1
|
Zaniewska M, Brygider S, Majcher-Maślanka I, Gawliński D, Głowacka U, Glińska S, Balcerzak Ł. The impact of voluntary wheel-running exercise on hippocampal neurogenesis and behaviours in response to nicotine cessation in rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06705-7. [PMID: 39463206 DOI: 10.1007/s00213-024-06705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE The literature indicates that nicotine exposure or its discontinuation impair adult hippocampal neurogenesis in rats, though the impact of exercise on this process remains unclear. We have previously shown that disturbances in the number of doublecortin (DCX, a marker of immature neurons)-positive (DCX+) cells in the dentate gyrus (DG) of the hippocampus during nicotine deprivation may contribute to a depression-like state in rats. OBJECTIVES This study aimed to investigate the effect of running on hippocampal neurogenesis, depression-like symptoms, and drug-seeking behaviour during nicotine deprivation. METHODS The rats were subjected to nicotine (0.03 mg/kg/inf) self-administration via an increasing schedule of reinforcement. After 21 sessions, the animals entered a 14-day abstinence phase during which they were housed in either standard home cages without wheels, cages equipped with running wheels, or cages with locked wheels. RESULTS Wheel running increased the number of Ki-67+ and DCX+ cells in the DG of both nicotine-deprived and nicotine-naive rats. Wheel-running exercise evoked an antidepressant effect on abstinence Day 14 but had no effect on nicotine-seeking behaviour on abstinence Day 15 compared to rats with locked-wheel access. CONCLUSIONS In summary, long-term wheel running positively affected the number of immature neurons in the hippocampus, which corresponded with an antidepressant response in nicotine-weaned rats. One possible mechanism underlying the positive effect of running on the affective state during nicotine cessation may be the reduction in deficits in DCX+ cells in the hippocampus.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland.
- Affective Cognitive Neuroscience Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Sabina Brygider
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Urszula Głowacka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, Kraków, 31- 531, Poland
| | - Sława Glińska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Łucja Balcerzak
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| |
Collapse
|
2
|
Ferguson R, van Es MA, van den Berg LH, Subramanian V. Neural stem cell homeostasis is affected in cortical organoids carrying a mutation in Angiogenin. J Pathol 2024; 262:410-426. [PMID: 38180358 DOI: 10.1002/path.6244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Mutations in Angiogenin (ANG) and TARDBP encoding the 43 kDa transactive response DNA binding protein (TDP-43) are associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). ANG is neuroprotective and plays a role in stem cell dynamics in the haematopoietic system. We obtained skin fibroblasts from members of an ALS-FTD family, one with mutation in ANG, one with mutation in both TARDBP and ANG, and one with neither mutation. We reprogrammed these fibroblasts to induced pluripotent stem cells (iPSCs) and generated cortical organoids as well as induced stage-wise differentiation of the iPSCs to neurons. Using these two approaches we investigated the effects of FTD-associated mutations in ANG and TARDBP on neural precursor cells, neural differentiation, and response to stress. We observed striking neurodevelopmental defects such as abnormal and persistent rosettes in the organoids accompanied by increased self-renewal of neural precursor cells. There was also a propensity for differentiation to later-born neurons. In addition, cortical neurons showed increased susceptibility to stress, which is exacerbated in neurons carrying mutations in both ANG and TARDBP. The cortical organoids and neurons generated from patient-derived iPSCs carrying ANG and TARDBP gene variants recapitulate dysfunctions characteristic of frontotemporal lobar degeneration observed in FTD patients. These dysfunctions were ameliorated upon treatment with wild type ANG. In addition to its well-established role during the stress response of mature neurons, ANG also appears to play a role in neural progenitor dynamics. This has implications for neurogenesis and may indicate that subtle developmental defects play a role in disease susceptibility or onset. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ross Ferguson
- Department of Life Sciences, University of Bath, Bath, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Neural Stem Cells Secretome Increased Neurogenesis and Behavioral Performance and the Activation of Wnt/β-Catenin Signaling Pathway in Mouse Model of Alzheimer’s Disease. Neuromolecular Med 2022; 24:424-436. [DOI: 10.1007/s12017-022-08708-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/02/2022] [Indexed: 01/13/2023]
|
4
|
Hossain MM, Belkadi A, Al-Haddad S, Richardson JR. Deltamethrin Exposure Inhibits Adult Hippocampal Neurogenesis and Causes Deficits in Learning and Memory in Mice. Toxicol Sci 2021; 178:347-357. [PMID: 32976580 DOI: 10.1093/toxsci/kfaa144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deficits in learning and memory are often associated with disruption of hippocampal neurogenesis, which is regulated by numerous processes, including precursor cell proliferation, survival, migration, and differentiation to mature neurons. Recent studies demonstrate that adult born neurons in the dentate gyrus (DG) in the hippocampus can functionally integrate into the existing neuronal circuitry and contribute to hippocampal-dependent learning and memory. Here, we demonstrate that relatively short-term deltamethrin exposure (3 mg/kg every 3 days for 1 month) inhibits adult hippocampal neurogenesis and causes deficits in learning and memory in mice. Hippocampal-dependent cognitive functions were evaluated using 2 independent hippocampal-dependent behavioral tests, the novel object recognition task and Morris water maze. We found that deltamethrin-treated mice exhibited profound deficits in novel object recognition and learning and memory in water maze. Deltamethrin exposure significantly decreased bromodeoxyuridine (BrdU)-positive cells (39%) and Ki67+ cells (47%) in the DG of the hippocampus, indicating decreased cellular proliferation. In addition, deltamethrin-treated mice exhibited a 44% decrease in nestin-expressing neural progenitor cells and a 38% reduction in the expression of doublecortin (DCX), an early neuronal differentiation marker. Furthermore, deltamethrin-exposed mice exhibited a 25% reduction in total number of granule cells in the DG. These findings indicate that relatively short-term exposure to deltamethrin causes significant deficits in hippocampal neurogenesis that is associated with impaired learning and memory.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Abdelmadjid Belkadi
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Sara Al-Haddad
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social work, Florida International University, Miami, Florida 33199.,Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio 44272
| |
Collapse
|
5
|
You J, Sun L, Wang J, Sun F, Wang W, Wang D, Fan X, Liu D, Xu Z, Qiu C, Chen J, Yan H, Liu B. Role of Adiponectin-Notch pathway in cognitive dysfunction associated with depression and in the therapeutic effect of physical exercise. Aging Cell 2021; 20:e13387. [PMID: 34053165 PMCID: PMC8208781 DOI: 10.1111/acel.13387] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 12/17/2022] Open
Abstract
A substantial percentage of late‐life depression patients also have an cognitive impairment, which severely affects the life quality, while the co‐occurring mechanisms are still unclear. Physical exercise can ameliorate both depressive behaviors and cognitive dysfunction, but the molecular mechanisms underlying its beneficial effects remain elusive. In this study, we uncover a novel adipose tissue to hippocampus crosstalk mediated by Adiponectin‐Notch pathway, with an impact on hippocampal neurogenesis and cognitive function. Adiponectin, an adipocyte‐derived hormone, could activate Notch signaling in the hippocampus through upregulating ADAM10 and Notch1, two key molecules in the Notch signaling. Chronic stress inhibits the Adiponectin‐Notch pathway and induces impaired hippocampal neurogenesis and cognitive dysfunction, which can be rescued by AdipoRon and running. Inhibition Notch signaling by DAPT mimics the adverse effects of chronic stress on hippocampal neurogenesis and cognitive function. Adiponectin knockout mice display depressive‐like behaviors, associated with inhibited Notch signaling, impaired hippocampal neurogenesis and cognitive dysfunction. Physical exercise could activate Adiponectin‐Notch pathway, and improve hippocampal neurogenesis and cognitive function, while deleting adiponectin gene or inhibiting Notch signaling blocks its beneficial effects. Together, our data not only suggest that Adiponectin‐Notch pathway is involved in the pathogenesis of cognitive dysfunction associated with depression, but also contributes to the therapeutic effect of physical exercise. This work helps to decipher the etiology of cognitive impairment associated with depression and hence will provide a potential innovative therapeutic target for these patients.
Collapse
Affiliation(s)
- Jingjing You
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Linshan Sun
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Jiangong Wang
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Fengjiao Sun
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Xueli Fan
- Department of Neurology Binzhou Medical University Hospital Shandong China
| | - Dunjiang Liu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Zhicheng Xu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Changyun Qiu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| | - Jinbo Chen
- Department of Neurology Binzhou Medical University Hospital Shandong China
| | - Haijing Yan
- Department of Pharmacology College of Basic Medicine Binzhou Medical University Yantai China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders Binzhou Medical University Hospital Shandong China
| |
Collapse
|
6
|
Dias GP, Murphy T, Stangl D, Ahmet S, Morisse B, Nix A, Aimone LJ, Aimone JB, Kuro-O M, Gage FH, Thuret S. Intermittent fasting enhances long-term memory consolidation, adult hippocampal neurogenesis, and expression of longevity gene Klotho. Mol Psychiatry 2021; 26:6365-6379. [PMID: 34031536 PMCID: PMC8760057 DOI: 10.1038/s41380-021-01102-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
Daily calorie restriction (CR) and intermittent fasting (IF) enhance longevity and cognition but the effects and mechanisms that differentiate these two paradigms are unknown. We examined whether IF in the form of every-other-day feeding enhances cognition and adult hippocampal neurogenesis (AHN) when compared to a matched 10% daily CR intake and ad libitum conditions. After 3 months under IF, female C57BL6 mice exhibited improved long-term memory retention. IF increased the number of BrdU-labeled cells and neuroblasts in the hippocampus, and microarray analysis revealed that the longevity gene Klotho (Kl) was upregulated in the hippocampus by IF only. Furthermore, we found that downregulating Kl in human hippocampal progenitor cells led to decreased neurogenesis, whereas Kl overexpression increased neurogenesis. Finally, histological analysis of Kl knockout mice brains revealed that Kl is required for AHN, particularly in the dorsal hippocampus. These data suggest that IF is superior to 10% CR in enhancing memory and identifies Kl as a novel candidate molecule that regulates the effects of IF on cognition likely via AHN enhancement.
Collapse
Affiliation(s)
- Gisele Pereira Dias
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Tytus Murphy
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Doris Stangl
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Selda Ahmet
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Benjamin Morisse
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Alina Nix
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Lindsey J. Aimone
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA USA
| | - James B. Aimone
- grid.474520.00000000121519272Center for Computing Research, Sandia National Laboratories, Albuquerque, NM USA
| | - Makoto Kuro-O
- grid.410804.90000000123090000Division of Anti-Ageing Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Fred H. Gage
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA USA
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021; 91:24-47. [PMID: 32755644 DOI: 10.1016/j.bbi.2020.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
Unpredictable chronic mild stress (UCMS) is one of the most commonly used, robust and translatable models for studying the neurobiological basis of major depression. Although the model currently has multiple advantages, it does not entirely follow the trajectory of the disorder, whereby depressive symptomology can often present months after exposure to stress. Furthermore, patients with depression are more likely to withdraw in response to their stressful experience, or as a symptom of their depression, and, in turn, this withdrawal/isolation can further exacerbate the stressful experience and the depressive symptomology. Therefore, we investigated the effect(s) of 6 weeks of UCMS followed by another 6 weeks of social isolation (referred to as UCMSI), on behaviour, corticosterone stress responsivity, immune system functioning, and hippocampal neurogenesis, in young adult male mice. We found that UCMSI induced several behavioural changes resembling depression but did not induce peripheral inflammation. However, UCMSI animals showed increased microglial activation in the ventral dentate gyrus (DG) of the hippocampus and astrocyte activation in both the dorsal and ventral DG, with increased GFAP-positive cell immunoreactivity, GFAP-positive cell hypertrophy and process extension, and increased s100β-positive cell density. Moreover, UCMSI animals had significantly reduced neurogenesis in the DG and reduced levels of peripheral vascular endothelial growth factor (VEGF) - a trophic factor produced by astrocytes and that stimulates neurogenesis. Finally, UCMSI mice also had normal baseline corticosterone levels but a smaller increase in corticosterone following acute stress, that is, the Porsolt Swim Test. Our work gives clinically relevant insights into the role that microglial and astrocyte functioning, and hippocampal neurogenesis may play in the context of stress, social isolation and depression, offering a potentially new avenue for therapeutic target.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inez Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
8
|
Du Preez A, Law T, Onorato D, Lim YM, Eiben P, Musaelyan K, Egeland M, Hye A, Zunszain PA, Thuret S, Pariante CM, Fernandes C. The type of stress matters: repeated injection and permanent social isolation stress in male mice have a differential effect on anxiety- and depressive-like behaviours, and associated biological alterations. Transl Psychiatry 2020; 10:325. [PMID: 32958745 PMCID: PMC7505042 DOI: 10.1038/s41398-020-01000-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Chronic stress can alter the immune system, adult hippocampal neurogenesis and induce anxiety- and depressive-like behaviour in rodents. However, previous studies have not discriminated between the effect(s) of different types of stress on these behavioural and biological outcomes. We investigated the effect(s) of repeated injection vs. permanent social isolation on behaviour, stress responsivity, immune system functioning and hippocampal neurogenesis, in young adult male mice, and found that the type of stress exposure does indeed matter. Exposure to 6 weeks of repeated injection resulted in an anxiety-like phenotype, decreased systemic inflammation (i.e., reduced plasma levels of TNFα and IL4), increased corticosterone reactivity, increased microglial activation and decreased neuronal differentiation in the dentate gyrus (DG). In contrast, exposure to 6 weeks of permanent social isolation resulted in a depressive-like phenotype, increased plasma levels of TNFα, decreased plasma levels of IL10 and VEGF, decreased corticosterone reactivity, decreased microglial cell density and increased cell density for radial glia, s100β-positive cells and mature neuroblasts-all in the DG. Interestingly, combining the two distinct stress paradigms did not have an additive effect on behavioural and biological outcomes, but resulted in yet a different phenotype, characterized by increased anxiety-like behaviour, decreased plasma levels of IL1β, IL4 and VEGF, and decreased hippocampal neuronal differentiation, without altered neuroinflammation or corticosterone reactivity. These findings demonstrate that different forms of chronic stress can differentially alter both behavioural and biological outcomes in young adult male mice, and that combining multiple stressors may not necessarily cause more severe pathological outcomes.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Law
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yau M Lim
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
9
|
Ceccarelli M, D’Andrea G, Micheli L, Tirone F. Interaction Between Neurogenic Stimuli and the Gene Network Controlling the Activation of Stem Cells of the Adult Neurogenic Niches, in Physiological and Pathological Conditions. Front Cell Dev Biol 2020; 8:211. [PMID: 32318568 PMCID: PMC7154047 DOI: 10.3389/fcell.2020.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
In the adult mammalian brain new neurons are continuously generated throughout life in two niches, the dentate gyrus of the hippocampus and the subventricular zone. This process, called adult neurogenesis, starts from stem cells, which are activated and enter the cell cycle. The proliferative capability of stem cells progressively decreases during aging. The population of stem cells is generally quiescent, and it is not clear whether the potential for stem cells to expand is limited, or whether they can expand and then return to quiescence, remaining available for further activation. Certain conditions may deregulate stem cells quiescence and self-renewal. In fact we discuss the possibility of activation of stem cells by neurogenic stimuli as a function of the intensity of the stimulus (i.e., whether this is physiological or pathological), and of the deregulation of the system (i.e., whether the model is aged or carrying genetic mutations in the gene network controlling quiescence). It appears that when the system is aged and/or carrying mutations of quiescence-maintaining genes, preservation of the quiescent state of stem cells is more critical and stem cells can be activated by a neurogenic stimulus which is ineffective in normal conditions. Moreover, when a neurogenic stimulus is in itself a cause of brain damage (e.g., kainic acid treatment) the activation of stem cells occurs bypassing any inhibitory control. Plausibly, with strong neurogenic stimuli, such as kainic acid injected into the dentate gyrus, the self-renewal capacity of stem cells may undergo rapid exhaustion. However, the self-renewal capability of stem cells persists when normal stimuli are elicited in the presence of a mutation of one of the quiescence-maintaining genes, such as p16Ink4a, p21Cip1 or Btg1. In this case, stem cells become promptly activated by a neurogenic stimulus even during aging. This indicates that stem cells retain a high proliferative capability and plasticity, and suggests that stem cells are protected against the response to stimulus and are resilient to exhaustion. It will be interesting to assess at which functional degree of deregulation of the quiescence-maintaining system, stem cells will remain responsive to repeated neurogenic stimuli without undergoing exhaustion of their pool.
Collapse
Affiliation(s)
| | | | | | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
10
|
Karimipour M, Rahbarghazi R, Tayefi H, Shimia M, Ghanadian M, Mahmoudi J, Bagheri HS. Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int J Dev Neurosci 2019; 74:18-26. [PMID: 30822517 DOI: 10.1016/j.ijdevneu.2019.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
The decline in neurogenesis is a very critical problem in Alzheimer disease. Different biological activities have been reported for medicinal application of quercetin. Herein, we investigated the neurogenesis potential of quercetin in a rat model of Alzheimer's disease induced by amyloid-beta injection. Rats were randomly divided into Control, Alzheimer + Saline and Alzheimer + Quercetin groups. Following the administration of Amyloid-beta, rats in the Alzheimer + Quercetin group received 40 mg/kg/day quercetin orally for one month. Our data demonstrated amyloid-β injection could impair learning and memory processing in rats indicated by passive avoidance test evaluation. We noted that one-month quercetin treatment alleviated the detrimental effects of amyloid-β on spatial learning and memory parameters using Morris water maze analysis. Quercetin was found to increase the number of proliferating neural stem/progenitor cells. Notably, quercetin increased the number of DCX-expressing cells, indicating the active dynamic growth of neural progenitor cells in the dentate gyrus of the hippocampus. We further observed that the quercetin improved the number of BrdU/NeuN positive cells contributed to enhanced adult neurogenesis. Based on our results, quercetin had the potential to promote the expression of BDNF, NGF, CREB, and EGR-1 genes involved in regulating neurogenesis. These data suggest that quercetin can play a valuable role in alleviating Alzheimer's disease symptoms by enhancing adult neurogenesis mechanism.
Collapse
Affiliation(s)
- Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Neuroscience Research Center, Advanced Biomedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mustafa Ghanadian
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Mahmoudi
- Neuroscience Research Center, Advanced Biomedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hesam Saghaei Bagheri
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Lansing AE, Plante WY, Golshan S, Fenemma-Notestine C, Thuret S. Emotion regulation mediates the relationship between verbal learning and internalizing, trauma-related and externalizing symptoms among early-onset, persistently delinquent adolescents. LEARNING AND INDIVIDUAL DIFFERENCES 2019; 70:201-215. [PMID: 31130798 PMCID: PMC6532995 DOI: 10.1016/j.lindif.2017.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Research supports cascading relationships among internalizing and externalizing symptoms, and academic problems. This constellation of problems characterizes Early-Onset/Persistent Delinquent [EOPD] youth and appropriately targeted interventions accounting for this comorbidity may improve outcomes. To investigate these relationships in EOPD youth, we characterized their cross-diagnostic psychopathology and verbal (word-list) learning/memory and evaluated: 1) verbal learning/memory profiles of Withdrawn/Depressed relative to Non-Withdrawn/Depressed youth; 2) cognitive and psychiatric predictors of verbal learning; and 3) emotion regulation as a mediator of psychiatric and cognitive relationships. Results indicated Withdrawn/Depressed youth recalled significantly fewer words during immediate, and some delayed, recall conditions. Less word-learning was predicted by: Withdrawn/Depressed classification, higher trauma-specific re-experiencing symptoms, greater emotion dysregulation, weaker executive skills, fewer trauma-avoidance and aggressive symptoms, and earlier alcohol-use onset. Emotion regulation strongly mediated the relationship between verbal learning and psychopathology, but not cognitive skills, among youth at high-risk for school dropout. Mental health and education implications are discussed.
Collapse
Affiliation(s)
- Amy E. Lansing
- University of California, San Diego, Department of Psychiatry
- San Diego State University, Sociology Department, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience
| | - Wendy Y. Plante
- University of California, San Diego, Department of Psychiatry
- San Diego State University, Sociology Department, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience
| | | | - Christine Fenemma-Notestine
- University of California, San Diego, Department of Psychiatry
- University of California, San Diego, Department of Radiology
| | - Sandrine Thuret
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience
| |
Collapse
|
12
|
Musaelyan K, Aldridge S, Du Preez A, Egeland M, Zunszain PA, Pariante CM, Thuret S, Fernandes C. Repeated lipopolysaccharide exposure modifies immune and sickness behaviour response in an animal model of chronic inflammation. J Psychopharmacol 2018; 32:236-247. [PMID: 29338496 DOI: 10.1177/0269881117746902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Repeated lipopolysaccharide exposure is often used in longitudinal preclinical models of depression. However, the potential phenotypic differences from acute depression-mimicking effects are rarely described. This study compared chronic lipopolysaccharide administration of doses previously used in depression research to a new mode of escalating dose injections. Adult male BALB/c mice ( n=8/group) were injected intraperitoneally with either a single 0.83 mg/kg dose, a repeated 0.1 mg/kg lipopolysaccharide dose or a dose which escalated weekly from 0.33 to 0.83 mg/kg lipopolysaccharide for six weeks. The escalating lipopolysaccharide group demonstrated most features of sickness behaviour such as weight loss and reduction in food intake every week, whilst this effect was not sustained in other groups. Moreover, only in the escalating lipopolysaccharide group did most peripheral plasma cytokines levels, measured using Luminex multiplex technology, such as interleukin-6, tumour necrosis factor α and interleukin-2 remain over three-fold elevated on the sixth week. In addition, exposure to escalating doses led to a reduction of neuroblast maturation in the dentate gyrus relevant for depression neurobiology. Therefore, this mode of injections might be useful in the studies attempting to replicate neurobiological aspects of the chronic inflammatory state observed in mood disorders.
Collapse
Affiliation(s)
- Ksenia Musaelyan
- 1 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,3 MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven Aldridge
- 1 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrea Du Preez
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martin Egeland
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- 2 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- 1 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- 3 MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits 2017; 11:74. [PMID: 29075182 PMCID: PMC5643465 DOI: 10.3389/fncir.2017.00074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
The process of neurogenesis has been demonstrated to occur throughout life in the subgranular zone (SGZ) of the hippocampal dentate gyrus of several mammals, including humans. The basal rate of adult hippocampal neurogenesis can be altered by lifestyle and environmental factors. In this perspective review, the evidence for sleep as a modulator of adult hippocampal neurogenesis is first summarized. Following this, the impacts of sleep and sleep disturbances on hippocampal-dependent functions, including learning and memory, and depression are critically evaluated. Finally, we postulate that the effects of sleep on hippocampal-dependent functions may possibly be mediated by a change in adult hippocampal neurogenesis. This could provide a route to new treatments for cognitive impairments and psychiatric disorders.
Collapse
Affiliation(s)
- Cristina Navarro-Sanchis
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Olivier Brock
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Yu T, Tensaouti Y, Bagha ZM, Davidson R, Kim A, Kernie SG. Adult newborn neurons interfere with fear discrimination in a protocol-dependent manner. Brain Behav 2017; 7:e00796. [PMID: 28948089 PMCID: PMC5607558 DOI: 10.1002/brb3.796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Significant enhancement of neurogenesis is known to occur in response to a variety of brain insults such as traumatic brain injury. Previous studies have demonstrated that injury-induced newborn neurons are required for hippocampus-dependent spatial learning and memory tasks like the Morris water maze, but not in contextual fear conditioning that requires both the hippocampus and amygdala. Recently, the dentate gyrus, where adult hippocampal neurogenesis occurs, has been implicated in processing information to form specific memory under specific environmental stimuli in a process known as pattern separation. METHODS To test whether injury-induced newborn neurons facilitate pattern separation, hippocampus-dependent contextual fear discrimination was performed using delta-HSV-TK transgenic mice, which can temporally inhibit injury-induced neurogenesis under the control of ganciclovir. RESULTS We observed that impaired neurogenesis enhanced the ability to distinguish aversive from naïve environments. In addition, this occurs most significantly following injury, but only in a context-dependent manner whereby the sequence of introducing the naïve environment from the aversive one affected the performance differentially. CONCLUSIONS Temporal impairment of both baseline and injury-induced adult neurogenesis enhances performance in fear discrimination in a context-dependent manner.
Collapse
Affiliation(s)
- Tzong‐Shiue Yu
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Yacine Tensaouti
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Zohaib M. Bagha
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Rina Davidson
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Ahleum Kim
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| | - Steven G. Kernie
- Department of PediatricsColumbia University College of Physicians and SurgeonsNew YorkNYUSA
| |
Collapse
|
15
|
Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APP swe /PS1 dE9 transgenic mice: Effect of long-term treatment with paroxetine. Neurobiol Dis 2017; 104:50-60. [DOI: 10.1016/j.nbd.2017.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 11/20/2022] Open
|
16
|
Overexpression of the 18 kDa translocator protein (TSPO) in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects. Neuropharmacology 2017; 125:117-128. [PMID: 28655607 DOI: 10.1016/j.neuropharm.2017.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a five transmembrane domain protein that plays a crucial role in neurosteroid (e.g., allopregnanolone) synthesis by promoting the transport of cholesterol to the inner mitochondrial membrane. This protein is predominantly expressed in steroid-synthesizing tissues, including the central and peripheral nervous system, affecting stress-related disorders such as anxiety and depression. Recent studies have focused on the hippocampal dentate gyrus, which is very important for involvement of anxiety and depression. However, the exact role that TSPO plays in the pathophysiology of anxiety and depression and the involvement of the hippocampal dentate gyrus in regulating these behavioural effects remain elusive. This study used the lentiviral vectors mediating TPSO overexpression to assess the effects of TPSO overexpression in the hippocampal dentate gyrus on anxiolytic and antidepressant-like behavioural effects in mice. The expression of TSPO and the concentration of allopregnanolone in hippocampus tissues (3 mm in diameter around the injection site on both sides) were measured by Western blot and ELISA, respectively. The results indicated that microinjection of the LV-TSPO resulted in a significant increase in TSPO expression and allopregnanolone concentration in the hippocampus. Moreover, TSPO overexpression of the mouse hippocampal dentate gyrus generated significant anxiolytic and antidepressant-like behavioural effects in a series of behavioural models. These effects were completely blocked by the TSPO antagonist PK11195 (3 mg/kg, intraperitoneally) and the 5α-reductase inhibitor finasteride (5 mg/kg,intraperitoneally). Meanwhile, the increased allopregnanolone was also reversed by PK11195 and finasteride. In addition, neither PK11195 nor finasteride had an effect on the expression of TSPO. Overall, our results are the first to suggest that the overexpression of TSPO in the hippocampal dentate gyrus produced anxiolytic and antidepressant-like behavioural effects that are partially mediated by downstream allopregnanolone biosynthesis. Our results suggest that TSPO would be a potential anxiolytic and antidepressant therapeutic target.
Collapse
|
17
|
Rotheneichner P, Romanelli P, Bieler L, Pagitsch S, Zaunmair P, Kreutzer C, König R, Marschallinger J, Aigner L, Couillard-Després S. Tamoxifen Activation of Cre-Recombinase Has No Persisting Effects on Adult Neurogenesis or Learning and Anxiety. Front Neurosci 2017; 11:27. [PMID: 28203140 PMCID: PMC5285339 DOI: 10.3389/fnins.2017.00027] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis is a tightly regulated process continuously taking place in the central nervous system of most mammalian species. In neuroscience research, transgenic animals bearing the tamoxifen-inducible CreERT2-Lox system are widely used. In this study, we made use of a Nestin-CreERT2/R26R-YFP transgenic mouse model in which the CreERT2 activates the expression of YFP in multipotent neural stem cells upon tamoxifen application. Humoral factors, such as the levels of estrogens, have been reported to affect the hippocampal neurogenesis. The application of tamoxifen, a mixed agonist/antagonist of the estrogen receptor that permeates the blood-brain-barrier, could thus influence adult neurogenesis. Although the functions of adult neurogenesis are yet to be fully deciphered, a reciprocal interaction between rates of neurogenesis on the one hand and learning and mood regulation on the other hand, has been suggested. The impact of tamoxifen on neurogenesis and behavior was therefore addressed following five daily applications according to the open field test, the elevated plus maze, and Morris water maze. In addition, the impact of short-term tamoxifen application on progenitor cell proliferation, morphology, and fate in the neurogenic niche of the dentate gyrus were investigated. Finally, the influence of the route of administration (oral vs. intra-peritoneal) and gender-specific response were scrutinized. The sub-acute analysis did neither reveal significant differences in behavior, such as voluntary motor activity, anxiety behavior, and spatial learning, nor in cell proliferation, cell survival, dendritic arborization or maturation rate within the dentate gyrus between saline solution-, corn oil-, and tamoxifen-treated groups. Finally, neither the route of application, nor the gender of treated mice influenced the response to tamoxifen. We conclude that short tamoxifen treatments used to activate the CreERT2 system in transgenic mouse models does not have a measurable impact on adult neurogenesis or the here tested behavior, and is therefore appropriate for most studies in the field.
Collapse
Affiliation(s)
- Peter Rotheneichner
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Pasquale Romanelli
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Sebastian Pagitsch
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria; Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria; Department of Obstetrics and Gynecology, Paracelsus Medical UniversitySalzburg, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| | - Richard König
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria; Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
| | - Julia Marschallinger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria; Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria; Institute of Molecular Regenerative Medicine, Paracelsus Medical UniversitySalzburg, Austria
| | - Sébastien Couillard-Després
- Institute of Experimental Neuroregeneration, Paracelsus Medical UniversitySalzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical UniversitySalzburg, Austria
| |
Collapse
|
18
|
Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging. Sci Rep 2017; 7:40726. [PMID: 28098178 PMCID: PMC5241875 DOI: 10.1038/srep40726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Lithium (Li) is a potent mood stabilizer and displays neuroprotective and neurogenic properties. Despite extensive investigations, the mechanisms of action have not been fully elucidated, especially in the juvenile, developing brain. Here we characterized lithium distribution in the juvenile mouse brain during 28 days of continuous treatment that result in clinically relevant serum concentrations. By using Time-of-Flight Secondary Ion Mass Spectrometry- (ToF-SIMS) based imaging we were able to delineate temporospatial lithium profile throughout the brain and concurrent distribution of endogenous lipids with high chemical specificity and spatial resolution. We found that Li accumulated in neurogenic regions and investigated the effects on hippocampal neurogenesis. Lithium increased proliferation, as judged by Ki67-immunoreactivity, but did not alter the number of doublecortin-positive neuroblasts at the end of the treatment period. Moreover, ToF-SIMS revealed a steady depletion of sphingomyelin in white matter regions during 28d Li-treatment, particularly in the olfactory bulb. In contrast, cortical levels of cholesterol and choline increased over time in Li-treated mice. This is the first study describing ToF-SIMS imaging for probing the brain-wide accumulation of supplemented Li in situ. The findings demonstrate that this technique is a powerful approach for investigating the distribution and effects of neuroprotective agents in the brain.
Collapse
|
19
|
Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair. Semin Cell Dev Biol 2016; 62:78-85. [PMID: 27130635 DOI: 10.1016/j.semcdb.2016.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury.
Collapse
|
20
|
Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis. Neural Plast 2016; 2016:5026713. [PMID: 26885403 PMCID: PMC4738969 DOI: 10.1155/2016/5026713] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 12/06/2015] [Indexed: 12/14/2022] Open
Abstract
Although the literature reports a higher incidence of anxiety disorders in women, the majority of basic research has focused on male rodents, thus resulting in a lack of knowledge on the neurobiology of anxiety in females. Bridging this gap is crucial for the design of effective translational interventions in women. One of the key brain mechanisms likely to regulate anxious behavior is adult hippocampal neurogenesis (AHN). This review paper aims to discuss the evidence on the differences between male and female rodents with regard to anxiety-related behavior and physiology, with a special focus on AHN. The differences between male and female physiologies are greatly influenced by hormonal differences. Gonadal hormones and their fluctuations during the estrous cycle have often been identified as agents responsible for sexual dimorphism in behavior and AHN. During sexual maturity, hormone levels fluctuate cyclically in females more than in males, increasing the stress response and the susceptibility to anxiety. It is therefore of great importance that future research investigates anxiety and other neurophysiological aspects in the female model, so that results can be more accurately applicable to the female population.
Collapse
|
21
|
Gebara E, Bonaguidi MA, Beckervordersandforth R, Sultan S, Udry F, Gijs PJ, Lie DC, Ming GL, Song H, Toni N. Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus. Stem Cells 2016; 34:997-1010. [PMID: 26729510 DOI: 10.1002/stem.2266] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/15/2015] [Accepted: 11/08/2015] [Indexed: 01/13/2023]
Abstract
Adult neurogenesis is tightly regulated by the neurogenic niche. Cellular contacts between niche cells and neural stem cells are hypothesized to regulate stem cell proliferation or lineage choice. However, the structure of adult neural stem cells and the contact they form with niche cells are poorly described. Here, we characterized the morphology of radial glia-like (RGL) cells, their molecular identity, proliferative activity, and fate determination in the adult mouse hippocampus. We found the coexistence of two morphotypes of cells with prototypical morphological characteristics of RGL stem cells: Type α cells, which represented 76% of all RGL cells, displayed a long primary process modestly branching into the molecular layer and type β cells, which represented 24% of all RGL cells, with a shorter radial process highly branching into the outer granule cell layer-inner molecular layer border. Stem cell markers were expressed in type α cells and coexpressed with astrocytic markers in type β cells. Consistently, in vivo lineage tracing indicated that type α cells can give rise to neurons, astrocytes, and type β cells, whereas type β cells do not proliferate. Our results reveal that the adult subgranular zone of the dentate gyrus harbors two functionally different RGL cells, which can be distinguished by simple morphological criteria, supporting a morphofunctional role of their thin cellular processes. Type β cells may represent an intermediate state in the transformation of type α, RGL stem cells, into astrocytes.
Collapse
Affiliation(s)
- Elias Gebara
- Department of Fundamental Neuroscience, University of Lausanne, rue du Bugnon, Lausanne, Switzerland
| | - Michael Anthony Bonaguidi
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruth Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander Universität, Erlangen-Nürnberg, Fahrstrasse, Erlangen, Germany
| | - Sébastien Sultan
- Department of Fundamental Neuroscience, University of Lausanne, rue du Bugnon, Lausanne, Switzerland
| | - Florian Udry
- Department of Fundamental Neuroscience, University of Lausanne, rue du Bugnon, Lausanne, Switzerland
| | - Pieter-Jan Gijs
- Department of Fundamental Neuroscience, University of Lausanne, rue du Bugnon, Lausanne, Switzerland
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität, Erlangen-Nürnberg, Fahrstrasse, Erlangen, Germany
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicolas Toni
- Department of Fundamental Neuroscience, University of Lausanne, rue du Bugnon, Lausanne, Switzerland
| |
Collapse
|
22
|
Bolz L, Heigele S, Bischofberger J. Running Improves Pattern Separation during Novel Object Recognition. Brain Plast 2015; 1:129-141. [PMID: 29765837 PMCID: PMC5928530 DOI: 10.3233/bpl-150010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
Collapse
Affiliation(s)
- Leoni Bolz
- Department of Biomedicine, University of Basel, Pestalozzistr, Basel, Switzerland
| | - Stefanie Heigele
- Department of Biomedicine, University of Basel, Pestalozzistr, Basel, Switzerland
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistr, Basel, Switzerland
| |
Collapse
|
23
|
Effects of Ginko biloba leaf extract on the neurogenesis of the hippocampal dentate gyrus in the elderly mice. Anat Sci Int 2015; 91:280-9. [DOI: 10.1007/s12565-015-0297-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/06/2015] [Indexed: 02/08/2023]
|
24
|
Jauregui-Huerta F, Zhang L, Yañez-Delgadillo G, Hernandez-Carrillo P, García-Estrada J, Luquín S. Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress. Front Aging Neurosci 2015; 7:159. [PMID: 26347648 PMCID: PMC4539520 DOI: 10.3389/fnagi.2015.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/31/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we exposed adult rats to chronic variable stress (CVS) and tested the hypothesis that previous early-life exposure to stress changes the manner in which older subjects respond to aversive conditions. To this end, we analyzed the cytogenic changes in the hippocampus and hippocampal-dependent spatial learning performance. The experiments were performed on 18-month-old male rats divided into four groups as follows: Control (old rats under standard laboratory conditions), Early-life stress (ELS; old rats who were exposed to environmental noise from postnatal days, PNDs 21–35), CVS + ELS (old rats exposed to a chronic stress protocol who were previously exposed to the early-life noise stress) and CVS (old rats who were exposed only to the chronic stress protocol). The Morris Water Maze (MWM) was employed to evaluate the spatial learning abilities of the rats at the end of the experiment. Immunohistochemistry against 5′Bromodeoxyuridine (BrdU) and glial fibrillar acidic protein (GFAP) was also conducted in the DG, CA1, CA2 and CA3 regions of the hippocampus. We confocally analyzed the cytogenic (BrdU-labeled cells) and astrogenic (BrdU + GFAP-labeled cells) changes produced by these conditions. Using this procedure, we found that stress diminished the total number of BrdU+ cells over the main proliferative area of the hippocampus (i.e., the dentate gyrus, DG) but increased the astrocyte phenotypes (GFAP + BrdU). The depleted BrdU+ cells were restored when the senile rats also experienced stress at the early stages of life. The MWM assessment demonstrated that stress also impairs the ability of the rats to learn the task. This impairment was not present when the stressful experience was preceded by the early-life exposure. Thus, our results support the idea that previous exposure to mild stressing agents may have beneficial effects on aged subjects.
Collapse
Affiliation(s)
- Fernando Jauregui-Huerta
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, Mexico
| | - Griselda Yañez-Delgadillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Pamela Hernandez-Carrillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social Guadalajara, Mexico
| | - Sonia Luquín
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| |
Collapse
|
25
|
Venugopal C, Chandanala S, Prasad HC, Nayeem D, Bhonde RR, Dhanushkodi A. Regenerative therapy for hippocampal degenerative diseases: lessons from preclinical studies. J Tissue Eng Regen Med 2015; 11:321-333. [PMID: 26118731 DOI: 10.1002/term.2052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
Increase in life expectancy has put neurodegenerative diseases on the rise. Amongst these, degenerative diseases involving hippocampus like Alzheimer's disease (AD) and temporal lobe epilepsy (TLE) are ranked higher as it is vulnerable to excitotoxicity induced neuronal dysfunction and death resulting in cognitive impairment. Modern medicines have not succeeded in halting the progression of these diseases rendering them incurable and often fatal. Under such scenario, regenerative studies employing stem cells or their by-products in animal models of AD and TLE have yielded encourageing results. This review focuses on the distinct cell types, such as hippocampal cell lines, neural precursor cells, embryonic stem cells derived neural precursor cells, induced pluripotent stem cells, induced neurons and mesenchymal stem cells, which can be employed to rescue hippocampal functions in neurodegenerative diseases like AD and TLE. Besides, the divergent mechanisms through which cell based therapy confer neuroprotection, current impediments and possible improvements in stem cell transplantation strategies are discussed. Authors are aware of the voluminous literature available on this issue and have made a sincere attempt to put forth the current status of research in the field of cell based therapy concurrently discussing the promise it holds for combating neurodegenerative diseases like AD and TLE in the near future. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chaitra Venugopal
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | | | | - Danish Nayeem
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | - Ramesh R Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore, India
| | | |
Collapse
|
26
|
Gebara E, Udry F, Sultan S, Toni N. Taurine increases hippocampal neurogenesis in aging mice. Stem Cell Res 2015; 14:369-79. [PMID: 25889858 DOI: 10.1016/j.scr.2015.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.
Collapse
Affiliation(s)
- Elias Gebara
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| | - Florian Udry
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| | - Sébastien Sultan
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| | - Nicolas Toni
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| |
Collapse
|
27
|
Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, Chesnokova V. Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation 2015; 12:65. [PMID: 25889852 PMCID: PMC4403851 DOI: 10.1186/s12974-015-0281-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/11/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Adult neurogenesis in the subgranular zone of the hippocampus is involved in learning, memory, and mood control. Decreased hippocampal neurogenesis elicits significant behavioral changes, including cognitive impairment and depression. Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the intestinal tract, and cognitive dysfunction and depression frequently occur in patients suffering from this disorder. We therefore tested the effects of chronic intestinal inflammation on hippocampal neurogenesis. METHODS The dextran sodium sulfate (DSS) mouse model of IBD was used. Mice were treated with multiple-cycle administration of 3% wt/vol DSS in drinking water on days 1 to 5, 8 to 12, 15 to 19, and 22 to 26. Mice were sacrificed on day 7 (acute phase of inflammation) or day 29 (chronic phase of inflammation) after the beginning of the treatment. RESULTS During the acute phase of inflammation, we found increased plasma levels of IL-6 and TNF-α and increased expression of Iba1, a marker of activated microglia, accompanied by induced IL-6 and IL-1β, and the cyclin-dependent kinase inhibitor p21(Cip1) (p21) in hippocampus. During the chronic phase of inflammation, plasma levels of IL-6 were elevated. In the hippocampus, p21 protein levels were continued to be induced. Furthermore, markers of stem/early progenitor cells, including nestin and brain lipid binding protein (BLBP), and neuronal marker doublecortin (DCX) were all down-regulated, whereas glial fibrillary acidic protein (GFAP), a marker for astroglia, was induced. In addition, the number of proliferating precursors of neuronal lineage assessed by double Ki67 and DCX staining was significantly diminished in the hippocampus of DSS-treated animals, indicating decreased production of new neurons. CONCLUSIONS We show for the first time that chronic intestinal inflammation alters hippocampal neurogenesis. As p21 arrests early neuronal progenitor proliferation, it is likely that p21 induction during acute phase of inflammation resulted in the reduction of hippocampal neurogenesis observed later, on day 29, after the beginning of DSS treatment. The reduction in hippocampal neurogenesis might underlie the behavioral manifestations that occur in patients with IBD.
Collapse
Affiliation(s)
- Svetlana Zonis
- Department of Medicine, Cedars-Sinai Medical Center, Davis Bldg., Room 3019, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| | - Robert N Pechnick
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Vladimir A Ljubimov
- Department of Medicine, Cedars-Sinai Medical Center, Davis Bldg., Room 3019, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| | - Michael Mahgerefteh
- Department of Medicine, Cedars-Sinai Medical Center, Davis Bldg., Room 3019, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| | - Kolja Wawrowsky
- Department of Medicine, Cedars-Sinai Medical Center, Davis Bldg., Room 3019, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Vera Chesnokova
- Department of Medicine, Cedars-Sinai Medical Center, Davis Bldg., Room 3019, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
28
|
Akitake Y, Katsuragi S, Hosokawa M, Mishima K, Ikeda T, Miyazato M, Hosoda H. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring. Nutr Res 2014; 35:76-87. [PMID: 25433908 DOI: 10.1016/j.nutres.2014.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/07/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023]
Abstract
Intrauterine growth retardation (IUGR) occurs in 3% to 7% of all pregnancies. Recent human studies have indicated that neurodevelopmental disabilities, learning disorders, memory impairment, and mood disturbance are common in IUGR offspring. However, the interactions between IUGR and neurodevelopmental disorders are unclear because of the wide range of causes of IUGR, such as maternal malnutrition, placental insufficiency, pregnancy toxemia, and fetal malformations. Meanwhile, many studies have shown that moderate food restriction enhances spatial learning and improves mood disturbance in adult humans and animals. To date, the effects of maternal moderate food restriction on fetal brain remain largely unknown. In this study, we hypothesized that IUGR would be caused by even moderate food restriction in pregnant females and that the offspring would have neurodevelopmental disabilities. Mid-pregnant mice received moderate food restriction through the early lactation period. The offspring were tested for aspects of physical development, behavior, and neurodevelopment. The results showed that moderate maternal food restriction induced IUGR. Offspring had low birth weight and delayed development of physical and coordinated movement. Moreover, IUGR offspring exhibited mental disabilities such as anxiety and poor cognitive function. In particular, male offspring exhibited significantly impaired cognitive function at 3 weeks of age. These results suggested that a restricted maternal diet could be a risk factor for developmental disability in IUGR offspring and that male offspring might be especially susceptible.
Collapse
Affiliation(s)
- Yoshiharu Akitake
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan.
| | - Shinji Katsuragi
- Department of Perinatology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Masato Hosokawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kenichi Mishima
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Hiroshi Hosoda
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
29
|
Pro-neurogenesis and anti-dementia properties of tetradecyl 2,3-dihydroxybenzoate through TrkA receptor-mediated signalling pathways. Int J Neuropsychopharmacol 2014; 17:1847-61. [PMID: 24787365 DOI: 10.1017/s1461145714000558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tetradecyl 2,3-dihydroxybenzoate, termed ABG001, has been reported to enhance neurite outgrowth of PC12 cells. Herein, we report that oral administration of ABG001 for five days to adult male mice could dose-dependently enhance survival and neurite growth of newborn cells in hippocampal dentate gyrus (DG) without changes in cell proliferation and differentiation of progenitor cells. The ABG001 administration (0.5 mg/kg) enhanced the phosphorylation of tyrosine kinase A (TrkA) receptor, which induced increases in the levels of ERK, Akt and mTOR phosphorylation in hippocampus. The pro-neurogenesis of ABG001 was blocked by the TrkA receptor inhibitor K252a. By contrast, the ERK inhibitor U0126 attenuated only the ABG001-increased number of newborn cells, while the PI3K inhibitor LY294002 prevented mainly the ABG001-enhanced neurite growth. In comparison with control mice, the mice treated with ABG001 showed a more preferential spatial cognitive function as assessed by Morris water maze and Y maze tests, which was sensitive to the blockade of TrkA receptor. In addition, a single injection (i.c.v.) of 'aggregated' Aβ 25-35 in adult male mice (Aβ 25-35-mice) impaired spatial memory, survival and neurite growth of newborn cells in the DG with reduced phosphorylation of Akt and mTOR. The treatment of Aβ 25-35-mice with ABG001 could protect the survival and neurite growth of newborn cells through increasing TrkA receptor-induced phosphorylation of Akt and mTOR, which was accompanied by the improvement of spatial cognitive performance.
Collapse
|
30
|
Hossain MM, DiCicco-Bloom E, Richardson JR. Hippocampal ER stress and learning deficits following repeated pyrethroid exposure. Toxicol Sci 2014; 143:220-8. [PMID: 25359175 DOI: 10.1093/toxsci/kfu226] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is implicated as a significant contributor to neurodegeneration and cognitive dysfunction. Previously, we reported that the widely used pyrethroid pesticide deltamethrin causes ER stress-mediated apoptosis in SK-N-AS neuroblastoma cells. Whether or not this occurs in vivo remains unknown. Here, we demonstrate that repeated deltamethrin exposure (3 mg/kg every 3 days for 60 days) causes hippocampal ER stress and learning deficits in adult mice. Repeated exposure to deltamethrin caused ER stress in the hippocampus as indicated by increased levels of C/EBP-homologous protein (131%) and glucose-regulated protein 78 (96%). This was accompanied by increased levels of caspase-12 (110%) and activated caspase-3 (50%). To determine whether these effects resulted in learning deficits, hippocampal-dependent learning was evaluated using the Morris water maze. Deltamethrin-treated animals exhibited profound deficits in the acquisition of learning. We also found that deltamethrin exposure resulted in decreased BrdU-positive cells (37%) in the dentate gyrus of the hippocampus, suggesting potential impairment of hippocampal neurogenesis. Collectively, these results demonstrate that repeated deltamethrin exposure leads to ER stress, apoptotic cell death in the hippocampus, and deficits in hippocampal precursor proliferation, which is associated with learning deficits.
Collapse
Affiliation(s)
- Muhammad M Hossain
- *Department of Environmental and Occupational Medicine, Rutgers-Robert Wood Johnson Medical School, and Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey 08854; and Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Emanuel DiCicco-Bloom
- *Department of Environmental and Occupational Medicine, Rutgers-Robert Wood Johnson Medical School, and Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey 08854; and Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Jason R Richardson
- *Department of Environmental and Occupational Medicine, Rutgers-Robert Wood Johnson Medical School, and Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey 08854; and Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
31
|
Gourevitch D, Kossenkov AV, Zhang Y, Clark L, Chang C, Showe LC, Heber-Katz E. Inflammation and Its Correlates in Regenerative Wound Healing: An Alternate Perspective. Adv Wound Care (New Rochelle) 2014; 3:592-603. [PMID: 25207202 DOI: 10.1089/wound.2014.0528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
Objective: The wound healing response may be viewed as partially overlapping sets of two physiological processes, regeneration and wound repair with the former overrepresented in some lower species such as newts and the latter more typical of mammals. A robust and quantitative model of regenerative healing has been described in Murphy Roths Large (MRL) mice in which through-and-through ear hole wounds in the ear pinna leads to scarless healing and replacement of all tissue through blastema formation and including cartilage. Since these mice are naturally autoimmune and display many aspects of an enhanced inflammatory response, we chose to examine the inflammatory status during regenerative ear hole closure and observed that inflammation has a clear positive effect on regenerative healing. Approach: The inflammatory gene expression patterns (Illumina microarrays) of early healing ear tissue from regenerative MRL and nonregenerative C57BL/6 (B6) strains are presented along with a survey of innate inflammatory cells found in this tissue type pre and postinjury. The role of inflammation on healing is tested using a COX-2 inhibitor. Innovation and Conclusion: We conclude that (1) enhanced inflammation is consistent with, and probably necessary, for a full regenerative response and (2) the inflammatory gene expression and cell distribution patterns suggest a novel mast cell population with markers found in both immature and mature mast cells that may be a key component of regeneration.
Collapse
Affiliation(s)
| | | | - Yong Zhang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Lise Clark
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Celia Chang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
32
|
Phytoestrogen α-zearalanol improves memory impairment and hippocampal neurogenesis in ovariectomized mice. ScientificWorldJournal 2014; 2014:862019. [PMID: 25143992 PMCID: PMC4131096 DOI: 10.1155/2014/862019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 02/04/2023] Open
Abstract
Estrogen is known to provide robust protection of memory in postmenopausal women, but the fact that estrogen may increase the incidence of uterine and breast tumors has undoubtedly limited the clinical use of estrogen. In the present study, the effect of α-zearalanol (α-ZAL), a plant-derived phytoestrogen with low side-effect on uterine and breast, on memory has been evaluated in ovariectomized (OVX) mice when using 17β-estradiol (17β-E2) as an estrogen positive control. Our findings demonstrated that OVX resulted in impaired spatial learning and memory and reduced numbers of newborn neurons in the dentate gyrus of the hippocampus, while 17β-E2 or α-ZAL treatment significantly improved memory performance and restored hippocampal neurogenesis. We also found the reduction of brain derived neurotrophic factor (BDNF) and TrkB expression in OVX mice, which were ameliorated by 17β-E2 or α-ZAL supplementation. These results indicated that α-ZAL may improve memory impairments induced by OVX and modulate the expression of BDNF-TrkB benefit to neurogenesis which may be involved in the memory protection from α-ZAL, in a manner similar to that of 17β-E2. The present findings suggested that α-ZAL may be a plausible substitute of 17β-E2 in improving memory in postmenopausal women.
Collapse
|
33
|
Cheverud JM, Lawson HA, Bouckaert K, Kossenkov AV, Showe LC, Cort L, Blankenhorn EP, Bedelbaeva K, Gourevitch D, Zhang Y, Heber-Katz E. Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line. Heredity (Edinb) 2014; 112:508-18. [PMID: 24569637 PMCID: PMC3998788 DOI: 10.1038/hdy.2013.133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022] Open
Abstract
External ear hole closure in LG/J mice represents a model of regenerative response. It is accompanied by the formation of a blastema-like structure and the re-growth of multiple tissues, including cartilage. The ability to regenerate tissue is heritable. An F34 advanced intercross line of mice (Wustl:LG,SM-G34) was generated to identify genomic loci involved in ear hole closure over a 30-day healing period. We mapped 19 quantitative trait loci (QTL) for ear hole closure. Individual gene effects are relatively small (0.08 mm), and most loci have co-dominant effects with phenotypically intermediate heterozygotes. QTL support regions were limited to a median size of 2 Mb containing a median of 19 genes. Positional candidate genes were evaluated using differential transcript expression between LG/J and SM/J healing tissue, function analysis and bioinformatic analysis of single-nucleotide polymorphisms in and around positional candidate genes of interest. Analysis of the set of 34 positional candidate genes and those displaying expression differences revealed over-representation of genes involved in cell cycle regulation/DNA damage, cell migration and adhesion, developmentally related genes and metabolism. This indicates that the healing phenotype in LG/J mice involves multiple physiological mechanisms.
Collapse
Affiliation(s)
- J M Cheverud
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - H A Lawson
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - K Bouckaert
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - A V Kossenkov
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L C Showe
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L Cort
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - E P Blankenhorn
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - K Bedelbaeva
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - D Gourevitch
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - Y Zhang
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - E Heber-Katz
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
34
|
Hippocampal biomarkers of fear memory in an animal model of generalized anxiety disorder. Behav Brain Res 2014; 263:34-45. [DOI: 10.1016/j.bbr.2014.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 11/20/2022]
|
35
|
Green HF, Nolan YM. Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 40:20-34. [DOI: 10.1016/j.neubiorev.2014.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
|
36
|
Pereira Dias G, Hollywood R, Bevilaqua MCDN, da Luz ACDDS, Hindges R, Nardi AE, Thuret S. Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms. Neuro Oncol 2014; 16:476-92. [PMID: 24470543 DOI: 10.1093/neuonc/not321] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human brain is capable of generating new functional neurons throughout life, a phenomenon known as adult neurogenesis. The generation of new neurons is sustained throughout adulthood due to the proliferation and differentiation of adult neural stem cells. This process in humans is uniquely located in the subgranular zone of the dentate gyrus in the hippocampus. Adult hippocampal neurogenesis (AHN) is thought to play a major role in hippocampus-dependent functions, such as spatial awareness, long-term memory, emotionality, and mood. The overall aim of current treatments for cancer (such as radiotherapy and chemotherapy) is to prevent aberrant cell division of cell populations associated with malignancy. However, the treatments in question are absolutist in nature and hence inhibit all cell division. An unintended consequence of this cessation of cell division is the impairment of adult neural stem cell proliferation and AHN. Patients undergoing treatment for cancerous malignancies often display specific forms of memory deficits, as well as depressive symptoms. This review aims to discuss the effects of cancer treatments on AHN and propose a link between the inhibition of the neurogenetic process in the hippocampus and the advent of the cognitive and mood-based deficits observed in patients and animal models undergoing cancer therapies. Possible evidence for coadjuvant interventions aiming to protect neural cells, and subsequently the mood and cognitive functions they regulate, from the ablative effects of cancer treatment are discussed as potential clinical tools to improve mental health among cancer patients.
Collapse
Affiliation(s)
- Gisele Pereira Dias
- Institute of Psychiatry, King's College London, The James Black Centre, London, UK (G.P.D., R.H., S.T.); Translational Neurobiology Unit, Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (G.P.D., M.C.N.B., A.C.D.dS.d.L., A.E.N.); MRC Centre for Developmental Neurobiology, King's College London, London, UK (M.C.N.B., R.H.)
| | | | | | | | | | | | | |
Collapse
|
37
|
Ghrelin administration enhances neurogenesis but impairs spatial learning and memory in adult mice. Neuroscience 2013; 257:175-85. [PMID: 24211302 DOI: 10.1016/j.neuroscience.2013.10.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/11/2013] [Accepted: 10/25/2013] [Indexed: 12/11/2022]
Abstract
Ghrelin, an orexigenic brain-gut hormone promoting feeding and regulating energy metabolism in human and rodents, was reported to enhance both adult neurogenesis and hippocampus-dependent memory formation. However, it is still unclear whether ghrelin-induced hippocampus neurogenesis is responsible for its memory improvement. Using 5-bromo-2' deoxyuridien (BrdU) to birth-date newborn neurons and c-Fos expression to identify dentate gyrus (DG) neurons involved in memory processes, we checked here the effect of ghrelin treatment on adult neurogenesis and cognitive behaviors in mice. We further examined the possible effect of ghrelin on the recruitment of new neurons into the spatial memory traces in intact mice. We found that systemic ghrelin treatment (80μg/kg, ip injection once daily for 8days) stimulated neurogenesis in the adult hippocampus, but had no effect on spatial memory formation. Consistently, it did not affect the incorporation of newborn neurons into the spatial memory circuits. On the contrary, local infusion of ghrelin (8ng/0.5μl into CA1 region of the hippocampus) impaired spatial memory formation, but did not affect adult neurogenesis. Our results thus suggested that ghrelin plays distinct roles in modulating adult neurogenesis and the memory acquisition in the hippocampus, the two processes may not be correlated and may be mediated by different mechanisms.
Collapse
|
38
|
Sahu S, Kauser H, Ray K, Kishore K, Kumar S, Panjwani U. Caffeine and modafinil promote adult neuronal cell proliferation during 48h of total sleep deprivation in rat dentate gyrus. Exp Neurol 2013; 248:470-81. [DOI: 10.1016/j.expneurol.2013.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
|
39
|
Sha S, Qu WJ, Li L, Lu ZH, Chen L, Yu WF, Chen L. Sigma-1 receptor knockout impairs neurogenesis in dentate gyrus of adult hippocampus via down-regulation of NMDA receptors. CNS Neurosci Ther 2013; 19:705-13. [PMID: 23745740 PMCID: PMC6493366 DOI: 10.1111/cns.12129] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/25/2023] Open
Abstract
AIMS This study investigated the influence of sigma-1 receptor (σ1 R) deficiency on adult neurogenesis. METHODS We employed 8-week-old male σ1 R knockout (σ1 R(-/-) ) mice to examine the proliferation and differentiation of progenitor cells, and the survival and neurite growth of newborn neurons in hippocampal dentate gyrus (DG). RESULTS In comparison with wild-type (WT) littermates, the numbers of 24-h-old BrdU(+) cells and Ki67(+) cells in σ1 R(-/-) mice increased, while the number of 28-day-old BrdU(+) cells decreased without changes in proportion of BrdU(+) /NeuN(+) cells and BrdU(+) /GFAP(+) cells. The neurite density of newborn neurons was slightly reduced in σ1 R(-/-) mice. In DG granular cells, N-methyl-d-aspartate (NMDA)-activated current (INMDA ) and phosphorylation of NMDA receptor (NMDAr) NR2B were reduced in σ1 R(-/-) mice without the alteration of NR2B expression and membrane properties compared to WT mice. The NR2B antagonist abolished the difference in INMDA between σ1 R(-/-) mice and WT mice. The application of NMDAr agonist in σ1 R(-/-) mice prevented the over-proliferation of cells and reduction in newborn neurons, but it had no effects on the hypoplastic neurite. The administration of NMDAr antagonist in WT mice enhanced the cell proliferation and depressed the survival of newborn neurons. CONCLUSION The σ1 R deficiency impairs neurogenesis in DG through down-regulation of NMDArs.
Collapse
Affiliation(s)
- Sha Sha
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Sultan S, Gebara EG, Moullec K, Toni N. D-serine increases adult hippocampal neurogenesis. Front Neurosci 2013; 7:155. [PMID: 24009551 PMCID: PMC3756301 DOI: 10.3389/fnins.2013.00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022] Open
Abstract
Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA) receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.
Collapse
Affiliation(s)
- Sebastien Sultan
- Department of Fundamental Neurosciences, University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
41
|
Gebara E, Sultan S, Kocher-Braissant J, Toni N. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. Front Neurosci 2013; 7:145. [PMID: 23970848 PMCID: PMC3747329 DOI: 10.3389/fnins.2013.00145] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022] Open
Abstract
Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus (DG) and increasing evidence indicates that these cells mediate the inflammation-induced reduction in neurogenesis. However, the role of microglia in neurogenesis in physiological conditions remains poorly understood. In this study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor cells in physiological conditions known to increase or decrease adult neurogenesis, voluntary running and aging respectively. We found that the number of microglia in the DG was strongly inversely correlated with the number of stem/progenitor cells and cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural progenitor/glia ratio showed that microglia but not astroglia reduced the number of progenitor cells. Together, these results suggest that microglia inhibits the proliferation of neural stem/progenitor cells despite the absence of inflammatory stimulus.
Collapse
Affiliation(s)
- Elias Gebara
- Department of Fundamental Neurosciences, University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
42
|
Heber-Katz E, Zhang Y, Bedelbaeva K, Song F, Chen X, Stocum DL. Cell cycle regulation and regeneration. Curr Top Microbiol Immunol 2013; 367:253-76. [PMID: 23263201 DOI: 10.1007/82_2012_294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.
Collapse
|
43
|
Sultan S, Gebara E, Toni N. Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front Neurosci 2013; 7:131. [PMID: 23898238 PMCID: PMC3722480 DOI: 10.3389/fnins.2013.00131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 11/13/2022] Open
Abstract
Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. Although inducible-reversible transgenic mouse models are increasingly being used to investigate adult neurogenesis, transgene control requires the administration of an activator, doxycycline (Dox), with unknown effects on adult neurogenesis. Here, we tested the effect of Dox administration on adult neurogenesis in vivo. We found that 4 weeks of Dox treatment at doses commonly used for gene expression control, resulted in increased neurogenesis. Furthermore, the dendrites of new neurons displayed increased spine density. Concomitantly, Iba1-expressing microglia was reduced by Dox treatment. These results indicate that Dox treatment may interfere with parameters of relevance for the use of inducible transgenic mice in studies of adult neurogenesis or brain inflammation.
Collapse
Affiliation(s)
- Sebastien Sultan
- Department of Fundamental Neurosciences, University of Lausanne Lausanne, Switzerland
| | | | | |
Collapse
|
44
|
Rodrigues J, Assunção M, Lukoyanov N, Cardoso A, Carvalho F, Andrade JP. Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats. Behav Brain Res 2013; 246:94-102. [PMID: 23473881 DOI: 10.1016/j.bbr.2013.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Green tea (GT) displays strong anti-oxidant and anti-inflammatory properties mostly attributed to (-)-epigallocatechin-3-gallate (EGCG), while experiments focusing on other catechins are scarce. With the present work we intended to analyze the neuroprotective effects of prolonged consumption of a GT extract (GTE) rich in catechins but poor in EGCG and other GT bioactive components that could also afford benefit. The endpoints evaluated were aging-induced biochemical and morphological changes in the rat hippocampal formation (HF) and behavioral alterations. Male Wistar rats aged 12 months were treated with GTE until 19 months of age. This group of animals was compared with control groups aged 19 (C-19M) or 12 months (C-12M). We found that aging increased oxidative markers but GTE consumption protected proteins and lipids against oxidation. The age-associated increase in lipofuscin content and lysosomal volume was also prevented by treatment with GTE. The dendritic arborizations of dentate granule cells of GTE-treated animals presented plastic changes accompanied by an improved spatial learning evaluated with the Morris water maze. Altogether our results demonstrate that the consumption of an extract rich in catechins other than EGCG protected the HF from aging-related declines contributing to improve the redox status and preventing the structural damage observed in old animals, with repercussions on behavioral performance.
Collapse
Affiliation(s)
- Jorge Rodrigues
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
45
|
Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain Behav Immun 2013; 27:22-32. [PMID: 22985767 PMCID: PMC3518576 DOI: 10.1016/j.bbi.2012.09.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 12/12/2022] Open
Abstract
Before the 1990s it was widely believed that the adult brain was incapable of regenerating neurons. However, it is now established that new neurons are continuously produced in the dentate gyrus of the hippocampus and olfactory bulb throughout life. The functional significance of adult neurogenesis is still unclear, but it is widely believed that the new neurons contribute to learning and memory and/or maintenance of brain regions by replacing dead or dying cells. Many different factors are known to regulate adult neurogenesis including immune responses and signaling molecules released by immune cells in the brain. While immune activation (i.e., enlargement of microglia, release of cytokines) within the brain is commonly viewed as a harmful event, the impact of immune activation on neural function is highly dependent on the form of the immune response as microglia and other immune-reactive cells in the brain can support or disrupt neural processes depending on the phenotype and behavior of the cells. For instance, microglia that express an inflammatory phenotype generally reduce cell proliferation, survival and function of new neurons whereas microglia displaying an alternative protective phenotype support adult neurogenesis. The present review summarizes current understanding of the role of new neurons in cognition and behavior, with an emphasis on the immune system's ability to influence adult hippocampal neurogenesis during both an inflammatory episode and in the healthy uninjured brain. It has been proposed that some of the cognitive deficits associated with inflammation may in part be related to inflammation-induced reductions in adult hippocampal neurogenesis. Elucidating how the immune system contributes to the regulation of adult neurogenesis will help in predicting the impact of immune activation on neural plasticity and potentially facilitate the discovery of treatments to preserve neurogenesis in conditions characterized by chronic inflammation.
Collapse
|
46
|
Brain monoamines and antidepressant-like responses in MRL/MpJ versus C57BL/6J mice. Neuropharmacology 2012; 67:503-10. [PMID: 23220293 DOI: 10.1016/j.neuropharm.2012.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 11/22/2022]
Abstract
The MRL/MpJ mouse demonstrates enhanced wound healing and tissue regeneration and increased neurotrophic mobilization to chronic antidepressant drug treatments. This study compared brain monoamine systems between MRL/MpJ and C57BL/6J mice as a potential basis for strain differences after chronic antidepressant treatment. MRL/MpJ mice had significantly higher tissue levels of serotonin and dopamine in multiple brain regions. Microdialysis studies demonstrated that baseline levels of extracellular serotonin did not differ between strains. However, acute administration of the selective serotonin reuptake inhibitor citalopram produced an increase in extracellular serotonin in the ventral hippocampus of MRL/MpJ mice that was twice as large as achieved in C57BL/6J mice. The greater effects in MRL/MpJ mice on 5-HT levels were not maintained after local perfusion of citalopram, suggesting that mechanisms outside of the hippocampus were responsible for the greater effect of citalopram after systemic injection. The density of serotonin and norepinephrine transporters in the hippocampus was significantly higher in MRL/MpJ mice. In addition, the expression of 5-HT(1A) mRNA was lower in the hippocampus, 5-HT(1B) mRNA was higher in the hippocampus and brainstem and SERT mRNA was higher in the brain stem of MRL/MpJ mice. The exaggerated neurotransmitter release in MRL/MpJ mice was accompanied by reduced baseline immobility in the tail suspension test and a greater reduction of immobility produced by citalopram or the tricyclic antidepressant desipramine. These data suggest that differences in the response to acute and chronic antidepressant treatments between the two strains could be attributed to differences in serotonin or catecholamine transmission.
Collapse
|
47
|
Hassani Z, O'Reilly J, Pearse Y, Stroemer P, Tang E, Sinden J, Price J, Thuret S. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke. PLoS One 2012. [PMID: 23185625 PMCID: PMC3503964 DOI: 10.1371/journal.pone.0050444] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Main Objectives Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully characterised. This study investigated the cellular events occurring after CTX0E03 transplantation in the brains of rats that underwent ischemic stroke. Methods We focused on the endogenous proliferative activity of the host brain in response to cell transplantation and determined the identity of the proliferating cells using markers for young neurons (doublecortin, Dcx) and microglia (CD11b). So as to determine the chronology of events occurring post-transplantation, we analysed the engrafted brains one week and four weeks post-transplantation. Results We observed a significantly greater endogenous proliferation in the striatum of ischemic brains receiving a CTX0E03 graft compared to vehicle-treated ischemic brains. A significant proportion of these proliferative cells were found to be Dcx+ striatal neuroblasts. Further, we describe an enhanced immune response after CTX0E03 engraftment, as shown by a significant increase of proliferating CD11b+ microglial cells. Conclusions Our study demonstrates that few Dcx+ neuroblasts are proliferative in normal conditions, and that this population of proliferative neuroblasts is increased in response to stroke. We further show that CTX0E03 transplantation after stroke leads to the maintenance of this proliferative activity. Interestingly, the preservation of neuronal proliferative activity upon CTX0E03 transplantation is preceded and accompanied by a high rate of proliferating microglia. Our study suggests that microglia might mediate in part the effect of CTX0E03 transplantation on neuronal proliferation in ischemic stroke conditions.
Collapse
Affiliation(s)
- Zahra Hassani
- Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Joanna O'Reilly
- Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Yewande Pearse
- Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Paul Stroemer
- ReNeuron Group plc, Guildford, Surrey, United Kingdom
| | - Ellen Tang
- ReNeuron Group plc, Guildford, Surrey, United Kingdom
| | - John Sinden
- ReNeuron Group plc, Guildford, Surrey, United Kingdom
| | - Jack Price
- Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, United Kingdom
- * E-mail: (JP); (ST)
| | - Sandrine Thuret
- Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, United Kingdom
- * E-mail: (JP); (ST)
| |
Collapse
|
48
|
Abstract
INTRODUCTION Over the last 8 years, emerging studies bridging the gap between nutrition and mental health have resolutely established that learning and memory abilities as well as mood can be influenced by diet. However, the mechanisms by which diet modulates mental health are still not well understood. Sources of data In this article, a review of the literature was conducted using PubMed to identify studies that provide functional implications of adult hippocampal neurogenesis (AHN) and its modulation by diet. AREAS OF AGREEMENT One of the brain structures associated with learning and memory as well as mood is the hippocampus. Importantly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. AREAS OF CONTROVERSY The exact roles of these newborn neurons in learning, memory formation and mood regulation remain elusive. GROWING POINTS Nevertheless, there has been accumulating evidence linking cognition and mood to neurogenesis occurring in the adult hippocampus. Therefore, modulation of AHN by diet emerges as a possible mechanism by which nutrition impacts on mental health. AREAS TIMELY FOR DEVELOPING RESEARCH This area of investigation is new and needs attention because a better understanding of the neurological mechanisms by which nutrition affect mental health may lead to novel dietary approaches for disease prevention, healthier ageing and discovery of new therapeutic targets for mental illnesses.
Collapse
|
49
|
Abstract
The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
50
|
Ryan MM, Mason-Parker SE, Tate WP, Abraham WC, Williams JM. Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 2012; 21:541-53. [PMID: 20108223 DOI: 10.1002/hipo.20770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The canonical view of the maintenance of long-term potentiation (LTP), a widely accepted experimental model for memory processes, is that new gene transcription contributes to its consolidation; however, the gene networks involved are unknown. To address this issue, we have used high-density Rat 230.2 Affymetrix arrays to establish a set of genes induced 20-min post-LTP, and using Ingenuity Pathway network analysis tools we have investigated how these early responding genes are interrelated. This analysis identified LTP-induced regulatory networks in which the transcription factors (TFs) nuclear factor-KB and serum response factor, which, to date, have not been widely recognized as coordinating the early gene response, play a key role alongside the more well-known TFs cyclic AMP response element-binding protein, and early growth response 1. Analysis of gene-regulatory promoter sites and chromosomal locations of the genes within the dataset reinforced the importance of these molecules in the early gene response and predicted that the coordinated action might arise from gene clustering on particular chromosomes. We have also identified a transcription-based response that affects mitogen-activated protein kinase signaling pathways and protein synthesis during the stabilization of the LTP response. Furthermore, evidence from biological function, networks, and regulatory analyses showed convergence on genes related to development, proliferation, and neurogenesis, suggesting that these functions are regulated early following LTP induction. This raises the interesting possibility that LTP-related gene expression plays a role in both synaptic reorganization and neurogenesis.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|