci 2024; 25:2078. [PMID: 38396755 PMCID: PMC10889494 DOI: 10.3390/ijms25042078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Brain diseases are oftentimes life-threatening and difficult to treat. The local administration of drug substances using brain implants can increase on-site concentrations and decrease systemic side effects. However, the biocompatibility of potential brain implant materials needs to be evaluated carefully as implants can trigger foreign body reactions, particularly by increasing the microglia and astrocyte reactivity. To date, these tests have been frequently conducted in very simple in vitro models, in particular not respecting the key players in glial cell reactions and the challenges of surgical implantation characterized by the disruption of oxygen and nutrient supply. Thus, we established an in vitro model in which we treated human glial cell lines with reduced oxygen and glucose levels. The model displayed cytokine and reactive oxygen species release from reactive microglia and an increase in a marker of reactive astrocytes, galectin-3. Moreover, the treatment caused changes in the cell survival and triggered the production of hypoxia-inducible factor 1α. In this comprehensive platform, we demonstrated the protective effect of the natural polyphenol resveratrol as a model substance, which might be included in brain implants to ease the undesired glial cell response. Overall, a glial-cell-based in vitro model of the initial challenges of local brain disease treatment may prove useful for investigating new therapy options.
Collapse
Affiliation(s)
| | | | | | - Kirsten Hattermann
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany; (L.S.); (R.L.)
| |
Collapse
|
12
|
Riew TR, Hwang JW, Jin X, Kim HL, Jung SJ, Lee MY. Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia. Front Cell Neurosci 2023; 17:1308247. [PMID: 38188667 PMCID: PMC10766773 DOI: 10.3389/fncel.2023.1308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Sirko S, Schichor C, Della Vecchia P, Metzger F, Sonsalla G, Simon T, Bürkle M, Kalpazidou S, Ninkovic J, Masserdotti G, Sauniere JF, Iacobelli V, Iacobelli S, Delbridge C, Hauck SM, Tonn JC, Götz M. Injury-specific factors in the cerebrospinal fluid regulate astrocyte plasticity in the human brain. Nat Med 2023; 29:3149-3161. [PMID: 38066208 PMCID: PMC10719094 DOI: 10.1038/s41591-023-02644-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2023] [Indexed: 12/17/2023]
Abstract
The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage and found a striking correlation between lesions involving blood-brain barrier rupture and astrocyte proliferation that was further corroborated in an assay probing for neural stem cell potential. Most importantly, proteomic analysis unraveled a crucial signaling pathway regulating this astrocyte plasticity with GALECTIN3 as a novel marker for proliferating astrocytes and the GALECTIN3-binding protein LGALS3BP as a functional hub mediating astrocyte proliferation and neurosphere formation. Taken together, this work identifies a therapeutically relevant astrocyte response and their molecular regulators in different pathologies affecting the human cerebral cortex.
Collapse
Affiliation(s)
- Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | | | - Giovanna Sonsalla
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Tatiana Simon
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Martina Bürkle
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Sofia Kalpazidou
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Chair of Cell Biology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany
| | - Giacomo Masserdotti
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | | | | | | | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, TUM School of Medicine, TU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Center München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
- SYNERGY Excellence Cluster of Systems Neurology, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Gleichman AJ, Kawaguchi R, Sofroniew MV, Carmichael ST. A toolbox of astrocyte-specific, serotype-independent adeno-associated viral vectors using microRNA targeting sequences. Nat Commun 2023; 14:7426. [PMID: 37973910 PMCID: PMC10654773 DOI: 10.1038/s41467-023-42746-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
Astrocytes, one of the most prevalent cell types in the central nervous system (CNS), are critically involved in neural function. Genetically manipulating astrocytes is an essential tool in understanding and affecting their roles. Adeno-associated viruses (AAVs) enable rapid genetic manipulation; however, astrocyte specificity of AAVs can be limited, with high off-target expression in neurons and sparsely in endothelial cells. Here, we report the development of a cassette of four copies of six miRNA targeting sequences (4x6T) which triggers transgene degradation specifically in neurons and endothelial cells. In combination with the GfaABC1D promoter, 4x6T increases astrocytic specificity of Cre with a viral reporter from <50% to >99% in multiple serotypes in mice, and confers astrocyte specificity in multiple recombinases and reporters. We also present empty vectors to add 4x6T to other cargo, independently and in Cre/Dre-dependent forms. This toolbox of AAVs allows rapid manipulation of astrocytes throughout the CNS, is compatible with different AAV serotypes, and demonstrates the efficacy of using multiplexed miRNA targeting sequences to decrease expression in multiple off-target cell populations simultaneously.
Collapse
Affiliation(s)
- Amy J Gleichman
- Department of Neurology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, University of California-Los Angeles, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Muñoz-Ballester C, Robel S. Astrocyte-mediated mechanisms contribute to traumatic brain injury pathology. WIREs Mech Dis 2023; 15:e1622. [PMID: 37332001 PMCID: PMC10526985 DOI: 10.1002/wsbm.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
Astrocytes respond to traumatic brain injury (TBI) with changes to their molecular make-up and cell biology, which results in changes in astrocyte function. These changes can be adaptive, initiating repair processes in the brain, or detrimental, causing secondary damage including neuronal death or abnormal neuronal activity. The response of astrocytes to TBI is often-but not always-accompanied by the upregulation of intermediate filaments, including glial fibrillary acidic protein (GFAP) and vimentin. Because GFAP is often upregulated in the context of nervous system disturbance, reactive astrogliosis is sometimes treated as an "all-or-none" process. However, the extent of astrocytes' cellular, molecular, and physiological adjustments is not equal for each TBI type or even for each astrocyte within the same injured brain. Additionally, new research highlights that different neurological injuries and diseases result in entirely distinctive and sometimes divergent astrocyte changes. Thus, extrapolating findings on astrocyte biology from one pathological context to another is problematic. We summarize the current knowledge about astrocyte responses specific to TBI and point out open questions that the field should tackle to better understand how astrocytes shape TBI outcomes. We address the astrocyte response to focal versus diffuse TBI and heterogeneity of reactive astrocytes within the same brain, the role of intermediate filament upregulation, functional changes to astrocyte function including potassium and glutamate homeostasis, blood-brain barrier maintenance and repair, metabolism, and reactive oxygen species detoxification, sex differences, and factors influencing astrocyte proliferation after TBI. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Carmen Muñoz-Ballester
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stefanie Robel
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
17
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Yu C, Lad EM, Mathew R, Littleton S, Chen Y, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Rickman CB, Proia AD, Colonna M, Haass C, Saban DR. Microglia at Sites of Atrophy Restrict the Progression of Retinal Degeneration via Galectin-3 and Trem2 Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549403. [PMID: 37502831 PMCID: PMC10370087 DOI: 10.1101/2023.07.19.549403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Degenerative diseases of the outer retina, including age-related macular degeneration (AMD), are characterized by atrophy of photoreceptors and retinal pigment epithelium (RPE). In these blinding diseases, macrophages are known to accumulate ectopically at sites of atrophy, but their ontogeny and functional specialization within this atrophic niche remain poorly understood, especially in the human context. Here, we uncovered a transcriptionally unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and in human AMD. Using disease models, we found that conditional deletion of galectin-3 in microglia led to defects in phagocytosis and consequent augmented photoreceptor death, RPE damage and vision loss, suggestive of a protective role. Mechanistically, Trem2 signaling orchestrated the migration of microglial cells to sites of atrophy, and there, induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection, but only in a galectin-3-dependent manner, further signifying the functional interdependence of these two molecules. Likewise in elderly human subjects, we identified a highly conserved population of microglia at the transcriptomic, protein and spatial levels, and this population was enriched in the macular region of postmortem AMD subjects. Collectively, our findings reveal an atrophy-associated specialization of microglia that restricts the progression of retinal degeneration in mice and further suggest that these protective microglia are conserved in AMD.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Immunology, Duke University; Durham, NC 27710, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) Munich; 81377 Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Cell Biology, Duke University; Durham, NC 27710, USA
| | - Alan D Proia
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich; 81377 Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München; 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy); 81377 Munich, Germany
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine; Durham, NC 27710, USA
- Department of Immunology, Duke University; Durham, NC 27710, USA
| |
Collapse
|
19
|
Musco H, Beecher K, Chand KK, Colditz PB, Wixey JA. Blood Biomarkers in the Fetally Growth Restricted and Small for Gestational Age Neonate: Associations with Brain Injury. Dev Neurosci 2023; 46:84-97. [PMID: 37231871 DOI: 10.1159/000530492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/29/2023] [Indexed: 05/27/2023] Open
Abstract
Fetal growth restriction (FGR) and small for gestational age (SGA) infants have increased risk of mortality and morbidity. Although both FGR and SGA infants have low birthweights for gestational age, a diagnosis of FGR also requires assessments of umbilical artery Doppler, physiological determinants, neonatal features of malnutrition, and in utero growth retardation. Both FGR and SGA are associated with adverse neurodevelopmental outcomes ranging from learning and behavioral difficulties to cerebral palsy. Up to 50% of FGR, newborns are not diagnosed until around the time of birth, yet this diagnosis lacks further indication of the risk of brain injury or adverse neurodevelopmental outcomes. Blood biomarkers may be a promising tool. Defining blood biomarkers indicating an infant's risk of brain injury would provide the opportunity for early detection and therefore earlier support. The aim of this review was to summarize the current literature to assist in guiding the future direction for the early detection of adverse brain outcomes in FGR and SGA neonates. The studies investigated potential diagnostic blood biomarkers from cord and neonatal blood or serum from FGR and SGA human neonates. Results were often conflicting with heterogeneity common in the biomarkers examined, timepoints, gestational age, and definitions of FGR and SGA used. Due to these variations, it was difficult to draw strong conclusions from the results. The search for blood biomarkers of brain injury in FGR and SGA neonates should continue as early detection and intervention is critical to improve outcomes for these neonates.
Collapse
Affiliation(s)
- Hannah Musco
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
20
|
DuBois EM, Adewumi HO, O'Connor PR, Labovitz JE, O'Shea TM. Trehalose-Guanosine Glycopolymer Hydrogels Direct Adaptive Glia Responses in CNS Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211774. [PMID: 37097729 DOI: 10.1002/adma.202211774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/21/2023] [Indexed: 06/18/2023]
Abstract
Neural tissue damaged after central nervous system (CNS) injury does not naturally regenerate but is instead replaced by non-neural fibrotic scar tissue that serves no neurological function. Scar-free repair to create a more permissive environment for regeneration requires altering the natural injury responses of glial cells. In this work, glycopolymer-based supramolecular hydrogels are synthesized to direct adaptive glia repair after CNS injury. Combining poly(trehalose-co-guanosine) (pTreGuo) glycopolymers with free guanosine (fGuo) generates shear-thinning hydrogels through stabilized formation of long-range G-quadruplex secondary structures. Hydrogels with smooth or granular microstructures and mechanical properties spanning three orders of magnitude are produced through facile control of pTreGuo hydrogel composition. Injection of pTreGuo hydrogels into healthy mouse brains elicits minimal stromal cell infiltration and peripherally derived inflammation that is comparable to a bioinert methyl cellulose benchmarking material. pTreGuo hydrogels alter astrocyte borders and recruit microglia to infiltrate and resorb the hydrogel bulk over 7 d. Injections of pTreGuo hydrogels into ischemic stroke alter the natural responses of glial cells after injury to reduce the size of lesions and increase axon regrowth into lesion core environments. These results support the use of pTreGuo hydrogels as part of neural regeneration strategies to activate endogenous glia repair mechanisms.
Collapse
Affiliation(s)
- Eric M DuBois
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Payton R O'Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Jacob E Labovitz
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| |
Collapse
|
21
|
Simpson Ragdale H, Clements M, Tang W, Deltcheva E, Andreassi C, Lai AG, Chang WH, Pandrea M, Andrew I, Game L, Uddin I, Ellis M, Enver T, Riccio A, Marguerat S, Parrinello S. Injury primes mutation-bearing astrocytes for dedifferentiation in later life. Curr Biol 2023; 33:1082-1098.e8. [PMID: 36841240 PMCID: PMC10615847 DOI: 10.1016/j.cub.2023.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/08/2022] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
Despite their latent neurogenic potential, most normal parenchymal astrocytes fail to dedifferentiate to neural stem cells in response to injury. In contrast, aberrant lineage plasticity is a hallmark of gliomas, and this suggests that tumor suppressors may constrain astrocyte dedifferentiation. Here, we show that p53, one of the most commonly inactivated tumor suppressors in glioma, is a gatekeeper of astrocyte fate. In the context of stab-wound injury, p53 loss destabilized the identity of astrocytes, priming them to dedifferentiate in later life. This resulted from persistent and age-exacerbated neuroinflammation at the injury site and EGFR activation in periwound astrocytes. Mechanistically, dedifferentiation was driven by the synergistic upregulation of mTOR signaling downstream of p53 loss and EGFR, which reinstates stemness programs via increased translation of neurodevelopmental transcription factors. Thus, our findings suggest that first-hit mutations remove the barriers to injury-induced dedifferentiation by sensitizing somatic cells to inflammatory signals, with implications for tumorigenesis.
Collapse
Affiliation(s)
- Holly Simpson Ragdale
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Melanie Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Wenhao Tang
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Elitza Deltcheva
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Catia Andreassi
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Wai Hoong Chang
- Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Maria Pandrea
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Ivan Andrew
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Imran Uddin
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Michael Ellis
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Tariq Enver
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
22
|
Bi W, Lei T, Cai S, Zhang X, Yang Y, Xiao Z, Wang L, Du H. Potential of astrocytes in targeting therapy for Alzheimer’s disease. Int Immunopharmacol 2022; 113:109368. [DOI: 10.1016/j.intimp.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
23
|
Fei F, Zhang M, Tarighat SS, Joo EJ, Yang L, Heisterkamp N. Galectin-1 and Galectin-3 in B-Cell Precursor Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms232214359. [PMID: 36430839 PMCID: PMC9694201 DOI: 10.3390/ijms232214359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Acute lymphoblastic leukemias arising from the malignant transformation of B-cell precursors (BCP-ALLs) are protected against chemotherapy by both intrinsic factors as well as by interactions with bone marrow stromal cells. Galectin-1 and Galectin-3 are lectins with overlapping specificity for binding polyLacNAc glycans. Both are expressed by bone marrow stromal cells and by hematopoietic cells but show different patterns of expression, with Galectin-3 dynamically regulated by extrinsic factors such as chemotherapy. In a comparison of Galectin-1 x Galectin-3 double null mutant to wild-type murine BCP-ALL cells, we found reduced migration, inhibition of proliferation, and increased sensitivity to drug treatment in the double knockout cells. Plant-derived carbohydrates GM-CT-01 and GR-MD-02 were used to inhibit extracellular Galectin-1/-3 binding to BCP-ALL cells in co-culture with stromal cells. Treatment with these compounds attenuated migration of the BCP-ALL cells to stromal cells and sensitized human BCP-ALL cells to vincristine and the targeted tyrosine kinase inhibitor nilotinib. Because N-glycan sialylation catalyzed by the enzyme ST6Gal1 can regulate Galectin cell-surface binding, we also compared the ability of BCP-ALL wild-type and ST6Gal1 knockdown cells to resist vincristine treatment when they were co-cultured with Galectin-1 or Galectin-3 knockout stromal cells. Consistent with previous results, stromal Galectin-3 was important for maintaining BCP-ALL fitness during chemotherapy exposure. In contrast, stromal Galectin-1 did not significantly contribute to drug resistance, and there was no clear effect of ST6Gal1-catalysed N-glycan sialylation. Taken together, our results indicate a complicated joint contribution of Galectin-1 and Galectin-3 to BCP-ALL survival, with different roles for endogenous and stromal produced Galectins. These data indicate it will be important to efficiently block both extracellular and intracellular Galectin-1 and Galectin-3 with the goal of reducing BCP-ALL persistence in the protective bone marrow niche during chemotherapy.
Collapse
Affiliation(s)
- Fei Fei
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Somayeh S. Tarighat
- Section of Molecular Carcinogenesis, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital, Los Angeles, CA 90027, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA 91016, USA
- Correspondence: ; Tel.: +1-626-218-7503
| |
Collapse
|
24
|
Zhang W, Ye F, Xiong J, He F, Yang L, Yin F, Peng J, Wang X. Silencing of miR-132-3p protects against neuronal injury following status epilepticus by inhibiting IL-1β-induced reactive astrocyte (A1) polarization. FASEB J 2022; 36:e22554. [PMID: 36111973 DOI: 10.1096/fj.202200110rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is one of the most common refractory epilepsies and is usually accompanied by a range of brain pathological changes, such as neuronal injury and astrocytosis. Naïve astrocytes are readily converted to cytotoxic reactive astrocytes (A1) in response to inflammatory stimulation, suppressing the polarization of A1 protects against neuronal death in early central nervous system injury. Our previous study found that pro-inflammatory cytokines and miR-132-3p (hereinafter referred to as "miR-132") expression were upregulated, but how miR-132 affected reactive astrocyte polarization and neuronal damage during epilepsy is not fully understood. Here, we aimed to explore the effect and mechanism of miR-132 on A1 polarization. Our results confirmed that A1 markers were significantly elevated in the hippocampus of MTLE rats and IL-1β-treated primary astrocytes. In vivo, knockdown of miR-132 by lateral ventricular injection reduced A1 astrocytes, neuronal loss, mossy fiber sprouting, and remitted the severity of status epilepticus and the recurrence of spontaneous recurrent seizures. In vitro, the neuronal cell viability and axon length were reduced by additional treatment with A1 astrocyte conditioned media (ACM), and downregulation of astrocyte miR-132 rescued the inhibition of cell activity by A1 ACM, while the length of axons was further inhibited. The regulation of miR-132 on A1 astrocytes may be related to its target gene expression. Our results show that interfering with astrocyte polarization may be a breakthrough in the treatment of refractory epilepsy, which may extend to the research of other astrocyte polarization-mediated brain injuries.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| |
Collapse
|
25
|
O'Shea TM, Ao Y, Wang S, Wollenberg AL, Kim JH, Ramos Espinoza RA, Czechanski A, Reinholdt LG, Deming TJ, Sofroniew MV. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun 2022; 13:5702. [PMID: 36171203 PMCID: PMC9519954 DOI: 10.1038/s41467-022-33382-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Neural progenitor cells (NPC) represent potential cell transplantation therapies for CNS injuries. To understand how lesion environments influence transplanted NPC fate in vivo, we derived NPC expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling of transplanted NPC. Here, we show that NPC grafted into uninjured mouse CNS generate cells that are transcriptionally similar to healthy astrocytes and oligodendrocyte lineages. In striking contrast, NPC transplanted into subacute CNS lesions after stroke or spinal cord injury in mice generate cells that share transcriptional, morphological and functional features with newly proliferated host astroglia that restrict inflammation and fibrosis and isolate lesions from adjacent viable neural tissue. Our findings reveal overlapping differentiation potentials of grafted NPC and proliferating host astrocytes; and show that in the absence of other interventions, non-cell autonomous cues in subacute CNS lesions direct the differentiation of grafted NPC towards a naturally occurring wound repair astroglial phenotype.
Collapse
Affiliation(s)
- T M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| | - Y Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - S Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - A L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - J H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - R A Ramos Espinoza
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - A Czechanski
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - T J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - M V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
26
|
Seo Y, Ahn JS, Shin YY, Oh SJ, Song MH, Kang MJ, Oh JM, Lee D, Kim YH, Lee BC, Shin TH, Kim HS. Mesenchymal stem cells target microglia via galectin-1 production to rescue aged mice from olfactory dysfunction. Biomed Pharmacother 2022; 153:113347. [DOI: 10.1016/j.biopha.2022.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
|
27
|
Fernández‐Arjona MDM, León‐Rodríguez A, Grondona JM, López‐Ávalos MD. Long-term priming of hypothalamic microglia is associated with energy balance disturbances under diet-induced obesity. Glia 2022; 70:1734-1761. [PMID: 35603807 PMCID: PMC9540536 DOI: 10.1002/glia.24217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022]
Abstract
Exposure of microglia to an inflammatory environment may lead to their priming and exacerbated response to future inflammatory stimuli. Here we aimed to explore hypothalamic microglia priming and its consequences on energy balance regulation. A model of intracerebroventricular administration of neuraminidase (NA, which is present in various pathogens such as influenza virus) was used to induce acute neuroinflammation. Evidences of primed microglia were observed 3 months after NA injection, namely (1) a heightened response of microglia located in the hypothalamic arcuate nucleus after an in vivo inflammatory challenge (high fat diet [HFD] feeding for 10 days), and (2) an enhanced response of microglia isolated from NA-treated mice and challenged in vitro to LPS. On the other hand, the consequences of a previous NA-induced neuroinflammation were further evaluated in an alternative inflammatory and hypercaloric scenario, such as the obesity generated by continued HDF feeding. Compared with sham-injected mice, NA-treated mice showed increased food intake and, surprisingly, reduced body weight. Besides, NA-treated mice had enhanced microgliosis (evidenced by increased number and reactive morphology of microglia) and a reduced population of POMC neurons in the basal hypothalamus. Thus, a single acute neuroinflammatory event may elicit a sustained state of priming in microglial cells, and in particular those located in the hypothalamus, with consequences in hypothalamic cytoarchitecture and its regulatory function upon nutritional challenges.
Collapse
Affiliation(s)
- María del Mar Fernández‐Arjona
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Grupo de investigación en Neuropsicofarmacología, Laboratorio de Medicina RegenerativaHospital Regional Universitario de MálagaMálagaSpain
| | - Ana León‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| | - Jesús M. Grondona
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| | - María D. López‐Ávalos
- Instituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
- Departamento de Biología Celular, Genética y Fisiología, Facultad de CienciasUniversidad de Málaga, Campus de TeatinosMálagaSpain
| |
Collapse
|
28
|
Grade S, Thomas J, Zarb Y, Thorwirth M, Conzelmann KK, Hauck SM, Götz M. Brain injury environment critically influences the connectivity of transplanted neurons. SCIENCE ADVANCES 2022; 8:eabg9445. [PMID: 35687687 PMCID: PMC9187233 DOI: 10.1126/sciadv.abg9445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell transplantation is a promising approach for the reconstruction of neuronal circuits after brain damage. Transplanted neurons integrate with remarkable specificity into circuitries of the mouse cerebral cortex affected by neuronal ablation. However, it remains unclear how neurons perform in a local environment undergoing reactive gliosis, inflammation, macrophage infiltration, and scar formation, as in traumatic brain injury (TBI). To elucidate this, we transplanted cells from the embryonic mouse cerebral cortex into TBI-injured, inflamed-only, or intact cortex of adult mice. Brain-wide quantitative monosynaptic rabies virus (RABV) tracing unraveled graft inputs from correct regions across the brain in all conditions, with pronounced quantitative differences: scarce in intact and inflamed brain versus exuberant after TBI. In the latter, the initial overshoot is followed by pruning, with only a few input neurons persisting at 3 months. Proteomic profiling identifies candidate molecules for regulation of the synaptic yield, a pivotal parameter to tailor for functional restoration of neuronal circuits.
Collapse
Affiliation(s)
- Sofia Grade
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- Corresponding author. (S.G.); (S.M.H.); (M.G.)
| | - Judith Thomas
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Yvette Zarb
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
| | - Manja Thorwirth
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute Virology, Medical Faculty and Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Center Munich, German Center for Environmental Health, 85764 Neuherberg, Germany
- Corresponding author. (S.G.); (S.M.H.); (M.G.)
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Corresponding author. (S.G.); (S.M.H.); (M.G.)
| |
Collapse
|
29
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
30
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
31
|
Gu T, Hu K, Si X, Hu Y, Huang H. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment. WIREs Mech Dis 2022; 14:e1576. [PMID: 35871757 PMCID: PMC9787013 DOI: 10.1002/wsbm.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has revolutionized the landscape of cancer therapy with significant efficacy on hematologic malignancy, especially in relapsed and refractory B cell malignancies. However, unexpected serious toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) still hamper its broad application. Clinical trials using CAR-T cells targeting specific antigens on tumor cell surface have provided valuable information about the characteristics of ICANS. With unclear mechanism of ICANS after CAR-T treatment, unremitting efforts have been devoted to further exploration. Clinical findings from patients with ICANS strongly indicated existence of overactivated peripheral immune response followed by endothelial activation-induced blood-brain barrier (BBB) dysfunction, which triggers subsequent central nervous system (CNS) inflammation and neurotoxicity. Several animal models have been built but failed to fully replicate the whole spectrum of ICANS in human. Hopefully, novel and powerful technologies like single-cell analysis may help decipher the precise cellular response within CNS from a different perspective when ICANS happens. Moreover, multidisciplinary cooperation among the subjects of immunology, hematology, and neurology will facilitate better understanding about the complex immune interaction between the peripheral, protective barriers, and CNS in ICANS. This review elaborates recent findings about ICANS after CAR-T treatment from bed to bench, and discusses the potential cellular and molecular mechanisms that may promote effective management in the future. This article is categorized under: Cancer > Biomedical Engineering Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Tianning Gu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Kejia Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaohui Si
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yongxian Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
32
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
33
|
Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells 2021; 10:3047. [PMID: 34831271 PMCID: PMC8618878 DOI: 10.3390/cells10113047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Luana C. Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Osama Al-Dalahmah
- Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - James Hillis
- Massachusets General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA;
| | - Christopher C. Young
- Department of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA;
| | - Isaiah Asbed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| |
Collapse
|
34
|
Ohlig S, Clavreul S, Thorwirth M, Simon-Ebert T, Bocchi R, Ulbricht S, Kannayian N, Rossner M, Sirko S, Smialowski P, Fischer-Sternjak J, Götz M. Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO J 2021; 40:e107532. [PMID: 34549820 PMCID: PMC8561644 DOI: 10.15252/embj.2020107532] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Astrocytes regulate brain‐wide functions and also show region‐specific differences, but little is known about how general and region‐specific functions are aligned at the single‐cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA‐2‐mediated magnetic‐activated cell sorting (MACS). Single‐cell RNA‐seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation‐related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low‐level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Solène Clavreul
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Manja Thorwirth
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Tatiana Simon-Ebert
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Riccardo Bocchi
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Sabine Ulbricht
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Nirmal Kannayian
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Moritz Rossner
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Swetlana Sirko
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Pawel Smialowski
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Judith Fischer-Sternjak
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany.,SYNERGY, Excellence cluster of Systems Neurology, LMU Munich, Munich, Germany
| |
Collapse
|
35
|
Nio-Kobayashi J, Itabashi T. Galectins and Their Ligand Glycoconjugates in the Central Nervous System Under Physiological and Pathological Conditions. Front Neuroanat 2021; 15:767330. [PMID: 34720894 PMCID: PMC8554236 DOI: 10.3389/fnana.2021.767330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Galectins are β-galactoside-binding lectins consisting of 15 members in mammals. Galectin-1,-3,-4,-8, and -9 are predominantly expressed in the central nervous system (CNS) and regulate various physiological and pathological events. This review summarizes the current knowledge of the cellular expression and role of galectins in the CNS, and discusses their functions in neurite outgrowth, myelination, and neural stem/progenitor cell niches, as well as in ischemic/hypoxic/traumatic injuries and neurodegenerative diseases such as multiple sclerosis. Galectins are expressed in both neurons and glial cells. Galectin-1 is mainly expressed in motoneurons, whereas galectin-3-positive neurons are broadly distributed throughout the brain, especially in the hypothalamus, indicating its function in the regulation of homeostasis, stress response, and the endocrine/autonomic system. Astrocytes predominantly contain galectin-1, and galectin-3 and−9 are upregulated along with its activation. Activated, but not resting, microglia contain galectin-3, supporting its phagocytic activity. Galectin-1,−3, and -4 are characteristically expressed during oligodendrocyte differentiation. Galectin-3 from microglia promotes oligodendrocyte differentiation and myelination, while galectin-1 and axonal galectin-4 suppress its differentiation and myelination. Galectin-1- and- 3-positive cells are involved in neural stem cell niche formation in the subventricular zone and hippocampal dentate gyrus, and the migration of newly generated neurons and glial cells to the olfactory bulb or damaged lesions. In neurodegenerative diseases, galectin-1,-8, and -9 have neuroprotective and anti-inflammatory activities. Galectin-3 facilitates pro-inflammatory action; however, it also plays an important role during the recovery period. Several ligand glycoconjugates have been identified so far such as laminin, integrins, neural cell adhesion molecule L1, sulfatide, neuropilin-1/plexinA4 receptor complex, triggering receptor on myeloid cells 2, and T cell immunoglobulin and mucin domain. N-glycan branching on lymphocytes and oligodendroglial progenitors mediated by β1,6-N-acetylglucosaminyltransferase V (Mgat5/GnTV) influences galectin-binding, modulating inflammatory responses and remyelination in neurodegenerative diseases. De-sulfated galactosaminoglycans such as keratan sulfate are potential ligands for galectins, especially galectin-3, regulating neural regeneration. Galectins have multitudinous functions depending on cell type and context as well as post-translational modifications, including oxidization, phosphorylation, S-nitrosylation, and cleavage, but there should be certain rules in the expression patterns of galectins and their ligand glycoconjugates, possibly related to glucose metabolism in cells.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Itabashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
36
|
Sanchez A, Morales I, Rodriguez-Sabate C, Sole-Sabater M, Rodriguez M. Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines 2021; 9:biomedicines9101341. [PMID: 34680458 PMCID: PMC8533570 DOI: 10.3390/biomedicines9101341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease (PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the ability of astrocytes to control these causes, and the procedures that can be used to promote the neuroprotective action of astrocytes will be commented upon, here.
Collapse
Affiliation(s)
- Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Department of Psychiatry, Getafe University Hospital, 28905 Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, 38010 Tenerife, Spain;
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-922-319361; Fax: +34-922-319397
| |
Collapse
|
37
|
Ribeiro TN, Delgado-García LM, Porcionatto MA. Notch1 and Galectin-3 Modulate Cortical Reactive Astrocyte Response After Brain Injury. Front Cell Dev Biol 2021; 9:649854. [PMID: 34222228 PMCID: PMC8244823 DOI: 10.3389/fcell.2021.649854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
After a brain lesion, highly specialized cortical astrocytes react, supporting the closure or replacement of the damaged tissue, but fail to regulate neural plasticity. Growing evidence indicates that repair response leads astrocytes to reprogram, acquiring a partially restricted regenerative phenotype in vivo and neural stem cells (NSC) hallmarks in vitro. However, the molecular factors involved in astrocyte reactivity, the reparative response, and their relation to adult neurogenesis are poorly understood and remain an area of intense investigation in regenerative medicine. In this context, we addressed the role of Notch1 signaling and the effect of Galectin-3 (Gal3) as underlying molecular candidates involved in cortical astrocyte response to injury. Notch signaling is part of a specific neurogenic microenvironment that maintains NSC and neural progenitors, and Gal3 has a preferential spatial distribution across the cortex and has a central role in the proliferative capacity of reactive astrocytes. We report that in vitro scratch-reactivated cortical astrocytes from C57Bl/6J neonatal mice present nuclear Notch1 intracellular domain (NICD1), indicating Notch1 activation. Colocalization analysis revealed a subpopulation of reactive astrocytes at the lesion border with colocalized NICD1/Jagged1 complexes compared with astrocytes located far from the border. Moreover, we found that Gal3 increased intracellularly, in contrast to its extracellular localization in non-reactive astrocytes, and NICD1/Gal3 pattern distribution shifted from diffuse to vesicular upon astrocyte reactivation. In vitro, Gal3–/– reactive astrocytes showed abolished Notch1 signaling at the lesion core. Notch1 receptor, its ligands (Jagged1 and Delta-like1), and Hes5 target gene were upregulated in C57Bl/6J reactive astrocytes, but not in Gal3–/– reactive astrocytes. Finally, we report that Gal3–/– mice submitted to a traumatic brain injury model in the somatosensory cortex presented a disrupted response characterized by the reduced number of GFAP reactive astrocytes, with smaller cell body perimeter and decreased NICD1 presence at the lesion core. These results suggest that Gal3 might be essential to the proper activation of Notch signaling, facilitating the cleavage of Notch1 and nuclear translocation of NICD1 into the nucleus of reactive cortical astrocytes. Additionally, we hypothesize that reactive astrocyte response could be dependent on Notch1/Jagged1-Hes5 signaling activation following brain injury.
Collapse
Affiliation(s)
- Tais Novaki Ribeiro
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lina Maria Delgado-García
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimelia A Porcionatto
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Schiweck J, Murk K, Ledderose J, Münster-Wandowski A, Ornaghi M, Vida I, Eickholt BJ. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun 2021; 12:1490. [PMID: 33674568 PMCID: PMC7935889 DOI: 10.1038/s41467-021-21662-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The brain of mammals lacks a significant ability to regenerate neurons and is thus particularly vulnerable. To protect the brain from injury and disease, damage control by astrocytes through astrogliosis and scar formation is vital. Here, we show that brain injury in mice triggers an immediate upregulation of the actin-binding protein Drebrin (DBN) in astrocytes, which is essential for scar formation and maintenance of astrocyte reactivity. In turn, DBN loss leads to defective astrocyte scar formation and excessive neurodegeneration following brain injuries. At the cellular level, we show that DBN switches actin homeostasis from ARP2/3-dependent arrays to microtubule-compatible scaffolds, facilitating the formation of RAB8-positive membrane tubules. This injury-specific RAB8 membrane compartment serves as hub for the trafficking of surface proteins involved in astrogliosis and adhesion mediators, such as β1-integrin. Our work shows that DBN-mediated membrane trafficking in astrocytes is an important neuroprotective mechanism following traumatic brain injury in mice.
Collapse
Affiliation(s)
- Juliane Schiweck
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Murk
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Ledderose
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marta Ornaghi
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- grid.6363.00000 0001 2218 4662Institute of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta J. Eickholt
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Escartin C, Galea E, Lakatos A, O'Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24:312-325. [PMID: 33589835 PMCID: PMC8007081 DOI: 10.1038/s41593-020-00783-4] [Citation(s) in RCA: 1160] [Impact Index Per Article: 386.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.
Collapse
Affiliation(s)
- Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - András Lakatos
- John van Geest Centre for Brain Repair and Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Alberto Serrano-Pozo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Carmignoto
- Neuroscience Institute, Italian National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, La Jolla, California, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv Tel Aviv, Israel
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Wei-Ting Chen
- Center for Brain and Disease Research, VIB and University of Leuven, Leuven, Belgium
| | - Martine Cohen-Salmon
- 'Physiology and Physiopathology of the Gliovascular Unit' Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Unité Mixte de Recherche 7241 CNRS, Unité1050 INSERM, PSL Research University, Paris, France
| | - Colm Cunningham
- Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Republic of Ireland
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Bart De Strooper
- Center for Brain and Disease Research, VIB and University of Leuven, Leuven, Belgium
- UK Dementia Research Institute at the University College London, London, UK
| | - Blanca Díaz-Castro
- UK Dementia Research Institute at the University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, UK
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe) and Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington DC, USA
| | - James E Goldman
- Department of Pathology & Cell Biology, Columbia University, New York, New York, USA
| | - Steven A Goldman
- University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science and Rigshospitalet, Kobenhavn N, Denmark
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet & Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Synergy, Excellence Cluster of Systems Neurology, Biomedical Center, Munich, Germany
| | - Antonia Gutiérrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthew G Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Ksenia V Kastanenka
- Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science 55, Expo-ro, Yuseong-gu, Daejeon, Korea
| | - Shane A Liddelow
- Neuroscience Institute, Department of Neuroscience and Physiology, Department of Ophthalmology, NYU School of Medicine, New York, USA
| | - Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Neurosciences Psychiatriques, University of Lausanne and CHUV, Site de Cery, Prilly-Lausanne, Lausanne, Switzerland
| | - Albee Messing
- Waisman Center and School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anusha Mishra
- Department of Neurology Jungers Center for Neurosciences Research and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anna V Molofsky
- Departments of Psychiatry/Weill Institute for Neuroscience University of California, San Francisco, California, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Seiji Okada
- Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Stéphane H R Oliet
- Université de Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux, France
| | - João F Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Aude Panatier
- Université de Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux, France
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Luc Pellerin
- INSERM U1082, Université de Poitiers, Poitiers, France
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - Beatriz G Pérez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Frank W Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School. Associate Member, The Broad Institute, Boston, Massachusetts, USA
| | | | - Miriam Riquelme-Perez
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Stefanie Robel
- Fralin Biomedical Research Institute at Virginia Tech Carilion, School of Neuroscience Virginia Tech, Riverside Circle, Roanoke, Virginia, USA
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jeffrey D Rothstein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - David H Rowitch
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, LMU Munich, Munich, Germany
- Institute for Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Harald Sontheimer
- Virginia Tech School of Neuroscience and Center for Glial Biology in Health, Disease and Cancer, Virginia Tech at the Fralin Biomedical Research Institute, Roanoke, Virginia, USA
| | - Raymond A Swanson
- Dept. of Neurology, University of California San Francisco and San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Dept. Bioquímica y Biología Molecular, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Hospital Virgen del Rocío/CSIC, Sevilla, Spain
| | - Ina-Beate Wanner
- Semel Institute for Neuroscience & Human Behavior, IDDRC, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, McGovern Medical School, UTHealth, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Binhai Zheng
- Department of Neurosciences, UC San Diego School of Medicine, La Jolla; VA San Diego Research Service, San Diego, CA, USA
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Zorec
- Laboratory of Neuroendocrinology, Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
40
|
Thomas JM, Sasankan D, Surendran S, Abraham M, Rajavelu A, Kartha CC. Aberrant regulation of retinoic acid signaling genes in cerebral arterio venous malformation nidus and neighboring astrocytes. J Neuroinflammation 2021; 18:61. [PMID: 33648532 PMCID: PMC7923665 DOI: 10.1186/s12974-021-02094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral arterio venous malformations (AVM) are a major causal factor for intracranial hemorrhage, which result in permanent disability or death. The molecular mechanisms of AVM are complex, and their pathogenesis remains an enigma. Current research on cerebral AVM is focused on characterizing the molecular features of AVM nidus to elucidate the aberrant signaling pathways. The initial stimuli that lead to the development of AVM nidus structures between a dilated artery and a vein are however not known. METHODS In order to understand the molecular basis of development of cerebral AVM, we used in-depth RNA sequencing with the total RNA isolated from cerebral AVM nidus. Immunoblot and qRT-PCR assays were used to study the differential gene expression in AVM nidus, and immunofluorescence staining was used to study the expression pattern of aberrant proteins in AVM nidus and control tissues. Immunohistochemistry was used to study the expression pattern of aberrant proteins in AVM nidus and control tissues. RESULTS The transcriptome study has identified 38 differentially expressed genes in cerebral AVM nidus, of which 35 genes were upregulated and 3 genes were downregulated. A final modular analysis identified an upregulation of ALDH1A2, a key rate-limiting enzyme of retinoic acid signaling pathway. Further analysis revealed that CYR61, a regulator of angiogenesis, and the target gene for retinoic acid signaling is upregulated in AVM nidus. We observed that astrocytes associated with AVM nidus are abnormal with increased expression of GFAP and Vimentin. Triple immunofluorescence staining of the AVM nidus revealed that CYR61 was also overexpressed in the abnormal astrocytes associated with AVM tissue. CONCLUSION Using high-throughput RNA sequencing analysis and immunostaining, we report deregulated expression of retinoic acid signaling genes in AVM nidus and its associated astrocytes and speculate that this might trigger the abnormal angiogenesis and the development of cerebral AVM in humans.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala, 695014, India
- Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Dhakshmi Sasankan
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala, 695014, India
| | - Sumi Surendran
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala, 695014, India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala, 695014, India.
| | - Chandrasekharan C Kartha
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala, 695014, India.
- Society for Continuing Medical Education and Research, Kerala Institute of Medical Sciences, Thiruvananthapuram, Kerala, 695029, India.
| |
Collapse
|
41
|
Zarb Y, Sridhar S, Nassiri S, Utz SG, Schaffenrath J, Maheshwari U, Rushing EJ, Nilsson KPR, Delorenzi M, Colonna M, Greter M, Keller A. Microglia control small vessel calcification via TREM2. SCIENCE ADVANCES 2021; 7:eabc4898. [PMID: 33637522 PMCID: PMC7909879 DOI: 10.1126/sciadv.abc4898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Microglia participate in central nervous system (CNS) development and homeostasis and are often implicated in modulating disease processes. However, less is known about the role of microglia in the biology of the neurovascular unit (NVU). In particular, data are scant on whether microglia are involved in CNS vascular pathology. In this study, we use a mouse model of primary familial brain calcification, Pdgfbret/ret , to investigate the role of microglia in calcification of the NVU. We report that microglia enclosing vessel calcifications, coined calcification-associated microglia, display a distinct activation phenotype. Pharmacological ablation of microglia with the CSF1R inhibitor PLX5622 leads to aggravated vessel calcification. Mechanistically, we show that microglia require functional TREM2 for controlling vascular calcification. Our results demonstrate that microglial activity in the setting of pathological vascular calcification is beneficial. In addition, we identify a previously unrecognized function of microglia in halting the expansion of vascular calcification.
Collapse
Affiliation(s)
- Yvette Zarb
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sebastian Guido Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, Zurich University Hospital, Zurich, Switzerland
| | | | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neurocentre, Zurich University Hospital, Zurich University, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
OʼShea TM, Wollenberg AL, Kim JH, Ao Y, Deming TJ, Sofroniew MV. Foreign body responses in mouse central nervous system mimic natural wound responses and alter biomaterial functions. Nat Commun 2020; 11:6203. [PMID: 33277474 PMCID: PMC7718896 DOI: 10.1038/s41467-020-19906-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/22/2020] [Indexed: 01/30/2023] Open
Abstract
Biomaterials hold promise for therapeutic applications in the central nervous system (CNS). Little is known about molecular factors that determine CNS foreign body responses (FBRs) in vivo, or about how such responses influence biomaterial function. Here, we probed these factors in mice using a platform of injectable hydrogels readily modified to present interfaces with different physiochemical properties to host cells. We found that biomaterial FBRs mimic specialized multicellular CNS wound responses not present in peripheral tissues, which serve to isolate damaged neural tissue and restore barrier functions. We show that the nature and intensity of CNS FBRs are determined by definable properties that significantly influence hydrogel functions, including resorption and molecular delivery when injected into healthy brain or stroke injuries. Cationic interfaces elicit stromal cell infiltration, peripherally derived inflammation, neural damage and amyloid production. Nonionic and anionic formulations show minimal levels of these responses, which contributes to superior bioactive molecular delivery. Our results identify specific molecular mechanisms that drive FBRs in the CNS and have important implications for developing effective biomaterials for CNS applications.
Collapse
Affiliation(s)
- Timothy M OʼShea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Alexander L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - Jae H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - Timothy J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
43
|
Yüksel RN, Göverti D, Kahve AC, Çakmak IB, Yücel Ç, Göka E. Galectin-1 and Galectin-3 Levels in Patients with Schizophrenia and their Unaffected Siblings. Psychiatr Q 2020; 91:715-725. [PMID: 32157549 DOI: 10.1007/s11126-020-09731-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many hypothesis suggest that inflammation plays an important role in schizophrenia. Galectins can regulate inflammatory response in central nervous system. The relation between galectins and neuropsyhchiatric diseases and schizophrenia is unclear. The present study compared levels of Gal-1 and Gal-3 of patients with schizophrenia to that of first-degree relatives without the disease and healthy controls in order to evaluate any possible association. Sixty-two patients with schizophrenia, fifty-five unaffected siblings and fifty-eight age- and sex-matched healthy controls enrolled. Serum Gal-1, Gal-3 and CRP levels were measured. PANNS and CGI-S were used to evaluate the severity of disease. There was a statistically significant difference in serum Gal-1 levels among the patient, sibling, and control groups. There were no statistically significant correlations between serum CRP and serum Gal-1 or Gal-3 levels. Gal-1 values were significantly higher in the unaffected siblings compared to both the patient group and the healthy control group. Gal-3 levels were elevated in the sibling group relative to the patient group. In the literature, the relationship between galectins and schizophrenia is very limited and appears to be a new field of study. Future studies are needed to evaluate the protective roles of galectins.
Collapse
Affiliation(s)
- Rabia Nazik Yüksel
- Department of Psychiatry, University of Health Science, Ankara City Hospital, Ankara, Turkey.
| | - Diğdem Göverti
- Department of Psychiatry, Elazığ Psychiatric Hospital, Elazığ, Turkey
| | - Aybeniz Civan Kahve
- Department of Psychiatry, University of Health Science, Ankara City Hospital, Ankara, Turkey
| | - Işık Batuhan Çakmak
- Department of Psychiatry, University of Health Science, Ankara City Hospital, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Biochemistry, University of Health Science, Ankara City Hospital, Ankara, Turkey
| | - Erol Göka
- Department of Psychiatry, University of Health Science, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
44
|
Lange Canhos L, Chen M, Falk S, Popper B, Straub T, Götz M, Sirko S. Repetitive injury and absence of monocytes promote astrocyte self-renewal and neurological recovery. Glia 2020; 69:165-181. [PMID: 32744730 DOI: 10.1002/glia.23893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Unlike microglia and NG2 glia, astrocytes are incapable of migrating to sites of injury in the posttraumatic cerebral cortex, instead relying on proliferation to replenish their numbers and distribution in the affected region. However, neither the spectrum of their proliferative repertoire nor their postinjury distribution has been examined in vivo. Using a combination of different thymidine analogs and clonal analysis in a model of repetitive traumatic brain injury, we show for the first time that astrocytes that are quiescent following an initial injury can be coerced to proliferate after a repeated insult in the cerebral cortex grey matter. Interestingly, this process is promoted by invasion of monocytes to the injury site, as their genetic ablation (using CCR2-/- mice) increased the number of repetitively dividing astrocytes at the expense of newly proliferating astrocytes in repeatedly injured parenchyma. These differences profoundly affected both the distribution of astrocytes and recovery period for posttraumatic behavior deficits suggesting key roles of astrocyte self-renewal in brain repair after injury.
Collapse
Affiliation(s)
- Luisa Lange Canhos
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Graduate School of Systemic Neurosciences (GSN-LMU), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Muxin Chen
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sven Falk
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Excellence Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| |
Collapse
|
45
|
Ramírez Hernández E, Sánchez-Maldonado C, Mayoral Chávez MA, Hernández-Zimbrón LF, Patricio Martínez A, Zenteno E, Limón Pérez de León ID. The therapeutic potential of galectin-1 and galectin-3 in the treatment of neurodegenerative diseases. Expert Rev Neurother 2020; 20:439-448. [PMID: 32303136 DOI: 10.1080/14737175.2020.1750955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuroinflammation has been proposed as a common factor and one of the main inducers of neuronal degeneration. Galectins are a group of β-galactoside-binding lectins, that play an important role in the immune response, adhesion, proliferation, differentiation, migration and cell growth. Up to 15 members of the galectin's family have been identified; however, the expression of galectin-1 and galectin-3 has been considered a key factor in neuronal regeneration and modulation of the inflammatory response. Galectin-1 is necessary to stimulate the secretion of neurotrophic factors in astrocytes and promoting neuronal regeneration. In contrast, galectin-3 fosters the proliferation of microglial cells and modulates cellular apoptosis, therefore these proteins are considered a useful alternative for the treatment of degenerative diseases.Areas covered: This review describes the roles of galectin-1 and galectin-3 in the modulation of neuroinflammation and their potential as therapeutic targets in the treatment for neurodegenerative diseases.Expert opinion: Although data in the literature vary, the effects of galectin-1 and galectin-3 on the activation and modulation of astrocytes and microglia has been described. Due to its anti-inflammatory effects, galectin-1 is proposed as a molecule with therapeutic potential, whereas the inhibition of galectin-3 could contribute to reduce the neuroinflammatory response in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Claudia Sánchez-Maldonado
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel A Mayoral Chávez
- Centro de Investigaciones Médicas UNAM-UABJO, Facultad de Medicina, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,Departamento de Investigación, Asociación Para Evitar la Ceguera en México, "Hospital Dr. Luis Sánchez Bulnes", Ciudad de México, México
| | - Aleidy Patricio Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - I Daniel Limón Pérez de León
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
46
|
Xiong LL, Qiu DL, Xiu GH, Al-Hawwas M, Jiang Y, Wang YC, Hu Y, Chen L, Xia QJ, Wang TH. DPYSL2 is a novel regulator for neural stem cell differentiation in rats: revealed by Panax notoginseng saponin administration. Stem Cell Res Ther 2020; 11:155. [PMID: 32299503 PMCID: PMC7164273 DOI: 10.1186/s13287-020-01652-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/04/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The limited neuronal differentiation of the endogenous or grafted neural stem cells (NSCs) after brain injury hampers the clinic usage of NSCs. Panax notoginseng saponins (PNS) were extensively used for their clinical value, such as in controlling blood pressure, blood glucose, and inhibiting neuronal apoptosis and enhancing neuronal protection, but whether or not it exerts an effect in promoting neuronal differentiation of the endogenous NSCs is completely unclear and the potential underlying mechanism requires further exploration. METHODS Firstly, we determined whether PNS could successfully induce NSCs to differentiate to neurons under the serum condition. Mass spectrometry and quantitative polymerase chain reaction (Q-PCR) were then performed to screen the differentially expressed proteins (genes) between the PNS + serum and serum control group, upon which dihydropyrimidinase-like 2 (DPYSL2), a possible candidate, was then selected for the subsequent research. To further investigate the actual role of DPYSL2 in the NSC differentiation, DPYSL2-expressing lentivirus was employed to obtain DPYSL2 overexpression in NSCs. DPYSL2-knockout rats were constructed to study its effects on hippocampal neural stem cells. Immunofluorescent staining was performed to identify the differentiation direction of NSCs after 7 days from DPYSL2 transfection, as well as those from DPYSL2-knockout rats. RESULTS Seven differentially expressed protein spots were detected by PD Quest, and DPYSL2 was found as one of the key factors of NSC differentiation in a PNS-treated condition. The results of immunostaining further showed that mainly Tuj1 and GFAP-positive cells increased in the DPYSL2-overexpressed group, while both were depressed in the hippocampal NSCs in the DPYSL2-knockout rat. CONCLUSIONS The present study revealed that the differentiation direction of NSCs could be enhanced through PNS administration, and the DPYSL2 is a key regulator in promoting NSC differentiation. These results not only emphasized the effect of PNS but also indicated DPYSL2 could be a novel target to enhance the NSC differentiation in future clinical trials.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - De-Lu Qiu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang-Hui Xiu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Ya Jiang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China
| | - You-Cui Wang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Hu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
47
|
de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci 2020; 77:1289-1317. [PMID: 31628495 PMCID: PMC7113233 DOI: 10.1007/s00018-019-03327-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system with unknown etiology. Currently approved disease-modifying treatment modalities are immunomodulatory or immunosuppressive. While the applied drugs reduce the frequency and severity of the attacks, their efficacy to regenerate myelin membranes and to halt disease progression is limited. To achieve such therapeutic aims, understanding biological mechanisms of remyelination and identifying factors that interfere with remyelination in MS can give respective directions. Such a perspective is given by the emerging functional profile of galectins. They form a family of tissue lectins, which are potent effectors in processes as diverse as adhesion, apoptosis, immune mediator release or migration. This review focuses on endogenous and exogenous roles of galectins in glial cells such as oligodendrocytes, astrocytes and microglia in the context of de- and (re)myelination and its dysregulation in MS. Evidence is arising for a cooperation among family members so that timed expression and/or secretion of galectins-1, -3 and -4 result in modifying developmental myelination, (neuro)inflammatory processes, de- and remyelination. Dissecting the mechanisms that underlie the distinct activities of galectins and identifying galectins as target or tool to modulate remyelination have the potential to contribute to the development of novel therapeutic strategies for MS.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
48
|
Sartim AG, Sartim MA, Cummings RD, Dias-Baruffi M, Joca SR. Impaired emotional response to stress in mice lacking galectin-1 or galectin-3. Physiol Behav 2020; 220:112862. [PMID: 32156558 DOI: 10.1016/j.physbeh.2020.112862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
Galectin-1 (Gal-1) and galectin-3 (Gal-3) are multifunctional glycan-binding proteins, expressed in the brain and in its limbic structures that are involved in behavioral control. Gal-1 induces the expression of the brain-derived neurotrophic factor (BDNF) and promotes adult neural stem cells proliferation, biological events impaired in stress-related psychiatric disorders, such as depression and anxiety. Despite that, there is no evidence regarding galectin involvement in emotional control during stressful situations. Thus, we analyzed the behavioral phenotype of Gal-1 or Gal-3 knock-out mice (Gal-1 KO or Gal-3 KO) in different experimental models predictive of depressive and compulsive-like behaviors. METHODS C57BL-6 Gal-1 KO, Gal-3 KO, and wild-type mice (WT) were analyzed under the open field test (OFT) and, 6 h later, under the forced swim test (FST). Additionally, independent groups of male mice, lacking galectins or not, were exposed to the tail suspension test (TST) or to the marble burying test (MBT). The hippocampus and prefrontal cortex (PFC) of the mice submitted to MBT were dissected to access BDNF levels. RESULTS Both Gal-1 and Gal-3 KO mice showed increased time of immobility in the FST and in the TST compared to WT animals, thus reflecting an impaired stress-coping behavior. Additionally, Gal-1 and Gal-3 KO female mice presented increased compulsive-like behavior in the MBT, without significant changes in the locomotor activity. BDNF levels were found to be decreased in the PFC of Gal-1 KO mice. DISCUSSION Our results demonstrate that the absence of either endogenous Gal-1 and Gal-3 impairs stress-coping and increases compulsive-like behavior, suggesting that Gal-1 and Gal-3 are involved in the neurobiology of depression and obsessive-compulsive-like disorder.
Collapse
Affiliation(s)
- A G Sartim
- Department of Biomolecular Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - M A Sartim
- Basic and Applied Immunology Graduate Program, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| | - R D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Room 11087, Boston, MA, 02115, United States
| | - M Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo. Ribeirão Preto, SP, Brazil.
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus Denmark.
| |
Collapse
|
49
|
Bedell HW, Schaub NJ, Capadona JR, Ereifej ES. Differential expression of genes involved in the acute innate immune response to intracortical microelectrodes. Acta Biomater 2020; 102:205-219. [PMID: 31733330 DOI: 10.1016/j.actbio.2019.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Higher order tasks in development for brain-computer interfacing applications require the invasiveness of intracortical microelectrodes. Unfortunately, the resulting inflammatory response contributes to the decline of detectable neural signal. The major components of the neuroinflammatory response to microelectrodes have been well-documented with histological imaging, leading to the identification of broad pathways of interest for its inhibition such as oxidative stress and innate immunity. To understand how to mitigate the neuroinflammatory response, a more precise understanding is required. Advancements in genotyping have led the development of new tools for developing temporal gene expression profiles. Therefore, we have meticulously characterized the gene expression profiles of the neuroinflammatory response to mice implanted with non-functional intracortical probes. A time course of differential acute expression of genes of the innate immune response were compared to naïve sham mice, identifying significant changes following implantation. Differential gene expression analysis revealed 22 genes that could inform future therapeutic targets. Particular emphasis is placed on the largest changes in gene expression occurring 24 h post-implantation, and in genes that are involved in multiple innate immune sets including Itgam, Cd14, and Irak4. STATEMENT OF SIGNIFICANCE: Current understanding of the cellular response contributing to the failure of intracortical microelectrodes has been limited to the evaluation of cellular presence around the electrode. Minimal research investigating gene expression profiles of these cells has left a knowledge gap identifying their phenotype. This manuscript represents the first robust investigation of the changes in gene expression levels specific to the innate immune response following intracortical microelectrode implantation. To understand the role of the complement system in response to implanted probes, we performed gene expression profiling over acute time points from implanted subjects and compared them to no-surgery controls. This manuscript provides valuable insights into inflammatory mechanisms at the tissue-probe interface, thus having a high impact on those using intracortical microelectrodes to study and treat neurological diseases and injuries.
Collapse
|
50
|
Keller A, Zarb Y. Reply: Osteoclast imbalance in primary familial brain calcification: evidence for its role in brain calcification. Brain 2020; 143:e2. [PMID: 31754684 DOI: 10.1093/brain/awz352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Neuroscience Center Zurich, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Yvette Zarb
- Department of Neurosurgery, Clinical Neuroscience Center, Neuroscience Center Zurich, Zurich University Hospital, Zurich University, Zurich, Switzerland
| |
Collapse
|