1
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Zhang M, Yuan Q, Wang P, Zhang F, Wu D, Bai H, Liu J, Liu H, Yuan X. Bone Marrow Mesenchymal Stem Cell-Derived Nanovesicles Containing H8 Improve Hepatic Glucose and Lipid Metabolism and Exert Ameliorative Effects in Type 2 Diabetes. Int J Nanomedicine 2024; 19:6643-6658. [PMID: 38979532 PMCID: PMC11230129 DOI: 10.2147/ijn.s455021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.
Collapse
Affiliation(s)
- Meng Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
- The First Hospital of Qiqihar, Qiqihar, People's Republic of China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Fan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Dan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - He Bai
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Haifeng Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
3
|
Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, Zhao J. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab 2024; 36:947-968. [PMID: 38718757 DOI: 10.1016/j.cmet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Zhenyu Yao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.
| |
Collapse
|
4
|
Cui A, Xue Y, Su W, Lin J, Liu Y, Cai G, Wan Q, Jiang Y, Ding D, Zheng Z, Wei S, Li W, Shen J, Wen J, Huang M, Zhao J, Zhang X, Zhao Y, Li H, Ying H, Zhang H, Bi Y, Chen Y, Xu A, Xu Y, Li Y. Glucose regulation of adipose tissue browning by CBP/p300- and HDAC3-mediated reversible acetylation of CREBZF. Proc Natl Acad Sci U S A 2024; 121:e2318935121. [PMID: 38588421 PMCID: PMC11032498 DOI: 10.1073/pnas.2318935121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.
Collapse
Affiliation(s)
- Aoyuan Cui
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yaqian Xue
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weitong Su
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jing Lin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yuxiao Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Genxiang Cai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Yang Jiang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin300457, China
| | - Dong Ding
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zengpeng Zheng
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shuang Wei
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Wenjing Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiaxin Shen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jian Wen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Mengyao Huang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, Shanghai200233, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Haibing Zhang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing210008, China
| | - Yan Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Yu Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
5
|
Liu Y, Su W, Liu Z, Hu Z, Shen J, Zheng Z, Ding D, Huang W, Li W, Cai G, Wei S, Li N, Fang X, Li H, Qin J, Zhang H, Xiao Y, Bi Y, Cui A, Zhang C, Li Y. Macrophage CREBZF Orchestrates Inflammatory Response to Potentiate Insulin Resistance and Type 2 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306685. [PMID: 38286660 PMCID: PMC10987118 DOI: 10.1002/advs.202306685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Chronic adipose tissue inflammation accompanied by macrophage accumulation and activation is implicated in the pathogenesis of insulin resistance and type 2 diabetes in humans. The transcriptional coregulator CREBZF is a key factor in hepatic metabolism, yet its role in modulating adipose tissue inflammation and type 2 diabetes remains elusive. The present study demonstrates that overnutrition-induced CREBZF links adipose tissue macrophage (ATM) proinflammatory activation to insulin resistance. CREBZF deficiency in macrophages, not in neutrophils, attenuates macrophage infiltration in adipose, proinflammatory activation, and hyperglycemia in diet-induced insulin-resistant mice. The coculture assays show that macrophage CREBZF deficiency improves insulin sensitivity in primary adipocytes and adipose tissue. Mechanistically, CREBZF competitively inhibits the binding of IκBα to p65, resulting in enhanced NF-κB activity. In addition, bromocriptine is identified as a small molecule inhibitor of CREBZF in macrophages, which suppresses the proinflammatory phenotype and improves metabolic dysfunction. Furthermore, CREBZF is highly expressed in ATM of obese humans and mice, which is positively correlated with proinflammatory genes and insulin resistance in humans. This study identifies a previously unknown role of CREBZF coupling ATM activation to systemic insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Yuxiao Liu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Weitong Su
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhengshuai Liu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhimin Hu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiaxin Shen
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zengpeng Zheng
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Dong Ding
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Wei Huang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityMetabolic Vascular Diseases Key Laboratory of Sichuan ProvinceLuzhouSichuan646000China
| | - Wenjing Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Genxiang Cai
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shuang Wei
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xia Fang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityMetabolic Vascular Diseases Key Laboratory of Sichuan ProvinceLuzhouSichuan646000China
| | - Hong Li
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Haibing Zhang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yan Bi
- Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingJiangsu210008China
| | - Aoyuan Cui
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Chunxiang Zhang
- Metabolic Vascular Disease Key Laboratory of Sichuan ProvinceThe Affiliated Hospital of Southwest Medical UniversityKey Laboratory of Medical ElectrophysiologyMinistry of EducationSouthwest Medical UniversityLuzhou646000China
| | - Yu Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
6
|
Zhang JB, Zhang QR, Jin Q, Yang J, Lin SZ, Fan JG. Sestrin2 maintains hepatic immune homeostasis and redox balance partially via inhibiting RIPK3-mediated necroptosis in metabolic dysfunction-associated steatohepatitis. Mol Metab 2024; 80:101865. [PMID: 38163459 PMCID: PMC10825057 DOI: 10.1016/j.molmet.2023.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND & AIMS Necroptosis, a novel type of programmed cell death, is intricately associated with inflammatory response. Currently, most studies focus on the activation of necroptosis, while the mechanisms underlying the negative regulation of necroptosis remain poorly understood. METHODS The effects of sestrin2 (SESN2) overexpression or knockdown on the regulation of necroptosis were assessed in the TNFα/Smac-mimetic/Z-VAD-FMK (T/S/Z)-induced necroptosis model and palmitic acid (PA)-induced lipotoxicity model. Western-blot, co-Immunoprecipitation, Glutathione S-transferase pull-down, and confocal assays were employed to explore the regulatory mechanisms including protein-protein interactions and post-translational modification. Furthermore, we used GSK'872, a specific inhibitor of receptor-interacting serine/threonine-protein kinase (RIPK) 3, to evaluate the relationship between SESN2-related alterations and RIPK3-mediated necroptosis in T/S/Z-induced necroptosis model, PA-induced lipotoxicity model, and high-fat high-cholesterol diet (HFHCD)-induced non-alcoholic steatohepatitis model. RESULTS Our findings revealed that SESN2 was upregulated under conditions that induce necroptosis and functioned as a negative regulator of necroptosis. High levels of SESN2 could equipped hepatocytes with the ability to defend against necroptotic inflammation and oxidative stress. Mechanistically, SESN2 interacted with RIPK3 and tuned down necroptosis by inhibiting the phosphorylation of RIPK3, promoting the ubiquitination of RIPK3, and preventing the formation of the RIPK1/RIPK3 necrosome. The depletion of SESN2 resulted in excessive necroptosis, accompanied by increased fat accumulation, inflammation, and oxidative stress in the experimental steatohepatitis model. Blocking necroptosis by GSK'872 reduced the liberation of pro-inflammatory cytokines and reactive oxygen species generation, but not hepatocyte fat deposition, in both PA-treated SESN2 knockout cells and HFHCD-fed SESN2 knockout mice, suggesting that the activation of RIPK3-mediated necroptosis may partially account for the hyperinflammation and excessive oxidative stress induced by SESN2 deficiency. CONCLUSION Our results suggested that SESN2 inhibited RIPK3-mediated necroptosis; this regulation is an important for the immune homeostasis and the redox balance in the liver.
Collapse
Affiliation(s)
- Jian-Bin Zhang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qian-Ren Zhang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qian Jin
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Yang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
7
|
Ma F, Liu Y, Hu Z, Xue Y, Liu Z, Cai G, Su W, Zheng Z, Fang X, Yan X, Ding D, Sun X, Jiang Y, Wei S, Li W, Zhao J, Zhang H, Li H, Xiao D, Zhang C, Ying H, Qin J, Gao X, Dai X, Fu W, Xu Y, Li Y, Cui A. Intrahepatic osteopontin signaling by CREBZF defines a checkpoint for steatosis-to-NASH progression. Hepatology 2023; 78:1492-1505. [PMID: 36680394 DOI: 10.1097/hep.0000000000000042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/16/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity. APPROACH AND RESULTS Here, we show that CREBZF is a key mechanism of liver fibrosis checkpoint that promotes hepatocyte injury and exacerbates diet-induced NASH in mice. CREBZF deficiency attenuated liver injury, fibrosis, and inflammation in diet-induced mouse models of NASH. CREBZF increases HSC activation and fibrosis in a hepatocyte-autonomous manner by stimulating an extracellular matrix protein osteopontin, a key regulator of fibrosis. The inhibition of miR-6964-3p mediates CREBZF-induced production and secretion of osteopontin in hepatocytes. Adeno-associated virus -mediated rescue of osteopontin restored HSC activation, liver fibrosis, and NASH progression in CREBZF-deficient mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced NASH mouse models and humans with NASH. CONCLUSIONS Osteopontin signaling by CREBZF represents a previously unrecognized intrahepatic mechanism that triggers liver fibrosis and contributes to the severity of NASH.
Collapse
Affiliation(s)
- Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zengpeng Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Endocrinology and Metabolism Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Dong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuang Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cuiying Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaozhen Dai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Zhang JB, Li MT, Lin SZ, Cheng YQ, Fan JG, Chen YW. Therapeutic Effect of Prolyl Endopeptidase Inhibitor in High-fat Diet-induced Metabolic Dysfunction-associated Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:1035-1049. [PMID: 37577240 PMCID: PMC10412699 DOI: 10.14218/jcth.2022.00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Prolyl endopeptidase (PREP) is a serine endopeptidase that participates in many pathological processes including inflammation, oxidative stress, and autophagy. Our previous studies found that PREP knockout exhibited multiple benefits in high-fat diet (HFD) or methionine choline-deficient diet-induced metabolic dysfunction-associated fatty liver disease (MAFLD). However, cumulative studies have suggested that PREP performs complex functions during disease development. Therefore, further understanding the role of PREP in MAFLD development is the foundation of PREP intervention. Methods In this study, an HFD-induced MAFLD model at different time points (4, 8, 12, and 16 weeks) was used to explore dynamic changes in the PREP proline-glycine-proline (PGP)/N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) system. To explore its potential value in MAFLD treatment, saline, or the PREP inhibitor, KYP-2047, was administered to HFD-induced MAFLD mice from the 10th to 16th weeks. Results PREP activity and expression were increased in HFD-mice compared with control mice from the 12th week onwards, and increased PREP mainly resulted in the activation of the matrix metalloproteinase 8/9 (MMP8/9)-PREP-PGP axis rather than the thymosin β4-meprin α/PREP-AcSDKP axis. In addition, KYP-2047 reduced HFD-induced liver injury and oxidative stress, improved lipid metabolism through the suppression of lipogenic genes and the induction of β-oxidation-related genes, and attenuated hepatic inflammation by decreasing MMP8/9 and PGP. Moreover, KYP2047 restored HFD-induced impaired autophagy and this was verified in HepG2 cells. Conclusions These findings suggest that increased PREP activity/expression during MAFLD development might be a key factor in the transition from simple steatosis to steatohepatitis, and KYP-2047 might possess therapeutic potential for MAFLD treatment.
Collapse
Affiliation(s)
- Jian-Bin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Meng-Ting Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Qing Cheng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
- Department of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wu Y, Li C, Khan AA, Chen K, Su R, Xu S, Sun Y, Gao F, Wang K, Wang X, Lian Z, Wang S, Yu M, Hu X, Yang F, Zheng S, Qiu N, Liu Z, Xu X. Insulin-induced gene 2 protects against hepatic ischemia-reperfusion injury via metabolic remodeling. J Transl Med 2023; 21:739. [PMID: 37858181 PMCID: PMC10585752 DOI: 10.1186/s12967-023-04564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.
Collapse
Affiliation(s)
- Yichao Wu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Abid Ali Khan
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kangchen Chen
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yiyang Sun
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaodong Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shuo Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Mengyuan Yu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Hu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Fan Yang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Nasha Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Guo S, Feng Y, Zhu X, Zhang X, Wang H, Wang R, Zhang Q, Li Y, Ren Y, Gao X, Bian H, Liu T, Gao H, Kong X. Metabolic crosstalk between skeletal muscle cells and liver through IRF4-FSTL1 in nonalcoholic steatohepatitis. Nat Commun 2023; 14:6047. [PMID: 37770480 PMCID: PMC10539336 DOI: 10.1038/s41467-023-41832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Inter-organ crosstalk has gained increasing attention in recent times; however, the underlying mechanisms remain unclear. In this study, we elucidate an endocrine pathway that is regulated by skeletal muscle interferon regulatory factor (IRF) 4, which manipulates liver pathology. Skeletal muscle specific IRF4 knockout (F4MKO) mice exhibited ameliorated hepatic steatosis, inflammation, and fibrosis, without changes in body weight, when put on a nonalcoholic steatohepatitis (NASH) diet. Proteomics analysis results suggested that follistatin-like protein 1 (FSTL1) may constitute a link between muscles and the liver. Dual luciferase assays showed that IRF4 can transcriptionally regulate FSTL1. Further, inducing FSTL1 expression in the muscles of F4MKO mice is sufficient to restore liver pathology. In addition, co-culture experiments confirmed that FSTL1 plays a distinct role in various liver cell types via different receptors. Finally, we observed that the serum FSTL1 level is positively correlated with NASH progression in humans. These data indicate a signaling pathway involving IRF4-FSTL1-DIP2A/CD14, that links skeletal muscle cells to the liver in the pathogenesis of NASH.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yonghao Feng
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinyi Zhang
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Ruwen Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Tiemin Liu
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Huanqing Gao
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Xingxing Kong
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
11
|
Xue Y, Cui A, Wei S, Ma F, Liu Z, Fang X, Huo S, Sun X, Li W, Hu Z, Liu Y, Cai G, Su W, Zhao J, Yan X, Gao C, Wen J, Zhang H, Li H, Liu Y, Lin X, Xu Y, Fu W, Fang J, Li Y. Proline hydroxylation of CREB-regulated transcriptional coactivator 2 controls hepatic glucose metabolism. Proc Natl Acad Sci U S A 2023; 120:e2219419120. [PMID: 37252972 PMCID: PMC10266032 DOI: 10.1073/pnas.2219419120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.
Collapse
Affiliation(s)
- Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shuang Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xia Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | | | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200031, China
| | - Wenjing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jian Wen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Wenguang Fu
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao266071, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
12
|
Jhun J, Moon J, Kwon JY, Cho KH, Lee SY, Na HS, Cho ML, Min JK. Small heterodimer partner interacting leucine zipper protein (SMILE) ameliorates autoimmune arthritis via AMPK signaling pathway and the regulation of B cell activation. Cell Commun Signal 2023; 21:98. [PMID: 37143079 PMCID: PMC10161652 DOI: 10.1186/s12964-023-01054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 05/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes joint swelling and inflammation and can involve the entire body. RA is characterized by the increase of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor, and the over-activation of T lymphocytes and B lymphocytes, which may lead to severe chronic inflammation of joints. However, despite numerous studies the pathogenesis and treatment of RA remain unresolved. This study investigated the use of small heterodimer partner-interacting leucine zipper protein (SMILE) overexpression to treat a mouse model of RA. SMILE is an insulin-inducible corepressor through adenosine monophosphate-activated kinase (AMPK) signaling pathway. The injection of a SMILE overexpression vector to mice with collagen induced-arthritis resulted in a milder clinical pathology and a reduced incidence of arthritis, less joint tissue damage, and lower levels of Th17 cells and plasma B cells in the spleen. Immunohistochemistry of the joint tissue showed that SMILE decreased B-cell activating factor (BAFF) receptor (BAFF-R), mTOR, and STAT3 expression but increased AMPK expression. In SMILE-overexpressing transgenic mice with collagen antibody-induced arthritis (CAIA), a decrease in the arthritis score and reductions in tissue damage, the number of B cells, and antibody production were observed. The treatment of immune cells in vitro with curcumin, a known SMILE-inducing agent, led to decreases in plasma B cells, germinal center B cells, IL-17-producing B cells, and BAFF-R-positive B cells. Taken together, our findings demonstrate the therapeutic potential of SMILE in RA, based on its inhibition of B cell activation mediated by the AMPK/mTOR and STAT3 signaling pathway and BAFF-R expression. Video abstract.
Collapse
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeonghyeon Moon
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Ji Ye Kwon
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seang Yoon Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Sik Na
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Mi-La Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Jun-Ki Min
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea.
| |
Collapse
|
13
|
Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:ijms24032907. [PMID: 36769229 PMCID: PMC9917820 DOI: 10.3390/ijms24032907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
|
14
|
Sadasivam N, Radhakrishnan K, Choi HS, Kim DK. Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:2907. [DOI: https:/doi.org/10.3390/ijms24032907 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Centre, Department of Microbiology, Combinatorial Tumour Immunotheraphy MRC, Medical School, Chonnam National University, Gwangju 58128, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
15
|
Tan X, Huang X, Lu Z, Chen L, Hu J, Tian X, Qiu Z. The essential effect of mTORC1-dependent lipophagy in non-alcoholic fatty liver disease. Front Pharmacol 2023; 14:1124003. [PMID: 36969837 PMCID: PMC10030502 DOI: 10.3389/fphar.2023.1124003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive liver disease with increasing prevalence. Lipophagy is a type of programmed cell death that plays an essential role in maintaining the body's balance of fatty acid metabolism. However, the livers of NAFLD patients are abnormally dysregulated in lipophagy. mTORC1 is a critical negative regulator of lipophagy, which has been confirmed to participate in the process of lipophagy through various complex mechanisms. Therefore, targeting mTORC1 to restore failed autophagy may be an effective therapeutic strategy for NAFLD. This article reviews the main pathways through which mTORC1 participates in the formation of lipophagy and the intervention effect of mTORC1-regulated lipophagy in NAFLD, providing new therapeutic strategies for the prevention and treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Xiangyun Tan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyu Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhuhang Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| | - Xianxiang Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Zhenpeng Qiu, ; Xianxiang Tian, ; Junjie Hu,
| |
Collapse
|
16
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
17
|
Wang ZX, Wang MY, Yang RX, Zhao ZH, Xin FZ, Li Y, Ren TY, Fan JG. Ammonia Scavenger Restores Liver and Muscle Injury in a Mouse Model of Non-alcoholic Steatohepatitis With Sarcopenic Obesity. Front Nutr 2022; 9:808497. [PMID: 35369074 PMCID: PMC8970101 DOI: 10.3389/fnut.2022.808497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Recent studies have revealed that sarcopenia is closely associated with obesity and non-alcoholic steatohepatitis (NASH). However, few attempted to explore the cause-and-effect relationship between sarcopenic obesity and NASH. In this study, we investigated muscular alterations in a rodent NASH model to elucidate their intrinsic relations and explore the potential therapeutic target. Forty-six 8-week-old and twenty 42-week-old male C57BL/6 mice (defined as young and middle-aged mice, respectively) were fed with a high-fat diet (HFD) for 12 or 20 weeks. A subset of young mice was subjected to ammonia lowering treatment by L-ornithine L-aspartate (LOLA). We examined body composition and muscle strength by nuclear magnetic resonance and grip strength meter, respectively. At the end of the 12th week, all HFD-fed mice developed typical steatohepatitis. Meanwhile, sarcopenia occurred in HFD-fed middle-aged mice, whereas young mice only demonstrated decreased grip strength. Until the end of week 20, young mice in the HFD group exhibited significant sarcopenia and obesity phenotypes, including decreased lean body mass and grip strength, and increased body fat mass and percentage body fat. Additionally, plasma ammonia level was markedly increased in HFD-fed mice of both ages at week 20. Plasma ammonia level was negatively associated with muscle strength and myofiber diameter in young mice. LOLA can significantly reduce plasma levels of ammonia, alanine aminotransaminase, aspartate aminotransaminase, and cholesterol in mice fed an HFD. Hepatic infiltration of inflammatory cells and collagen deposition area were significantly decreased in HFD group by LOLA treatment. Meanwhile, LOLA significantly increased lean body mass, grip strength, and average muscle fiber diameter of HFD-fed mice. These findings suggest that the occurrence of NASH precedes sarcopenia in HFD mice, and the steatohepatitis-related hyperammonemia might contribute to the pathogenesis of sarcopenia. LOLA might be an effective drug for both steatohepatitis and sarcopenic obesity.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Yu Wang
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xu Yang
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Hua Zhao
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Feng-Zhi Xin
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Li
- Chinese Academy of Science (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tian-Yi Ren
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Tian-Yi Ren
| | - Jian-Gao Fan
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
- *Correspondence: Jian-Gao Fan
| |
Collapse
|
18
|
Wu L, Shi R, Bai H, Wang X, Wei J, Liu C, Wu Y. Porphyromonas gingivalis Induces Increases in Branched-Chain Amino Acid Levels and Exacerbates Liver Injury Through livh/livk. Front Cell Infect Microbiol 2022; 12:776996. [PMID: 35360107 PMCID: PMC8961321 DOI: 10.3389/fcimb.2022.776996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis, a keystone periodontal pathogen, has emerged as a risk factor for systemic chronic diseases, including non-alcoholic fatty liver disease (NAFLD). To clarify the mechanism by which this pathogen induces such diseases, we simultaneously analyzed the transcriptome of intracellular P. gingivalis and infected host cells via dual RNA sequencing. Pathway analysis was also performed to determine the differentially expressed genes in the infected cells. Further, the infection-induced notable expression of P. gingivalis livk and livh genes, which participate in branched-chain amino acid (BCAA) transfer, was also analyzed. Furthermore, given that the results of recent studies have associated NAFLD progression with elevated serum BCAA levels, which reportedly, are upregulated by P. gingivalis, we hypothesized that this pathogen may induce increases in serum BCAA levels and exacerbate liver injury via livh/livk. To verify this hypothesis, we constructed P. gingivalis livh/livk-deficient strains (Δlivk, Δlivh) and established a high-fat diet (HFD)-fed murine model infected with P. gingivalis. Thereafter, the kinetic growth and exopolysaccharide (EPS) production rates as well as the invasion efficiency and in vivo colonization of the mutant strains were compared with those of the parental strain. The serum BCAA and fasting glucose levels of the mice infected with either the wild-type or mutant strains, as well as their liver function were also further investigated. It was observed that P. gingivalis infection enhanced serum BCAA levels and aggravated liver injury in the HFD-fed mice. Additionally, livh deletion had no effect on bacterial growth, EPS production, invasion efficiency, and in vivo colonization, whereas the Δlivk strain showed a slight decrease in invasion efficiency and in vivo colonization. More importantly, however, both the Δlivk and Δlivh strains showed impaired ability to upregulate serum BCAA levels or exacerbate liver injury in HFD-fed mice. Overall, these results suggested that P. gingivalis possibly aggravates NAFLD progression in HFD-fed mice by increasing serum BCAA levels, and this effect showed dependency on the bacterial BCAA transport system.
Collapse
Affiliation(s)
- Leng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
| | - Xingtong Wang
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Wei
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| |
Collapse
|
19
|
Hu W, Li M, Sun W, Li Q, Xi H, Qiu Y, Wang R, Ding Q, Wang Z, Yu Y, Lei H, Mao Y, Zhu YZ. Hirsutine ameliorates hepatic and cardiac insulin resistance in high-fat diet-induced diabetic mice and in vitro models. Pharmacol Res 2022; 177:105917. [PMID: 34597809 DOI: 10.1016/j.phrs.2021.105917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
Closely associated with type 2 diabetes mellitus (T2DM), hepatic steatosis and cardiac hypertrophy resulting from chronic excess intake can exacerbate insulin resistance (IR). The current study aims to investigate the pharmacological effects of hirsutine, one indole alkaloid isolated from Uncaria rhynchophylla, on improving hepatic and cardiac IR, and elucidate the underlying mechanism. T2DM and IR in vivo were established by high-fat diet (HFD) feeding for 3 months in C57BL/6 J mice. In vitro IR models were induced by high-glucose and high-insulin (HGHI) incubation in HepG2 and H9c2 cells. Hirsutine administration for 8 weeks improved HFD-induced peripheral hyperglycemia, glucose tolerance and IR by OGTT and ITT assays, and simultaneously attenuated hepatic steatosis and cardiac hypertrophy by pathological observation. The impaired p-Akt expression was activated by hirsutine in liver and heart tissues of HFD mice, and also in the models in vitro. Hirsutine exhibited the effects on enhancing glucose consumption and uptake in IR cell models via activating phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which was blocked by PI3K inhibitor LY294002. Moreover, the effect of hirsutine on promoting glucose uptake and GLUT4 expression in HGHI H9c2 cells was also prevented by Compound C, an inhibitor of AMP-activated protein kinase (AMPK). Enhancement of glycolysis might be another factor of hirsutine showing its effects on glycemic control. Collectively, it was uncovered that hirsutine might exert beneficial effects on regulating glucose homeostasis, thus improving hepatic and cardiac IR, and could be a promising compound for treating diet-induced T2DM.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Wuyi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qixiu Li
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Haiyan Xi
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuanye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
SREBP-1c and lipogenesis in the liver: an update1. Biochem J 2021; 478:3723-3739. [PMID: 34673919 DOI: 10.1042/bcj20210071] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Sterol Regulatory Element Binding Protein-1c is a transcription factor that controls the synthesis of lipids from glucose in the liver, a process which is of utmost importance for the storage of energy. Discovered in the early nineties by B. Spiegelman and by M. Brown and J. Goldstein, it has generated more than 5000 studies in order to elucidate its mechanism of activation and its role in physiology and pathology. Synthetized as a precursor found in the membranes of the endoplasmic reticulum, it has to be exported to the Golgi and cleaved by a mechanism called regulated intramembrane proteolysis. We reviewed in 2002 its main characteristics, its activation process and its role in the regulation of hepatic glycolytic and lipogenic genes. We particularly emphasized that Sterol Regulatory Element Binding Protein-1c is the mediator of insulin effects on these genes. In the present review, we would like to update these informations and focus on the response to insulin and to another actor in Sterol Regulatory Element Binding Protein-1c activation, the endoplasmic reticulum stress.
Collapse
|
21
|
Zhao J, Bai M, Wei S, Li C, Lv Q, Chen Y. Improvement of Non-Alcoholic Fatty Liver Disease in Mice by Intermittent Use of a Fasting-Mimicking Diet. Mol Nutr Food Res 2021; 65:e2100381. [PMID: 34632700 DOI: 10.1002/mnfr.202100381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/27/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Liver plays a central role in maintaining lipid homeostasis which is dysregulated in non-alcoholic fatty liver disease (NAFLD) caused by overload of dietary fat, increase in lipid synthesis, and alteration of fatty acid oxidation in the liver. In this study, we aimed to investigate whether intermittent calorie restriction using a fasting-mimicking diet (FMD) is able to slow down the progression of NAFLD in mice. METHODS AND RESULTS This study analyzed the intervention activity of a FMD low in carbohydrate/protein but high in dietary fibers with a NAFLD mouse model induced by high-fat high-sucrose diet (HFHSD). Intermittent application of the FMD reduces HFHSD-induced obesity and glucose intolerance. The FMD decreases the size of adipocytes and elevates expression of lipolysis genes and HSL protein in white adipose tissue. HFHSD-induced lipid accumulation in the liver is reduced by the FMD, accompanied by a reduction of macrophage marker in the liver. RNA sequencing reveals that the expression of a number of genes involved in fatty acid oxidation is elevated by the FMD. CONCLUSION The findings indicate that intermittent application of the FMD can improve NAFLD, at least in part, through increased lipolysis in white adipose tissue and elevated fatty acid oxidation in the liver.
Collapse
Affiliation(s)
- Jingyu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meijuan Bai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siying Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chenchen Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
22
|
Liu C, Zhou B, Meng M, Zhao W, Wang D, Yuan Y, Zheng Y, Qiu J, Li Y, Li G, Xiong X, Bian H, Zhang H, Wang H, Ma X, Hu C, Xu L, Lu Y. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J Hepatol 2021; 75:150-162. [PMID: 33548387 DOI: 10.1016/j.jhep.2021.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Chronic endoplasmic reticulum (ER) stress in the liver has been shown to play a causative role in non-alcoholic fatty liver disease (NAFLD) progression, yet the underlying molecular mechanisms remain to be elucidated. Forkhead box A3 (FOXA3), a member of the FOX family, plays critical roles in metabolic homeostasis, although its possible functions in ER stress and fatty liver progression are unknown. METHODS Adenoviral delivery, siRNA delivery, and genetic knockout mice were used to crease FOXA3 gain- or loss-of-function models. Tunicamycin (TM) and a high-fat diet (HFD) were used to induce acute or chronic ER stress in mice. Chromatin immunoprecipiation (ChIP)-seq, luciferase assay, and adenoviral-mediated downstream gene manipulations were performed to reveal the transcriptional axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining. RESULTS FOXA3 transcription is specifically induced by XBP1s upon ER stress. FOXA3 exacerbates the excessive lipid accumulation caused by the acute ER-inducer TM, whereas FOXA3 deficiency in hepatocytes and mice alleviates it. Importantly, FOXA3 deficiency in mice reduced diet-induced chronic ER stress, fatty liver, and insulin resistance. In addition, FOXA3 suppression via siRNA or adeno-associated virus delivery ameliorated the fatty liver phenotype in HFD-fed and db/db mice. Mechanistically, ChIP-Seq analysis revealed that FOXA3 directly regulates Period1 (Per1) transcription, which in turn promotes the expression of lipogenic genes, including Srebp1c, thus enhancing lipid synthesis. Of pathophysiological significance, FOXA3, PER1, and SREBP1c levels were increased in livers of obese mice and patients with NAFLD. CONCLUSION The present study identified FOXA3 as the bridging molecule that links ER stress and NAFLD progression. Our results highlighted the role of the XBP1s-FOXA3-PER1/Srebp1c transcriptional axis in the development of NAFLD and identified FOXA3 as a potential therapeutic target for fatty liver disease. LAY SUMMARY The molecular mechanisms linking endoplasmic reticulum stress to non-alcoholic fatty liver disease (NAFLD) progression remain undefined. Herein, via in vitro and in vivo analysis, we identified Forkhead box A3 (FOXA3) as a key bridging molecule. Of pathophysiological significance, FOXA3 protein levels were increased in livers of obese mice and patients with NAFLD, indicating that FOXA3 could be a potential therapeutic target in fatty liver disease.
Collapse
Affiliation(s)
- Caizhi Liu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Zhou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuelian Xiong
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xinran Ma
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Cheng Hu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Zhao ZH, Wang ZX, Zhou D, Han Y, Ma F, Hu Z, Xin FZ, Liu XL, Ren TY, Zhang F, Xue Y, Cui A, Liu Z, Bai J, Liu Y, Cai G, Su W, Dai X, Shen F, Pan Q, Li Y, Fan JG. Sodium Butyrate Supplementation Inhibits Hepatic Steatosis by Stimulating Liver Kinase B1 and Insulin-Induced Gene. Cell Mol Gastroenterol Hepatol 2021; 12:857-871. [PMID: 33989817 PMCID: PMC8346675 DOI: 10.1016/j.jcmgh.2021.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Butyric acid is an intestinal microbiota-produced short-chain fatty acid, which exerts salutary effects on alleviating nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism of butyrate on regulating hepatic lipid metabolism is largely unexplored. METHODS A mouse model of NAFLD was induced with high-fat diet feeding, and sodium butyrate (NaB) intervention was initiated at the eighth week and lasted for 8 weeks. Hepatic steatosis was evaluated and metabolic pathways concerning lipid homeostasis were analyzed. RESULTS Here, we report that administration of NaB by gavage once daily for 8 weeks causes an augmentation of insulin-induced gene (Insig) activity and inhibition of lipogenic gene in mice fed with high-fat diet. Mechanistically, NaB is sufficient to enhance the interaction between Insig and its upstream kinase AMP-activated protein kinase (AMPK). The stimulatory effects of NaB on Insig-1 activity are abolished in AMPKα1/α2 double knockout (AMPK-/-) mouse primary hepatocytes. Moreover, AMPK activation by NaB is mediated by LKB1, as evidenced by the observations showing NaB-mediated induction of phosphorylation of AMPK, and its downstream target acetyl-CoA carboxylase is diminished in LKB1-/- mouse embryonic fibroblasts. CONCLUSIONS These studies indicate that NaB serves as a negative regulator of hepatic lipogenesis in NAFLD and that NaB attenuates hepatic steatosis and improves lipid profile and liver function largely through the activation of LKB1-AMPK-Insig signaling pathway. Therefore, NaB has therapeutic potential for treating NAFLD and related metabolic diseases.
Collapse
Affiliation(s)
- Ze-Hua Zhao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Zi-Xuan Wang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Zhou
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng-Zhi Xin
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lin Liu
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tian-Yi Ren
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaozhen Dai
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Feng Shen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China,Correspondence Address correspondence to Yu Li, PhD, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue Yang Road, Life Science Research Building A1816, Shanghai 200031, China.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China,Jian-Gao Fan, PhD, Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, 1665 Kong Jiang Road, Shanghai 200092, China.
| |
Collapse
|
24
|
Sandoval V, Sanz-Lamora H, Marrero PF, Relat J, Haro D. Lyophilized Maqui ( Aristotelia chilensis) Berry Administration Suppresses High-Fat Diet-Induced Liver Lipogenesis through the Induction of the Nuclear Corepressor SMILE. Antioxidants (Basel) 2021; 10:637. [PMID: 33919415 PMCID: PMC8143281 DOI: 10.3390/antiox10050637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the first organs affected by accumulated ectopic lipids. Increased de novo lipogenesis and excessive triglyceride accumulation in the liver are hallmarks of nonalcoholic fatty liver disease (NAFLD) and are strongly associated with obesity, insulin resistance, and type 2 diabetes. Maqui dietary supplemented diet-induced obese mice showed better insulin response and decreased weight gain. We previously described that these positive effects of maqui are partially due to an induction of a brown-like phenotype in subcutaneous white adipose tissue that correlated with a differential expression of Chrebp target genes. In this work, we aimed to deepen the molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance focusing on liver metabolism. Our results showed that maqui supplementation decreased hepatic steatosis caused by a high-fat diet. Changes in the metabolic profile include a downregulation of the lipogenic liver X receptor (LXR) target genes and of fatty acid oxidation gene expression together with an increase in the expression of small heterodimer partner interacting leucine zipper protein (Smile), a corepressor of the nuclear receptor family. Our data suggest that maqui supplementation regulates lipid handling in liver to counteract the metabolic impact of a high-fat diet.
Collapse
Affiliation(s)
- Viviana Sandoval
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Sede De la Patagonia, Puerto-Montt 5501842, Chile;
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Biomedicine, University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Biomedicine, University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
25
|
Benchoula K, Parhar IS, Madhavan P, Hwa WE. CREB nuclear transcription activity as a targeting factor in the treatment of diabetes and diabetes complications. Biochem Pharmacol 2021; 188:114531. [PMID: 33773975 DOI: 10.1016/j.bcp.2021.114531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder diagnosed by elevated blood glucose levels and a defect in insulin production. Blood glucose, an energy source in the body, is regenerated by two fundamental processes: glycolysis and gluconeogenesis. These two processes are the main mechanisms used by humans and many other animals to maintain blood glucose levels, thereby avoiding hypoglycaemia. The released insulin from pancreatic β-cells activates glycolysis. However, the glucagon released from the pancreatic α-cells activates gluconeogenesis in the liver, leading to pyruvate conversion to glucose-6-phosphate by different enzymes such as fructose 1,6-bisphosphatase and glucose 6-phosphatase. These enzymes' expression is controlled by the glucagon/ cyclic adenosine 3',5'-monophosphate (cAMP)/ proteinkinase A (PKA) pathway. This pathway phosphorylates cAMP-response element-binding protein (CREB) in the nucleus to bind it to these enzyme promoters and activate their expression. During fasting, this process is activated to supply the body with glucose; however, it is overactivated in diabetes. Thus, the inhibition of this process by blocking the expression of the enzymes via CREB is an alternative strategy for the treatment of diabetes. This review was designed to investigate the association between CREB activity and the treatment of diabetes and diabetes complications. The phosphorylation of CREB is a crucial step in regulating the gene expression of the enzymes of gluconeogenesis. Many studies have proven that CREB is over-activated by glucagon and many other factors contributing to the elevation of fasting glucose levels in people with diabetes. The physiological function of CREB should be regarded in developing a therapeutic strategy for the treatment of diabetes mellitus and its complications. However, the accessible laboratory findings for CREB activity of the previous research still not strong enough for continuing to the clinical trial yet.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
26
|
Zhong S, Li L, Liang N, Zhang L, Xu X, Chen S, Yin H. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol 2021; 41:101919. [PMID: 33740503 PMCID: PMC7995661 DOI: 10.1016/j.redox.2021.101919] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
HMG-CoA reductase (HMGCR) is the rate-limiting enzyme in cholesterol biosynthesis and the target for cholesterol-lowering therapy. Acetaldehyde dehydrogenase 2 (ALDH2) is primarily responsible for detoxifying ethanol-derived acetaldehyde and endogenous lipid aldehydes derived from lipid peroxidation. Epidemiological and Genome Wide Association Studies (GWAS) have linked an inactive ALDH2 rs671 variant, responsible for alcohol flush in nearly 8% world population and 40% of Asians, with cholesterol levels and higher risk of cardiovascular disease (CVD) but the underlying mechanism remains elusive. Here we find that the cholesterol levels in the serum and liver of ALDH2 knockout (AKO) and ALDH2 rs671 knock-in (AKI) mice are significantly increased, consistent with the increase of intermediates in the cholesterol biosynthetic pathways. Mechanistically, mitochondrial ALDH2 translocates to the endoplasmic reticulum to promote the formation of GP78/Insig1/HMGCR complex to increase HMGCR degradation through ubiquitination. Conversely, ALDH2 mutant or ALDH2 deficiency in AKI or AKO mice stabilizes HMGCR, resulting in enhanced cholesterol synthesis, which can be reversed by Lovastatin. Moreover, ALDH2-regulated cholesterol synthesis is linked to the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs). Together, our study has identified that ALDH2 is a novel regulator of cholesterol synthesis, which may play an important role in CVD.
Collapse
Affiliation(s)
- Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
27
|
Hung TC, Zhao N, Huang C, Liu S, Liu T, Huang W, Xu X, Ji ZL, Yang S. Exploring the mechanism of PingTang No.5 capsule on nonalcoholic fatty liver disease through network pharmacology and experimental validation. Biomed Pharmacother 2021; 138:111408. [PMID: 33684693 DOI: 10.1016/j.biopha.2021.111408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
PingTang No.5 capsule (PT5), a modified Traditional Chinese Medicine (TCM) formula of Zexie Decoction, is used to treat patients with lipid metabolism disorders in our hospital. The present study was designed to investigate the mechanisms of PT5 in treating non-alcoholic fatty liver disease (NAFLD). PT5 information including ingredients, pharmacological properties, and potential targets was obtained from TCM databases. The candidate targets of PT5 were predicted by network pharmacological analysis, and the possible pathway and mechanism were obtained from DAVID database, followed by experimental validation in NAFLD mice model treated with PT5. Total 328 compounds were selected using the threshold oral bioactivity (OB) > 30% or drug-likeness (DL) > 0.1 of pharmacology characteristic, and 1033 candidate targets obtained to construct the network analysis. The 113 targets were selected from the intersection between candidate targets of PT5 and NAFLD relative gene. These targets were evaluated in diabetic complications, cancer, Hepatitis B, Fluid shear stress and atherosclerosis, and TNF signaling pathway. TNF-α was the important factor in protein interaction analysis of STRING and involved in the lipid regulation and oxidative stress in NAFLD. When administrated to the NAFLD mice, PT5 reduced weight, blood fatty acids, decreased the adipocyte size, and improved the metabolism. Besides, the molecular verification of lipid metabolism increased and oxidative stress reduced that interpreted the mechanism of PT5 preventing liver cell from lipid accumulation and injury of NAFLD. These results presented PT5 have the potential therapy as an alternative treatment for NAFLD.
Collapse
Affiliation(s)
- Tzu-Chieh Hung
- Traditional Chinese Medicine research studio, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Nengjiang Zhao
- Traditional Chinese Medicine research studio, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China; Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen, China; Fujian Province Key Laboratory of Diabetes Translational Medicine, Xiamen, China
| | - Suhuan Liu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tao Liu
- Traditional Chinese Medicine research studio, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Wenfang Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China; Xiamen Hospital of T.C.M., Xiamen, China
| | - Xiangbin Xu
- Traditional Chinese Medicine research studio, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, China.
| | - Shuyu Yang
- Traditional Chinese Medicine research studio, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China.
| |
Collapse
|
28
|
Cui A, Ding D, Li Y. Regulation of Hepatic Metabolism and Cell Growth by the ATF/CREB Family of Transcription Factors. Diabetes 2021; 70:653-664. [PMID: 33608424 PMCID: PMC7897342 DOI: 10.2337/dbi20-0006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The liver is a major metabolic organ that regulates the whole-body metabolic homeostasis and controls hepatocyte proliferation and growth. The ATF/CREB family of transcription factors integrates nutritional and growth signals to the regulation of metabolism and cell growth in the liver, and deregulated ATF/CREB family signaling is implicated in the progression of type 2 diabetes, nonalcoholic fatty liver disease, and cancer. This article focuses on the roles of the ATF/CREB family in the regulation of glucose and lipid metabolism and cell growth and its importance in liver physiology. We also highlight how the disrupted ATF/CREB network contributes to human diseases and discuss the perspectives of therapeutically targeting ATF/CREB members in the clinic.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Cui A, Li J, Ji S, Ma F, Wang G, Xue Y, Liu Z, Gao J, Han J, Tai P, Wang T, Chen J, Ma X, Li Y. The Effects of B1344, a Novel Fibroblast Growth Factor 21 Analog, on Nonalcoholic Steatohepatitis in Nonhuman Primates. Diabetes 2020; 69:1611-1623. [PMID: 32354858 DOI: 10.2337/db20-0209] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022]
Abstract
Nonalcoholic steatohepatitis has emerged as a major cause of liver diseases with no effective therapies. Here, we evaluate the efficacies and pharmacokinetics of B1344, a long-acting polyethylene glycolylated (PEGylated) fibroblast growth factor 21 analog, in a nongenetically modified nonhuman primate species that underwent liver biopsy and demonstrate the potential for efficacies in humans. B1344 is sufficient to selectively activate signaling from the βKlotho/FGFR1c receptor complex. In cynomolgus monkeys with nonalcoholic fatty liver disease (NAFLD), administration of B1344 via subcutaneous injection for 11 weeks caused a profound reduction of hepatic steatosis, inflammation, and fibrosis, along with amelioration of liver injury and hepatocyte death, as evidenced by liver biopsy specimen and biochemical analysis. Moreover, improvement of metabolic parameters was observed in the monkeys, including reduction of body weight and improvement of lipid profiles and glycemic control. To determine the role of B1344 in the progression of murine NAFLD independent of obesity, B1344 was administered to mice fed a methionine- and choline-deficient diet. Consistently, B1344 administration prevented the mice from lipotoxicity damage and nonalcoholic steatohepatitis in a dose-dependent manner. These results provide preclinical validation for an innovative therapeutic approach to NAFLD and support further clinical testing of B1344 for treating nonalcoholic steatohepatitis and other metabolic diseases in humans.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Li
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Shaohui Ji
- Kunming Biomed International, Yunnan, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Genbei Wang
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Han
- Tasly Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Ping Tai
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Tony Wang
- Kunming Biomed International, Yunnan, China
| | | | - Xiaohui Ma
- Research Center of Pharmacology and Toxicology, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Luo Z, Xu W, Zhang Y, Di L, Shan J. A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota. Pharmacol Res 2020; 160:105088. [PMID: 32683035 DOI: 10.1016/j.phrs.2020.105088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) is a series of symptoms including insulin resistance, obesity, dyslipidemia, elevated fasting blood glucose levels, and hepatic steatosis. As a key criterion in MetS, the onset of insulin resistance is related to abnormal levels of circulating free fatty acids and adipokines. It has been discovered in recent years that metabolites and pathogen-associated molecular patterns of intestinal/gut microbiota are also important factors that cause insulin resistance and MetS. Saponins are the main components of many botanicals and traditional Chinese medicines (TCMs), such as ginseng, platycodon, licorice, and alfalfa. They have poor bioavailability, but can be transformed into secondary glycosides and aglycones by intestinal microbiota, further being absorbed. Based on in vivo and in vitro data, we found that saponins and their secondary metabolites have a preventive effect on MetS, and the effective targets are distributed in the intestine and other organs in human body. Intestinal targets involve pancreatic lipase, dietary cholesterol, and intestinal microbiota. Other targets include central appetite, nuclear receptors such as PPAR and LXR, AMPK signaling pathway and adipokines levels, etc. In view of the poor bioavailability of saponins, it is inferred that targets for prototype-saponins to interfere with MetS is mainly located in the intestine, and the activation of other targets may be related to secondary glycosides and aglycones transformed from saponins by intestinal flora. We suggest that the role of intestinal microbiota in saponin intervention in MetS should be further investigated.
Collapse
Affiliation(s)
- Zichen Luo
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Zhang
- Genome Center of UC Davis, NIH West Coast Metabolomics Center, Davis, CA, 95616, USA
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
31
|
Abstract
Cholesterol is an important component of lipids in animal membranes. All living cells can synthesize cholesterol, but the amount of synthesis is not sufficient, and therefore cholesterol synthesized in the liver is delivered to extrahepatic tissues as a form of LDL. The liver is a primary organ to not only synthesize but also catabolize cholesterol into bile acids, which ends up to excrete with the feces. The synthetic and catabolic pathways are precisely regulated under the negative-feedback control system under the transcriptional regulation driven by several transcription factors such as the sterol regulatory element-binding proteins (SREBPs), the liver x receptor, and the farnesoid x receptor. This review summarizes various findings including our recent discoveries in the molecular mechanism of activation of SREBP that is involved in the regulation of hepatic cholesterol biosynthesis, and a novel function of the metabolic end product of cholesterol, bile acids, in skeletal muscles.
Collapse
Affiliation(s)
- Ryuichiro Sato
- Department of Applied Biological Chemistry, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
32
|
Bai J, Xia M, Xue Y, Ma F, Cui A, Sun Y, Han Y, Xu X, Zhang F, Hu Z, Liu Z, Liu Y, Cai G, Su W, Sun X, Wu H, Yan H, Chang X, Hu X, Bian H, Xia P, Gao J, Li Y, Gao X. Thrombospondin 1 improves hepatic steatosis in diet-induced insulin-resistant mice and is associated with hepatic fat content in humans. EBioMedicine 2020; 57:102849. [PMID: 32580141 PMCID: PMC7317187 DOI: 10.1016/j.ebiom.2020.102849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is associated with altered production of secreted proteins. Increased understanding of secreted proteins could lead to improved prediction and treatment of NAFLD. Here, we aimed to discover novel secreted proteins in humans that are associated with hepatic fat content using unbiased proteomic profiling strategy, and how the identified Thbs1 modulates lipid metabolism and hepatic steatosis. METHOD NAFLD patients were enrolled and treated with lifestyle intervention. Patients who underwent liver biopsy were enrolled for analyzing the correlation between circulating Thbs1 and liver steatosis. Mice were fed on high-fat, high-sucrose diet and treated with recombinant Thbs1. Primary hepatocytes isolated from CD36 knockout (CD36-/-) mice and their wild-type littermates (controls) were treated with glucose plus insulin for 24 h together with or without recombinant Thbs1. FINDING Serum Thbs1 levels are increased in participants with NAFLD and positively associated with liver steatosis grades. Improvement of liver steatosis after lifestyle intervention was accompanied with significant reduction of serum Thbs1 levels. Pharmacological administration of recombinant human Thbs1 attenuates hepatic steatosis in diet-induced obese mice. Treatment with Thbs1 protein or stably overexpression of Thbs1 causes a significant reduction of lipid accumulation in primary hepatocytes or HepG2 cells exposed to high glucose plus insulin, suggesting that Thbs1 regulates lipid metabolism in a hepatocyte-autonomous manner. Mechanistically, Thbs1 inhibits cleavage and processing of SREBP-1, leading to a reduction of target lipogenic gene expression and hepatic steatosis. Inhibitory effects of Thbs1 on lipogenesis and triglyceride accumulation are abrogated in CD36 deficient primary hepatocytes exposed to high glucose plus insulin. Interestingly, beneficial effects of Thbs1 on lipid accumulation are observed in primary hepatocytes treated with a Thbs1 nonapeptide mimetic ABT-526. INTERPRETATION Thbs1 is a biomarker for NAFLD in humans, and pharmacological and genetic approaches for the modulation of Thbs1 activity may have the therapeutic potential for treating hepatic steatosis. FUND: A full list of funding bodies that contributed to this study can be found in the Funding Sources section.
Collapse
Affiliation(s)
- Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixuan Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xiqi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China; Fudan Institute for Metabolic Diseases, Shanghai, China.
| |
Collapse
|
33
|
Hu Z, Han Y, Liu Y, Zhao Z, Ma F, Cui A, Zhang F, Liu Z, Xue Y, Bai J, Wu H, Bian H, Chin YE, Yu Y, Meng Z, Wang H, Liu Y, Fan J, Gao X, Chen Y, Li Y. CREBZF as a Key Regulator of STAT3 Pathway in the Control of Liver Regeneration in Mice. Hepatology 2020; 71:1421-1436. [PMID: 31469186 DOI: 10.1002/hep.30919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS STAT3, a member of the signal transducer and activator of transcription (STAT) family, is strongly associated with liver injury, inflammation, regeneration, and hepatocellular carcinoma development. However, the signals that regulate STAT3 activity are not completely understood. APPROACH AND RESULTS Here we characterize CREB/ATF bZIP transcription factor CREBZF as a critical regulator of STAT3 in the hepatocyte to repress liver regeneration. We show that CREBZF deficiency stimulates the expression of the cyclin gene family and enhances liver regeneration after partial hepatectomy. Flow cytometry analysis reveals that CREBZF regulates cell cycle progression during liver regeneration in a hepatocyte-autonomous manner. Similar results were observed in another model of liver regeneration induced by intraperitoneal injection of carbon tetrachloride (CCl4 ). Mechanistically, CREBZF potently associates with the linker domain of STAT3 and represses its dimerization and transcriptional activity in vivo and in vitro. Importantly, hepatectomy-induced hyperactivation of cyclin D1 and liver regeneration in CREBZF liver-specific knockout mice was reversed by selective STAT3 inhibitor cucurbitacin I. In contrast, adeno-associated virus-mediated overexpression of CREBZF in the liver inhibits the expression of the cyclin gene family and attenuates liver regeneration in CCl4 -treated mice. CONCLUSIONS These results characterize CREBZF as a coregulator of STAT3 to inhibit regenerative capacity, which may represent an essential cellular signal to maintain liver mass homeostasis. Therapeutic approaches to inhibit CREBZF may benefit the compromised liver during liver transplantation.
Collapse
Affiliation(s)
- Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zehua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Effects of XIAP on high fat diet-induced hepatic steatosis: a mechanism involving NLRP3 inflammasome and oxidative stress. Aging (Albany NY) 2019; 11:12177-12201. [PMID: 31841118 PMCID: PMC6949096 DOI: 10.18632/aging.102559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Increasing evidence indicates that prolonged fat-rich diet (HFD) ingestion is a predisposing factor for metabolic disorder-associated system inflammation and oxidative stress injury, which contributes to the occurrence of non-alcoholic fatty liver disease (NAFLD). NACHT, LRR and PYD domains-containing protein 3 (NLRP3)-mediated inflammatory infiltration was determined to participate in NAFLD. X-linked inhibitor of apoptosis protein (XIAP) was recently confirmed as an essential regulator for apoptosis in cells. However, the role of XIAP in HFD-induced NAFLD is still not understood. Here, XIAP was characterized with respect to HFD-induced NLRP3 inflammasome activation and reactive oxygen species (ROS) generation in vivo and palmitate (PA)-treated cells in vitro. After HFD administration, hepatic injury was confirmed via histological assessment (grading and staging of NAFLD) and biochemical parameters, oxidative stress, and reduced antioxidant activity. Up-regulated hepatic dysfunction were further indicated by elevated dyslipidemia, lipid accumulation, and decreased fatty acid β-oxidation associated gene expression. Moreover, in the absence of XIAP, NLRP3 signaling activated by HFD-triggered oxidative stress was up-regulated, accompanied by reduction in antioxidants including HO-1, NQO-1, GST, SOD and Nrf2 activity. The detrimental effects of XIAP blocking on hepatic steatosis and related pathologies were also confirmed in PA-treated mouse liver cells. In contrast, overexpression of XIAP by transfection in vitro restrained PA-stimulated hepatic steatosis by suppression of oxidative stress, NLRP3 related inflammatory response, and impairment of Nrf2 activity, further alleviating abnormal metabolic disorder associated NAFLD. Taken together, the present study helped to elucidate how HFD-induced hepatic steatosis was regulated by XIAP, possibly via the inhibition of NLRP3 signaling and oxidative stress injury.
Collapse
|
35
|
Zhao ZH, Xin FZ, Xue Y, Hu Z, Han Y, Ma F, Zhou D, Liu XL, Cui A, Liu Z, Liu Y, Gao J, Pan Q, Li Y, Fan JG. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med 2019; 51:1-14. [PMID: 31506421 PMCID: PMC6802644 DOI: 10.1038/s12276-019-0304-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Microbial metabolites have emerged as critical components that mediate the metabolic effects of the gut microbiota. Here, we show that indole-3-propionic acid (IPA), a tryptophan metabolite produced by gut bacteria, is a potent anti-non-alcoholic steatohepatitis (NASH) microbial metabolite. Here, we demonstrate that administration of IPA modulates the microbiota composition in the gut and inhibits microbial dysbiosis in rats fed a high-fat diet. IPA induces the expression of tight junction proteins, such as ZO-1 and Occludin, and maintains intestinal epithelium homeostasis, leading to a reduction in plasma endotoxin levels. Interestingly, IPA inhibits NF-κB signaling and reduces the levels of proinflammatory cytokines, such as TNFα, IL-1β, and IL-6, in response to endotoxin in macrophages to repress hepatic inflammation and liver injury. Moreover, IPA is sufficient to inhibit the expression of fibrogenic and collagen genes and attenuate diet-induced NASH phenotypes. The beneficial effects of IPA on the liver are likely mediated through inhibiting the production of endotoxin in the gut. These findings suggest a protective role of IPA in the control of metabolism and uncover the gut microbiome and liver cross-talk in regulating the intestinal microenvironment and liver pathology via a novel dietary nutrient metabolite. IPA may provide a new therapeutic strategy for treating NASH. A molecule made by beneficial microbes in the gut helps protect against a severe form of fatty liver disease by preventing bacterial toxins from leaking out of the intestines into the bloodstream. A research team in China led by Yu Li from the Shanghai Institute of Nutrition and Health (CAS) and Jian-Gao Fan from Xinhua Hospital (SJTU) showed in a rat model of non-alcoholic steatohepatitis that indole-3-propionic acid (IPA), a metabolite produced by gut bacteria, helps maintain the integrity of the intestinal inner lining. The more robust intestinal barrier ensures that bacterial toxins do not enter the bloodstream and eventually reach the liver, where they can trigger injury-inducing inflammation. The findings reveal an interaction between the gut microbiome and the liver, and suggest a role for IPA in the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Ze-Hua Zhao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Feng-Zhi Xin
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Da Zhou
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 200032, Shanghai, China
| | - Xiao-Lin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, Jiangsu, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China. .,Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, 200092, Shanghai, China.
| |
Collapse
|
36
|
Liu J. Hepatic CREBZF as a novel transcriptional regulator of the lipogenic pathway. Metabol Open 2019; 1:7-8. [PMID: 32812905 PMCID: PMC7424813 DOI: 10.1016/j.metop.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/02/2022] Open
|
37
|
Han Y, Hu Z, Cui A, Liu Z, Ma F, Xue Y, Liu Y, Zhang F, Zhao Z, Yu Y, Gao J, Wei C, Li J, Fang J, Li J, Fan JG, Song BL, Li Y. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat Commun 2019; 10:623. [PMID: 30733434 PMCID: PMC6367348 DOI: 10.1038/s41467-019-08585-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin-induced gene (Insig) negatively regulates SREBP-mediated de novo fatty acid synthesis in the liver. However, the upstream regulation of Insig is incompletely understood. Here we report that AMPK interacts with and mediates phosphorylation of Insig. Thr222 phosphorylation following AMPK activation is required for protein stabilization of Insig-1, inhibition of cleavage and processing of SREBP-1, and lipogenic gene expression in response to metformin or A769662. AMPK-dependent phosphorylation ablates Insig’s interaction with E3 ubiquitin ligase gp78 and represses its ubiquitination and degradation, whereas AMPK deficiency shows opposite effects. Interestingly, activation of AMPK by metformin causes an augmentation of Insig stability and reduction of lipogenic gene expression, and leads to the attenuation of hepatic steatosis in HFHS diet-fed mice. Moreover, hepatic overexpression of Insig-1 rescues hepatic steatosis in liver-specific AMPKα2 knockout mice fed with HFHS diet. These findings uncover a novel effector of AMPK. Targeting Insig may have the therapeutic potential for treating fatty liver disease and related disorders. Insulin-related gene (Insig) negatively regulates hepatic fatty acid synthesis, a process involved in development of non-alcoholic fatty liver disease (NAFLD). Here, the authors show that AMPK activation by metformin promotes Insig phosphorylation, stabilizing it and inhibiting lipogenic gene expression. This is protective against steatosis in diabetic mice.
Collapse
Affiliation(s)
- Yamei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Feifei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zehua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Yanyan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Chun Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
38
|
Jian T, Yu C, Ding X, Chen J, Li J, Zuo Y, Ren B, Lv H, Li W. Hepatoprotective Effect of Seed Coat of Euryale ferox Extract in Non-alcoholic Fatty Liver Disease Induced by High-fat Diet in Mice by Increasing IRs-1 and Inhibiting CYP2E1. J Oleo Sci 2019; 68:581-589. [DOI: 10.5650/jos.ess19018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Chen Yu
- Department of Integrated TCM & Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
- College of Forestry, Nanjing Forestry University
| |
Collapse
|
39
|
Yang Y, Ma F, Liu Z, Su Q, Liu Y, Liu Z, Li Y. The ER-localized Ca 2+-binding protein calreticulin couples ER stress to autophagy by associating with microtubule-associated protein 1A/1B light chain 3. J Biol Chem 2018; 294:772-782. [PMID: 30429217 DOI: 10.1074/jbc.ra118.005166] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/11/2018] [Indexed: 11/06/2022] Open
Abstract
Autophagy is of key importance for eliminating aggregated proteins during the maintenance of cellular proteostasis in response to endoplasmic reticulum (ER) stress. However, the upstream signaling that mediates autophagy activation in response to ER stress is incompletely understood. In this study, in vivo and in vitro approaches were utilized that include gain- and loss-of-function assays and mouse livers and human cell lines with tunicamycin-induced pharmacological ER stress. We report that calreticulin, a quality control chaperone that binds to misfolded glycoproteins for refolding in the ER, is induced under ER stress. Calreticulin overexpression stimulated the formation of autophagosomes and increased autophagic flux. Interestingly, calreticulin was sufficient for attenuating ER stress in tunicamycin- or thapsigargin-treated HeLa cells, whereas lentivirus-mediated shRNA calreticulin knockdown exacerbated ER stress. Mechanistically, we noted that calreticulin induces autophagy by interacting with microtubule-associated protein 1A/1B-light chain 3 (LC3). Confocal microscopy revealed that the colocalization of calreticulin and LC3 at the autophagosome was enhanced under ER stress conditions. Importantly, a conserved LC3-interacting region was necessary for calreticulin-mediated stimulation of autophagy and for reducing ER stress. These findings indicate a calreticulin-based mechanism that couples ER stress to autophagy activation, which, in turn, attenuates cellular stress, likely by alleviating the formation of aberrantly folded proteins. Pharmacological or genetic approaches that activate calreticulin-autophagy signaling may have potential for managing ER stress and related cellular disorders.
Collapse
Affiliation(s)
- Yunzhi Yang
- From CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fengguang Ma
- From CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengshuai Liu
- From CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Su
- From CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Liu
- From CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhixue Liu
- From CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Li
- From CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
40
|
Hepatoprotective Effect of Loquat Leaf Flavonoids in PM 2.5-Induced Non-Alcoholic Fatty Liver Disease via Regulation of IRs-1/Akt and CYP2E1/JNK Pathways. Int J Mol Sci 2018; 19:ijms19103005. [PMID: 30275422 PMCID: PMC6213634 DOI: 10.3390/ijms19103005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Ambient air particulate matter (PM) represents a class of heterogeneous substances present in polluted air, which contains many harmful components. Exposure to ambient particulate matter in fine rages (PM2.5) is associated with non-alcoholic fatty liver disease (NAFLD). Loquat Leaf possesses pharmacological actions on NAFLD. As the main biological active ingredients, the potential therapeutic role of total flavonoids (TF) isolated from Loquat Leaf in PM2.5-induced NAFLD model remains unclear. The present study was designed to explore the hepatoprotective effect of TF in PM2.5-induced NAFLD mice with its related mechanisms of action. Mice were exposed to PM2.5 to induce NAFLD, and body weight, the ratio of liver to body weight, and blood lipids increased significantly compared with the control group. It was found that TF significantly reduced the above parameters in PM2.5-induced NAFLD mice. TF treatment alleviated oxidative stress by preventing the accumulation of oxidative product malondialdehyde (MDA) and by strengthening the anti-oxidative capacity of superoxide dismutase (SOD). TF was also found to reduce the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity in the PM2.5 group. In addition, TF repaired the PM2.5-induced decline of insulin receptor substrate-1 (IRs-1) and protein kinase B (Akt) phosphorylation. Meanwhile, the data showed TF suppressed the expression of cytochrome P450 2E1(CYP2E1) and the phosphorylation of c-jun N-terminal kinase (JNK) in PM2.5-induced NAFLD. Taken together, these findings show that TF alleviate PM2.5-induced NAFLD via regulation of IRs-1/Akt and CYP2E1/JNK pathways, which may have potential for further development as novel therapeutic agents for NAFLD.
Collapse
|