1
|
Zheng C, Zhang L. Identifying RNA Sensors in Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:107-115. [PMID: 39192123 DOI: 10.1007/978-1-0716-4108-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The innate immune system plays a pivotal role in pathogen recognition and the initiation of innate immune responses through its Pathogen Recognition Receptors (PRRs), which detect Pathogen-Associated Molecular Patterns (PAMPs). Nucleic acids, including RNA and DNA, are recognized as particularly significant PAMPs, especially in the context of viral pathogens. During RNA virus infections, specific sequences in the viral RNA mark it as non-self, enabling host recognition through interactions with RNA sensors, thereby triggering innate immunity. Given that some of the most lethal viruses are RNA viruses, they pose a severe threat to human and animal health. Therefore, understanding the immunobiology of RNA PRRs is crucial for controlling pathogen infections, particularly RNA virus infections. In this chapter, we will introduce a "pull-down" method for identifying RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensors.
Collapse
Affiliation(s)
- Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Liting Zhang
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, China.
| |
Collapse
|
2
|
Jayamali BPMV, Wijerathna HMSM, Sirisena DMKP, Hanchapola HACR, Warnakula WADLR, Arachchi UPE, Liyanage DS, Jung S, Wan Q, Lee J. Molecular depiction and functional delineation of E3 ubiquitin ligase MARCH5 in yellowtail clownfish (Amphiprion clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105283. [PMID: 39481581 DOI: 10.1016/j.dci.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Membrane-associated Ring-CH 5 (MARCH5) is a mitochondrial E3 ubiquitin ligase playing a key role in the regulation of mitochondrial dynamics. In mammals, MARCH5 negatively regulates mitochondrial antiviral signaling (MAVS) protein aggregation during viral infection and hampers downstream type I interferon signaling to prevent excessive immune activation. However, its precise functional role in the teleost immune system remains unclear. This study investigated the molecular characteristics and immune response of the MARCH5 ortholog in Amphiprion clarkii (A. clarkii; AcMARCH5). The predicted AcMARCH5 protein sequence consists of 287 amino acids with a molecular weight of 32.02 kDa and a theoretical isoelectric point of 9.11. It contains four C-terminal transmembrane (TM) domains and an N-terminal RING cysteine-histidine (CH) domain, which directly regulates ubiquitin transfer. Multiple sequence alignment revealed a high level of conservation between AcMARCH5 and its orthologs in other vertebrate species. Under normal physiological conditions, AcMARCH5 showed the highest mRNA expression in the muscle, brain, and kidney tissues of A. clarkii. Upon stimulation with polyinosinic:polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi, AcMARCH5 expression was drastically modulated. Functional assays showed that overexpression of AcMARCH5 in fathead minnow (FHM) cells downregulated antiviral gene expression, accompanied by enhanced viral hemorrhagic septicemia virus (VHSV) replication. In murine macrophages, AcMARCH5 overexpression markedly reduced the production of pro-inflammatory cytokines in response to poly I:C treatment. Additionally, AcMARCH5 exhibited an anti-apoptotic effect in H2O2-treated FHM cells. Collectively, these results suggest that AcMARCH5 may play a role in maintaining cellular homeostasis under disease and stress conditions in A. clarkii.
Collapse
Affiliation(s)
- B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
3
|
Ghani MU, Chen J, Khosravi Z, Wu Q, Liu Y, Zhou J, Zhong L, Cui H. Unveiling the multifaceted role of toll-like receptors in immunity of aquatic animals: pioneering strategies for disease management. Front Immunol 2024; 15:1378111. [PMID: 39483482 PMCID: PMC11524855 DOI: 10.3389/fimmu.2024.1378111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024] Open
Abstract
The pattern recognition receptor (PRR), which drives innate immunity, shields the host against invasive pathogens. Fish and other aquatic species with poorly developed adaptive immunity mostly rely on their innate immunity, regulated by PRRs such as inherited-encoded toll-like receptors (TLRs). The discovery of 21 unique TLR variations in various aquatic animals over the past several years has sparked interest in using TLRs to improve aquatic animal's immune response and disease resistance. This comprehensive review provides an overview of the latest investigations on the various characteristics of TLRs in aquatic animals. It emphasizes their categorization, insights into 3D architecture, ligand recognition, signaling pathways, TLRs mediated immune responses under biotic and abiotic stressors, and expression variations during several developmental stages. It also highlights the differences among aquatic animals' TLRs and their mammal counterparts, which signifies the unique roles that TLRs play in aquatic animal's immune systems. This article summarizes current aquaculture research to enhance our understanding of fish immune systems for effective aquaculture -related disease management.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qishu Wu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yujie Liu
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jingjie Zhou
- Medical Research Institute, Southwest University, Chongqing, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Hinds A, Ward P, Archer N, Leigh J. Priming from within: TLR2 dependent but receptor independent activation of the mammary macrophage inflammasome by Streptococcus uberis. Front Cell Infect Microbiol 2024; 14:1444178. [PMID: 39463761 PMCID: PMC11502467 DOI: 10.3389/fcimb.2024.1444178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Streptococcus uberis is a member of the pyogenic cluster of Streptococcus commonly associated with intramammary infection and mastitis in dairy cattle. It is a poorly controlled globally endemic pathogen responsible for a significant cause of the disease worldwide. The ruminant mammary gland provides an atypical body niche in which immune cell surveillance occurs on both sides of the epithelial tissue. S. uberis does not cause disease in non-ruminant species and is an asymptomatic commensal in other body niches. S. uberis exploits the unusual niche of the mammary gland to initiate an innate response from bovine mammary macrophage (BMMO) present in the secretion (milk) in which it can resist the host immune responses. As a result - and unexpectedly - the host inflammatory response is a key step in the pathogenesis of S.uberis, without which colonisation is impaired. In contrast to other bacteria pathogenic to the bovine mammary gland, S. uberis does not elicit innate responses from epithelial tissues; initial recognition of infection is via macrophages within milk. Methods We dissected the role of the bacterial protein SUB1154 in the inflammasome pathway using ex vivo bovine mammary macrophages isolated from milk, recombinant protein expression, and a panel of inhibitors, agonists, and antagonists. We combine this with reverse-transcription quantitative real-time PCR to investigate the mechanisms underlying SUB1154-mediated priming of the immune response. Results Here, we show that SUB1154 is responsible for priming the NLRP3 inflammasome in macrophages found in the mammary gland. Without SUB1154, IL-1β is not produced, and we were able to restore IL-1β responses to a sub1154 deletion S. uberis mutant using recombinant SUB1154. Surprisingly, only by blocking internalisation, or the cytoplasmic TIR domain of TLR2 were we able to block SUB1154-mediated priming. Discussion Together, our data unifies several contrasting past studies and provides new mechanistic understanding of potential early interactions between pyogenic streptococci and the host.
Collapse
Affiliation(s)
- Abbie Hinds
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Department of Infection Biology and Microbiomes, University of Liverpool, Cheshire, United Kingdom
| | - Philip Ward
- The Division of Structural Biology (STRUBI) for Genomic Medicine, Oxford, United Kingdom
| | - Nathan Archer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - James Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Mao M, Yang W, Zhang X. Current mRNA-based vaccine strategies for glioma treatment. Crit Rev Oncol Hematol 2024; 202:104459. [PMID: 39097247 DOI: 10.1016/j.critrevonc.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Gliomas are one of the most aggressive types of brain tumors and are associated with high morbidity and mortality rates. Currently, conventional treatments for gliomas such as surgical resection, radiotherapy, and chemotherapy have limited effectiveness, and new approaches are needed to improve patient outcomes. mRNA-based vaccines represent a promising therapeutic strategy for cancer treatment, including gliomas. Recent advances in immunotherapy using mRNA-based dendritic cell vaccines have shown great potential in preclinical and clinical trials. Dendritic cells are professional antigen-presenting cells that play a crucial role in initiating and regulating immune responses. In this review, we summarize the current progress of mRNA-based vaccines for gliomas, with a focus on recent advances in dendritic cell-based mRNA vaccines. We also discuss the feasibility and safety of mRNA-based clinical applications for gliomas.
Collapse
Affiliation(s)
- Mengqian Mao
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
6
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Xu Y, Ding L, Zhang Y, Ren S, Li J, Liu F, Sun W, Chen Z, Yu J, Wu J. Research progress on the pattern recognition receptors involved in porcine reproductive and respiratory syndrome virus infection. Front Cell Infect Microbiol 2024; 14:1428447. [PMID: 39211800 PMCID: PMC11358126 DOI: 10.3389/fcimb.2024.1428447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases of pigs globally. The pathogen, porcine reproductive and respiratory syndrome virus (PRRSV), is an enveloped positive-stranded RNA virus, which is considered to be the key triggers for the activation of effective innate immunity through pattern recognition receptor (PRR)-dependent signaling pathways. Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs) and Cytoplasmic DNA receptors (CDRs) are used as PRRs to identify distinct but overlapping microbial components. The innate immune system has evolved to recognize RNA or DNA molecules from microbes through pattern recognition receptors (PRRs) and to induce defense response against infections, including the production of type I interferon (IFN-I) and inflammatory cytokines. However, PRRSV is capable of continuous evolution through gene mutation and recombination to evade host immune defenses and exploit host cell mechanisms to synthesize and transport its components, thereby facilitating successful infection and replication. This review presents the research progress made in recent years in the study of these PRRs and their associated adapters during PRRSV infection.
Collapse
Affiliation(s)
- Yulin Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| |
Collapse
|
8
|
Aiman S, Ali Y, Malik A, Alkholief M, Ahmad A, Akhtar S, Ali S, Khan A, Li C, Shams S. Immunoinformatic-guided novel mRNA vaccine designing to elicit immunogenic responses against the endemic Monkeypox virus. J Biomol Struct Dyn 2024; 42:6292-6306. [PMID: 37424185 DOI: 10.1080/07391102.2023.2233627] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Monkeypox virus (MPXV) is an orthopoxvirus, causing zoonotic infections in humans with smallpox-like symptoms. The WHO reported MPXV cases in May 2022 and the outbreak caused significant morbidity threats to immunocompromised individuals and children. Currently, no clinically validated therapies are available against MPXV infections. The present study is based on immunoinformatics approaches to design mRNA-based novel vaccine models against MPXV. Three proteins were prioritized based on high antigenicity, low allergenicity, and toxicity values to predict T- and B-cell epitopes. Lead T- and B-cell epitopes were used to design vaccine constructs, linked with epitope-specific linkers and adjuvant to enhance immune responses. Additional sequences, including Kozak sequence, MITD sequence, tPA sequence, Goblin 5', 3' UTRs, and a poly(A) tail were added to design stable and highly immunogenic mRNA vaccine construct. High-quality structures were predicted by molecular modeling and 3D-structural validation of the vaccine construct. Population coverage and epitope-conservancy speculated broader protection of designed vaccine model against multiple MPXV infectious strains. MPXV-V4 was eventually prioritized based on its physicochemical and immunological parameters and docking scores. Molecular dynamics and immune simulations analyses predicted significant structural stability and binding affinity of the top-ranked vaccine model with immune receptors to elicit cellular and humoral immunogenic responses against the MPXV. The pursuance of experimental and clinical follow-up of these prioritized constructs may lay the groundwork to develop safe and effective vaccine against MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yasir Ali
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
9
|
Liu Y, Yang J, Guo Z, Li Q, Zhang L, Zhao L, Zhou X. Immunomodulatory Effect of Cordyceps militaris Polysaccharide on RAW 264.7 Macrophages by Regulating MAPK Signaling Pathways. Molecules 2024; 29:3408. [PMID: 39064986 PMCID: PMC11279930 DOI: 10.3390/molecules29143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Polysaccharide is one of the principal bioactive components found in medicinal mushrooms and has been proven to enhance host immunity. However, the possible mechanism of immunomodulatory activity of Cordyceps militaris polysaccharide is not fully understood. Hot water extraction and alcohol precipitation, DEAE-Sephadex A-25 chromatography, and Sephadex G-100 chromatography were used to isolate polysaccharide from C. militaris. A high-molecular-weight polysaccharide isolated from C. militaris was designated as HCMP, which had an Mw of 6.18 × 105 Da and was composed of arabinose, galactose, glucose, mannose, and xylose in a mole ratio of 2.00:8.01:72.54:15.98:1.02. The polysaccharide content of HCMP was 91.2% ± 0.16. The test in vitro showed that HCMP activated mouse macrophage RAW 264.7 cells by enhancing phagocytosis and NO production, and by regulating mRNA expressions of inflammation-related molecules in RAW 264.7 cells. Western blotting revealed that HCMP induced the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, using inhibitors of MAPKs decreased the mRNA levels of inflammation-related molecules induced by HCMP. These data evidenced that the immunomodulatory effect of HCMP on RAW 264.7 macrophages was mediated via the MAPK signaling pathway. These findings suggested that HCMP could be developed as a potent immunomodulatory agent for use in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijian Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Lida Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingxia Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuanwei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: Principles to practice. Cancer Cell 2024; 42:1163-1184. [PMID: 38848720 DOI: 10.1016/j.ccell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Vaccines are the most impactful medicines to improve health. Though potent against pathogens, vaccines for cancer remain an unfulfilled promise. However, recent advances in RNA technology coupled with scientific and clinical breakthroughs have spurred rapid discovery and potent delivery of tumor antigens at speed and scale, transforming cancer vaccines into a tantalizing prospect. Yet, despite being at a pivotal juncture, with several randomized clinical trials maturing in upcoming years, several critical questions remain: which antigens, tumors, platforms, and hosts can trigger potent immunity with clinical impact? Here, we address these questions with a principled framework of cancer vaccination from antigen detection to delivery. With this framework, we outline features of emergent RNA technology that enable rapid, robust, real-time vaccination with somatic mutation-derived neoantigens-an emerging "ideal" antigen class-and highlight latent features that have sparked the belief that RNA could realize the enduring vision for vaccines against cancer.
Collapse
Affiliation(s)
- Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Zellmann F, Schmauk N, Murmann N, Böhm M, Schwenger A, Göbel MW. Quality Control of mRNA Vaccines by Synthetic Ribonucleases: Analysis of the Poly-A-Tail. Chembiochem 2024; 25:e202400347. [PMID: 38742914 DOI: 10.1002/cbic.202400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The effectivity and safety of mRNA vaccines critically depends on the presence of correct 5' caps and poly-A tails. Due to the high molecular mass of full-size mRNAs, however, the direct analysis by mass spectrometry is hardly possible. Here we describe the use of synthetic ribonucleases to cleave off 5' and 3' terminal fragments which can be further analyzed by HPLC or by LC-MS. Compared to existing methods (e. g. RNase H), the new approach uses robust catalysts, is free of sequence limitations, avoids metal ions and combines fast sample preparation with high precision of the cut.
Collapse
Affiliation(s)
- Felix Zellmann
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Nina Schmauk
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Nina Murmann
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Madeleine Böhm
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Alexander Schwenger
- Analytical Development CureVac SE, Friedrich-Miescher-Str. 15, 72076, Tübingen, Germany
| | - Michael W Göbel
- Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Park A, Lee JY. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J Microbiol 2024; 62:491-509. [PMID: 39037484 DOI: 10.1007/s12275-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
13
|
Alakhras NS, Moreland CA, Wong LC, Raut P, Kamalakaran S, Wen Y, Siegel RW, Malherbe LP. Essential role of pre-existing humoral immunity in TLR9-mediated type I IFN response to recombinant AAV vectors in human whole blood. Front Immunol 2024; 15:1354055. [PMID: 39007143 PMCID: PMC11240241 DOI: 10.3389/fimmu.2024.1354055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS. We showed that AAV9 induced type I interferon (IFN) and IL-6 responses in human blood from healthy donors. This innate response was replicated with AAV6, required full viral particles, but was not observed in every donor. Depleting CpG motifs from the AAV transgene or inhibiting TLR9 signaling reduced type I IFN response to AAV9 in responding donors, highlighting the importance of TLR9-mediated DNA sensing for the innate response to AAV9. Remarkably, we further demonstrated that only seropositive donors with preexisting antibodies to AAV9 capsid mounted an innate immune response to AAV9 in human whole blood and that anti-AAV9 antibodies were necessary and sufficient to promote type I IFN release and plasmacytoid dendritic (pDC) cell activation in response to AAV9. Thus, our study reveals a previously unidentified requirement for AAV preexisting antibodies for TLR9-mediated type I IFN response to AAV9 in human blood.
Collapse
Affiliation(s)
- Nada S. Alakhras
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Li Chin Wong
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Priyam Raut
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Sid Kamalakaran
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
14
|
Zheng W, Ao D, Cao Q, Liu A, Lv M, Sun Z, Zhang H, Zheng W, Chen N, Zhu J. Porcine TLR8 signaling and its anti-infection function are disturbed by immune checkpoint receptor TIM-3 via inhibition of P13K-AKT pathway. Int J Biol Macromol 2024; 269:132018. [PMID: 38702002 DOI: 10.1016/j.ijbiomac.2024.132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Toll-like receptor 8 (TLR8), an important innate immune receptor recognizing single stranded RNA and the antiviral imidazoquinoline compounds, can activate intracellular signaling pathway and produce an inflammatory response to kill and eliminate pathogens. However, the molecular regulation mechanisms of TLR8 signaling and its anti-infection activity are not fully elucidated. Our previous transcriptome analysis of porcine TLR8 (pTLR8) signaling suggested the immune checkpoint receptor TIM-3 as the potential regulator for pTLR8. Here we investigated TIM-3 in the regulation of pTLR8 signaling and its anti-infection activity. Our results showed that porcine TIM-3 is upregulated by pTLR8 signaling and TIM-3 inhibits pTLR8 signaling activity in a negative feedback way. Accordingly, TIM-3 disturbs pTLR8 mediated anti-bacterial and anti-viral activity. Mechanistically, TIM-3 suppresses PI3K-AKT pathway by inhibiting the TLR8-PI3K p85 interaction and subsequent AKT phosphorylation which is essential for TLR8 signaling and anti-infection activity. Therefore, our study reveals new insights into innate immune TLR8 signaling and its anti-infection function.
Collapse
Affiliation(s)
- Wangli Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Da Ao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qi Cao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Anjing Liu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mengjia Lv
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ziyan Sun
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | | | - Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Alshahrani MY, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Al-Hamdani MM, Deorari M, Abosaoda MK, Hamzah HF, A Mohammed B. A comprehensive insight into the immunomodulatory role of MSCs-derived exosomes (MSC-Exos) through modulating pattern-recognition receptors (PRRs). Cell Biochem Funct 2024; 42:e4029. [PMID: 38773914 DOI: 10.1002/cbf.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Bahira A Mohammed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
16
|
Bullock JL, Hickey TE, Kemp TJ, Metz J, Loftus S, Haynesworth K, Castro N, Luke BT, Lowy DR, Pinto LA. Longitudinal Assessment of BNT162b2- and mRNA-1273-Induced Anti-SARS-CoV-2 Spike IgG Levels and Avidity Following Three Doses of Vaccination. Vaccines (Basel) 2024; 12:516. [PMID: 38793767 PMCID: PMC11125776 DOI: 10.3390/vaccines12050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2 vaccination-induced protection against infection is likely to be affected by functional antibody features. To understand the kinetics of antibody responses in healthy individuals after primary series and third vaccine doses, sera from the recipients of the two licensed SARS-CoV-2 mRNA vaccines were assessed for circulating anti-SARS-CoV-2 spike IgG levels and avidity for up to 6 months post-primary series and 9 months after the third dose. Following primary series vaccination, anti-SARS-CoV-2 spike IgG levels declined from months 1 to 6, while avidity increased through month 6, irrespective of the vaccine received. The third dose of either vaccine increased anti-SARS-CoV-2 spike IgG levels and avidity and appeared to enhance antibody level persistence-generating a slower rate of decline in the 3 months following the third dose compared to the decline seen after the primary series alone. The third dose of both vaccines induced significant avidity increases 1 month after vaccination compared to the avidity response 6 months post-primary series vaccination (p ≤ 0.001). A significant difference in avidity responses between the two vaccines was observed 6 months post-third dose, where the BNT162b2 recipients had higher antibody avidity levels compared to the mRNA-1273 recipients (p = 0.020).
Collapse
Affiliation(s)
- Jimmie L. Bullock
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| | - Thomas E. Hickey
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| | - Troy J. Kemp
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| | - Jordan Metz
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| | - Sarah Loftus
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| | - Katarzyna Haynesworth
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| | - Nicholas Castro
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| | - Brian T. Luke
- Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Douglas R. Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ligia A. Pinto
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (J.L.B.J.); (T.E.H.); (T.J.K.); (J.M.); (S.L.); (K.H.)
| |
Collapse
|
17
|
Tomes A, Archer N, Leigh J. Reproducible isolation of bovine mammary macrophages for analysis of host pathogen interactions. BMC Vet Res 2024; 20:96. [PMID: 38461248 PMCID: PMC10924389 DOI: 10.1186/s12917-024-03944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/19/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Macrophages residing in milk are vital during intramammary infections. This study sought to develop a method enabling the investigation of macrophage responses to pathogens. Streptococcus uberis is the predominant cause of bovine mastitis UK-wide and its pathogenesis is unusual compared to other intramammary pathogens. Previous studies utilise macrophage cell lines, isolated bovine blood derived monocytes, or macrophages from raw milk through complex or inconsistent strategies such as fluorescence activated cell sorting (FACS), centrifugation and selective adherence, and CD14 antibody-microbeads. The centrifuge steps required in the initial stages often damage cells. Thus, the aim of this study was to develop a reliable, reproducible, and cost-effective method for isolating mammary macrophages from milk in a way that allows their culture, challenge with bacteria, and measurement of their response ex-vivo. RESULTS This method achieves an average yield of 1.27 × 107 cells per litre of milk. Whole milk with somatic cell range of 45-65 cells/µL produced excellent yields, with efficient isolations accomplished with up to 150 cells/µL. This strategy uses milk diluted in PAE buffer to enable low-speed centrifugation steps followed by seeding on tissue-culture-treated plastic. Seeding 1,000,000 milk-extracted cells onto tissue culture plates was sufficient to obtain 50,000 macrophage. Isolated macrophage remained responsive to challenge, with the highest concentration of IL-1β measured by ELISA at 20 h after challenge with S. uberis. In this model, the optimal multiplicity of infection was found to be 50:1 bacteria:macrophage. No difference in IL-1β production was found between macrophages challenged with live or heat-killed S. uberis. Standardisation of the production of IL-1β to that obtained following macrophage stimulation with LPS allowed for comparisons between preparations. CONCLUSIONS A cost-effective method, utilising low-speed centrifugation followed by adherence to plastic, was established to isolate bovine mammary macrophages from raw milk. This method was shown to be appropriate for bacterial challenge, therefore providing a cost-effective, ex-vivo, and non-invasive model of macrophage-pathogen interactions. The optimal multiplicity of infection for S. uberis challenge was demonstrated and a method for standardisation against LPS described which removes sample variation. This robust method enables, reproducible and reliable interrogation of critical pathogen-host interactions which occur in the mammary gland.
Collapse
Affiliation(s)
- Abbie Tomes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nathan Archer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - James Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| |
Collapse
|
18
|
Wei L, Dong C, Zhu W, Wang BZ. mRNA Vaccine Nanoplatforms and Innate Immunity. Viruses 2024; 16:120. [PMID: 38257820 PMCID: PMC10820759 DOI: 10.3390/v16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
mRNA-based vaccine technology has been significantly developed and enhanced, particularly highlighted by the authorization of mRNA vaccines for addressing the COVID-19 pandemic. Various biomaterials are developed in nano-scales and applied as mRNA vaccine delivery platforms. However, how these mRNA nanoplatforms influence immune responses has not been thoroughly studied. Hence, we have reviewed the current understanding of various mRNA vaccine platforms. We discussed the possible pathways through which these platforms moderate the host's innate immunity and contribute to the development of adaptive immunity. We shed light on their development in reducing biotoxicity and enhancing antigen delivery efficiency. Beyond the built-in adjuvanticity of mRNA vaccines, we propose that supplementary adjuvants may be required to fine-tune and precisely control innate immunity and subsequent adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (L.W.); (C.D.); (W.Z.)
| |
Collapse
|
19
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Meng H, Zhou J, Wang M, Zheng M, Xing Y, Wang Y. SARS-CoV-2 Papain-like Protease Negatively Regulates the NLRP3 Inflammasome Pathway and Pyroptosis by Reducing the Oligomerization and Ubiquitination of ASC. Microorganisms 2023; 11:2799. [PMID: 38004809 PMCID: PMC10673202 DOI: 10.3390/microorganisms11112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The interaction of viruses with hosts is complex, especially so with the antiviral immune systems of hosts, and the underlying mechanisms remain perplexing. Infection with SARS-CoV-2 may result in cytokine syndrome in the later stages, reflecting the activation of the antiviral immune response. However, viruses also encode molecules to negatively regulate the antiviral immune systems of hosts to achieve immune evasion and benefit viral replication during the early stage of infection. It has been observed that the papain-like protease (PLP) encoded by coronavirus could negatively regulate the host's IFNβ innate immunity. In this study, we first found that eight inflammasome-related genes were downregulated in CD14+ monocytes from COVID-19 patients. Subsequently, we observed that SARS-CoV-2 PLP negatively regulated the NLRP3 inflammasome pathway, inhibited the secretion of IL-1β, and decreased the caspase-1-mediated pyroptosis of human monocytes. The mechanisms for this may arise because PLP coimmunoprecipitates with ASC, reduces ASC ubiquitination, and inhibits ASC oligomerization and the formation of ASC specks. These findings suggest that PLP may inhibit strong immune defenses and provide the maximum advantage for viral replication. This research may allow us to better understand the flex function of CoV-encoding proteases and provide a new perspective on the innate immune responses against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Jianglin Zhou
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Mingyu Wang
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
| | - Yaling Xing
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
| |
Collapse
|
21
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Holubekova V, Loderer D, Grendar M, Mikolajcik P, Kolkova Z, Turyova E, Kudelova E, Kalman M, Marcinek J, Miklusica J, Laca L, Lasabova Z. Differential gene expression of immunity and inflammation genes in colorectal cancer using targeted RNA sequencing. Front Oncol 2023; 13:1206482. [PMID: 37869102 PMCID: PMC10586664 DOI: 10.3389/fonc.2023.1206482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a heterogeneous disease caused by molecular changes, as driver mutations, gene methylations, etc., and influenced by tumor microenvironment (TME) pervaded with immune cells with both pro- and anti-tumor effects. The studying of interactions between the immune system (IS) and the TME is important for developing effective immunotherapeutic strategies for CRC. In our study, we focused on the analysis of expression profiles of inflammatory and immune-relevant genes to identify aberrant signaling pathways included in carcinogenesis, metastatic potential of tumors, and association of Kirsten rat sarcoma virus (KRAS) gene mutation. Methods A total of 91 patients were enrolled in the study. Using NGS, differential gene expression analysis of 11 tumor samples and 11 matching non-tumor controls was carried out by applying a targeted RNA panel for inflammation and immunity genes containing 475 target genes. The obtained data were evaluated by the CLC Genomics Workbench and R library. The significantly differentially expressed genes (DEGs) were analyzed in Reactome GSA software, and some selected DEGs were used for real-time PCR validation. Results After prioritization, the most significant differences in gene expression were shown by the genes TNFRSF4, IRF7, IL6R, NR3CI, EIF2AK2, MIF, CCL5, TNFSF10, CCL20, CXCL11, RIPK2, and BLNK. Validation analyses on 91 samples showed a correlation between RNA-seq data and qPCR for TNFSF10, RIPK2, and BLNK gene expression. The top differently regulated signaling pathways between the studied groups (cancer vs. control, metastatic vs. primary CRC and KRAS positive and negative CRC) belong to immune system, signal transduction, disease, gene expression, DNA repair, and programmed cell death. Conclusion Analyzed data suggest the changes at more levels of CRC carcinogenesis, including surface receptors of epithelial or immune cells, its signal transduction pathways, programmed cell death modifications, alterations in DNA repair machinery, and cell cycle control leading to uncontrolled proliferation. This study indicates only basic molecular pathways that enabled the formation of metastatic cancer stem cells and may contribute to clarifying the function of the IS in the TME of CRC. A precise identification of signaling pathways responsible for CRC may help in the selection of personalized pharmacological treatment.
Collapse
Affiliation(s)
- Veronika Holubekova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Loderer
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zuzana Kolkova
- Laboratory of Genomics and Prenatal Diagnostics, Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Marcinek
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
23
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
24
|
Ha JY, Seok J, Kim SJ, Jung HJ, Ryu KY, Nakamura M, Jang IS, Hong SH, Lee Y, Lee HJ. Periodontitis promotes bacterial extracellular vesicle-induced neuroinflammation in the brain and trigeminal ganglion. PLoS Pathog 2023; 19:e1011743. [PMID: 37871107 PMCID: PMC10621956 DOI: 10.1371/journal.ppat.1011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.
Collapse
Affiliation(s)
- Jae Yeong Ha
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Suk-Jeong Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Hye-Jin Jung
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ka-Young Ryu
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| |
Collapse
|
25
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
26
|
Fu F, Shao Q, Zhang J, Wang J, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Bat STING drives IFN-beta production in anti-RNA virus innate immune response. Front Microbiol 2023; 14:1232314. [PMID: 37744905 PMCID: PMC10514486 DOI: 10.3389/fmicb.2023.1232314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
The ability of stimulator of interferon genes (STING) to activate interferon (IFN) responses during RNA virus infection has been demonstrated in different mammalian cells. Despite being the host of numerous RNA viruses, the role of STING in bats during RNA virus infection has not been elucidated. In this study, we identified and cloned the STING gene of the Brazilian free-tailed bat Tadarida brasiliensis (T. brasiliensis) and tested its ability to induce IFN-β by overexpressing and knocking down bat STING (BatSTING) in T. brasiliensis 1 lung (TB1 Lu) cells. In addition, we used green fluorescent protein (GFP)-labeled vesicular stomatitis virus (VSV) VSV-GFP as a model to detect the antiviral activity of BatSTING. The results showed that overexpression of STING in TB1 Lu cells stimulated by cGAS significantly inhibited RNA virus replication, and the antiviral activities were associated with its ability to regulate basal expression of IFN-β and some IFN stimulated genes (ISGs). We also found that BatSTING was able to be activated after stimulation by diverse RNA viruses. The results of TB1 Lu cells with STING deficiency showed that knockdown of BatSTING severely hindered the IFN-β response triggered by VSV-GFP. Based on this, we confirm that BatSTING is required to induce IFN-β expression during RNA virus infection. In conclusion, our experimental data clearly show that STING in bat hosts plays an irreplaceable role in mediating IFN-β responses and anti-RNA virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Pennisi R, Sciortino MT. HSV-1 Triggers an Antiviral Transcriptional Response during Viral Replication That Is Completely Abrogated in PKR -/- Cells. Pathogens 2023; 12:1126. [PMID: 37764935 PMCID: PMC10536113 DOI: 10.3390/pathogens12091126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The activation of the innate immune response during HSV-1 infection stimulates several transcription factors, such as NF-κB and IRF3, which are critical regulators of IFN-β expression. The released IFN-β activates the ISGs, which encode antiviral effectors such as the PKR. We found that HSV-1 triggers an antiviral transcriptional response during viral replication by activating TBK1-IRF3-NF-κB network kinetically. In contrast, we reported that infected PKR-/- cells fail to activate the transcription of TBK1. Downstream, TBK1 was unable to activate the transcription of IRF3 and NF-κB. These data suggested that in PKR-/- cells, HSV-1 replication counteracts TBK1-IRF3-NF-κB network. In this scenario, a combined approach of gene knockout and gene silencing was used to determine how the lack of PKR facilitates HSV-1 replication. We reported that in HEp-2-infected cells, PKR can influence the TBK1-IRF3-NF-κB network, consequently interfering with viral replication. Otherwise, an abrogated PKR-mediated signaling sustains the HSV-1 replication. Our result allows us to add additional information on the complex HSV-host interaction network by reinforcing the concept of the PKR role in the innate response-related networks during HSV replication in an in vitro model.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
28
|
Garland KM, Kwiatkowski AJ, Tossberg JT, Crooke PS, Aune TM, Wilson JT. Nanoparticle Delivery of Immunostimulatory Alu RNA for Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1800-1809. [PMID: 37691856 PMCID: PMC10487107 DOI: 10.1158/2767-9764.crc-22-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
It was recently found that patients with relapsing remitting multiple sclerosis exhibit widespread loss of adenosine-to-inosine (A-to-I) RNA editing, which contributes to the accumulation of immunostimulatory double-stranded Alu RNA in circulating leukocytes and an attendant increase in levels of proinflammatory cytokines (e.g., type I IFNs). A specific Alu RNA (i.e., AluJb RNA) was implicated in activating multiple RNA-sensing pathways and found to be a potent innate immune agonist. Here, we have performed a bioinformatic analysis of A-to-I RNA editing in human melanoma samples and determined that pre-therapy levels of A-to-I RNA editing negatively correlate with survival times, suggesting that an accumulation of endogenous double-stranded Alu RNA might contribute to cancer patient survival. Furthermore, we demonstrated that immunostimulatory Alu RNA can be leveraged pharmacologically for cancer immunotherapy. AluJb RNA was in vitro transcribed and then formulated with endosome-destabilizing polymer nanoparticles to improve intracellular delivery of the RNA and enable activation of RNA-sensing pathways. AluJb RNA/polymer complexes (i.e., Alu-NPs) were engineered to form colloidally stable nanoparticles that exhibited immunostimulatory activity in vitro and in vivo. Finally, the therapeutic potential of Alu-NPs for the treatment of cancer was demonstrated by attenuated tumor growth and prolonged survival in the B16.F10 murine melanoma tumor model. Thus, these data collectively implicate intratumoral Alu RNA as a potentiator of antitumor innate immunity and identify AluJb RNA as a novel nucleic acid immunotherapeutic for cancer. Significance Loss of A-to-I editing leads to accumulation of unedited Alu RNAs that activate innate immunity via RNA-sensing pattern recognition receptors. When packaged into endosome-releasing polymer nanoparticles, AluJB RNA becomes highly immunostimulatory and can be used pharmacologically to inhibit tumor growth in mouse melanoma models. These findings identify Alu RNAs as a new class of nucleic acid innate immune agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Alexander J. Kwiatkowski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Tossberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip S. Crooke
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee
| | - Thomas M. Aune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
29
|
Zhang J, Liu Y, Li C, Xiao Q, Zhang D, Chen Y, Rosenecker J, Ding X, Guan S. Recent Advances and Innovations in the Preparation and Purification of In Vitro-Transcribed-mRNA-Based Molecules. Pharmaceutics 2023; 15:2182. [PMID: 37765153 PMCID: PMC10536309 DOI: 10.3390/pharmaceutics15092182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic poses a disruptive impact on public health and the global economy. Fortunately, the development of COVID-19 vaccines based on in vitro-transcribed messenger RNA (IVT mRNA) has been a breakthrough in medical history, benefiting billions of people with its high effectiveness, safety profile, and ease of large-scale production. This success is the result of decades of continuous RNA research, which has led to significant improvements in the stability and expression level of IVT mRNA through various approaches such as sequence optimization and improved preparation processes. IVT mRNA sequence optimization has been shown to have a positive effect on enhancing the mRNA expression level. The innovation of IVT mRNA purification technology is also indispensable, as the purity of IVT mRNA directly affects the success of downstream vaccine preparation processes and the potential for inducing unwanted side effects in therapeutic applications. Despite the progress made, challenges related to IVT mRNA sequence design and purification still require further attention to enhance the quality of IVT mRNA in the future. In this review, we discuss the latest innovative progress in IVT mRNA design and purification to further improve its clinical efficacy.
Collapse
Affiliation(s)
- Jingjing Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Dandan Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Yang Chen
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| |
Collapse
|
30
|
Zhang Y, Wang J, Xing H, Liu C, Zha W, Dong S, Jiang Y, Li X. Enhanced immunogenicity induced by mRNA vaccines with various lipid nanoparticles as carriers for SARS-CoV-2 infection. J Mater Chem B 2023; 11:7454-7465. [PMID: 37448376 DOI: 10.1039/d3tb00303e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
mRNA vaccines have emerged as a highly promising approach for preventing cancer and infectious diseases, attributed to their superior immunogenicity, rapid development speed, and quality-controlled scale production. While homologous mRNA vaccine administration is currently the most prevalent method employed in clinical settings, heterologous administration is a promising avenue worth exploring. In this report, two types of mRNA vaccine formulations for SARS-CoV-2 infection were developed based on different lipid nanoparticle (LNP) delivery systems, and heterologous and homologous mRNA vaccinations were administered to explore the levels of immune responses comparatively. First, five novel H-series ionizable lipids were synthesized and confirmed by NMR and MS. Subsequently, six SARS-CoV-2 receptor-binding domain (RBD) mRNA-encapsulated LNP formulations were prepared using a microfluidic mixer based on H-series and MC3 lipids. These formulations exhibited spherical structures with an average diameter ranging from 90-140 nm, as characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The safety of these formulations was confirmed in vitro by the cytotoxicity assay. Moreover, transfection assay, lysosomal escape test, and western blot, and in vivo biodistribution analyses collectively demonstrated that lipids H03 and MC3 exhibited superior in vitro and in vivo delivery efficacy in comparison to other H-series lipids. Notably, H03-Fluc mRNA exhibited an approximately 2.2-fold higher in vivo bioluminescence signal intensity than MC3-Fluc mRNA. Additionally, evaluation of humoral immunity demonstrated that homologous H03-mRNA vaccination elicited an immune response that was approximately 3-fold higher than that of homologous MC3-mRNA vaccination. More significantly, the heterologous H03-mRNA/MC3-mRNA vaccination elicited an immune response that was approximately 2-3-fold higher than that of homologous H03-mRNA vaccination and 6-9-fold higher than that of homologous MC3-mRNA vaccination, without any observable adverse effects. These results suggest that heterologous mRNA vaccination is superior to homologous mRNA vaccination and may be attributed to differences in LNP carriers. Therefore, our research may inspire further exploration of different delivery systems to enhance mRNA-based therapeutics.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Hanlei Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Wenhui Zha
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Shuo Dong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
31
|
Song K, Yu JY, Li J, Li M, Peng LY, Yi PF. Astragaloside IV Regulates cGAS-STING Signaling Pathway to Alleviate Immunosuppression Caused by PRRSV Infection. Viruses 2023; 15:1586. [PMID: 37515271 PMCID: PMC10383485 DOI: 10.3390/v15071586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a global threat to pig health and results in significant economic losses. Impaired innate and adaptive immune responses are evident during PRRSV infection. Cyclic GMP-AMP synthase (cGAS), a classical pattern recognition receptor recognizing mainly intracytoplasmic DNA, induces type I IFN responses through the cGAS-STING signaling pathway. It has also been demonstrated that cGAS-STING is involved in PRRSV infection. This study utilized the qRT-PCR, ELISA, and WB methods to examine the effects of Astragaloside IV (AS-IV) on the regulation of innate immune function and cGAS-STING signaling pathway in porcine alveolar macrophages. The results showed that AS-IV attenuated the decreased innate immune function caused by PRRSV infection, restored the inhibited cGAS-STING signaling pathway, and increased the expression of interferon, ultimately exerting antiviral effects. Moreover, these results suggest that AS-IV may be a promising candidate for a new anti-PRRSV antiviral, and its mechanism of action may provide insights for developing novel antiviral agents.
Collapse
Affiliation(s)
- Ke Song
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jia-Ying Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiang Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Miao Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
32
|
Chen S, Lei Q, Zou X, Ma D. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front Immunol 2023; 14:1157813. [PMID: 37398647 PMCID: PMC10313905 DOI: 10.3389/fimmu.2023.1157813] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, bilayered, and nanosized membrane vesicles that are secreted from gram-negative bacteria. OMVs play a pivotal role in delivering lipopolysaccharide, proteins and other virulence factors to target cells. Multiple studies have found that OMVs participate in various inflammatory diseases, including periodontal disease, gastrointestinal inflammation, pulmonary inflammation and sepsis, by triggering pattern recognition receptors, activating inflammasomes and inducing mitochondrial dysfunction. OMVs also affect inflammation in distant organs or tissues via long-distance cargo transport in various diseases, including atherosclerosis and Alzheimer's disease. In this review, we primarily summarize the role of OMVs in inflammatory diseases, describe the mechanism through which OMVs participate in inflammatory signal cascades, and discuss the effects of OMVs on pathogenic processes in distant organs or tissues with the aim of providing novel insights into the role and mechanism of OMVs in inflammatory diseases and the prevention and treatment of OMV-mediated inflammatory diseases.
Collapse
|
33
|
Mohammadi Y, Nezafat N, Negahdaripour M, Eskandari S, Zamani M. In silico design and evaluation of a novel mRNA vaccine against BK virus: a reverse vaccinology approach. Immunol Res 2023; 71:422-441. [PMID: 36580228 PMCID: PMC9797904 DOI: 10.1007/s12026-022-09351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Human polyomavirus type 1, or BK virus (BKV), is a ubiquitous pathogen belonging to the polyomaviridae family mostly known for causing BKV-associated nephropathy (BKVN) and allograft rejection in kidney transplant recipients (KTRs) following the immunosuppression regimens recommended in these patients. Reduction of the immunosuppression level and anti-viral agents are the usual approaches for BKV clearance, which have not met a desired outcome yet. There are also debating matters such as the effect of this pathogen on emerging various comorbidities and the related malignancies in the human population. In this study, a reverse vaccinology approach was implemented to design a mRNA vaccine against BKV by identifying the most antigenic proteins of this pathogen. Potential immunogenic T and B lymphocyte epitopes were predicted through various immunoinformatic tools. The final epitopes were selected according to antigenicity, toxicity, allergenicity, and cytokine inducibility scores. According to the obtained results, the designed vaccine was antigenic, neutral at the physiological pH, non-toxic, and non-allergenic with a world population coverage of 93.77%. Since the mRNA codon optimization ensures the efficient expression of the vaccine in a host cell, evaluation of different parameters showed our designed mRNA vaccine has a stable structure. Moreover, it had strong interactions with toll-like receptor 4 (TLR4) according to the molecular dynamic simulation studies. The in silico immune simulation analyses revealed an overall increase in the immune responses following repeated exposure to the designed vaccine. Based on our findings, the vaccine candidate is ready to be tested as a promising novel mRNA therapeutic vaccine against BKV.
Collapse
Affiliation(s)
- Yasaman Mohammadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
34
|
Hoffmann M, Gerlach S, Takamiya M, Tarazi S, Hersch N, Csiszár A, Springer R, Dreissen G, Scharr H, Rastegar S, Beil T, Strähle U, Merkel R, Hoffmann B. Smuggling on the Nanoscale-Fusogenic Liposomes Enable Efficient RNA-Transfer with Negligible Immune Response In Vitro and In Vivo. Pharmaceutics 2023; 15:pharmaceutics15041210. [PMID: 37111695 PMCID: PMC10146161 DOI: 10.3390/pharmaceutics15041210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The efficient and biocompatible transfer of nucleic acids into mammalian cells for research applications or medical purposes is a long-standing, challenging task. Viral transduction is the most efficient transfer system, but often entails high safety levels for research and potential health impairments for patients in medical applications. Lipo- or polyplexes are commonly used transfer systems but result in comparably low transfer efficiencies. Moreover, inflammatory responses caused by cytotoxic side effects were reported for these transfer methods. Often accountable for these effects are various recognition mechanisms for transferred nucleic acids. Using commercially available fusogenic liposomes (Fuse-It-mRNA), we established highly efficient and fully biocompatible transfer of RNA molecules for in vitro as well as in vivo applications. We demonstrated bypassing of endosomal uptake routes and, therefore, of pattern recognition receptors that recognize nucleic acids with high efficiency. This may underlie the observed almost complete abolishment of inflammatory cytokine responses. RNA transfer experiments into zebrafish embryos and adult animals fully confirmed the functional mechanism and the wide range of applications from single cells to organisms.
Collapse
Affiliation(s)
- Marco Hoffmann
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sven Gerlach
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Samar Tarazi
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Nils Hersch
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Agnes Csiszár
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ronald Springer
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Georg Dreissen
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hanno Scharr
- IAS-8: Data Analytics and Machine Learning, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Rudolf Merkel
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Bernd Hoffmann
- IBI-2: Mechanobiology, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
35
|
Song L, Xiong D, Wen Y, Tan R, Kang X, Jiao X, Pan Z. Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages. Curr Issues Mol Biol 2023; 45:2798-2816. [PMID: 37185707 PMCID: PMC10136974 DOI: 10.3390/cimb45040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The flagellin (FliC) of Salmonella typhimurium is a potential vaccine adjuvant as it can activate innate immunity and promote acquired immune responses. Macrophages are an important component of the innate immune system. The mechanism of flagellin’s adjuvant activity has been shown to be related to its ability to activate macrophages. However, few studies have comprehensively investigated the effects of Salmonella flagellin in macrophages using transcriptome sequencing. In this study, RNA-Seq was used to analyze the expression patterns of RAW264.7 macrophages induced by FliC to identify novel transcriptomic signatures in macrophages. A total of 2204 differentially expressed genes were found in the FliC-treated group compared with the control. Gene ontology and KEGG pathway analyses identified the top significantly regulated functional classification and canonical pathways, which were mainly related to immune responses and regulation. Inflammatory cytokines (IL-6, IL-1β, TNF-α, etc.) and chemokines (CXCL2, CXCL10, CCL2, etc.) were highly expressed in RAW264.7 cells following stimulation. Notably, flagellin significantly increased the expression of interferon (IFN)-β. In addition, previously unidentified IFN regulatory factors (IRFs) and IFN-stimulated genes (ISGs) were also significantly upregulated. The results of RNA-Seq were verified, and furthermore, we demonstrated that flagellin increased the expression of IFN-β and IFN-related genes (IRFs and ISGs) in bone marrow-derived dendritic cells and macrophages. These results suggested that Salmonella flagellin can activate IFN-β-related immune responses in macrophages, which provides new insight into the immune mechanisms of flagellin adjuvant.
Collapse
|
36
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
37
|
Sun S, Xu Y, Qiu M, Jiang S, Cao Q, Luo J, Zhang T, Chen N, Zheng W, Meurens F, Liu Z, Zhu J. Manganese Mediates Its Antiviral Functions in a cGAS-STING Pathway Independent Manner. Viruses 2023; 15:v15030646. [PMID: 36992355 PMCID: PMC10058264 DOI: 10.3390/v15030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The innate immune system is the first line of host defense sensing viral infection. Manganese (Mn) has recently been found to be involved in the activation of the innate immune DNA-sensing cGAS-STING pathway and subsequent anti-DNA virus function. However, it is still unclear whether Mn2+ mediates host defense against RNA viruses. In this study, we demonstrate that Mn2+ exhibited antiviral effects against various animal and human viruses, including RNA viruses such as PRRSVs and VSV, as well as DNA viruses such as HSV1, in a dose-dependent manner. Moreover, cGAS and STING were both investigated in the Mn2+ mediated antiviral roles using the knockout cells made by the CRISPR-Cas9 approach. Unexpectedly, the results revealed that neither cGAS knockout nor STING knockout had any effect on Mn2+-mediated antiviral functions. Nevertheless, we verified that Mn2+ promoted the activation of the cGAS-STING signaling pathway. These findings suggest that Mn2+ has broad-spectrum antiviral activities in a cGAS-STING pathway independent manner. This study also provides significant insights into redundant mechanisms participating in the Mn2+ antiviral functions, and also indicates a new target for Mn2+ antiviral therapeutics.
Collapse
Affiliation(s)
- Shaohua Sun
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yulin Xu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ming Qiu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qi Cao
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jia Luo
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Tangjie Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Francois Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Zongping Liu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.L.); (J.Z.)
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.L.); (J.Z.)
| |
Collapse
|
38
|
Development of Specific Monoclonal Antibodies against Porcine RIG-I-like Receptors Revealed the Species Specificity. Int J Mol Sci 2023; 24:ijms24044118. [PMID: 36835527 PMCID: PMC9967608 DOI: 10.3390/ijms24044118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The RIG-I-like receptors (RLRs) play critical roles in sensing and combating viral infections, particularly RNA virus infections. However, there is a dearth of research on livestock RLRs due to a lack of specific antibodies. In this study, we purified porcine RLR proteins and developed monoclonal antibodies (mAbs) against porcine RLR members RIG-I, MDA5 and LGP2, for which one, one and two hybridomas were obtained, respectively. The porcine RIG-I and MDA5 mAbs each targeted the regions beyond the N-terminal CARDs domains, whereas the two LGP2 mAbs were both directed to the N-terminal helicase ATP binding domain in the Western blotting. In addition, all of the porcine RLR mAbs recognized the corresponding cytoplasmic RLR proteins in the immunofluorescence and immunochemistry assays. Importantly, both RIG-I and MDA5 mAbs are porcine specific, without demonstrating any cross-reactions with the human counterparts. As for the two LGP2 mAbs, one is porcine specific, whereas another one reacts with both porcine and human LGP2. Thus, our study not only provides useful tools for porcine RLR antiviral signaling research, but also reveals the porcine species specificity, giving significant insights into porcine innate immunity and immune biology.
Collapse
|
39
|
Huang D, Taha MS, Nocera AL, Workman AD, Amiji MM, Bleier BS. Cold exposure impairs extracellular vesicle swarm-mediated nasal antiviral immunity. J Allergy Clin Immunol 2023; 151:509-525.e8. [PMID: 36494212 DOI: 10.1016/j.jaci.2022.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human upper respiratory tract is the first site of contact for inhaled respiratory viruses and elaborates an array of innate immune responses. Seasonal variation in respiratory viral infections and the importance of ambient temperature in modulating immune responses to infections have been well recognized; however, the underlying biological mechanisms remain understudied. OBJECTIVE We investigated the role of nasal epithelium-derived extracellular vesicles (EVs) in innate Toll-like receptor 3 (TLR3)-dependent antiviral immunity. METHODS We evaluated the secretion and composition of nasal epithelial EVs after TLR3 stimulation in human autologous cells and fresh human nasal mucosal surgical specimens. We also explored the antiviral activity and mechanisms of TLR3-stimulated EVs against respiratory viruses as well as the effect of cool ambient temperature on TLR3-dependent antiviral immunity. RESULTS We found that polyinosinic:polycytidylic acid, aka poly(I:C), exposure induced a swarm-like increase in the secretion of nasal epithelial EVs via the TLR3 signaling. EVs participated in TLR3-dependent antiviral immunity, protecting the host from viral infections through both EV-mediated functional delivery of miR-17 and direct virion neutralization after binding to virus ligands via surface receptors, including LDLR and ICAM-1. These potent antiviral immune defense functions mediated by TLR3-stimulated EVs were impaired by cold exposure via a decrease in total EV secretion as well as diminished microRNA packaging and antiviral binding affinity of individual EV. CONCLUSION TLR3-dependent nasal epithelial EVs exhibit multiple innate antiviral mechanisms to suppress respiratory viral infections. Furthermore, our study provides a direct quantitative mechanistic explanation for seasonal variation in upper respiratory tract infection prevalence.
Collapse
Affiliation(s)
- Di Huang
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Maie S Taha
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Angela L Nocera
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass
| | - Alan D Workman
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Boston, Mass.
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Mass.
| |
Collapse
|
40
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
41
|
Schmidt C, Schnierle BS. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023; 12:138. [PMID: 36678486 PMCID: PMC9863218 DOI: 10.3390/pathogens12010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed.
Collapse
Affiliation(s)
- Christin Schmidt
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Barbara S. Schnierle
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
42
|
Effects of Bacillus subtilis Natto Strains on Antiviral Responses in Resiquimod-Stimulated Human M1-Phenotype Macrophages. Foods 2023; 12:foods12020313. [PMID: 36673407 PMCID: PMC9858497 DOI: 10.3390/foods12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Bacillus subtilis natto is used in the production of natto, a traditional fermented soy food, and has beneficial immunomodulatory effects in humans. Single-stranded RNA (ssRNA) viruses, including influenza and coronavirus, often cause global pandemics. We proposed a human cell culture model mimicking ssRNA viral infection and investigated the ability of B. subtilis natto to induce antiviral effects in the model. The gene expressions were analyzed using quantitative real-time reverse transcription PCR. M1-phenotype macrophages derived from THP-1 cells strongly express the Toll-like receptor 8 (76.2-hold), CD80 (64.2-hold), and CCR7 (45.7-hold) mRNA compared to M0 macrophages. One µg/mL of resiquimod (RSQ)-stimulation induced the expression of IRF3 (1.9-hold), CXCL10 (14.5-hold), IFNβ1 (3.5-hold), ISG20 (4.4-hold), and MxA (1.7-hold) mRNA in the M1-phenotype macrophages. Based on these results, the RSQ-stimulated M1-phenotype macrophages were used as a cell culture model mimicking ssRNA viral infection. Moreover, the B. subtilis natto XF36 strain induced the expression of genes associated with antiviral activities (IFNβ1, IFNλ1, ISG20, and RNase L) and anti-inflammatory activities (IL-10) in the cell culture model. Thus, it is suggested that the XF36 suppresses viral infections and excessive inflammation by inducing the expression of genes involved in antiviral and anti-inflammatory activities.
Collapse
|
43
|
Current progress in the development of prophylactic and therapeutic vaccines. SCIENCE CHINA. LIFE SCIENCES 2022; 66:679-710. [PMID: 36469218 PMCID: PMC9734355 DOI: 10.1007/s11427-022-2230-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
Vaccines are essential public health tools and play an important role in reducing the burden of infectious diseases in the population. Emerging infectious diseases and outbreaks pose new challenges for vaccine development, requiring the rapid design and production of safe and effective vaccines against diseases with limited resources. Here, we focus on the development of vaccines in broad fields ranging from conventional prophylactic vaccines against infectious diseases to therapeutic vaccines against chronic diseases and cancer providing a comprehensive overview of recent advances in eight different vaccine forms (live attenuated vaccines, inactivated vaccines, polysaccharide and polysaccharide conjugate vaccines, recombinant subunit vaccines, virus-like particle and nanoparticle vaccines, polypeptide vaccines, DNA vaccines, and mRNA vaccines) and the therapeutic vaccines against five solid tumors (lung cancer breast cancer colorectal cancer liver cancer and gastric cancer), three infectious diseases (human immunodeficiency virus, hepatitis B virus and human papillomavirus-induced diseases) and three common chronic diseases (hypertension, diabetes mellitus and dyslipidemia). We aim to provide new insights into vaccine technologies, platforms, applications and understanding of potential next-generation preventive and therapeutic vaccine technologies paving the way for the vaccines design in the future.
Collapse
|
44
|
mRNA Vaccines as an Efficient Approach for the Rapid and Robust Induction of Host Immunity Against SARS-CoV-2. SN COMPREHENSIVE CLINICAL MEDICINE 2022; 4:88. [PMID: 35402783 PMCID: PMC8975617 DOI: 10.1007/s42399-022-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Among the currently used COVID-19 vaccines, the mRNA-based vaccines drew the interest of the scientists because of its potent and versatile nature in mitigating the disease efficiently through increased translation as well as the robust modulation of the innate and adaptive immune responses within the host. The naked or lipid encapsulated mRNAs are usually optimized in order to formulate the vaccine. One of the interesting advantage of using mRNA vaccines is that such platform can even be used to mitigate other infectious diseases like influenza, zika, and rabies. However, the leading COVID-19 mRNA vaccines, i.e., mRNA-1273 and BNT162b2, have already been noticed to possess around 95% efficacy in provoking both the humoral and cell mediated immunity against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, causing the ongoing COVID-19 pandemic.
Collapse
|
45
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
46
|
Zhang X, Cui H, Zhang W, Li Z, Gao J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact Mater 2022; 22:491-517. [PMID: 36330160 PMCID: PMC9619151 DOI: 10.1016/j.bioactmat.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor vaccination is a promising approach for tumor immunotherapy because it presents high specificity and few side effects. However, tumor vaccines that contain only a single tumor antigen can allow immune system evasion by tumor variants. Tumor antigens are complex and heterogeneous, and identifying a single antigen that is uniformly expressed by tumor cells is challenging. Whole tumor cells can produce comprehensive antigens that trigger extensive tumor-specific immune responses. Therefore, tumor cells are an ideal source of antigens for tumor vaccines. A better understanding of tumor cell-derived vaccines and their characteristics, along with the development of new technologies for antigen delivery, can help improve vaccine design. In this review, we summarize the recent advances in tumor cell-derived vaccines in cancer immunotherapy and highlight the different types of engineered approaches, mechanisms, administration methods, and future perspectives. We discuss tumor cell-derived vaccines, including whole tumor cell components, extracellular vesicles, and cell membrane-encapsulated nanoparticles. Tumor cell-derived vaccines contain multiple tumor antigens and can induce extensive and potent tumor immune responses. However, they should be engineered to overcome limitations such as insufficient immunogenicity and weak targeting. The genetic and chemical engineering of tumor cell-derived vaccines can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor immunotherapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of tumor cell-derived vaccines.
Collapse
Affiliation(s)
- Xinyi Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Corresponding author. Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Corresponding author. Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200444, China.
| |
Collapse
|
47
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
48
|
Igual-Rouilleault AC, Soriano I, Elizalde A, Quan PL, Fernandez-Montero A, Sobrido C, Pina L. Axillary lymph node imaging in mRNA, vector-based, and mix-and-match COVID-19 vaccine recipients: ultrasound features. Eur Radiol 2022; 32:6598-6607. [PMID: 35554651 PMCID: PMC9098792 DOI: 10.1007/s00330-022-08846-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To assess ultrasound characteristics of ipsilateral axillary lymph nodes after two doses of four different COVID-19 vaccination protocols, to determine whether these parameters differed with age, and to describe how they changed on follow-up imaging. METHODS A total of 247 volunteer employees from our center who had received two doses of COVID-19 vaccination were recruited and followed prospectively. Axillary ultrasound of the ipsilateral vaccinated arm was performed the week after receiving the second dose to analyze lymph node features (number, long-axis, cortical thickness, morphology, and vascular imaging). Axillary lymphadenopathy resulting from four vaccination protocols-mRNA (BNT162b2, mRNA-1273), ChAdOx1-S, and mix-and-match-was compared. Analysis was conducted using the Kruskal-Wallis test and post hoc analysis with Bonferroni corrections. Nodal reactogenicity was evaluated for two age groups: young (< 45 years old) and middle-aged ( ≥ 45 years old). All parameters were compared between both groups using an unpaired-sample Student t test. A p value < 0.05 was considered statistically significant. RESULTS Significantly higher values for total number of visible nodes, cortical thickness, Bedi's classification (p < 0.001), and vascularity (p < 0.05) were observed in mRNA vaccine recipients compared to full ChAdOx1-S protocol recipients. Moreover, mix-and-match protocol recipients showed greater nodal cortical thickness and higher Bedi's classification than full ChAdOx1-S recipients (p < 0.001). Analyses between age groups revealed greater cortical thickness, Bedi's classification, and color Doppler signal in younger patients (p < 0.05). CONCLUSIONS Nodal parameters of Bedi's classification and cortical thickness were more often increased in mRNA and mix-and-match vaccine recipients when compared to ChAdOx1-S vaccine alone, especially in younger patients. KEY POINTS • Hyperplastic lymphadenopathy was observed more frequently in mRNA and mix-and-match vaccine protocols compared to full vector-based vaccination. • Higher values for cortical thickness, Bedi's classification, and color Doppler signal parameters were identified in younger patients. • Observed lymph node findings normalized in greater than 80% of patients by the third month following vaccination.
Collapse
Affiliation(s)
| | - Ignacio Soriano
- Department of Radiology, Clínica Universidad de Navarra, Avenida Pío XII, 36, 31008, Pamplona, Spain
| | - Arlette Elizalde
- Breast Imaging Unit, Department of Radiology, Clínica Universidad de Navarra, Avenida Pío XII, 36, Pamplona, Spain
| | - Paola Leonor Quan
- Department of Allergy and Clinical Immunology, Clínica Universidad de Navarra, Avenida Pío XII, 36, Pamplona, Spain
| | | | - Carolina Sobrido
- Breast Imaging Unit, Department of Radiology, Clínica Universidad de Navarra, C. Marquesado de Sta. Marta, 1, Madrid, Spain
| | - Luis Pina
- Breast Imaging Unit, Department of Radiology, Clínica Universidad de Navarra, Avenida Pío XII, 36, Pamplona, Spain
| |
Collapse
|
49
|
Islamuddin M, Mustfa SA, Ullah SNMN, Omer U, Kato K, Parveen S. Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection. Inflammation 2022; 45:1849-1863. [PMID: 35953688 PMCID: PMC9371632 DOI: 10.1007/s10753-022-01651-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/05/2022]
Abstract
The novel coronavirus SARS-CoV-2, responsible for the COVID-19 outbreak, has become a pandemic threatening millions of lives worldwide. Recently, several vaccine candidates and drugs have shown promising effects in preventing or treating COVID-19, but due to the development of mutant strains through rapid viral evolution, urgent investigations are warranted in order to develop preventive measures and further improve current vaccine candidates. Positive-sense-single-stranded RNA viruses comprise many (re)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form an important first line of defense against these viruses. Flexibility in the genome aids the virus to develop multiple strategies to evade the innate immune response and efficiently promotes their replication and infective capacity. This review will focus on the innate immune response to SARS-CoV-2 infection and the virus' evasion of the innate immune system by escaping recognition or inhibiting the production of an antiviral state. Since interferons have been implicated in inflammatory diseases and immunopathology along with their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin-domain-containing 3 (NLRP3) inflammasome pathway, and release of its products including the pro-inflammatory cytokines IL-6, IL-18, and IL-1β. This predictive view may aid in designing an immune intervention or preventive vaccine for COVID-19 in the near future.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.
| | - Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology, King's College London, Strand, London, UK
| | | | - Usmaan Omer
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shama Parveen
- Molecular Virology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
50
|
Xie J, Li X, Yang S, Yan Z, Chen L, Yang Y, Li D, Zhang X, Feng R. DDX56 inhibits PRV replication through regulation of IFN-β signaling pathway by targeting cGAS. Front Microbiol 2022; 13:932842. [PMID: 36090064 PMCID: PMC9450509 DOI: 10.3389/fmicb.2022.932842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudorabies virus (PRV) is an agent of Aujeszky's disease, and causes great economic losses to pig farming. Re-outburst of pseudorabies implies that new control measures are urgently needed. We show here that DDX56 possesses the ability to inhibit PRV replication in vitro, which may be an important factor for PRV infection. Overexpression of DDX56 inhibited PRV genomic DNA transcription and lower titers of PRV infection in PK15 cells, whereas down-regulation of the DDX56 expression had a promotion role on virus replication. Further study demonstrated that DDX56 exerted its proliferation-inhibitory effects of PRV through up-regulating cGAS-STING-induced IFN-β expression. Moreover, we found that DDX56 could promote cGAS expression and direct interaction also existed between DDX56 and cGAS. Based on this, DDX56-regulated IFN-β pathway may be targeted at cGAS. To verify this, down-regulated cGAS expression in DDX56 over-expression cells was performed. Results indicated that knockdown of cGAS expression could abrogate the inhibition role of DDX56 on PRV proliferation and weaken the effect of DDX56 on IFN-β expression. In addition, DDX56 played a promotion role in IRF3 phosphorylation and nucleus translocation. Altogether, our results highlight DDX56's antiviral role in PRV infection, and our findings contribute to a better understanding of host factors controlling PRV replication.
Collapse
Affiliation(s)
- Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Shunyu Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- *Correspondence: Ruofei Feng
| |
Collapse
|