1
|
Augustyniak K, Lesniak M, Golan MP, Latka H, Wojtan K, Zdanowski R, Kubiak JZ, Malek K. Chemical Landscape of Adipocytes Derived from 3T3-L1 Cells Investigated by Fourier Transform Infrared and Raman Spectroscopies. Int J Mol Sci 2024; 25:12274. [PMID: 39596337 PMCID: PMC11595028 DOI: 10.3390/ijms252212274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Adipocytes derived from 3T3-L1 cells are a gold standard for analyses of adipogenesis processes and the metabolism of fat cells. A widely used histological and immunohistochemical staining and mass spectrometry lipidomics are mainly aimed for examining lipid droplets (LDs). Visualizing other cellular compartments contributing to the cellular machinery requires additional cell culturing for multiple labeling. Here, we present the localization of the intracellular structure of the 3T3-L1-derived adipocytes utilizing vibrational spectromicroscopy, which simultaneously illustrates the cellular compartments and provides chemical composition without extensive sample preparation and in the naïve state. Both vibrational spectra (FTIR-Fourier transform infrared and RS-Raman scattering spectroscopy) extended the gathered chemical information. We proved that both IR and RS spectra provide distinct chemical information about lipid content and their structure. Despite the expected presence of triacylglycerols and cholesteryl esters in lipid droplets, we also estimated the length and unsaturation degree of the fatty acid acyl chains that were congruent with known MS lipidomics of these cells. In addition, the clustering of spectral images revealed that the direct surroundings around LDs attributed to lipid-associated proteins and a high abundance of mitochondria. Finally, by using quantified markers of biomolecules, we showed that the fixative agents, paraformaldehyde and glutaraldehyde, affected the cellular compartment differently. We concluded that PFA preserves LDs better, while GA fixation is better for cytochromes and unsaturated lipid analysis. The proposed analysis of the spectral images constitutes a complementary tool for investigations into the structural and molecular features of fat cells.
Collapse
Affiliation(s)
- Karolina Augustyniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. Stanislawa Lojasiewicza 11, 30-348 Krakow, Poland
| | - Monika Lesniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
| | - Maciej P. Golan
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
- Institute of Psychology, The Maria Grzegorzewska University, Szczesliwicka 40, 02-353 Warsaw, Poland
| | - Hubert Latka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
| | - Katarzyna Wojtan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserow 128, 04-141 Warsaw, Poland; (M.L.); (M.P.G.); (R.Z.)
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), French National Centre for Scientific Research (CNRS), Faculty of Medicine, University of Rennes, UMR 6290, 35043 Rennes, France
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.A.); (H.L.); (K.W.)
| |
Collapse
|
2
|
Tharp WG, Morris CR, Santos-Ortega Y, Vary CP, Bender SP, Dixon AE. Magnitude of obesity alone does not alter the alveolar lipidome. Am J Physiol Lung Cell Mol Physiol 2024; 327:L615-L623. [PMID: 39254086 PMCID: PMC11563641 DOI: 10.1152/ajplung.00112.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Obesity may lead to pulmonary dysfunction through complex and incompletely understood cellular and biochemical effects. Altered lung lipid metabolism has been identified as a potential mechanism of lung dysfunction in obesity. Although murine models of obesity demonstrate changes in pulmonary surfactant phospholipid composition and function, data in humans are lacking. We measured untargeted shotgun lipidomes in two bronchoalveolar lavages (BALs) from apical and anteromedial pulmonary subsegments of 14 adult subjects (7 males and 7 females) with body mass indexes (BMIs) ranging from 24.3 to 50.9 kg/m2. The lipidome composition was characterized at the class, species, and fatty acyl/alkyl level using total lipid molecular ion signal intensities normalized to BAL protein concentration and epithelial lining fluid volumes. Multivariate analyses were conducted to identify potential changes with increasing BMI. The alveolar lipidomes contained the expected composition of surfactant-associated phospholipids, sphingolipids, and sterols in addition to cardiolipin and intracellular signaling lipid species. No significant differences in lipidomes were detected between the two BAL regions. Though a small number of lipid species were associated with BMI in multivariate analyses, no robust differences in lipidome composition or specific lipid species were identified over the range of body habitus. The magnitude of obesity alone does not substantially alter the alveolar lipidome in patients without lung disease. Differences in lung function in patients with obesity and no lung disease are unlikely related to changes in alveolar lipid composition.NEW & NOTEWORTHY Altered lung lipid metabolism has been identified as a potential mechanism of lung dysfunction in obesity, but data in humans are lacking. We measured the alveolar lipidome in bronchoalveolar lavages from subjects with healthy lungs with a wide range of body mass index. There were no differences in lipidome composition in association with the magnitude of obesity. In patients with healthy lungs, obesity alone does not alter the alveolar lipidome.
Collapse
Affiliation(s)
- William G Tharp
- Department of Anesthesiology, University of Vermont, Burlington, Vermont, United States
| | - Carolyn R Morris
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Yulica Santos-Ortega
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Calvin P Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, United States
- School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - S Patrick Bender
- Department of Anesthesiology, University of Vermont, Burlington, Vermont, United States
| | - Anne E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
| |
Collapse
|
3
|
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C, Carregari VC, Larsen MR, Noghero A, Grassi-Oliveira R, Walss-Bass C. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607388. [PMID: 39211229 PMCID: PMC11360920 DOI: 10.1101/2024.08.09.607388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to glial activation and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) in postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n=4, SUD: n=4). The EVs were analyzed for physical properties (concentration, size, zeta potential, morphology) and subjected to integrative multi-omics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells as well as their effects on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between SUD and control groups. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD EVs. Proteomic analysis indicates downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB, and upregulation of C4A, C3, and ALB in SUD EVs. Gene ontology and protein-protein interactome analyses highlight functions such as cell motility, focal adhesion, and acute phase response signaling that is associated with the identified proteins. Both control and SUD EVs increased C3 and C4 mRNA expression in microglia, but only SUD EVs upregulated these genes in astrocytes. SUD EVs also significantly enhanced microglial migration in a wound healing assay.This study successfully isolated EVs from postmortem brains and used a multi-omics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD EVs and the distinct effects of EVs on glial cells suggest a crucial role in acute phase response signaling and neuroinflammation.
Collapse
|
4
|
Myers MN, Chirivi M, Gandy JC, Tam J, Zachut M, Contreras GA. Lipolysis pathways modulate lipid mediator release and endocannabinoid system signaling in dairy cows' adipocytes. J Anim Sci Biotechnol 2024; 15:103. [PMID: 39095900 PMCID: PMC11297689 DOI: 10.1186/s40104-024-01062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND As cows transition from pregnancy to lactation, free fatty acids (FFA) are mobilized from adipose tissues (AT) through lipolysis to counter energy deficits. In clinically healthy cows, lipolysis intensity is reduced throughout lactation; however, if FFA release exceeds tissue demands or the liver's metabolic capacity, lipid byproducts accumulate, increasing cows' risk of metabolic and infectious disease. Endocannabinoids (eCBs) and their congeners, N-acylethanolamines (NAEs), are lipid-based compounds that modulate metabolism and inflammation. Their synthesis and release depend upon the availability of FFA precursors and the abundance of synthesizing and degrading enzymes and transporters. Therefore, we hypothesized that eCB production and transcription of endocannabinoid system components are modulated by lipolysis pathways in adipocytes. To test this hypothesis, we stimulated canonical (isoproterenol, 1 µmol/L; ISO) and inflammatory (lipopolysaccharide, 1 µg/mL; LPS) lipolysis pathways in adipocytes isolated from the AT of 5 Holstein dairy cows. Following, we assessed lipolysis intensity, adipocytes' release of eCBs, and transcription of endocannabinoid system components. RESULTS We found that ISO and LPS stimulated lipolysis at comparable intensities. Exposure to either treatment tended to elevate the release of eCBs and NAEs by cultured adipocytes; however, specific eCBs and NAEs and the transcriptional profiles differed by treatment. On one hand, ISO enhanced adipocytes' release of 2-arachidonoylglycerol (2-AG) but reduced NAE production. Notably, ISO enhanced the cells' expression of enzymes associated with 2-AG biosynthesis (INPP5F, GDPD5, GPAT4), transport (CD36), and adipogenesis (PPARG). Conversely, LPS enhanced adipocytes' synthesis and release of N-arachidonoylethanolamide (AEA). This change coincided with enhanced transcription of the NAE-biosynthesizing enzyme, PTPN22, and adipocytes' transcription of genes related to eCB degradation (PTGS2, MGLL, CYP27B1). Furthermore, LPS enhanced adipocytes' transcription of eCB and NAE transporters (HSPA1A, SCP2) and the expression of the anti-adipogenic ion channel, TRPV3. CONCLUSIONS Our data provide evidence for distinct modulatory roles of canonical and inflammatory lipolysis pathways over eCB release and transcriptional regulation of biosynthesis, degradation, transport, and ECS signaling in cows' adipocytes. Based on our findings, we conclude that, within adipocytes, eCB production and ECS component expression are, at least in part, mediated by lipolysis in a pathway-dependent manner. These findings contribute to a deeper understanding of the molecular mechanisms underlying metabolic regulation in dairy cows' AT, with potential implications for prevention and treatment of inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeff C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization Volcani Institute, Rishon LeZion, 7505101, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Hu D, Zhang H, Liu Z, Ibáñez CF, Tie C, Xie M. Sphingomyelin is involved in regulating UCP1-mediated nonshivering thermogenesis. J Lipid Res 2024; 65:100559. [PMID: 38729351 PMCID: PMC11166878 DOI: 10.1016/j.jlr.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Adipogenesis is one of the major mechanisms for adipose tissue expansion, during which spindle-shaped mesenchymal stem cells commit to the fate of adipocyte precursors and differentiate into round-shaped fat-laden adipocytes. Here, we investigated the lipidomic profile dynamics of ex vivo-differentiated brown and white adipocytes derived from the stromal vascular fractions of interscapular brown (iBAT) and inguinal white adipose tissues. We showed that sphingomyelin was specifically enriched in terminally differentiated brown adipocytes, but not white adipocytes. In line with this, freshly isolated adipocytes of iBAT showed higher sphingomyelin content than those of inguinal white adipose tissue. Upon cold exposure, sphingomyelin abundance in iBAT gradually decreased in parallel with reduced sphingomyelin synthase 1 protein levels. Cold-exposed animals treated with an inhibitor of sphingomyelin hydrolases failed to maintain core body temperature and showed reduced oxygen consumption and iBAT UCP1 levels. Conversely, blockade of sphingomyelin synthetic enzymes resulted in enhanced nonshivering thermogenesis, reflected by elevated body temperature and UCP1 levels. Taken together, our results uncovered a relation between sphingomyelin abundance and fine-tuning of UCP1-mediated nonshivering thermogenesis.
Collapse
Affiliation(s)
- Detian Hu
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhen Liu
- Yuanpei College, Peking University, Beijing, China
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, China; School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Cai Tie
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Meng Xie
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China; School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China; Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden.
| |
Collapse
|
6
|
Jiang S, Zhang G, Miao J, Wu D, Li X, Li J, Lu J, Gun S. Transcriptome and Metabolome Analyses Provide Insight into the Glucose-Induced Adipogenesis in Porcine Adipocytes. Curr Issues Mol Biol 2024; 46:2027-2042. [PMID: 38534747 DOI: 10.3390/cimb46030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Glucose is a major energy substrate for porcine adipocytes and also serves as a regulatory signal for adipogenesis and lipid metabolism. In this study, we combined transcriptome and metabolome analyses to reveal the underlying regulatory mechanisms of high glucose (HG) on adipogenesis by comparing differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) identified in porcine adipocytes. Results showed that HG (20 mmol/L) significantly increased fat accumulation in porcine adipocytes compared to low glucose (LG, 5 mmol/L). A total of 843 DEGs and 365 DAMs were identified. Functional enrichment analyses of DEGs found that multiple pathways were related to adipogenesis, lipid metabolism, and immune-inflammatory responses. PPARγ, C/EBPα, ChREBP, and FOS were identified as the key hub genes through module 3 analysis, and PPARγ acted as a central regulator by linking genes involved in lipid metabolism and immune-inflammatory responses. Gene-metabolite networks found that PPARγ-13-HODE was the most important interaction relationship. These results revealed that PPARγ could mediate the cross-talk between adipogenesis and the immune-inflammatory response during adipocyte maturation. This work provides a comprehensive view of the regulatory mechanisms of glucose on adipogenesis in porcine adipocytes.
Collapse
Affiliation(s)
- Susu Jiang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jian Miao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Dianhu Wu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Abrahams T, Nicholls SJ. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges. Expert Opin Drug Discov 2024; 19:281-290. [PMID: 38402906 DOI: 10.1080/17460441.2023.2292039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Plasma lipidomics has emerged as a powerful tool in cardiovascular drug discovery by providing insights into disease mechanisms, identifying potential biomarkers for diagnosis and prognosis, and discovering novel targets for drug development. Widespread application of plasma lipidomics is hampered by technological limitations and standardization and requires a collaborative approach to maximize its use in cardiovascular drug discovery. AREAS COVERED This review provides an overview of the utility of plasma lipidomics in cardiovascular drug discovery and discusses the challenges and future perspectives of this rapidly evolving field. The authors discuss the role of lipidomics in understanding the molecular mechanisms of CVD, identifying novel biomarkers for diagnosis and prognosis, and discovering new therapeutic targets for drug development. Furthermore, they highlight the challenges faced in data analysis, standardization, and integration with other omics approaches and propose future directions for the field. EXPERT OPINION Plasma lipidomics holds great promise for improving the diagnosis, treatment, and prevention of CVD. While challenges remain in standardization and technology, ongoing research and collaboration among scientists and clinicians will undoubtedly help overcome these obstacles. As lipidomics evolves, its impact on cardiovascular drug discovery and clinical practice is expected to grow, ultimately benefiting patients and healthcare systems worldwide.
Collapse
Affiliation(s)
- Timothy Abrahams
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Lackner K, Sailer S, van Klinken JB, Wever E, Pras-Raves ML, Dane AD, Honsho M, Abe Y, Keller MA, Golderer G, Werner-Felmayer G, Fujiki Y, Vaz FM, Werner ER, Watschinger K. Alterations in ether lipid metabolism and the consequences for the mouse lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159285. [PMID: 36690320 DOI: 10.1016/j.bbalip.2023.159285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/18/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alkylglycerol monooxygenase (AGMO) and plasmanylethanolamine desaturase (PEDS1) are enzymes involved in ether lipid metabolism. While AGMO degrades plasmanyl lipids by oxidative cleavage of the ether bond, PEDS1 exclusively synthesizes a specific subclass of ether lipids, the plasmalogens, by introducing a vinyl ether double bond into plasmanylethanolamine phospholipids. Ether lipids are characterized by an ether linkage at the sn-1 position of the glycerol backbone and they are found in membranes of different cell types. Decreased plasmalogen levels have been associated with neurological diseases like Alzheimer's disease. Agmo-deficient mice do not present an obvious phenotype under unchallenged conditions. In contrast, Peds1 knockout mice display a growth phenotype. To investigate the molecular consequences of Agmo and Peds1 deficiency on the mouse lipidome, five tissues from each mouse model were isolated and subjected to high resolution mass spectrometry allowing the characterization of up to 2013 lipid species from 42 lipid subclasses. Agmo knockout mice moderately accumulated plasmanyl and plasmenyl lipid species. Peds1-deficient mice manifested striking changes characterized by a strong reduction of plasmenyl lipids and a concomitant massive accumulation of plasmanyl lipids resulting in increased total ether lipid levels in the analyzed tissues except for the class of phosphatidylethanolamines where total levels remained remarkably constant also in Peds1 knockout mice. The rate-limiting enzyme in ether lipid metabolism, FAR1, was not upregulated in Peds1-deficient mice, indicating that the selective loss of plasmalogens is not sufficient to activate the feedback mechanism observed in total ether lipid deficiency.
Collapse
Affiliation(s)
- Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Jan-Bert van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Department of Human Genetics, Leiden University Medical Center (LUMC), Einthovenweg 20, Leiden, 2333, ZC, the Netherlands.
| | - Eric Wever
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Mia L Pras-Raves
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Adrie D Dane
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| | - Masanori Honsho
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria.
| | - Georg Golderer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Gabriele Werner-Felmayer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Yukio Fujiki
- Institute of Rheological Functions of Food, Kyushu University Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Graduate School of Science, University of Hyogo, Hyogo, Japan.
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam 1105, AZ, The Netherlands.
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Liu Y, Qiao W, Liu Y, Zhao J, Liu Q, Yang K, Zhang M, Wang Y, Liu Y, Chen L. Quantification of phospholipids and glycerides in human milk using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. Front Chem 2023; 10:1101557. [PMID: 36700070 PMCID: PMC9868747 DOI: 10.3389/fchem.2022.1101557] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Human milk lipids, which are an important source of energy and affect growth and development of infants, require a comprehensive method for its qualitative and quantitative analysis. This work describes a method for the analysis of phospholipids, glycerides, free fatty acids and gangliosides in human milk by ultra-performance liquid chromatography using a C18 column with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). The lipids were extracted by liquid-liquid extraction and phospholipids were separated by solid phase extraction (SPE). The chromatographic columns with two different specifications (4.6 mm × 150 mm, and 3 mm × 50 mm) were used to detect phospholipids and glycerides in human milk, respectively. The sphingolipids and glycerides were analyzed in positive ion mode, and the glycerophospholipids and free fatty acids were analyzed in negative ion mode. Both internal and external standards were used for absolute quantification in this experiment. 483 species of lipids, including phospholipids, glycerides, free fatty acids and gangliosides, in human milk were analyzed using UPLC-Q-TOF-MS with high sensitivity and good linearity, with coefficient of correlation above 0.99, the relative standard deviation of accuracy and precision less than 10%. The results in a large number of human milk samples showed that this method was suitable for qualitative and quantitative analysis of lipids in human milk, even for other mammalian milk and infant formulae.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China,*Correspondence: Lijun Chen,
| |
Collapse
|
10
|
Schmieder SS, Tatituri R, Anderson M, Kelly K, Lencer WI. Structural basis for acyl chain control over glycosphingolipid sorting and vesicular trafficking. Cell Rep 2022; 40:111063. [PMID: 35830800 PMCID: PMC9358721 DOI: 10.1016/j.celrep.2022.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
The complex sphingolipids exhibit a diversity of ceramide acyl chain structures that influence their trafficking and intracellular distributions, but it remains unclear how the cell discerns among the different ceramides to affect such sorting. To address the mechanism, we synthesize a library of GM1 glycosphingolipids with naturally varied acyl chains and quantitatively assess their sorting among different endocytic pathways. We find that a stretch of at least 14 saturated carbons extending from C1 at the water-bilayer interface dictate lysosomal sorting by exclusion from endosome sorting tubules. Sorting to the lysosome by the C14∗ motif is cholesterol dependent. Perturbations of the C14∗ motif by unsaturation enable GM1 entry into endosomal sorting tubules of the recycling and retrograde pathways independent of cholesterol. Unsaturation occurring beyond the C14∗ motif in very long acyl chains rescues lysosomal sorting. These results define a structural motif underlying the membrane organization of sphingolipids and implicate cholesterol-sphingolipid nanodomain formation in sorting mechanisms.
Collapse
Affiliation(s)
| | - Raju Tatituri
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michael Anderson
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Kate Kelly
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Study on the characteristics of glycerides and phospholipids in human milk from Tibet. Food Res Int 2022; 157:111025. [DOI: 10.1016/j.foodres.2022.111025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/16/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
12
|
Stanek E, Pacia MZ, Kaczor A, Czamara K. The distinct phenotype of primary adipocytes and adipocytes derived from stem cells of white adipose tissue as assessed by Raman and fluorescence imaging. Cell Mol Life Sci 2022; 79:383. [PMID: 35752714 PMCID: PMC9233632 DOI: 10.1007/s00018-022-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Spectroscopy-based analysis of chemical composition of cells is a tool still scarcely used in biological sciences, although it provides unique information about the cell identity accessible in vivo and in situ. Through time-lapse spectroscopic monitoring of adipogenesis in brown and white adipose tissue-derived stem cells we have demonstrated that considerable chemical and functional changes occur along with cells differentiation and maturation, yet yielding mature adipocytes with a similar chemical composition, independent of the cellular origin (white or brown adipose tissue). However, in essence, these stem cell-derived adipocytes have a markedly different chemical composition compared to mature primary adipocytes. The consequences of this different chemical (and, hence, functional) identity have great importance in the context of selecting a suitable methodology for adipogenesis studies, particularly in obesity-related research.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Marta Z Pacia
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Kraków, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland.
| |
Collapse
|
13
|
Sailer S, Lackner K, Pras-Raves ML, Wever EJM, van Klinken JB, Dane AD, Geley S, Koch J, Golderer G, Werner-Felmayer G, Keller MA, Zwerschke W, Vaz FM, Werner ER, Watschinger K. Adaptations of the 3T3-L1 adipocyte lipidome to defective ether lipid catabolism upon Agmo knockdown. J Lipid Res 2022; 63:100222. [PMID: 35537527 PMCID: PMC9192799 DOI: 10.1016/j.jlr.2022.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/24/2022] Open
Abstract
Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. Here, we investigated the roles of AGMO in lipid metabolism by studying 3T3-L1 adipogenesis. AGMO activity was induced over 11 days using an adipocyte differentiation protocol. We show that RNA interference-mediated knockdown of AGMO did not interfere with adipocyte differentiation or affect lipid droplet formation. Furthermore, lipidomics revealed that plasmalogen phospholipids were preferentially accumulated upon Agmo knockdown, and a significant shift toward longer and more polyunsaturated acyl side chains of diacylglycerols and triacylglycerols could be detected by mass spectrometry. Our results indicate that alkylglycerol catabolism has an influence not only on ether-linked species but also on the degree of unsaturation in the massive amounts of triacylglycerols formed during in vitro 3T3-L1 adipocyte differentiation.
Collapse
Affiliation(s)
- Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Eric J M Wever
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Jan B van Klinken
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan D Dane
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Geley
- Institute of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Golderer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022; 11:cells11081257. [PMID: 35455937 PMCID: PMC9024772 DOI: 10.3390/cells11081257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.
Collapse
|
15
|
Gianni’ M, Goracci L, Schlaefli A, Di Veroli A, Kurosaki M, Guarrera L, Bolis M, Foglia M, Lupi M, Tschan MP, Cruciani G, Terao M, Garattini E. Role of cardiolipins, mitochondria, and autophagy in the differentiation process activated by all-trans retinoic acid in acute promyelocytic leukemia. Cell Death Dis 2022; 13:30. [PMID: 35013142 PMCID: PMC8748438 DOI: 10.1038/s41419-021-04476-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022]
Abstract
The role played by lipids in the process of granulocytic differentiation activated by all-trans retinoic acid (ATRA) in Acute-Promyelocytic-Leukemia (APL) blasts is unknown. The process of granulocytic differentiation activated by ATRA in APL blasts is recapitulated in the NB4 cell-line, which is characterized by expression of the pathogenic PML-RARα fusion protein. In the present study, we used the NB4 model to define the effects exerted by ATRA on lipid homeostasis. Using a high-throughput lipidomic approach, we demonstrate that exposure of the APL-derived NB4 cell-line to ATRA causes an early reduction in the amounts of cardiolipins, a major lipid component of the mitochondrial membranes. The decrease in the levels of cardiolipins results in a concomitant inhibition of mitochondrial activity. These ATRA-dependent effects are causally involved in the granulocytic maturation process. In fact, the ATRA-induced decrease of cardiolipins and the concomitant dysfunction of mitochondria precede the differentiation of retinoid-sensitive NB4 cells and the two phenomena are not observed in the retinoid-resistant NB4.306 counterparts. In addition, ethanolamine induced rescue of the mitochondrial dysfunction activated by cardiolipin deficiency inhibits ATRA-dependent granulocytic differentiation and induction of the associated autophagic process. The RNA-seq studies performed in parental NB4 cells and a NB4-derived cell population, characterized by silencing of the autophagy mediator, ATG5, provide insights into the mechanisms underlying the differentiating action of ATRA. The results indicate that ATRA causes a significant down-regulation of CRLS1 (Cardiolipin-synthase-1) and LPCAT1 (Lysophosphatidylcholine-Acyltransferase-1) mRNAs which code for two enzymes catalyzing the last steps of cardiolipin synthesis. ATRA-dependent down-regulation of CRLS1 and LPCAT1 mRNAs is functionally relevant, as it is accompanied by a significant decrease in the amounts of the corresponding proteins. Furthermore, the decrease in CRLS1 and LPCAT1 levels requires activation of the autophagic process, as down-regulation of the two proteins is blocked in ATG5-silenced NB4-shATG5 cells.
Collapse
Affiliation(s)
- Maurizio Gianni’
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Laura Goracci
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anna Schlaefli
- grid.5734.50000 0001 0726 5157Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland
| | - Alessandra Di Veroli
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Mami Kurosaki
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Luca Guarrera
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Marco Bolis
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy ,grid.419922.5Functional Cancer Genomics Laboratory, Institute of Oncology Research, USI, University of Southern Switzerland, 6500 Bellinzona, Switzerland ,grid.419765.80000 0001 2223 3006Bioinformatics Core Unit Institute of Oncology Research, Swiss Institute of Bioinformatics, 1000 Lausanne, Switzerland
| | - Marika Foglia
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Monica Lupi
- grid.4527.40000000106678902Department of Oncology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Mario P. Tschan
- grid.5734.50000 0001 0726 5157Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland
| | - Gabriele Cruciani
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Mineko Terao
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milano, Italy.
| |
Collapse
|
16
|
Schlüßler R, Kim K, Nötzel M, Taubenberger A, Abuhattum S, Beck T, Müller P, Maharana S, Cojoc G, Girardo S, Hermann A, Alberti S, Guck J. Correlative all-optical quantification of mass density and mechanics of subcellular compartments with fluorescence specificity. eLife 2022; 11:e68490. [PMID: 35001870 PMCID: PMC8816383 DOI: 10.7554/elife.68490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/08/2022] [Indexed: 01/06/2023] Open
Abstract
Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample - a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.
Collapse
Affiliation(s)
- Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Martin Nötzel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Timon Beck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Paul Müller
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Shovamaye Maharana
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBengaluruIndia
| | - Gheorghe Cojoc
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Salvatore Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", University Rostock, and German Center for Neurodegenerative Diseases (DZNE)Rostock/GreifswaldGermany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Physics of Life, Technische Universität DresdenDresdenGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
- Physics of Life, Technische Universität DresdenDresdenGermany
| |
Collapse
|
17
|
Dieckmann S, Maurer S, Kleigrewe K, Klingenspor M. Spatial Recruitment of Cardiolipins in Inguinal White Adipose Tissue after Cold Stimulation is Independent of UCP1. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine TUM School of Life Sciences Technical University of Munich Freising 85354 Germany
- EKFZ – Else Kröner‐Fresenius Center for Nutritional Medicine Technical University of Munich Freising 85354 Germany
- ZIEL – Institute for Food & Health Technical University of Munich Freising 85354 Germany
| | - Stefanie Maurer
- Chair for Molecular Nutritional Medicine TUM School of Life Sciences Technical University of Munich Freising 85354 Germany
- EKFZ – Else Kröner‐Fresenius Center for Nutritional Medicine Technical University of Munich Freising 85354 Germany
- ZIEL – Institute for Food & Health Technical University of Munich Freising 85354 Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS) Technical University of Munich Freising 85354 Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine TUM School of Life Sciences Technical University of Munich Freising 85354 Germany
- EKFZ – Else Kröner‐Fresenius Center for Nutritional Medicine Technical University of Munich Freising 85354 Germany
- ZIEL – Institute for Food & Health Technical University of Munich Freising 85354 Germany
| |
Collapse
|
18
|
Bispo DSC, Jesus CSH, Marques IMC, Romek KM, Oliveira MB, Mano JF, Gil AM. Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Rev Rep 2021; 17:2003-2024. [PMID: 34131883 DOI: 10.1007/s12015-021-10193-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
This review describes the use of metabolomics to study stem cell (SC) characteristics and function, excluding SCs in cancer research, suited to a fully dedicated text. The interest in employing metabolomics in SC research has consistently grown and emphasis is, here, given to developments reported in the past five years. This text informs on the existing methodologies and their complementarity regarding the information provided, comprising untargeted/targeted approaches, which couple mass spectrometry or nuclear magnetic resonance spectroscopy with multivariate analysis (and, in some cases, pathway analysis and integration with other omics), and more specific analytical approaches, namely isotope tracing to highlight particular metabolic pathways, or in tandem microscopic strategies to pinpoint characteristics within a single cell. The bulk of this review covers the existing applications in various aspects of mesenchymal SC behavior, followed by pluripotent and neural SCs, with a few reports addressing other SC types. Some of the central ideas investigated comprise the metabolic/biological impacts of different tissue/donor sources and differentiation conditions, including the importance of considering 3D culture environments, mechanical cues and/or media enrichment to guide differentiation into specific lineages. Metabolomic analysis has considered cell endometabolomes and exometabolomes (fingerprinting and footprinting, respectively), having measured both lipid species and polar metabolites involved in a variety of metabolic pathways. This review clearly demonstrates the current enticing promise of metabolomics in significantly contributing towards a deeper knowledge on SC behavior, and the discovery of new biomarkers of SC function with potential translation to in vivo clinical practice.
Collapse
Affiliation(s)
- Daniela S C Bispo
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina S H Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Inês M C Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Katarzyna M Romek
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
González-Hódar L, McDonald JG, Vale G, Thompson BM, Figueroa AM, Tapia PJ, Robledo F, Agarwal AK, Garg A, Horton JD, Cortés V. Decreased caveolae in AGPAT2 lacking adipocytes is independent of changes in cholesterol or sphingolipid levels: A whole cell and plasma membrane lipidomic analysis of adipogenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166167. [PMID: 33989739 DOI: 10.1016/j.bbadis.2021.166167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adipocytes from lipodystrophic Agpat2-/- mice have impaired adipogenesis and fewer caveolae. Herein, we examined whether these defects are associated with changes in lipid composition or abnormal levels of caveolae-associated proteins. Lipidome changes were quantified in differentiated Agpat2-/- adipocytes to identify lipids with potential adipogenic roles. METHODS Agpat2-/- and wild type brown preadipocytes were differentiated in vitro. Plasma membrane was purified by ultracentrifugation. Number of caveolae and caveolae-associated proteins, as well as sterol, sphingolipid, and phospholipid lipidome were determined across differentiation. RESULTS Differentiated Agpat2-/- adipocytes had decreased caveolae number but conserved insulin signaling. Caveolin-1 and cavin-1 levels were equivalent between Agpat2-/- and wild type adipocytes. No differences in PM cholesterol and sphingolipids abundance were detected between genotypes. Levels of phosphatidylserine at day 10 of differentiation were increased in Agpat2-/- adipocytes. Wild type adipocytes had increased whole cell triglyceride, diacylglycerol, phosphatidylglycerol, phosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, and trihexosyl ceramide, and decreased 24,25-dihydrolanosterol and sitosterol, as a result of adipogenic differentiation. By contrast, adipogenesis did not modify whole cell neutral lipids but increased lysophosphatidylcholine, sphingomyelin, and trihexosyl ceramide levels in Agpat2-/- adipocytes. Unexpectedly, adipogenesis decreased PM levels of main phospholipids in both genotypes. CONCLUSION In Agpat2-/- adipocytes, decreased caveolae is not associated with changes in PM cholesterol nor sphingolipid levels; however, increased PM phosphatidylserine content may be implicated. Abnormal lipid composition is associated with the adipogenic abnormalities of Agpat2 -/- adipocytes but does not prevent insulin signaling.
Collapse
Affiliation(s)
- Lila González-Hódar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Bonne M Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Pablo J Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States.
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile.
| |
Collapse
|
20
|
Le PT, Liu H, Alabdulaaly L, Vegting Y, Calle IL, Gori F, Lanske B, Baron R, Rosen CJ. The role of Zfp467 in mediating the pro-osteogenic and anti-adipogenic effects on bone and bone marrow niche. Bone 2021; 144:115832. [PMID: 33359894 PMCID: PMC8175945 DOI: 10.1016/j.bone.2020.115832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022]
Abstract
Conditional deletion of the PTH receptor (Pth1r) in mesenchymal progenitors reduces osteoblast differentiation and bone mass while enhancing adipogenesis and bone marrow adipose tissue. Mechanistically, PTH suppresses the expression of Zfp467, a pro-adipogenic zinc finger transcription factor. Consequently, Pth1r deficiency in mesenchymal progenitors leads to increased Zfp467 expression. Based on these observations, we hypothesized that genetic loss of Zfp467 would lead to a shift in marrow progenitor cell fate towards osteogenesis and increased bone mass. To test this hypothesis, we generated Zfp467-/- mice. Zfp467-/- mice (-/-) were significantly smaller than Zfp467+/+ mice (+/+). μCT showed significantly higher trabecular bone and cortical bone area in -/- vs. +/+, and histomorphometry showed higher structural and dynamic formation parameters in -/- mice vs. +/+. Femoral gene expression including Alpl, Sp7, and Acp5 were increased in -/-mice, whereas Adiponectin, Cebpa, Lepr, and Ppraγ mRNA were lower in -/- mice. Similarly, Fabp4 and Lep in the inguinal depot were also decreased in -/- mice. Moreover, marrow adipocyte numbers were reduced in -/- vs +/+ mice (p<0.007). In vitro, COBs and BMSCs-/- showed more positive ALP and Alizarin Red staining and a decrease in ORO droplets. Pth1r mRNA and protein levels were increased in COBs and BMSCs from -/- mice vs +/+ (p<0.02 for each parameter, -/- vs. +/+). -/- cells also exhibited enhanced endogenous levels of cAMP vs. control cells. Moreover, in an ovariectomy (OVX) mouse model, Zfp467-/- mice had significantly lower fat mass but similar bone mass compared to OVX +/+ mice. In contrast, in a high fat diet (HFD) mouse model, in addition to reduced adipocyte volume and adipogenesis related gene expression in both peripheral and bone marrow fat tissue, greater osteoblast number and higher osteogenesis related gene expression were also observed in -/- HFD mice vs. +/+ HFD mice. Taken together, these results demonstrate that ZFP467 negatively influences skeletal homeostasis and favors adipogenesis. Global deletion of Zfp467 increases PTHR1, cAMP and bone turnover, hence its repression is a component of PTH signaling and its regulation. These data support a critical role for Zfp467 in early lineage allocation and provide a novel potential mechanism by which PTH acts in an anabolic manner on the bone remodeling unit.
Collapse
Affiliation(s)
- Phuong T Le
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Hanghang Liu
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Lama Alabdulaaly
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yosta Vegting
- University of Amsterdam, Amsterdam UMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Isabella L Calle
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA; Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA 02115, USA; Harvard Medical School, Department of Medicine and Endocrine Unit, Massachusetts General Hospital, Boston, 02115, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
21
|
Sailer S, Keller MA, Werner ER, Watschinger K. The Emerging Physiological Role of AGMO 10 Years after Its Gene Identification. Life (Basel) 2021; 11:life11020088. [PMID: 33530536 PMCID: PMC7911779 DOI: 10.3390/life11020088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
The gene encoding alkylglycerol monooxygenase (AGMO) was assigned 10 years ago. So far, AGMO is the only known enzyme capable of catalysing the breakdown of alkylglycerols and lyso-alkylglycerophospholipids. With the knowledge of the genetic information, it was possible to relate a potential contribution for mutations in the AGMO locus to human diseases by genome-wide association studies. A possible role for AGMO was implicated by genetic analyses in a variety of human pathologies such as type 2 diabetes, neurodevelopmental disorders, cancer, and immune defence. Deficient catabolism of stored lipids carrying an alkyl bond by an absence of AGMO was shown to impact on the overall lipid composition also outside the ether lipid pool. This review focuses on the current evidence of AGMO in human diseases and summarises experimental evidence for its role in immunity, energy homeostasis, and development in humans and several model organisms. With the progress in lipidomics platform and genetic identification of enzymes involved in ether lipid metabolism such as AGMO, it is now possible to study the consequence of gene ablation on the global lipid pool and further on certain signalling cascades in a variety of model organisms in more detail.
Collapse
Affiliation(s)
- Sabrina Sailer
- Biocenter, Institute of Biological Chemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.R.W.)
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Ernst R. Werner
- Biocenter, Institute of Biological Chemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.R.W.)
| | - Katrin Watschinger
- Biocenter, Institute of Biological Chemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (E.R.W.)
- Correspondence: ; Tel.: +43-512-9003-70344
| |
Collapse
|
22
|
Zhang K, Liu W, Song Q, Wan JB, Yu J, Gong X, Cao L, Si D, Tu P, Li J, Song Y. Integrated Strategy Drives Direct Infusion–Tandem Mass Spectrometry as an Eligible Tool for Shotgun Pseudo-Targeted Metabolomics of Medicinal Plants. Anal Chem 2021; 93:2541-2550. [DOI: 10.1021/acs.analchem.0c04602] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Juan Yu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou 363000, China
| | - Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Libo Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Dandan Si
- SCIEX China, Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| |
Collapse
|
23
|
Zhao J, Liu Q, Liu Y, Qiao W, Yang K, Jiang T, Hou J, Zhou H, Zhao Y, Lin T, Li N, Chen L. Quantitative profiling of glycerides, glycerophosphatides and sphingolipids in Chinese human milk with ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Food Chem 2020; 346:128857. [PMID: 33373822 DOI: 10.1016/j.foodchem.2020.128857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023]
Abstract
Human milk lipids are an important energy source and essential nutrients for the growth and development of infants. The UPLC/Q-TOF-MS was used to qualitatively and quantitatively analyze human milk lipids. Totally, 411 species of lipids were identified, in which the content of OPL was generally higher than that of OPO; SM (75.38 mg/L, 40.39%), PE (51.12 mg/L, 27.39%) and PC (40.10 mg/L, 21.49%) had the highest contents among polar lipids, mainly including SM42:2:2 (22.24 mg/L), PE36:2 (C18:0-C18:2, 21.39 mg/L) and PC36:2 (C18:0-C18:2, 19.80 mg/L). In human milk, TAG56:7 (137.14 mg/L), TAG56:8 (59.49 mg/L), TAG58:8 (65.90 mg/L) and TAG58:9 (49.99 mg/L) were the main sources of AA and DHA; PE was an important source of AA and DHA in polar lipids; and linoleic acyl in glycerides and phospholipids had higher contents than other polyunsaturated fatty acyls. These results provided the scientific basis for the simulation of human milk at molecular level.
Collapse
Affiliation(s)
- Junying Zhao
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Qian Liu
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Yan Liu
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Weicang Qiao
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Kai Yang
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Tiemin Jiang
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhou
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Yuyang Zhao
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Tie Lin
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Nan Li
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Lijun Chen
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China.
| |
Collapse
|
24
|
Miniewska K, Godzien J, Mojsak P, Maliszewska K, Kretowski A, Ciborowski M. Mass spectrometry-based determination of lipids and small molecules composing adipose tissue with a focus on brown adipose tissue. J Pharm Biomed Anal 2020; 191:113623. [PMID: 32966938 DOI: 10.1016/j.jpba.2020.113623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue has been the subject of research for a very long time. Many studies perform a comprehensive analysis of different types of adipose tissue with an emphasis on brown adipose tissue. Mass spectrometry-based approaches are particularly useful in the exploration not only of the metabolic composition of adipose tissue but also its function. In the presented review, a complex and critical overview of publications devoted to the analysis of adipose tissue by means of mass spectrometry was performed. Detailed investigation of analytical aspects related to either untargeted or targeted analysis of adipose tissue was performed, leading to the formation of a collection of hints at the available analytical methods. Moreover, a profound analysis of the metabolic composition of brown adipose tissue was performed. Brown adipose tissue metabolome was characterized on structural and functional levels, providing information about its exact metabolic composition but also connecting these molecules and placing them into biochemical pathways. All our work resulted in a very broad picture of the analysis of adipose tissue, starting from the analytical aspects and finishing on the current knowledge about its composition.
Collapse
Affiliation(s)
- Katarzyna Miniewska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
25
|
Boucher JM, Ryzhova L, Harrington A, Davis-Knowlton J, Turner JE, Cooper E, Maridas D, Ryzhov S, Rosen CJ, Vary CPH, Liaw L. Pathological Conversion of Mouse Perivascular Adipose Tissue by Notch Activation. Arterioscler Thromb Vasc Biol 2020; 40:2227-2243. [PMID: 32640901 DOI: 10.1161/atvbaha.120.314731] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.
Collapse
Affiliation(s)
- Joshua M Boucher
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Larisa Ryzhova
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Anne Harrington
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jessica Davis-Knowlton
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jacqueline E Turner
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Emily Cooper
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - David Maridas
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Sergey Ryzhov
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Clifford J Rosen
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Calvin P H Vary
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Lucy Liaw
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| |
Collapse
|
26
|
Oppong AK, Diallo K, Robillard Frayne I, Des Rosiers C, Lim GE. Reducing 14-3-3ζ expression influences adipocyte maturity and impairs function. Am J Physiol Endocrinol Metab 2020; 319:E117-E132. [PMID: 32369418 DOI: 10.1152/ajpendo.00093.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the primary metabolic functions of a mature adipocyte is to supply energy via lipolysis, or the catabolism of stored lipids. Adipose triacylglycerol lipase (ATGL) and hormone-sensitive lipase (HSL) are critical lipolytic enzymes, and their phosphorylation generates phospho-binding sites for 14-3-3 proteins, a ubiquitously expressed family of molecular scaffolds. Although we previously identified essential roles of the 14-3-3ζ isoform in murine adipogenesis, the presence of 14-3-3 protein binding sites on ATGL and HSL suggests that 14-3-3ζ could also influence mature adipocyte processes like lipolysis. Here we demonstrate that 14-3-3ζ is necessary for lipolysis in male mice and fully differentiated 3T3-L1 adipocytes, as depletion of 14-3-3ζ significantly impaired glycerol and free fatty acid (FFA) release. Unexpectedly, reducing 14-3-3ζ expression was found to significantly impact adipocyte maturity, as observed by reduced abundance of peroxisome proliferator-activated receptor (PPAR)γ2 protein and expression of mature adipocyte genes and those associated with de novo triglyceride synthesis and lipolysis. The impact of 14-3-3ζ depletion on adipocyte maturity was further examined with untargeted lipidomics, which revealed that reductions in 14-3-3ζ abundance promoted the acquisition of a lipidomic signature that resembled undifferentiated preadipocytes. Collectively, these findings reveal a novel aspect of 14-3-3ζ in adipocytes, as reducing 14-3-3ζ was found to have a negative effect on adipocyte maturity and adipocyte-specific processes like lipolysis.
Collapse
Affiliation(s)
- Abel K Oppong
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Kadidia Diallo
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Christine Des Rosiers
- Montreal Heart Institute, Research Centre, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Miehle F, Möller G, Cecil A, Lintelmann J, Wabitsch M, Tokarz J, Adamski J, Haid M. Lipidomic Phenotyping Reveals Extensive Lipid Remodeling during Adipogenesis in Human Adipocytes. Metabolites 2020; 10:metabo10060217. [PMID: 32466532 PMCID: PMC7361991 DOI: 10.3390/metabo10060217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Differentiation of preadipocytes into mature adipocytes is a highly complex cellular process. At lipidome level, the adipogenesis remains poorly characterized. To investigate the lipidomic changes during human adipogenesis, we used the LipidyzerTM assay, which quantified 743 lipid species from 11 classes. The undifferentiated human SGBS cell strain showed a heterogeneous lipid class composition with the most abundant classes, phosphatidylethanolamines (PE), phosphatidylcholines (PC), and sphingomyelins (SM). The differentiation process was accompanied by increased ceramide concentrations. After completion of differentiation around day 4, massive lipid remodeling occurred during maturation, characterized by substantial synthesis of diacylglycerols (DAG), lysophosphatidylethanolamines (LPE), PC, PE, SM, and triacylglycerols (TAG). Lipid species composition became more homogeneous during differentiation to highly concentrated saturated and monounsaturated long-chain fatty acids (LCFA), with the four most abundant being C16:0, C16:1, C18:0, and C18:1. Simultaneously, the amount of polyunsaturated and very long-chain fatty acids (VLCFA) markedly decreased. High negative correlation coefficients between PE and PC species containing VLCFA and TAG species as well as between ceramides and SM imply that PE, PC, and ceramides might have served as additional sources for TAG and SM synthesis, respectively. These results highlight the enormous remodeling at the lipid level over several lipid classes during adipogenesis.
Collapse
Affiliation(s)
- Florian Miehle
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Jutta Lintelmann
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany;
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Mark Haid
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
- Correspondence: ; Tel.: +49-893-187-3234
| |
Collapse
|
28
|
Lee J, Tsang YF, Oh JI, Hong S, Kim C, Kwon EE. Analysis of fatty acids in mouse tissue via in situ transmethylation with biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1723-1728. [PMID: 28455818 DOI: 10.1007/s10653-017-9965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Lipid derivatization technology-mediated fatty acid profiling studies have been suggested to dissect the contents of lipids in white fat and brown fat tissue. The focus of this study is to profile fatty acid lipidomics in brown adipose tissue and white adipose tissue of mice by derivatizing their lipids into fatty acid methyl esters via in situ transmethylation using a rice husk-derived biochar as porous media. The in situ transmethylation using biochar is advantageous in biological analysis because there was no loss of samples inevitably occurring in the loss of lipid in solvent extraction and purification steps.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul, 05006, Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Educational University of Hong Kong, Tai Po, Hong Kong
| | - Jeong-Ik Oh
- Advanced Technology Department, Land and Housing Institute, Daejeon, 34047, Korea
| | - Seokmann Hong
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Changsung Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Korea.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
29
|
The lipidome of primary murine white, brite, and brown adipocytes-Impact of beta-adrenergic stimulation. PLoS Biol 2019; 17:e3000412. [PMID: 31369546 PMCID: PMC6692052 DOI: 10.1371/journal.pbio.3000412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/13/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Lipid species patterns are conserved within cells to maintain physicochemical properties of membranes and cellular functions. We present the lipidome, including sterols, glycerolipids (GLs), glycerophospholipids (GPLs), and sphingolipids (SLs), of primary ex vivo differentiated (I) white, (II) brite, and (III) brown adipocytes derived from primary preadipocytes isolated from (I) epididymal white, (II) inguinal white, and (III) intrascapular brown adipose tissue. Quantitative lipidomics revealed significantly decreased fractions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), with longer (C > 36) and more polyunsaturated species, as well as lower levels of cardiolipin (CL) in white than in brite and brown adipocytes. Together, the brite and brown lipidome was comparable and indicates differences in membrane lipid packing density compared with white adipocytes. Changes in ceramide species profile could be related to the degree of browning. Beta-adrenergic stimulation of brown adipocytes led to generation of saturated lyso-PC (LPC) increasing uncoupling protein (UCP) 1-mediated leak respiration. Application of stable isotope labeling showed that LPC formation was balanced by an increased de novo synthesis of PC. Quantitative lipidomics reveal that the cell membrane lipidome of brite and brown adipocytes is comparable, but significantly different to that of white adipocytes. Beta-adrenergic stimulation of brown adipocytes induces generation of saturated lysophosphatidylcholine from phosphatidylcholine, increasing uncoupling protein (UCP) 1-mediated leak respiration.
Collapse
|
30
|
Bornstein S, Moschetta M, Kawano Y, Sacco A, Huynh D, Brooks D, Manier S, Fairfield H, Falank C, Roccaro AM, Nagano K, Baron R, Bouxein M, Vary C, Ghobrial IM, Rosen CJ, Reagan MR. Metformin Affects Cortical Bone Mass and Marrow Adiposity in Diet-Induced Obesity in Male Mice. Endocrinology 2017; 158:3369-3385. [PMID: 28977604 PMCID: PMC5659683 DOI: 10.1210/en.2017-00299] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/21/2017] [Indexed: 01/15/2023]
Abstract
Obesity during maturation can affect the growing skeleton directly and indirectly, although these effects and the mechanisms behind them are not fully understood. Our objective was to determine how a high-fat diet with or without metformin treatment affects skeletal development. We also sought to characterize changes that occur in white adipose tissue, circulating metabolites, lipids, and gut microbiota. A diet-induced obesity C57BL/6J mouse model was used to test the effects of obesity and metformin on bone using bone histomorphometry and microcomputed tomography. Bone marrow adipose tissue was quantified with osmium tetroxide microcomputed tomography and histology. Dual-energy x-ray absorptiometry was used to analyze body composition. Hematoxylin and eosin staining was used to assess changes in white adipose depots, mass spectrometry was used for circulating lipids and protein metabolite analysis, and ribosomal RNA sequencing was used for gut microbiome analysis. Mice fed a high fat-diet since wean displayed increased medullary areas and decreased osteoblast numbers in the long bones; this phenotype was partially normalized by metformin. Marrow and inguinal adipose expansion was also noted in obese mice, and this was partially normalized by metformin. A drug-by-diet interaction was noted for circulating lipid molecules, protein metabolites, and gut microbiome taxonomical units. Obesity was not detrimental to trabecular bone in growing mice, but bone marrow medullary expansion was observed, likely resulting from inhibition of osteoblastogenesis, and this was partially reversed by metformin treatment.
Collapse
Affiliation(s)
- Sheila Bornstein
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | | | - Yawara Kawano
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Antonio Sacco
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Progettazione Ricerca Clinica e Studi di Fase I, Laboratorio Centro Ricerca oncoEmatologica AIL, Brescia, BS, Italy
| | - Daisy Huynh
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Daniel Brooks
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
- Center for Skeletal Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Salomon Manier
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Heather Fairfield
- Maine Medical Center Research Institute, Scarborough, Maine 04074
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine 04469
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Carolyne Falank
- Maine Medical Center Research Institute, Scarborough, Maine 04074
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine 04469
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Aldo M. Roccaro
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Progettazione Ricerca Clinica e Studi di Fase I, Laboratorio Centro Ricerca oncoEmatologica AIL, Brescia, BS, Italy
| | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary Bouxein
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
- Center for Skeletal Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Calvin Vary
- Maine Medical Center Research Institute, Scarborough, Maine 04074
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine 04469
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Clifford J. Rosen
- Maine Medical Center Research Institute, Scarborough, Maine 04074
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine 04469
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Michaela R. Reagan
- Maine Medical Center Research Institute, Scarborough, Maine 04074
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine 04469
- Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
31
|
Abstract
Lipids have the potential to serve as bio-markers, which allow us to analyze and to identify cells under various experimental settings, and to serve as a clinical diagnostic tool. For example, diagnosis according to specific lipids that are associated with diabetes and obesity. The rapid development of mass-spectrometry techniques enables identification and profiling of multiple types of lipid species. Together, lipid profiling and data interpretation forge the new field of lipidomics. Lipidomics can be used to characterize physiologic and pathophysiological processes in adipocytes, since lipid metabolism is at the core of adipocyte physiology and energy homeostasis. A significant bulk of lipids are stored in adipocytes, which can be released and used to produce energy, used to build membranes, or used as signaling molecules that regulate metabolism. In this review, we discuss how exhaust of lipidomes can be used to study adipocyte differentiation, physiology and pathophysiology.
Collapse
Affiliation(s)
- Kfir Lapid
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan M. Graff
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
32
|
Fairfield H, Falank C, Harris E, Demambro V, McDonald M, Pettitt JA, Mohanty ST, Croucher P, Kramer I, Kneissel M, Rosen CJ, Reagan MR. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol 2017; 233:1156-1167. [PMID: 28460416 DOI: 10.1002/jcp.25976] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023]
Abstract
The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications.
Collapse
Affiliation(s)
- Heather Fairfield
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| | - Carolyne Falank
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| | - Elizabeth Harris
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| | - Victoria Demambro
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| | | | | | - Sindhu T Mohanty
- The Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Croucher
- The Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| | - Michaela R Reagan
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,University of Maine Graduate School of Biomedical Science and Engineering, Orono, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
33
|
Monoacylglycerol Analysis Using MS/MS(ALL) Quadruple Time of Flight Mass Spectrometry. Metabolites 2016; 6:metabo6030025. [PMID: 27548241 PMCID: PMC5041124 DOI: 10.3390/metabo6030025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/15/2022] Open
Abstract
Monoacylglycerols (MAGs) are structural and bioactive metabolites critical for biological function. Development of facile tools for measuring MAG are essential to understand its role in different diseases and various pathways. A data-independent acquisition method, MS/MS(ALL), using electrospray ionization (ESI) coupled quadrupole time of flight mass spectrometry (MS), was utilized for the structural identification and quantitative analysis of individual MAG molecular species. Compared with other acylglycerols, diacylglycerols (DAG) and triacylglycerols (TAG), MAG characteristically presented as a dominant protonated ion, [M + H]⁺, and under low collision energy as fatty acid-like fragments due to the neutral loss of the glycerol head group. At low concentrations (<10 pmol/µL), where lipid-lipid interactions are rare, there was a strong linear correlation between ion abundance and MAG concentration. Moreover, using the MS/MS(ALL) method the major MAG species from human plasma and mouse brown and white adipose tissues were quantified in less than 6 min. Collectively, these results demonstrate that MS/MS(ALL) analysis of MAG is an enabling strategy for the direct identification and quantitative analysis of low level MAG species from biological samples with high throughput and sensitivity.
Collapse
|
34
|
Tencerova M, Kassem M. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis. Front Endocrinol (Lausanne) 2016; 7:127. [PMID: 27708616 PMCID: PMC5030474 DOI: 10.3389/fendo.2016.00127] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- *Correspondence: Michaela Tencerova,
| | - Moustapha Kassem
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|