1
|
Deus MDC, Gadotti AC, Dias ES, Monte Alegre JB, Van Spitzenbergen BAK, Andrade GB, Tozoni SS, Stocco RB, Olandoski M, Tuon FFB, Pinho RA, de Noronha L, Baena CP, Moreno-Amaral AN. Prospective Variation of Cytokine Trends during COVID-19: A Progressive Approach from Disease Onset until Outcome. Int J Mol Sci 2024; 25:10578. [PMID: 39408907 PMCID: PMC11477561 DOI: 10.3390/ijms251910578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
COVID-19 is characterized by pronounced hypercytokinemia. The cytokine switch, marked by an imbalance between pro-inflammatory and anti-inflammatory cytokines, emerged as a focal point of investigation throughout the COVID-19 pandemic. However, the kinetics and temporal dynamics of cytokine release remain contradictory, making the development of new therapeutics difficult, especially in severe cases. This study collected serum samples from SARS-CoV-2 infected patients at 72 h intervals and monitored them for various cytokines at each timepoint until hospital discharge or death. Cytokine levels were analyzed based on time since symptom onset and patient outcomes. All cytokines studied prospectively were strong predictors of mortality, particularly IL-4 (AUC = 0.98) and IL-1β (AUC = 0.96). First-timepoint evaluations showed elevated cytokine levels in the mortality group (p < 0.001). Interestingly, IFN-γ levels decreased over time in the death group but increased in the survival group. Patients who died exhibited sustained levels of IL-1β and IL-4 and increased IL-6 levels over time. These findings suggest cytokine elevation is crucial in predicting COVID-19 mortality. The dynamic interplay between IFN-γ and IL-4 highlights the balance between Th1/Th2 immune responses and underscores IFN-γ as a powerful indicator of immune dysregulation throughout the infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Novais Moreno-Amaral
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Escola de Medicina, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (M.d.C.D.); (A.C.G.); (E.S.D.); (J.B.M.A.); (B.A.K.V.S.); (G.B.A.); (S.S.T.); (R.B.S.); (M.O.); (F.F.B.T.); (R.A.P.); (L.d.N.); (C.P.B.)
| |
Collapse
|
2
|
Krisht AAH, Grapin K, de Beauchene RC, Bonnet B, Cassagnes L, Evrard B, Adda M, Souweine B, Dupuis C. SARS-CoV2 pneumonia patients admitted to the ICU: Analysis according to clinical and biological parameters and the extent of lung parenchymal lesions on chest CT scan, a monocentric observational study. PLoS One 2024; 19:e0308014. [PMID: 39298399 DOI: 10.1371/journal.pone.0308014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND CT-scan and inflammatory and coagulation biomarkers could help in prognostication of COVID-19 in patients on ICU admission. OBJECTIVE The objectives of this study were to measure the prognostic value of the extent of lung parenchymal lesions on computed tomography (CT) and of several coagulation and inflammatory biomarkers, and to explore the characteristics of the patients depending on the extent of lung parenchymal lesions. DESIGN Retrospective monocentric observational study achieved on a dataset collected prospectively. SETTING Medical ICU of the university hospital of Clermont-Ferrand, France. PATIENTS All consecutive adult patients aged ≥18 years admitted between 20 March, 2020 and 31 August, 2021 for COVID-19 pneumonia. INTERVENTIONS Characteristics at baseline and during ICU stay, and outcomes at day 60 were recorded. The extent of lung parenchyma lesions observed on the chest CT performed on admission was established by artificial intelligence software. MEASUREMENTS Several clinical characteristics and laboratory features were collected on admission including plasma interleukin-6, HLA-DR monocytic-expression rate (mHLA-DR), and the extent of lung parenchymal lesions. Factors associated with day-60 mortality were investigated by uni- and multivariate survival analyses. RESULTS 270 patients were included. Inflammation biomarkers including the levels of neutrophils, CRP, ferritin and Il10 were the indices the most associated with the severity of the extent of the lung lesions. Patients with more extensive lung parenchymal lesions (≥ 75%) on admission had higher CRP serum levels. The extent of lung parenchymal lesions was associated with a decrease in the PaO2/FiO2 ratio(p<0.01), fewer ventilatory-free days (p = 0.03), and a higher death rate at day 60(p = 0.01). Extent of the lesion of more than 75% was independently associated with day-60 mortality (aHR = 1.72[1.06; 2.78], p = 0.03). The prediction of death at day 60 was improved when considering simultaneously biological and radiological markers obtained on ICU admission (AUC = 0.78). CONCLUSIONS The extent of lung parenchyma lesions on CT was associated with inflammation, and the combination of coagulation and inflammatory biomarkers and the extent of the lesions predicted the poorest outcomes.
Collapse
Affiliation(s)
- Abed Al Hadi Krisht
- CHU Clermont-Ferrand, Service de Médecine Intensive et Réanimation, Clermont-Ferrand, France
| | - Kévin Grapin
- CHU Clermont-Ferrand, Service de Médecine Intensive et Réanimation, Clermont-Ferrand, France
| | | | - Benjamin Bonnet
- CHU Clermont-Ferrand, Service d'Immunologie, Clermont-Ferrand, France
- Université Clermont Auvergne, Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Clermont-Ferrand, France
| | - Lucie Cassagnes
- CHU Clermont-Ferrand, Service de Radiologie, Clermont-Ferrand, France
- Université Clermont Auvergne, Unité de Nutrition Humaine, INRAe, CRNH Auvergne, Clermont Ferrand, France
| | - Bertrand Evrard
- CHU Clermont-Ferrand, Service d'Immunologie, Clermont-Ferrand, France
- Université Clermont Auvergne, Laboratoire d'Immunologie, ECREIN, UMR1019 UNH, UFR Médecine de Clermont-Ferrand, Clermont-Ferrand, France
| | - Mireille Adda
- CHU Clermont-Ferrand, Service de Médecine Intensive et Réanimation, Clermont-Ferrand, France
| | - Bertrand Souweine
- CHU Clermont-Ferrand, Service de Médecine Intensive et Réanimation, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| | - Claire Dupuis
- CHU Clermont-Ferrand, Service de Médecine Intensive et Réanimation, Clermont-Ferrand, France
- Université Clermont Auvergne, Unité de Nutrition Humaine, INRAe, CRNH Auvergne, Clermont Ferrand, France
| |
Collapse
|
3
|
Gao J, Zhang C, Wheelock ÅM, Xin S, Cai H, Xu L, Wang XJ. Immunomics in one health: understanding the human, animal, and environmental aspects of COVID-19. Front Immunol 2024; 15:1450380. [PMID: 39295871 PMCID: PMC11408184 DOI: 10.3389/fimmu.2024.1450380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underscores the critical need to integrate immunomics within the One Health framework to effectively address zoonotic diseases across humans, animals, and environments. Employing advanced high-throughput technologies, this interdisciplinary approach reveals the complex immunological interactions among these systems, enhancing our understanding of immune responses and yielding vital insights into the mechanisms that influence viral spread and host susceptibility. Significant advancements in immunomics have accelerated vaccine development, improved viral mutation tracking, and broadened our comprehension of immune pathways in zoonotic transmissions. This review highlights the role of animals, not merely as carriers or reservoirs, but as essential elements of ecological networks that profoundly influence viral epidemiology. Furthermore, we explore how environmental factors shape immune response patterns across species, influencing viral persistence and spillover risks. Moreover, case studies demonstrating the integration of immunogenomic data within the One Health framework for COVID-19 are discussed, outlining its implications for future research. However, linking humans, animals, and the environment through immunogenomics remains challenging, including the complex management of vast amounts of data and issues of scalability. Despite challenges, integrating immunomics data within the One Health framework significantly enhances our strategies and responses to zoonotic diseases and pandemic threats, marking a crucial direction for future public health breakthroughs.
Collapse
Affiliation(s)
- Jing Gao
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pulmonary Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, China
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Siming Xin
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hui Cai
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Xiao-Jun Wang
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Calvo-Alvarez E, D'Alessandro S, Zanotta N, Basilico N, Parapini S, Signorini L, Perego F, Maina KK, Ferrante P, Modenese A, Pizzocri P, Ronsivalle A, Delbue S, Comar M. Multiplex array analysis of circulating cytokines and chemokines in COVID-19 patients during the first wave of the SARS-CoV-2 pandemic in Milan, Italy. BMC Immunol 2024; 25:49. [PMID: 39061002 PMCID: PMC11282750 DOI: 10.1186/s12865-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The systemic inflammatory syndrome called "cytokine storm" has been described in COVID-19 pathogenesis, contributing to disease severity. The analysis of cytokine and chemokine levels in the blood of 21 SARS-CoV-2 positive patients throughout the phases of the pandemic has been studied to understand immune response dysregulation and identify potential disease biomarkers for new treatments. The present work reports the cytokine and chemokine levels in sera from a small cohort of individuals primarily infected with SARS-CoV-2 during the first wave of the COVID-19 pandemic in Milan (Italy). RESULTS Among the 27 cytokines and chemokines investigated, a significant higher expression of Interleukin-9 (IL-9), IP-10 (CXCL10), MCP-1 (CCL2) and RANTES (CCL-5) in infected patients compared to uninfected subjects was observed. When the change in cytokine/chemokine levels was monitored over time, from the hospitalization day to discharge, only IL-6 and IP-10 showed a significant decrease. Consistent with these findings, a significant negative correlation was observed between IP-10 and anti-Spike IgG antibodies in infected individuals. In contrast, IL-17 was positively correlated with the production of IgG against SARS-CoV-2. CONCLUSIONS The cytokine storm and the modulation of cytokine levels by SARS-CoV-2 infection are hallmarks of COVID-19. The current global immunity profile largely stems from widespread vaccination campaigns and previous infection exposures. Consequently, the immunological features and dynamic cytokine profiles of non-vaccinated and primarily-infected subjects reported here provide novel insights into the inflammatory immune landscape in the context of SARS-CoV-2 infection, and offer valuable knowledge for addressing future viral infections and the development of novel treatments.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Sarah D'Alessandro
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy.
| | - Nunzia Zanotta
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Kevin Kamau Maina
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | | | | | | | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| |
Collapse
|
5
|
Lipski D, Radziemski A, Wasiliew S, Wyrwa M, Szczepaniak-Chicheł L, Stryczyński Ł, Olasińska-Wiśniewska A, Urbanowicz T, Perek B, Tykarski A, Komosa A. Assessment of COVID-19 risk factors of early and long-term mortality with prediction models of clinical and laboratory variables. BMC Infect Dis 2024; 24:685. [PMID: 38982355 PMCID: PMC11234702 DOI: 10.1186/s12879-024-09592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Coronavirus disease (COVID-19) may lead to serious complications and increased mortality. The outcomes of patients who survive the early disease period are burdened with persistent long-term symptoms and increased long-term morbidity and mortality. The aim of our study was to determine which baseline parameters may provide the best prediction of early and long-term outcomes. METHODS The study group comprised 141 patients hospitalized for COVID-19. Demographic data, clinical data and laboratory parameters were collected. The main study endpoints were defined as in-hospital mortality and 1-year mortality. The associations between the baseline data and the study endpoints were evaluated. Prediction models were created. RESULTS The in-hospital mortality rate was 20.5% (n = 29). Compared with survivors, nonsurvivors were significantly older (p = 0.001) and presented comorbidities, including diabetes (0.027) and atrial fibrillation (p = 0.006). Assessment of baseline laboratory markers and time to early death revealed negative correlations between time to early death and higher IL-6 levels (p = 0.032; Spearman rho - 0.398) and lower lymphocyte counts (p = 0.018; Pearson r -0.438). The one-year mortality rate was 35.5% (n = 50). The 1-year nonsurvivor subgroup was older (p < 0.001) and had more patients with arterial hypertension (p = 0.009), diabetes (p = 0.023), atrial fibrillation (p = 0.046) and active malignancy (p = 0.024) than did the survivor subgroup. The model composed of diabetes and atrial fibrillation and IL-6 with lymphocyte count revealed the highest value for 1-year mortality risk prediction. CONCLUSIONS Diabetes and atrial fibrillation, as clinical factors, and LDH, IL-6 and lymphocyte count, as laboratory determinants, are the best predictors of COVID-19 mortality risk.
Collapse
Affiliation(s)
- Dawid Lipski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| | - Artur Radziemski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Stanisław Wasiliew
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Wyrwa
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ludwina Szczepaniak-Chicheł
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Łukasz Stryczyński
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Chair of Cardio-Thoracic Surgery, Poznan University of Medical Sciences, ul. Długa 1/2, Poznan, 61-848, Poland
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Chair of Cardio-Thoracic Surgery, Poznan University of Medical Sciences, ul. Długa 1/2, Poznan, 61-848, Poland
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Chair of Cardio-Thoracic Surgery, Poznan University of Medical Sciences, ul. Długa 1/2, Poznan, 61-848, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Komosa
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Tang J, Zhou Y, Gong L, Deng J, Yuan Y, Zhong Y, Li J, Wang G. ARDS in solid organ transplant recipients hospitalized for COVID-19 based on the 2023 new definition. Heart Lung 2024; 66:103-107. [PMID: 38604053 DOI: 10.1016/j.hrtlng.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Solid organ transplant recipients (SOTRs) are more likely to suffer complications after being infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). OBJECTIVES We aimed to describe the clinical features of SOTRs infected with SARS-CoV-2 and to assess independent risk factors associated with the development of acute respiratory distress syndrome (ARDS) following COVID-19 infection in SOTRs based on the new ARDS definition. METHODS 358 SOTRs infected with SARS-CoV-2 were recruited and divided into two groups, patients with ARDS (n = 81) and patients without ARDS (n = 277). Demographic data, initial laboratory findings, therapeutic measures, and outcome indicators were compared between the two groups. The association between the onset of ARDS and related factors was analyzed using a logistic regression model. A nomogram was created to estimate the probability of developing ARDS. RESULTS Approximately 22.6 % (81/358) of hospitalized SOTRs infected with SARS-CoV-2 developed ARDS. In comparison to patients without ARDS, those with ARDS presented with more underlying conditions, decreased lymphocyte counts and serum albumin levels, but increased levels of leukocytes, serum creatinine, nitrogen urea, uric acid, and inflammatory markers. Cerebrovascular disease, leukocyte counts, albumin levels, and IL-6 levels were independent risk factors for the development of ARDS in this population. Furthermore, a nomogram prediction model was created utilizing the aforementioned factors to facilitate early prediction of ARDS, exhibiting an AUC (area under curve) of 0.81. CONCLUSIONS Cerebrovascular disease, leukocyte counts, albumin levels, and IL-6 levels were independent risk factors for the development of ARDS following COVID-19 infection in SOTRs.
Collapse
Affiliation(s)
- Jun Tang
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China
| | - Yang Zhou
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China
| | - Yihao Yuan
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China
| | - Guyi Wang
- Department of Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Center for Intensive Care Medicine and Clinical Research in Smart Healthcare, Changsha, China; Center for Smart Intensive Care Clinical Medicine Research, Central South University, Changsha, China.
| |
Collapse
|
7
|
Ramos-González R, Cano-Pérez E, Loyola S, Sierra-Merlano R, Gómez-Camargo D. Cytokine expression and mortality risk among COVID-19 hospitalized patients over 60 years of age in a referral hospital in Cartagena, Colombia. Heliyon 2024; 10:e29028. [PMID: 38601541 PMCID: PMC11004873 DOI: 10.1016/j.heliyon.2024.e29028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background Cytokine dysregulation in COVID-19 patients aged over 60 has been associated to adverse outcomes. While serum levels have been studied, cellular expression, particularly in Afro-Colombians, remains understudied. This research aims to describe cytokine expression in peripheral blood leukocytes and its association with adverse outcomes in COVID-19 patients aged over 60 at Cartagena's referral hospital. Methods A cohort study was conducted, encompassing severe and critical cases of COVID-19 between November 2021 and February 2022. At baseline, the cellular expression level of cytokines IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ was assessed using flow cytometry. Additionally, various biochemical, hematological, and coagulation markers were evaluated. The main outcome was time to death. Results Among the 50 enrolled participants, the median age was 76.5 years, 60% were male, 60% were admitted to the ICU, and 42% died. Lactate dehydrogenase and hemoglobin were the only markers that differed between fatal and surviving cases. Regarding cytokines, the level of IL-6 expression was associated with an increased risk of death. Specifically, a one percent increase in the expression was associated with a 7.3% increase in the risk of death. Stratifying the analysis by death and ICU admission, the median expression level remained high in fatal cases who were admitted to the ICU. Conclusions Our findings revealed a significant association between high cellular expression levels of IL-6 and an increased risk of mortality. These results provide valuable scientific insights that could inform the prioritization of case management, providing especially advantageous for the vulnerable Afro-Colombian group.
Collapse
Affiliation(s)
- Remberto Ramos-González
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
| | - Eder Cano-Pérez
- Grupo de Investigación UNIMOL, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
- Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
| | - Steev Loyola
- Grupo de Investigación UNIMOL, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
- Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rita Sierra-Merlano
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
| | - Doris Gómez-Camargo
- Grupo de Investigación UNIMOL, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
- Doctorado en Medicina Tropical, Facultad de Medicina, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
8
|
Grapin K, De Bauchene R, Bonnet B, Mirand A, Cassagnes L, Calvet L, Thouy F, Bouzgarrou R, Henquell C, Evrard B, Adda M, Souweine B, Dupuis C. Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia in Critically Ill Patients: A Cluster Analysis According to Baseline Characteristics, Biological Features, and Chest CT Scan on Admission. Crit Care Med 2024; 52:e38-e46. [PMID: 37889095 DOI: 10.1097/ccm.0000000000006105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
BACKGROUND Inconsistent results from COVID-19 studies raise the issue of patient heterogeneity. OBJECTIVE The objective of this study was to identify homogeneous subgroups of patients (clusters) using baseline characteristics including inflammatory biomarkers and the extent of lung parenchymal lesions on CT, and to compare their outcomes. DESIGN Retrospective single-center study. SETTING Medical ICU of the University Hospital of Clermont-Ferrand, France. PATIENTS All consecutive adult patients aged greater than or equal to 18 years, admitted between March 20, 2020, and August 31, 2021, for COVID-19 pneumonia. INTERVENTIONS Characteristics at baseline, during ICU stay, and outcomes at day 60 were recorded. On the chest CT performed at admission the extent of lung parenchyma lesions was established by artificial intelligence software. MEASUREMENTS AND MAIN RESULTS Clusters were determined by hierarchical clustering on principal components using principal component analysis of admission characteristics including plasma interleukin-6, human histocompatibility leukocyte antigen-DR expression rate on blood monocytes (HLA-DR) monocytic-expression rate (mHLA-DR), and the extent of lung parenchymal lesions. Factors associated with day 60 mortality were investigated by univariate survival analysis. Two hundred seventy patients were included. Four clusters were identified and three were fully described. Cluster 1 (obese patients, with moderate hypoxemia, moderate extent of lung parenchymal lesions, no inflammation, and no down-regulation of mHLA-DR) had a better prognosis at day 60 (hazard ratio [HR] = 0.27 [0.15-0.46], p < 0.01), whereas cluster 2 (older patients with comorbidities, moderate extent of lung parenchyma lesions but significant hypoxemia, inflammation, and down-regulation of mHLA-DR) and cluster 3 (patients with severe parenchymal disease, hypoxemia, inflammatory reaction, and down-regulation of mHLA-DR) had an increased risk of mortality (HR = 2.07 [1.37-3.13], p < 0.01 and HR = 1.52 [1-2.32], p = 0.05, respectively). In multivariate analysis, only clusters 1 and 2 were independently associated with day 60 death. CONCLUSIONS Three clusters with distinct characteristics and outcomes were identified. Such clusters could facilitate the identification of targeted populations for the next trials.
Collapse
Affiliation(s)
- Kévin Grapin
- CHU Clermont-Ferrand, Service de Médecine intensive et réanimation, Clermont-Ferrand, France
| | | | - Benjamin Bonnet
- CHU Clermont-Ferrand, Service d'Immunologie, Clermont-Ferrand, France
- Université Clermont Auvergne, Laboratoire d'Immunologie, ECREIN, UMR1019, UNH, UFR Médecine de Clermont-Ferrand, Clermont-Ferrand, France
| | - Audrey Mirand
- CHU Clermont-Ferrand, 3IHP, Service de virologie, Clermont-Ferrand, France
- Université Clermont Auvergne, UMR CNRS 6023, LMGE, Clermont-Ferrand, France
| | - Lucie Cassagnes
- CHU Clermont-Ferrand, Service de Radiologie, Clermont-Ferrand, France
- Université Clermont Auvergne, ASMS, UMR 1019, UNH, INRAe, CRNH Auvergne, Clermont-Ferrand, France
| | - Laure Calvet
- CHU Clermont-Ferrand, Service de Médecine intensive et réanimation, Clermont-Ferrand, France
| | - François Thouy
- CHU Clermont-Ferrand, Service de Médecine intensive et réanimation, Clermont-Ferrand, France
| | - Radhia Bouzgarrou
- CHU Clermont-Ferrand, Service de Médecine intensive et réanimation, Clermont-Ferrand, France
| | - Cécile Henquell
- CHU Clermont-Ferrand, 3IHP, Service de virologie, Clermont-Ferrand, France
- Université Clermont Auvergne, UMR CNRS 6023, LMGE, Clermont-Ferrand, France
| | - Bertrand Evrard
- CHU Clermont-Ferrand, Service d'Immunologie, Clermont-Ferrand, France
- Université Clermont Auvergne, Laboratoire d'Immunologie, ECREIN, UMR1019, UNH, UFR Médecine de Clermont-Ferrand, Clermont-Ferrand, France
| | - Mireille Adda
- CHU Clermont-Ferrand, Service de Médecine intensive et réanimation, Clermont-Ferrand, France
| | - Bertrand Souweine
- CHU Clermont-Ferrand, Service de Médecine intensive et réanimation, Clermont-Ferrand, France
- Université Clermont Auvergne, UMR CNRS 6023, LMGE, Clermont-Ferrand, France
| | - Claire Dupuis
- CHU Clermont-Ferrand, Service de Médecine intensive et réanimation, Clermont-Ferrand, France
- Université Clermont Auvergne, ASMS, UMR 1019, UNH, INRAe, CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
9
|
Tiemi Enokida Mori M, Name Colado Simão A, Danelli T, Rangel Oliveira S, Luis Candido de Souza Cassela P, Lerner Trigo G, Morais Cardoso K, Mestre Tejo A, Naomi Tano Z, Regina Delicato de Almeida E, Maria Vissoci Reiche E, Maes M, Alysson Batisti Lozovoy M. Protective effects of IL18-105G > A and IL18-137C > Ggenetic variants on severity of COVID-19. Cytokine 2024; 174:156476. [PMID: 38128426 DOI: 10.1016/j.cyto.2023.156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE AND DESIGN A cross-sectional study evaluated the IL18-105G > A (rs360717) and IL18-137C > G (rs187238) variants on Coronavírus Disease 2019 (COVID-19) severity. SUBJECTS AND METHODS 528 patients with COVID-19 classifed with mild (n = 157), moderate (n = 63) and critical (n = 308) disease were genotpyed for the IL18-105G > A and IL18-137C > G variants. RESULTS We observed associations between severe + critical COVID-19 groups (reference group was mild COVID-19) and the IL18-105G > A (p = 0.008) and IL18-137C > G (p = 0.01) variants, which remained significant after adjusting for sex, ethnicity and age. Consequently, we have examined the associations between moderate + critical COVID-19 and the genotypes of both variants using different genetic models. The IL18-105G > A was associated with severe disease (moderate + critical), with effects of the GA genotype in the codominant [Odds ratio (OR), (95 % confidence interval) 0.55, 0.34-0.89, p = 0.015], overdominant (0.56, 0.35-0.89, p = 0.014) and dominant (0.60, 0.38-0.96, p = 0.031) models. IL18-105 GA coupled with age, chest computed tomograhy scan anormalities, body mass index, heart diseases, type 2 diabetes mellitus, hypertension, and inflammation may be used to predict the patients who develop severe disease with an accuracy of 84.3 % (sensitivity: 83.3 % and specificity: 86.5 %). Therefore, the presence of the IL18-105 A allele in homozygosis or heterozygosis conferred about 44.0 % of protection in the development of moderate and severe COVID-19. The IL18-137C > G variant was also associated with protective effects in the codominant (0.55, 0.34-0.89, p = 0.015), overdominant (0.57, 0.36-0.91, p = 0.018), and dominant models (0.59, 0.37-0.93, p = 0.025). Therefore, the IL18-137 G allele showed a protective effect against COVID-19 severity. CONCLUSION The IL18-105G > A and IL18-137C > Gvariants may contribute with protective effects for COVID-19 severity and the effects of IL18-137C > G may be modulating IL-18 production and Th1-mediated immune responses.
Collapse
Affiliation(s)
| | - Andréa Name Colado Simão
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil.
| | - Tiago Danelli
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Sayonara Rangel Oliveira
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | | | - Guilherme Lerner Trigo
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Kauê Morais Cardoso
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil.
| | | | - Zuleica Naomi Tano
- Depertment of Medical Clinic, University of Londrina, Londrina, PR, Brazil.
| | - Elaine Regina Delicato de Almeida
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Edna Maria Vissoci Reiche
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, Londrina State University, Lodrina, Paraná, Brazil; Pontifical Catholic University of Paraná, School of Medicine, Campus Londrina, Lonidrna, Paraná, Brazil.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Marcell Alysson Batisti Lozovoy
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
10
|
Hafizi M, Kalanaky S, Fakharzadeh S, Karimi P, Fakharian A, Lookzadeh S, Mortaz E, Mirenayat MS, Heshmatnia J, Karam MB, Zamani H, Nadji A, Toutkaboni MP, Oraee-Yazdani S, Akbari ME, Jamaati H, Nazaran MH. Beneficial effects of the combination of BCc1 and Hep-S nanochelating-based medicines on IL-6 in hospitalized moderate COVID-19 adult patients: a randomized, double-blind, placebo-controlled clinical trial. Trials 2023; 24:720. [PMID: 37951972 PMCID: PMC10638761 DOI: 10.1186/s13063-023-07624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/05/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND In the severe forms of COVID-19 and many other infectious diseases, the patients develop a cytokine storm syndrome (CSS) where pro-inflammatory cytokines such as IL-6 and TNF-α play a key role in the development of this serious process. Selenium and iron are two important trace minerals, and their metabolism is tightly connected to immune system function. Numerous studies highlight the role of selenium and iron metabolism changes in the procedure of COVID-19 inflammation. The immunomodulator effect of nanomedicines that are synthesized based on nanochelating technology has been proved in previous studies. In the present study, the effects of the combination of BCc1(with iron-chelating property) and Hep-S (containing selenium) nanomedicines on mentioned cytokines levels in hospitalized moderate COVID-19 patients were evaluated. METHODS Laboratory-confirmed moderate COVID-19 patients were enrolled to participate in a randomized, double-blind, placebo-controlled study in two separate groups: combination of BCc1 and Hep-S (N = 62) (treatment) or placebo (N = 60) (placebo). The blood samples were taken before medications on day zero, at discharge, and 28 days after consumption to measure hematological and biochemical parameters and cytokine levels. The clinical symptoms of all the patients were recorded according to an assessment questionnaire before the start of the treatment and on days 3 and discharge day. RESULTS The results revealed that consumption of the nanomedicines led to a significant decrease in the mean level of IL-6 cytokine, and at the end of the study, there was a 77% downward trend in IL-6 in the nanomedicine group, while an 18% increase in the placebo group (p < 0.05). In addition, the patients in the nanomedicines group had lower TNF-α levels; accordingly, there was a 21% decrease in TNF-α level in the treatment group, while a 31% increase in this cytokine level in the placebo was observed (p > 0.05). On the other hand, in nanomedicines treated groups, clinical scores of coughing, fatigue, and need for oxygen therapy improved. CONCLUSIONS In conclusion, the combination of BCc1 and Hep-S inhibits IL-6 as a highly important and well-known cytokine in COVID-19 pathophysiology and presents a promising view for immunomodulation that can manage CSS. TRIAL REGISTRATION Iranian Registry of Clinical Trials RCT20170731035423N2 . Registered on June 12, 2020.
Collapse
Affiliation(s)
- Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Atefeh Fakharian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirenayat
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Heshmatnia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhshayesh Karam
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Zamani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Nadji
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah Toutkaboni
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Comprehensive Neurosurgical Center of Excellence, Shohada Tajrish, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Jamaati
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
11
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Liu Y, Chen D, Li J, Wang W, Han R, Cui S, Bao S. Metabolic Syndrome Is Associated with Poor Omicron Infection Prognosis While Inactivated Vaccine Improves the Outcome of Coronavirus Disease 2019 among Chinese Inhabitants: A Retrospective Observational Study from a Chinese Municipality. Vaccines (Basel) 2023; 11:1554. [PMID: 37896957 PMCID: PMC10611402 DOI: 10.3390/vaccines11101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) and metabolic syndrome (MetS) are currently highly prevalent diseases worldwide. Studies on clinical outcomes of patients with Omicron and MetS, especially after vaccination with an inactivated vaccine are limited. Herein, we explored the relationship between MetS and the outcome of Omicron infection. STUDY DESIGN This was a retrospective observational study. METHODS This study recruited 316 individuals with Omicron infection. The inpatient data from between 8 January and 7 February 2022 were obtained from designated isolation hospitals in Tianjin, China. Hierarchical and multivariable analysis was conducted on age, gender, number of complications, and vaccination status. RESULTS Among the 316 study participants, 35.1% were diagnosed with MetS. The results showed that MetS was strongly associated with Intensive Unit Care (ICU) admission, Polymerase Chain Reaction (PCR) re-positivity, and severe COVID-19. The ICU admission rates of the unvaccinated individuals, those who received two-dose and full vaccination (3 doses), were 66.7%, 19.2%, and 0, respectively (p < 0.01). Two-dose and three-dose vaccinations significantly reduced PCR re-positivity. CONCLUSIONS In summary, MetS increases the risk of ICU admission, PCR re-positivity, and severe COVID-19. MetS is a composite predictor of poor outcomes of Omicron infection. Two shots of inactivated vaccine, specifically three doses, effectively protect against Omicron even in the high-risk group.
Collapse
Affiliation(s)
- Ying Liu
- Endocrinology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China (W.W.); (R.H.); (S.C.)
| | - Dong Chen
- Graduate School, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China;
| | - Junfeng Li
- Endocrinology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China (W.W.); (R.H.); (S.C.)
| | - Wei Wang
- Endocrinology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China (W.W.); (R.H.); (S.C.)
| | - Rongfeng Han
- Endocrinology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China (W.W.); (R.H.); (S.C.)
| | - Shanshan Cui
- Endocrinology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China (W.W.); (R.H.); (S.C.)
| | - Suqing Bao
- Endocrinology Department, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China (W.W.); (R.H.); (S.C.)
| |
Collapse
|
13
|
Kim H, Ahn HS, Hwang N, Huh Y, Bu S, Seo KJ, Kwon SH, Lee HK, Kim JW, Yoon BK, Fang S. Epigenomic landscape exhibits interferon signaling suppression in the patient of myocarditis after BNT162b2 vaccination. Sci Rep 2023; 13:8926. [PMID: 37264110 DOI: 10.1038/s41598-023-36070-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
After the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, a novel mRNA vaccine (BNT162b2) was developed at an unprecedented speed. Although most countries have achieved widespread immunity from vaccines and infections, yet people, even who have recovered from SARS-CoV-2 infection, are recommended to receive vaccination due to their effectiveness in lowering the risk of recurrent infection. However, the BNT162b2 vaccine has been reported to increase the risk of myocarditis. To our knowledge, for the first time in this study, we tracked changes in the chromatin dynamics of peripheral blood mononuclear cells (PBMCs) in the patient who underwent myocarditis after BNT162b2 vaccination. A longitudinal study of chromatin accessibility using concurrent analysis of single-cell assays for transposase-accessible chromatin with sequencing and single-cell RNA sequencing showed downregulation of interferon signaling and upregulated RUNX2/3 activity in PBMCs. Considering BNT162b2 vaccination increases the level of interferon-α/γ in serum, our data highlight the immune responses different from the conventional responses to the vaccination, which is possibly the key to understanding the side effects of BNT162b2 vaccination.
Collapse
Affiliation(s)
- Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyo-Suk Ahn
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, 06591, Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Nahee Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yune Huh
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyeon Bu
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, 06591, Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, South Korea
| | - Se Hwan Kwon
- Department of Radiology, Kyung Hee University Medical Center, Seoul, South Korea
| | - Hae-Kyung Lee
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
14
|
Nikkhoo B, Mohammadi M, Hasani S, Sigari N, Borhani A, Ramezani C, Charajoo A, Badri S, Rostami F, Etemadi M, Rahmani K. Elevated interleukin (IL)-6 as a predictor of disease severity among Covid-19 patients: a prospective cohort study. BMC Infect Dis 2023; 23:311. [PMID: 37161412 PMCID: PMC10169099 DOI: 10.1186/s12879-023-08294-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND accompanied to the spreading of coronavirus disease 2019 (Covid-19) in the world, identifying factors related to the severity of the disease is one of the interests of physician and medical researchers. We hypothesized that interleukin 6 serum level is associated with severe outcome. METHODS In this longitudinal prospective cohort study we enrolled 208 confirmed COVID-19 patients who were admitted to the Tohid Hospital (Sanandaj, Iran). Patients were classified into two groups based on IL-6 value in the first day of admission, elevated (n = 107) or not elevated/normal (n = 101), and followed until the occurrence of final outcome (death or discharge from the hospital). Data were analyzed using univariate methods, Chi-squared and independent two sample T test. The relationship between the independent variables and our interesting outcomes were investigated by multiple linear and penalized logistic regression modeling. RESULTS A total of 208 patients, 51% female and mean age 53.6 ± 16.3 years, including 107 elevated and 101 non-elevated IL-6 patients, were followed. No significant difference was observed between the two groups in demographic and clinical characteristics. Although not significant, logistic regression results showed that the chance of death occurrence among patients with elevated IL-6 are 3.91 times higher. According to the multiple linear regression modeling, elevated IL-6 significantly increased the duration of hospital stay (P = 0.02). Frequency of ICU admission (P = 0.04) and mean of ICU stay (P = 0.8) are also higher in elevated IL-6 group. CONCLUSION This study revealed that elevated IL-6 is significantly related to prolongation of hospital stay in Covid-19 patients. Although not significant, the occurrence of death among patients who had increased IL-6 in the time of admission was higher than patients with normal or lower serum levels of IL-6.
Collapse
Affiliation(s)
- Bahram Nikkhoo
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Sabah Hasani
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Naseh Sigari
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Aryan Borhani
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Chia Ramezani
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Arian Charajoo
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shaho Badri
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farzin Rostami
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Khaled Rahmani
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
15
|
Williams LM, Berthon BS, Stoodley IL, Williams EJ, Wood LG. Medicinal Mushroom Extracts from Hericium coralloides and Trametes versicolor Exert Differential Immunomodulatory Effects on Immune Cells from Older Adults In Vitro. Nutrients 2023; 15:2227. [PMID: 37432355 DOI: 10.3390/nu15092227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
Medicinal mushroom extracts (MMEs) exert immunomodulatory effects on innate immunity. The present study aimed to examine the effect of medicinal mushroom components on in vitro immune cell responses to inflammatory stimuli by peripheral blood mononuclear cells (PBMCs) isolated from older adults, where immune function is altered. PBMCs were treated with extracts from Hericium coralloides (HC) and Trametes versicolor (TV) prior to stimulation with rhinovirus A1 (RVA1), influenza A/H1N1pdm09 (H1N1), lipopolysaccharide (LPS), or house dust mite (HDM) for 48 h. In the presence of virus, type I and II IFN significantly (p < 0.05) decreased following treatment with at least one concentration of all extracts compared to the untreated cell controls, along with significant increases in pro-inflammatory cytokines (IL-1β, IL-6, IL-8). In the presence of LPS, extracts from TV reduced IL-1β compared to untreated cells. In the presence of HDM, the concentration of IL-5 and/or IL-13 was significantly decreased with at least one dose of all extracts. MMEs exert differential effects on the release of inflammatory and antiviral mediators in vitro. Reduced type 2 cytokine responses to HDM may be beneficial in conditions where allergic inflammation is present, including asthma, allergic rhinitis, and eczema. Further research is needed to examine extracts in vivo.
Collapse
Affiliation(s)
- Lily M Williams
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Bronwyn S Berthon
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Isobel L Stoodley
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Evan J Williams
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
16
|
Zou H, Zhang J, Chen W, Li X, Zhu B. An open, retrospective study on the duration of virus shedding for Shanghai patients infected with SARS-CoV-2 omicron variants. Health Sci Rep 2023; 6:e1088. [PMID: 36741855 PMCID: PMC9888212 DOI: 10.1002/hsr2.1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Hai Zou
- Department of Critical CareFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jun Zhang
- Department of Internal MedicineLongHua Hospital Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wencong Chen
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Xinyan Li
- Department of HepatologyShanghai Public Health Clinical Centre, Fudan UniversityShanghaiChina
| | - Biao Zhu
- Department of Critical CareFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
17
|
Anderson CF, Wang Q, Stern D, Leonard EK, Sun B, Fergie KJ, Choi CY, Spangler JB, Villano J, Pekosz A, Brayton CF, Jia H, Cui H. Supramolecular filaments for concurrent ACE2 docking and enzymatic activity silencing enable coronavirus capture and infection prevention. MATTER 2023; 6:583-604. [PMID: 36531610 PMCID: PMC9743467 DOI: 10.1016/j.matt.2022.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Coronaviruses have historically precipitated global pandemics of severe acute respiratory syndrome (SARS) into devastating public health crises. Despite the virus's rapid rate of mutation, all SARS coronavirus 2 (SARS-CoV-2) variants are known to gain entry into host cells primarily through complexation with angiotensin-converting enzyme 2 (ACE2). Although ACE2 has potential as a druggable decoy to block viral entry, its clinical use is complicated by its essential biological role as a carboxypeptidase and hindered by its structural and chemical instability. Here we designed supramolecular filaments, called fACE2, that can silence ACE2's enzymatic activity and immobilize ACE2 to their surface through enzyme-substrate complexation. This docking strategy enables ACE2 to be effectively delivered in inhalable aerosols and improves its structural stability and functional preservation. fACE2 exhibits enhanced and prolonged inhibition of viral entry compared with ACE2 alone while mitigating lung injury in vivo.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qiong Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Stern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elissa K Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kyle J Fergie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chang-Yong Choi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jason Villano
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
18
|
Behnoush AH, Khalaji A, Alemohammad SY, Kalantari A, Cannavo A, Dimitroff CJ. Galectins can serve as biomarkers in COVID-19: A comprehensive systematic review and meta-analysis. Front Immunol 2023; 14:1127247. [PMID: 36923399 PMCID: PMC10009778 DOI: 10.3389/fimmu.2023.1127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Background Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Yasaman Alemohammad
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at Florida International University, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
19
|
Rauniyar R, Kuikel S, Mishra A, Rauniyar R, Yadav S, Thapaliya S, Nepal AS, Rauniyar R. Safety and efficacy of prophylactic anticoagulation versus therapeutic anticoagulation in hospital-admitted COVID-19 patients: A systematic review and meta-analysis of randomized controlled trials. THE CLINICAL RESPIRATORY JOURNAL 2022; 17:73-79. [PMID: 36572657 PMCID: PMC9880679 DOI: 10.1111/crj.13568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/20/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND COVID-19 disease-related coagulopathy and thromboembolic complication, an important aspect of the disease pathophysiology, are frequent and associated with poor outcomes, particularly significant in hospitalized patients. Undoubtedly, anticoagulation forms a cornerstone for the management of hospitalized COVID-19 patients, but the appropriate dosing has been inconclusive and a subject of research. We aim to review existing literature and compare safety and efficacy outcomes of prophylactic and therapeutic dose anticoagulation in such patients. METHODS We did a systematic review and meta-analysis to compare the efficacy and safety of prophylactic dose anticoagulation when compared with therapeutic dosing in hospitalized COVID-19 patients. We searched PubMed, Google Scholar, EMBASE and COCHRANE databases from 2019 to 2021, without any restriction by language. We screened records, extracted data and assessed the risk of bias in the studies. RCTs that directly compare therapeutic and prophylactic anticoagulants dosing and are not placebo-controlled trials were included. Analyses of data were conducted using the Mantel-Haenszel random-effects model (DerSimonian-Laird analysis). The study is registered with PROSPERO (CRD42021265948). RESULTS We included three studies in the final quantitative analysis. The incidence of thromboembolic events in therapeutic anticoagulation was lower in comparison with prophylactic anticoagulation in hospitalized COVID-19 patients and reached statistical significance [RR 1·45, 95% CI (1.07, 1.97) I2 -0%], whereas major bleeding as an adverse event was found lower in prophylactic anticoagulation in comparison with therapeutic anticoagulation that was statistically significant [RR 0·42, 95% CI(0.19, 0.93) I2 -0%]. CONCLUSION Our study shows that therapeutic dose anticoagulation is more effective in preventing thromboembolic events than prophylactic dose but significantly increases the risk of major bleeding as an adverse event. So, the risk-benefit ratio must be considered while using either of them.
Collapse
Affiliation(s)
- Robin Rauniyar
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Sandip Kuikel
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Aman Mishra
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Rohit Rauniyar
- Internal MedicineMcLaren Flint/Michigan State University (MSU)FlintMichiganUSA
| | - Shikha Yadav
- Nepalgunj Medical CollegeKathmandu UniversityKathmanduNepal
| | - Sahil Thapaliya
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Amit Sharma Nepal
- Maharajgunj Medical CampusTribhuvan University Institute of MedicineKathmanduNepal
| | - Rahul Rauniyar
- Internal Medicine, The Wright Center for Graduate Medical EducationScrantonPennsylvaniaUSA
| |
Collapse
|
20
|
Campos DMDO, Silva MKD, Barbosa ED, Leow CY, Fulco UL, Oliveira JIN. Exploiting reverse vaccinology approach for the design of a multiepitope subunit vaccine against the major SARS-CoV-2 variants. Comput Biol Chem 2022; 101:107754. [PMID: 36037724 PMCID: PMC9385604 DOI: 10.1016/j.compbiolchem.2022.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
The current COVID-19 pandemic, an infectious disease caused by the novel coronavirus (SARS-CoV-2), poses a threat to global health because of its high rate of spread and death. Currently, vaccination is the most effective method to prevent the spread of this disease. In the present study, we developed a novel multiepitope vaccine against SARS-CoV-2 containing Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (BA.1) variants. To this end, we performed a robust immunoinformatics approach based on multiple epitopes of the four structural proteins of SARS-CoV-2 (S, M, N, and E) from 475 SARS-CoV-2 genomes sequenced from the regions with the highest number of registered cases, namely the United States, India, Brazil, France, Germany, and the United Kingdom. To investigate the best immunogenic epitopes for linear B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL), we evaluated antigenicity, allergenicity, conservation, immunogenicity, toxicity, human population coverage, IFN-inducing, post-translational modifications, and physicochemical properties. The tertiary structure of a vaccine prototype was predicted, refined, and validated. Through docking experiments, we evaluated its molecular coupling to the key immune receptor Toll-Like Receptor 3 (TLR3). To improve the quality of docking calculations, quantum mechanics/molecular mechanics calculations (QM/MM) were used, with the QM part of the simulations performed using the density functional theory formalism (DFT). Cloning and codon optimization were performed for the successful expression of the vaccine in E. coli. Finally, we investigated the immunogenic properties and immune response of our SARS-CoV-2 multiepitope vaccine. The results of the simulations show that administering our prototype three times significantly increases the antibody response and decreases the amount of antigens. The proposed vaccine candidate should therefore be tested in clinical trials for its efficacy in neutralizing SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Melo de Oliveira Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Maria Karolaynne da Silva
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | | | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, 59064-741, Natal/RN, Brazil.
| |
Collapse
|
21
|
Muacevic A, Adler JR. A Suspected Case of COVID-19-Induced Immunosuppression. Cureus 2022; 14:e32227. [PMID: 36620840 PMCID: PMC9812533 DOI: 10.7759/cureus.32227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
While COVID-19 has gained popularity as a pandemic and as a cause of pulmonary-systemic disease, the condition continues to evolve our knowledge and understanding of immunology and medicine through its myriad clinical presentations. This article features a previously healthy 65-year-old female who presented with sudden features of cryptococcal meningitis, the progression of which raises questions as to what role the virus plays in the innate, adaptive, and overall host factors leading to immunosuppression.
Collapse
|
22
|
Wang X, Tang G, Liu Y, Zhang L, Chen B, Han Y, Fu Z, Wang L, Hu G, Ma Q, Sheng S, Wang J, Hu X, Shao S. The role of IL-6 in coronavirus, especially in COVID-19. Front Pharmacol 2022; 13:1033674. [PMID: 36506506 PMCID: PMC9727200 DOI: 10.3389/fphar.2022.1033674] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects both people and animals and may cause significant respiratory problems, including lung illness: Corona Virus Disease 2019 (COVID-19). Swabs taken from the throat and nose of people who have the illness or are suspected of having it have shown this pathogenic virus. When SARS-CoV-2 infects the upper and lower respiratory tracts, it may induce moderate to severe respiratory symptoms, as well as the release of pro-inflammatory cytokines including interleukin 6 (IL-6). COVID-19-induced reduction of IL-6 in an inflammatory state may have a hitherto undiscovered therapeutic impact. Many inflammatory disorders, including viral infections, has been found to be regulated by IL-6. In individuals with COVID-19, one of the primary inflammatory agents that causes inflammatory storm is IL-6. It promotes the inflammatory response of virus infection, including the virus infection caused by SARS-CoV-2, and provides a new diagnostic and therapeutic strategy. In this review article, we highlighted the functions of IL-6 in the coronavirus, especially in COVID-19, showing that IL-6 activation plays an important function in the progression of coronavirus and is a rational therapeutic goal for inflammation aimed at coronavirus.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guozheng Tang
- Department of Orthopaedics, Lu’an Hospital of Anhui Medical University, Lu’an, Anhui, China
| | - Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affifiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lizhi Zhang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affifiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Fu
- Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Liuning Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Guangzhi Hu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qing Ma
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Shuyan Sheng
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Xinyang Hu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Song Shao
- Department of Orthopaedics, Lu’an Hospital of Anhui Medical University, Lu’an, Anhui, China,*Correspondence: Song Shao,
| |
Collapse
|
23
|
Xu XR, Zhang W, Wu XX, Yang HQ, Sun YT, Pu YT, Wang B, Peng W, Sun LH, Guo Q, Zhou S, Fang BJ. Analysis of mechanisms of Shenhuang Granule in treating severe COVID-19 based on network pharmacology and molecular docking. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:561-574. [PMID: 35934629 PMCID: PMC9328842 DOI: 10.1016/j.joim.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Severe cases of coronavirus disease 2019 (COVID-19) are expected to have a worse prognosis than mild cases. Shenhuang Granule (SHG) has been shown to be a safe and effective treatment for severe COVID-19 in a previous randomized clinical trial, but the active chemical constituents and underlying mechanisms of action remain unknown. The goal of this study is to explore the chemical basis and mechanisms of SHG in the treatment of severe COVID-19, using network pharmacology. METHODS Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was employed to screen chemical constituents of SHG. Putative therapeutic targets were predicted by searching traditional Chinese medicine system pharmacology database and analysis platform, SwissTargetPrediction, and Gene Expression Omnibus (GEO) databases. The target protein-protein interaction network and enrichment analysis were performed to investigate the hub genes and presumptive mechanisms. Molecular docking and molecular dynamics simulations were used to verify the stability and interaction between the key chemical constituents of SHG and COVID-19 protein targets. RESULTS Forty-five chemical constituents of SHG were identified along with 131 corresponding therapeutic targets, including hub genes such as HSP90AA1, MMP9, CXCL8, PTGS2, IFNG, DNMT1, TYMS, MDM2, HDAC3 and ABCB1. Functional enrichment analysis indicated that SHG mainly acted on the neuroactive ligand-receptor interaction, calcium signaling pathway and cAMP signaling pathway. Molecular docking showed that the key constituents had a good affinity with the severe acute respiratory syndrome coronavirus 2 protein targets. Molecular dynamics simulations indicated that ginsenoside Rg4 formed a stable protein-ligand complex with helicase. CONCLUSION Multiple components of SHG regulated multiple targets to inhibit virus invasion and cytokine storm through several signaling pathways; this provides a scientific basis for clinical applications and further experiments.
Collapse
Affiliation(s)
- Xiang-ru Xu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xin-xin Wu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hong-qiang Yang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-ting Sun
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-ting Pu
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bei Wang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wei Peng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li-hua Sun
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Quan Guo
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shuang Zhou
- Acupuncture and Massage College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bang-jiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China,Institute of Critical Care, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,Corresponding authors at: Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China (B.J. Fang)
| |
Collapse
|
24
|
Jin Q, Li W, Yu W, Zeng M, Liu J, Xu P. Analysis and identification of potential type II helper T cell (Th2)-Related key genes and therapeutic agents for COVID-19. Comput Biol Med 2022; 150:106134. [PMID: 36201886 PMCID: PMC9528635 DOI: 10.1016/j.compbiomed.2022.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
Abstract
COVID-19 pandemic poses a severe threat to public health. However, so far, there are no effective drugs for COVID-19. Transcriptomic changes and key genes related to Th2 cells in COVID-19 have not been reported. These genes play an important role in host interactions with SARS-COV-2 and may be used as promising target. We analyzed five COVID-19-associated GEO datasets (GSE157103, GSE152641, GSE171110, GSE152418, and GSE179627) using the xCell algorithm and weighted gene co-expression network analysis (WGCNA). Results showed that 5 closely correlated modular genes to COVID-19 and Th2 cell enrichment levels, including purple, blue, pink, tan and turquoise, were intersected with differentially expressed genes (DEGs) and 648 shared genes were obtained. GO and KEGG pathway enrichment analyses revealed that they were enriched in cell proliferation, differentiation, and immune responses after virus infection. The most significantly enriched pathway involved the regulation of viral life cycle. Three key genes, namely CCNB1, BUB1, and UBE2C, may clarify the pathogenesis of COVID-19 associated with Th2 cells. 11 drug candidates were identified that could down-regulate three key genes using the cMAP database and demonstrated strong drugs binding energies aganist the three keygenes using molecular docking methods. BUB1, CCNB1 and UBE2C were identified key genes for COVID-19 and could be promising therapeutic targets.
Collapse
Affiliation(s)
- Qiying Jin
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wanxi Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wendi Yu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Maosen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jinyuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
25
|
DeWolf S, Laracy JC, Perales MA, Kamboj M, van den Brink MRM, Vardhana S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022; 55:1779-1798. [PMID: 36182669 PMCID: PMC9468314 DOI: 10.1016/j.immuni.2022.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin C Laracy
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Mini Kamboj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha Vardhana
- Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Castro-Castro AC, Figueroa-Protti L, Molina-Mora JA, Rojas-Salas MP, Villafuerte-Mena D, Suarez-Sánchez MJ, Sanabría-Castro A, Boza-Calvo C, Calvo-Flores L, Solano-Vargas M, Madrigal-Sánchez JJ, Sibaja-Campos M, Silesky-Jiménez JI, Chaverri-Fernández JM, Soto-Rodríguez A, Echeverri-McCandless A, Rojas-Chaves S, Landaverde-Recinos D, Weigert A, Mora J. Difference in mortality rates in hospitalized COVID-19 patients identified by cytokine profile clustering using a machine learning approach: An outcome prediction alternative. Front Med (Lausanne) 2022; 9:987182. [PMID: 36203752 PMCID: PMC9530472 DOI: 10.3389/fmed.2022.987182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a disease caused by the novel Coronavirus SARS-CoV-2 causing an acute respiratory disease that can eventually lead to severe acute respiratory syndrome (SARS). An exacerbated inflammatory response is characteristic of SARS-CoV-2 infection, which leads to a cytokine release syndrome also known as cytokine storm associated with the severity of the disease. Considering the importance of this event in the immunopathology of COVID-19, this study analyses cytokine levels of hospitalized patients to identify cytokine profiles associated with severity and mortality. Using a machine learning approach, 3 clusters of COVID-19 hospitalized patients were created based on their cytokine profile. Significant differences in the mortality rate were found among the clusters, associated to different CXCL10/IL-38 ratio. The balance of a CXCL10 induced inflammation with an appropriate immune regulation mediated by the anti-inflammatory cytokine IL-38 appears to generate the adequate immune context to overrule SARS-CoV-2 infection without creating a harmful inflammatory reaction. This study supports the concept that analyzing a single cytokine is insufficient to determine the outcome of a complex disease such as COVID-19, and different strategies incorporating bioinformatic analyses considering a broader immune profile represent a more robust alternative to predict the outcome of hospitalized patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ana Cristina Castro-Castro
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Lucia Figueroa-Protti
- Centro de Investigación en Cirugía y Cáncer (CICICA), Universidad de Costa Rica, San José, Costa Rica
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - María Paula Rojas-Salas
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | - Danae Villafuerte-Mena
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | - María José Suarez-Sánchez
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | - Alfredo Sanabría-Castro
- Unidad de Investigación, Hospital San Juan de Dios CCSS, San José, Costa Rica
- Departamento de Farmacología, Facultad de Farmacia, Toxicología y Farmacodependencia, Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Boza-Calvo
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | - Leonardo Calvo-Flores
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | - Mariela Solano-Vargas
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | - Juan José Madrigal-Sánchez
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | - Mario Sibaja-Campos
- Servicio de Neumología, Hospital San Juan de Dios CCSS, San José, Costa Rica
| | | | - José Miguel Chaverri-Fernández
- Departamento de Farmacología, Facultad de Farmacia, Toxicología y Farmacodependencia, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Javier Mora
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Cirugía y Cáncer (CICICA), Universidad de Costa Rica, San José, Costa Rica
- *Correspondence: Javier Mora,
| |
Collapse
|
27
|
Duan L, Reisch B, Mach P, Kimmig R, Gellhaus A, Iannaccone A. The immunological role of b7-h4 in pregnant women with sars-cov2 infection. Am J Reprod Immunol 2022; 88:e13626. [PMID: 36121927 PMCID: PMC9538547 DOI: 10.1111/aji.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Problem T‐cells are key players in fighting the coronavirus disease 2019 (COVID‐19). The checkpoint molecule B7‐H4, a member of the B7 family, can inhibit T‐cell activation and proliferation by inhibiting NF‐kb expression. We aimed to elucidate the immunological role of soluble B7‐H4 (sB7‐H4) and B7‐H4 in pregnant women suffered from an acute Sars‐Cov2 infection. Methods Expression levels of sB7‐H4 and cytokines were detected by enzyme linked immunosorbent assay. B7‐H4 and cytokines mRNA expression was analyzed by qPCR, and B7‐H4 and NF‐κb (p65) protein levels were investigated by western blot and immunofluorescence staining in placenta chorionic villous and decidual basalis tissues of COVID‐19 affected women and healthy controls. Results Fibrinoid necrosis in the periphery of placental villi was increased in the COVID‐19‐affected patients. sB7‐H4 protein in maternal and cord blood serum and IL‐6/IL‐10 were increased while leukocytes were decreased during SARS‐CoV‐2 infection. Serum sB7‐H4 level was increased according to the severity of SARS‐Cov‐2 infection. Cytokines (IL‐6, IL‐18, IL‐1β, TNF‐α), B7‐H4 mRNA and protein in the decidual basalis tissues of COVID‐19‐infected pregnant women were significantly increased compared to healthy controls. IL‐18 and IL‐1β were significantly increased in the placenta chorionic villous samples of COVID‐19 affected patients, while NF‐κb (p65) expression was decreased. Conclusions The expression of the immunological marker sB7‐H4 correlated with the severity of COVID‐19 disease in pregnant women. sB7‐H4 and B7‐H4 can be used to monitor the progression of COVID‐19 infection during pregnancy, and for evaluating of the maternal immune status.
Collapse
Affiliation(s)
- Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Beatrix Reisch
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
28
|
Chávez-Valencia V, Orizaga-de-la-Cruz C, Lagunas-Rangel FA. Acute Kidney Injury in COVID-19 Patients: Pathogenesis, Clinical Characteristics, Therapy, and Mortality. Diseases 2022; 10:diseases10030053. [PMID: 35997358 PMCID: PMC9397016 DOI: 10.3390/diseases10030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by infection with the SARS-CoV-2 virus and has represented one of the greatest challenges humanity has faced in recent years. The virus can infect a large number of organs, including the lungs and upper respiratory tract, brain, liver, kidneys, and intestines, among many others. Although the greatest damage occurs in the lungs, the kidneys are not exempt, and acute kidney injury (AKI) can occur in patients with COVID-19. Indeed, AKI is one of the most frequent and serious organic complications of COVID-19. The incidence of COVID-19 AKI varies widely, and the exact mechanisms of how the virus damages the kidney are still unknown. For this reason, the purpose of this review was to assess current findings on the pathogenesis, clinical features, therapy, and mortality of COVID-19 AKI.
Collapse
Affiliation(s)
- Venice Chávez-Valencia
- Department of Nephrology, Hospital General Regional Hospital No. 1, Instituto Mexicano del Seguro Social, Bosque de los Olivos No. 101. Av. La Goleta Mpo. Charo, Morelia 61301, Mexico
- Correspondence: (V.C.-V.); (F.A.L.-R.)
| | - Citlalli Orizaga-de-la-Cruz
- Department of Nephrology, Hospital General Regional Hospital No. 1, Instituto Mexicano del Seguro Social, Bosque de los Olivos No. 101. Av. La Goleta Mpo. Charo, Morelia 61301, Mexico
| | | |
Collapse
|
29
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
30
|
Wang R, Wu Z, Huang C, Hashimoto K, Yang L, Yang C. Deleterious effects of nervous system in the offspring following maternal SARS-CoV-2 infection during the COVID-19 pandemic. Transl Psychiatry 2022; 12:232. [PMID: 35668063 PMCID: PMC9169439 DOI: 10.1038/s41398-022-01985-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
During the Coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is universally susceptible to all types of populations. In addition to the elderly and children becoming the groups of great concern, pregnant women carrying new lives need to be even more alert to SARS-CoV-2 infection. Studies have shown that pregnant women infected with SARS-CoV-2 can lead to brain damage and post-birth psychiatric disorders in offspring. It has been widely recognized that SARS-CoV-2 can affect the development of the fetal nervous system directly or indirectly. Pregnant women are recommended to mitigate the effects of COVID-19 on the fetus through vaccination, nutritional supplements, and psychological support. This review summarizes the possible mechanisms of the nervous system effects of SARS-CoV-2 infection on their offspring during the pregnancy and analyzes the available prophylactic and treatment strategies to improve the prognosis of fetal-related neuropsychiatric diseases after birth.
Collapse
Affiliation(s)
- Ruting Wang
- grid.452253.70000 0004 1804 524XDepartment of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 China
| | - Zifeng Wu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chaoli Huang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Kenji Hashimoto
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
31
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2022; 105:108536. [PMID: 35074571 PMCID: PMC8747952 DOI: 10.1016/j.intimp.2022.108536] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Since 2019, COVID-19 has become the most important health dilemma around the world. The dysregulated immune response which results in ARDS and cytokine storm has an outstanding role in the progression of pulmonary damage in COVID-19. IL-6, through induction of pro-inflammatory chemokines and cytokines, is the pioneer of the hyperinflammatory condition and cytokine storm in severe COVID-19. Therefore, IL-6 pathway blockade is considered an emerging approach with high efficacy to reduce lung damage in COVID-19. This article aims to review the pleiotropic roles of the IL-6 pathway in lung damage and ARDS in severe COVID-19, and the rationale for IL-6 signaling blockade at different levels, including IL-6 soluble and membrane receptor pathways, IL-6 downstream signaling (such as JAK-STAT) inhibition, and non-specific anti-inflammatory therapeutic approaches. Recent clinical data of each method, with specific concentration on tocilizumab, along with other new drugs, such as sarilumab and siltuximab, have been discussed. Challenges of IL-6 signaling inhibition, such as the risk of superinfection and hepatic injury, and possible solutions have also been explained. Moreover, to achieve the highest efficacy, ongoing clinical trials and special clinical considerations of using different IL-6 inhibitors have been discussed in detail. Special considerations, including the appropriate timing and dosage, monotherapy or combination therapy, and proper side effect managment must be noticed regarding the clinical administration of these drugs. Future studies are still necessary to improve the productivity and unknown aspects of IL-6 signaling blockade for personalized treatment of severe COVID-19.
Collapse
Affiliation(s)
- Reza Elahi
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Karami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
33
|
Alsafi RT, Minshawi F, Alshareef A, Althobiany E, Alqurashi A, Zawawi A, Qasem A, Halawani AJ, Almatrafi M, Alwafi H, Samannodi M, Salawati E, Assaggaf HM. Haematological, Biochemical, and Inflammatory Biomarkers of COVID-19 Patients Hospitalized in Critical Unit: A Retrospective Study. Cureus 2022; 14:e23691. [PMID: 35510030 PMCID: PMC9060743 DOI: 10.7759/cureus.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2022] [Indexed: 01/08/2023] Open
Abstract
Background: The World Health Organization declared coronavirus disease 2019 (COVID-19) responsible for a catastrophic global pandemic. The complexity of COVID-19 is centred on the unpredictable course of the disease, which can rapidly develop from patients being asymptomatic to having life-threatening symptoms. The unpredictable disease severity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major problem facing the healthcare system during the pandemic. Identifying the laboratory biomarkers would help predict SARS-CoV-2 pathogenicity. This study focused on the previous literature regarding three laboratory biomarker profiles: haematological, inflammatory, and biochemical biomarkers. Methods: A retrospective study of COVID-19 patients was conducted between May 2020 and September 2020 to determine the predictors of hospitalization (severity) in COVID-19 patients. Patients were divided into two groups: those admitted to an intensive care unit (ICU, severe) and those admitted to a non-ICU (stable). Patients' data were obtained from their medical records at Al Noor Specialist Hospital and East Arafat Hospital in Saudi Arabia. Results: A total of 487 patients with COVID-19, including 304 males and 183 females, were investigated in this study. A total of 217 patients were admitted to the ICU. Patients admitted to the ICU had a higher prevalence of chronic comorbidities than non-ICU patients. D-dimer, white blood cells (WBC), neutrophils, ferritin, C-reactive protein (CRP), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were more elevated in patients admitted to the ICU compared to non-ICU patients. Conclusion: Chronic comorbidities are a significant predictor for admission to the ICU. Moreover, tests for D-dimer, WBC, neutrophils, lymphocytes, CRP, LDH, and ALT could be used to predict patients' admission to the ICU.
Collapse
|
34
|
Mirenayat MS, Abedini A, Kiani A, Eslaminejad A, Adimi naghan P, Malekmohammad M, Heshmatnia J, Nadji SA, Idani E, Zahiri R, Lookzadeh S, Sheikhzade H, Dastan F, Porabdollah Toutkaboni M, Rezaei MS, Askari E, Tabarsi P, Marjani M, Moniri A, Hashemian SMR, Farzanegan B, Abtahian Z, Yassari F, Mansouri N, Mansouri D, Vasheghani M, Mansourafshar B, Mokhber Dezfoli M, Soleimani S, Seifi S, Naghashzadeh F, Fakharian A, Varahram M, Jamaati H, Zali A, Velayati AA. National Research Institute of Tuberculosis and Lung Disease (NRITLD) Protocol for the Treatment of Patients with COVID-19. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123947. [PMID: 35765502 PMCID: PMC9191225 DOI: 10.5812/ijpr.123947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
: More than a year after the onset of the coronavirus disease pandemic in 2019, the disease remains a major global health issue. During this time, health organizations worldwide have tried to provide integrated treatment guidelines to control coronavirus disease 2019 (COVID-19) at different levels. However, due to the novel nature of the disease and the emergence of new variants, medical teams' updating medical information and drug prescribing guidelines should be given special attention. This version is an updated instruction of the National Research Institute of Tuberculosis and Lung Disease (NRITLD) in collaboration with a group of specialists from Masih Daneshvari Hospital in Tehran, Iran, which is provided to update the information of caring clinicians for the treatment and care of COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Maryam Sadat Mirenayat
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arda Kiani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Eslaminejad
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Adimi naghan
- Department of Pulmonary and Sleep Medicine, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Malekmohammad
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Heshmatnia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Nadji
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Idani
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Zahiri
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Sheikhzade
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dastan
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Porabdollah Toutkaboni
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Sadat Rezaei
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz Farzanegan
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abtahian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yassari
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Mansouri
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vasheghani
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Mansourafshar
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mokhber Dezfoli
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Soleimani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seifi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farah Naghashzadeh
- Lung Transplantation Research Center(LTRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD) Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Fakharian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Zali
- Research Center for Neurosurgery and Functional Nerves, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Saeedi-Boroujeni A, Nashibi R, Ghadiri AA, Nakajima M, Salmanzadeh S, Mahmoudian-Sani MR, Hanafi MG, Sharhani A, Khodadadi A. Tranilast as an Adjunctive Therapy in Hospitalized Patients with Severe COVID- 19: A Randomized Controlled Trial. Arch Med Res 2022; 53:368-377. [PMID: 35339280 PMCID: PMC8919799 DOI: 10.1016/j.arcmed.2022.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/16/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Background Tranilast is a potential NLRP3 inflammasome inhibitor that may relieve progressive inflammation due to COVID-19. Aim of the study To evaluate the therapeutic effects of Tranilast in combination with antiviral drugs in non-ICU-admitted hospitalized patients with COVID-19. Methods This study was an open-label clinical trial that included 72 hospitals admitted patients with severe COVID-19 at Razi Hospital, Ahvaz, Iran, from July 2020–August 2020. These patients were randomly assigned in a 1:1 ratio to control (30) and intervention groups (30). Patients in the control group received antiviral therapy, while patients in the intervention group received Tranilast (300 mg daily) in addition to the antiviral drugs for Seven days. The collected data, including the expression of inflammatory cytokine, laboratory tests, and clinical findings, was used for intragroup comparisons. Results The intervention group showed significantly lower levels of NLR (p = 0.001), q-CRP (p = 0.002), IL-1 (p = 0.001), TNF (p = 0.001), and LDH (p = 0.046) in comparison with the control group. The effect of intervention was significant in increasing the o2 saturation (F = 7.72, p = 0.007). Long hospitalization (four days or above) was 36.6% in the Tranilast and 66.6% in the control group (RR = 0.58; 95% CI: 0.38–1.06, p = 0.045). In the Tranilst and control groups, one and four deaths or hospitalization in ICU were observed respectively (RR = 0.31; 95% CI: 0.03–2.88, p = 0.20). Conclusions Tranilast might be used as an effective and safe adjuvant therapy and enhance the antiviral therapy's efficacy for managing patients with COVID-19.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Infectious Diseases and Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Ata A Ghadiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Motowo Nakajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shokrollah Salmanzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Infectious Diseases and Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ghasem Hanafi
- Department of Radiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asaad Sharhani
- Department of Epidemiology and Biostatistics, School of public health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
36
|
Ganesh R, Grach SL, Ghosh AK, Bierle DM, Salonen BR, Collins NM, Joshi AY, Boeder ND, Anstine CV, Mueller MR, Wight EC, Croghan IT, Badley AD, Carter RE, Hurt RT. The Female-Predominant Persistent Immune Dysregulation of the Post-COVID Syndrome. Mayo Clin Proc 2022; 97:454-464. [PMID: 35135695 PMCID: PMC8817110 DOI: 10.1016/j.mayocp.2021.11.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To describe the clinical data from the first 108 patients seen in the Mayo Clinic post-COVID-19 care clinic (PCOCC). METHODS After Institutional Review Board approval, we reviewed the charts of the first 108 patients seen between January 19, 2021, and April 29, 2021, in the PCOCC and abstracted from the electronic medical record into a standardized database to facilitate analysis. Patients were grouped into phenotypes by expert review. RESULTS Most of the patients seen in our clinic were female (75%; 81/108), and the median age at presentation was 46 years (interquartile range, 37 to 55 years). All had post-acute sequelae of SARS-CoV-2 infection, with 6 clinical phenotypes being identified: fatigue predominant (n=69), dyspnea predominant (n=23), myalgia predominant (n=6), orthostasis predominant (n=6), chest pain predominant (n=3), and headache predominant (n=1). The fatigue-predominant phenotype was more common in women, and the dyspnea-predominant phenotype was more common in men. Interleukin 6 (IL-6) was elevated in 61% of patients (69% of women; P=.0046), which was more common than elevation in C-reactive protein and erythrocyte sedimentation rate, identified in 17% and 20% of cases, respectively. CONCLUSION In our PCOCC, we observed several distinct clinical phenotypes. Fatigue predominance was the most common presentation and was associated with elevated IL-6 levels and female sex. Dyspnea predominance was more common in men and was not associated with elevated IL-6 levels. IL-6 levels were more likely than erythrocyte sedimentation rate and C-reactive protein to be elevated in patients with post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Aditya K Ghosh
- Department of Internal Medicine, Northeast Georgia Medical Center, Gainesville, GA
| | | | | | | | | | | | | | | | | | | | | | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | | |
Collapse
|
37
|
Buchari B, Andayani H, Putri NA. Association Between Lymphocyte Level and Severity of Coronavirus Disease 2019 Patients: A Cross-sectional Study in Indonesia. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic has caused significant health problems globally. COVID-19 should be considered a systemic disease since it involves multiple systems, including the hematopoietic system and the immune system.
AIM: This study sought to determine the relationship between the lymphocyte levels and the severity of COVID-19 patients in Indonesia.
METHODS: A cross-sectional study was conducted among COVID-19 patients at Dr. Zainoel Abidin Hospital Banda Aceh Indonesia from August 27, to September 20, 2021. The subjects were recruited using consecutive sampling method and the data were obtained at their admission to the hospital. Chi-squared test was used to assess the association between lymphocyte levels and the severity of patients.
RESULTS: A total of 280 COVID-19 patients included of which 56.9% (91/160) of the patients with moderate severity, 76.1% (51/67) with a severe condition, and 84.9% (45/53) with critical severity had lymphopenia. There were no patients with lymphocytosis found in this study (0%). The Chi-squared test suggested that the lymphocyte level was significant associated with the severity of COVID-19 patients with p < 0.001.
CONCLUSION: Our study suggests that the lower the lymphocyte level, the higher the severity of COVID-19 patients. The level of lymphocyte is therefore potentially to be used as predictor for the disease severity and needs to be monitored regularly in COVID-19 patients.
Collapse
|
38
|
Shahbaz FF, Martins RS, Umair A, Ukrani RD, Jabeen K, Sohail MR, Khan E. A Review of Coronaviruses Associated With Kawasaki Disease: Possible Implications for Pathogenesis of the Multisystem Inflammatory Syndrome Associated With COVID-19. Clin Med Insights Pediatr 2022; 16:11795565221075319. [PMID: 35197719 PMCID: PMC8859668 DOI: 10.1177/11795565221075319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C), representing a new entity in the spectrum of manifestations of COVID-19, bears symptomatic resemblance with Kawasaki Disease (KD). This review explores the possible associations between KD and the human coronaviruses and discusses the pathophysiological similarities between KD and MIS-C and proposes implications for the pathogenesis of MIS-C in COVID-19. Since 2005, when a case-control study demonstrated the association of a strain of human coronavirus with KD, several studies have provided evidence regarding the association of different strains of the human coronaviruses with KD. Thus, the emergence of the KD-like disease MIS-C in COVID-19 may not be an unprecedented phenomenon. KD and MIS-C share a range of similarities in pathophysiology and possibly even genetics. Both share features of a cytokine storm, leading to a systemic inflammatory response and oxidative stress that may cause vasculitis and precipitate multi-organ failure. Moreover, antibody-dependent enhancement, a phenomenon demonstrated in previous coronaviruses, and the possible superantigenic behavior of SARS-CoV-2, possibly may also contribute toward the pathogenesis of MIS-C. Lastly, there is some evidence of complement-mediated microvascular injury in COVID-19, as well as of endotheliitis. Genetics may also represent a possible link between MIS-C and KD, with variations in FcγRII and IL-6 genes potentially increasing susceptibility to both conditions. Early detection and treatment are essential for the management of MIS-C in COVID-19. By highlighting the potential pathophysiological mechanisms that contribute to MIS-C, our review holds important implications for diagnostics, management, and further research of this rare manifestation of COVID-19.
Collapse
Affiliation(s)
| | | | - Abdullah Umair
- Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Kausar Jabeen
- Section of Microbiology, Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - M Rizwan Sohail
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Erum Khan
- Section of Microbiology, Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
39
|
Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, Momtazi-Borojeni AA. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res 2022; 36:1216-1230. [PMID: 35142403 DOI: 10.1002/ptr.7407] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Three main inflammatory signaling pathways include nuclear factor-κB (NF-κB), Janus kinases/Signal transducer and activator of transcriptions (JAKs/STATs), and mitogen-activated protein kinases (MAPKs) play crucial roles in inducing, promoting, and regulating inflammatory responses in the immune system. Importantly, the breakdown of mechanisms that tightly regulate inflammatory signaling pathways can be the underlying cause of uncontrolled inflammatory responses and be associated with the generation and development of several inflammatory diseases. Hence, therapeutic strategies targeting inflammatory signaling pathways and their downstream components may promise to treat inflammatory diseases. Studies over the past two decades have provided important information on the polytrophic pharmacological and biochemical properties of berberine (BBR) as a naturally occurring compound, such as antioxidant, antitumor, antimicrobial, and antiinflammatory activates. Interestingly, the modulatory effects of BBR on inflammatory signaling cascades, which lead to the inhibition of inflammation, have been widely investigated in several in vitro and in vivo studies. For the first time, herein, this comprehensive review attempts to put together these studies and provide important insight into the modulatory effects of BBR on NF-κB, JAKs/STATs, and MAPKs signaling pathways in vitro in various types of immune cells and in vivo in several experimental inflammatory diseases. As the second achievement of this review, we also explore the therapeutic efficacy and antiinflammatory effects of BBR regarding its modulatory action.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maliheh Abedi
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, Juno JA, Burrell LM, Kent SJ, Dore GJ, Kelleher AD, Matthews GV. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol 2022; 23:210-216. [PMID: 35027728 DOI: 10.1038/s41590-021-01113-x] [Citation(s) in RCA: 516] [Impact Index Per Article: 258.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
A proportion of patients surviving acute coronavirus disease 2019 (COVID-19) infection develop post-acute COVID syndrome (long COVID (LC)) lasting longer than 12 weeks. Here, we studied individuals with LC compared to age- and gender-matched recovered individuals without LC, unexposed donors and individuals infected with other coronaviruses. Patients with LC had highly activated innate immune cells, lacked naive T and B cells and showed elevated expression of type I IFN (IFN-β) and type III IFN (IFN-λ1) that remained persistently high at 8 months after infection. Using a log-linear classification model, we defined an optimal set of analytes that had the strongest association with LC among the 28 analytes measured. Combinations of the inflammatory mediators IFN-β, PTX3, IFN-γ, IFN-λ2/3 and IL-6 associated with LC with 78.5-81.6% accuracy. This work defines immunological parameters associated with LC and suggests future opportunities for prevention and treatment.
Collapse
Affiliation(s)
| | - David R Darley
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Daniel B Wilson
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Annett Howe
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - C Mee Ling Munier
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Sheila K Patel
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Gregory J Dore
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| | - Gail V Matthews
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
- St Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
41
|
Khalil BA, Shakartalla SB, Goel S, Madkhana B, Halwani R, Maghazachi AA, AlSafar H, Al-Omari B, Al Bataineh MT. Immune Profiling of COVID-19 in Correlation with SARS and MERS. Viruses 2022; 14:v14010164. [PMID: 35062368 PMCID: PMC8778004 DOI: 10.3390/v14010164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review discusses the role of cytokines and chemokines in SARS-CoV-2 and its predecessors SARS-CoV and MERS-CoV, with particular emphasis on the elevated levels of inflammatory mediators that are shown to be correlated with disease severity. For this purpose, we reviewed and analyzed clinical studies, research articles, and reviews published on PubMed, EMBASE, and Web of Science. This review illustrates the role of the innate and adaptive immune responses in SARS, MERS, and COVID-19 and identifies the general cytokine and chemokine profile in each of the three infections, focusing on the most prominent inflammatory mediators primarily responsible for the COVID-19 pathogenesis. The current treatment protocols or medications in clinical trials were reviewed while focusing on those targeting cytokines and chemokines. Altogether, the identified cytokines and chemokines profiles in SARS-CoV, MERS-CoV, and SARS-CoV-2 provide important information to better understand SARS-CoV-2 pathogenesis and highlight the importance of using prominent inflammatory mediators as markers for disease diagnosis and management. Our findings recommend that the use of immunosuppression cocktails provided to patients should be closely monitored and continuously assessed to maintain the desirable effects of cytokines and chemokines needed to fight the SARS, MERS, and COVID-19. The current gap in evidence is the lack of large clinical trials to determine the optimal and effective dosage and timing for a therapeutic regimen.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
| | - Sarra B. Shakartalla
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
- Faculty of Pharmacy, University of Gezira, Wad Medani 2667, Sudan
| | - Swati Goel
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
| | - Bushra Madkhana
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Azzam A. Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.A.K.); (S.B.S.); (S.G.); (B.M.); (R.H.); (A.A.M.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Habiba AlSafar
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; or
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi P.O. Box 389, United Arab Emirates
| | - Basem Al-Omari
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; or
- KU Research and Data Intelligence Support Center (RDISC) AW 8474000331, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (B.A.-O.); (M.T.A.B.)
| | - Mohammad T. Al Bataineh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; or
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (B.A.-O.); (M.T.A.B.)
| |
Collapse
|
42
|
Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum Immunol 2022; 83:86-98. [PMID: 34583856 PMCID: PMC8423992 DOI: 10.1016/j.humimm.2021.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023]
Abstract
The global outbreak of coronavirus-2019 (COVID-19) still claims more lives daily around the world due to the lack of a definitive treatment and the rapid tendency of virus to mutate, which even jeopardizes vaccination efficacy. At the forefront battle against SARS-CoV-2, an effective innate response to the infection has a pivotal role in the initial control and treatment of disease. However, SARS-CoV-2 subtly interrupts the equations of immune responses, disrupting the cytolytic antiviral effects of NK cells, while seriously activating infected macrophages and other immune cells to induce an unleashed "cytokine storm", a dangerous and uncontrollable inflammatory response causing life-threatening symptoms in patients. Notably, the NK cell exhaustion with ineffective cytolytic function against the sources of exaggerated cytokine release, acts as an Achilles' heel which exacerbates the severity of COVID-19. Given this, approaches that improve NK cell cytotoxicity may benefit treatment protocols. As a suggestion, adoptive transfer of NK or CAR-NK cells with proper cytotolytic potentials and the lowest capacity of cytokine-release (for example CD56dim NK cells brightly express activating receptors), to severe COVID-19 patients may provide an effective cure especially in cases suffering from cytokine storms. More intriguingly, the ongoing evidence for persistent clonal expansion of NK memory cells characterized by an activating phenotype in response to viral infections, can benefit the future studies on vaccine development and adoptive NK cell therapy in COVID-19. Whether vaccinated volunteers or recovered patients can also be considered as suitable candidates for cell donation could be the subject of future research.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Caballero-García A, Noriega DC, Bello HJ, Roche E, Córdova-Martínez A. The Immunomodulatory Function of Vitamin D, with Particular Reference to SARS-CoV-2. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1321. [PMID: 34946266 PMCID: PMC8706376 DOI: 10.3390/medicina57121321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Vaccines are the only way to reduce the morbidity associated to SARS-CoV-2 infection. The appearance of new mutations urges us to increase the effectiveness of vaccines as a complementary alternative. In this context, the use of adjuvant strategies has improved the effectiveness of different vaccines against virus infections such as dengue, influenza, and common cold. Recent reports on patients infected by COVID-19 reveal that low levels of circulating vitamin D correlate with a severe respiratory insufficiency. The immunomodulatory activity of this micronutrient attenuates the synthesis of pro-inflammatory cytokines and at the same time, increases antibody production. Therefore, the present review proposes the use of vitamin D as adjuvant micronutrient to increase the efficacy of vaccines against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alberto Caballero-García
- Department of Anatomy and Radiology, Health Sciences Faculty, GIR of Physical Exercise and Aging, Campus Universitario “Los Pajaritos”, 42004 Soria, Spain;
| | - David C. Noriega
- Spine Department, Valladolid University Hospital, University of Valladolid, 47005 Valladolid, Spain;
| | - Hugo J. Bello
- Department of Mathematics, School of Forestry Industry and Agronomic Engineering and Bioenergy, GIR of Physical Exercise and Aging, Campus Universitario “Los Pajaritos”, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alfredo Córdova-Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR of Physical Exercise and Aging, Campus Universitario “Los Pajaritos”, Valladolid University, 42004 Soria, Spain
| |
Collapse
|
44
|
Narayanaswamy V, Pentecost B, Alfandari D, Chin E, Minor K, Kastrinakis A, Lieberman T, Arcaro KF, Leftwich H. Humoral and Cell-Mediated Immune Response in Colostrum from Women Diagnosed Positive for SARS-CoV-2. Breastfeed Med 2021; 16:987-994. [PMID: 34382820 PMCID: PMC8713451 DOI: 10.1089/bfm.2021.0082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective: To evaluate the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in colostrum from women who tested positive for the virus. Methods: Between March and September 2020 we obtained bilateral colostrum samples collected on spot cards within 48 hours of delivery from 15 new mothers who had previously tested positive for SARS-CoV-2. Four of 15 women provided liquid colostrum, which was used for validating results obtained from spot cards. Archived bilateral colostrum samples collected from 8 women during 2011-2013 were used as pre-coronavirus disease 2019 (COVID-19) controls. All samples were tested for reactivity to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein using an enzyme-linked immunosorbent assay that measures SARS-CoV-2 RBD-specific IgA, IgG, and IgM and for levels of 10 inflammatory cytokines (interferon-gamma [IFN-γ], tumor necrosis factor-alpha, interleukin [IL]-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13) using a multiplex electrochemiluminescent sandwich assay. Results: Our validation studies indicate that the levels of SARS-CoV-2-specific antibodies and the associated cytokines measured in liquid colostrum are comparable to levels eluted from spot cards. Bilateral colostrum samples from 73%, 73%, and 33% of the 15 COVID-19 mothers exhibited IgA, IgG, and IgM reactivity to RBD, respectively. In addition, symptomatic COVID-19 mothers had statistically significant elevated levels of 4 of the 10 inflammatory markers (IFN-γ, IL-4, IL-6, and IL-12) compared to asymptomatic COVID-19 mothers. Conclusions: A strong humoral immune response is present in the colostrum of women who were infected with SARS-CoV-2 before delivering. The evolution and duration of the antibody response, as well as dynamics of the cytokine response, remain to be determined. Our results also indicate that future large-scale studies can be conducted with milk easily collected on paper spot cards.
Collapse
Affiliation(s)
- Vignesh Narayanaswamy
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Brian Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Emily Chin
- Division of Maternal-Fetal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kathleen Minor
- Division of Maternal-Fetal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Alyssa Kastrinakis
- Division of Maternal-Fetal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tanya Lieberman
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Heidi Leftwich
- Division of Maternal-Fetal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
45
|
Córdova-Martínez A, Caballero-García A, Roche E, Noriega DC. β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312636. [PMID: 34886361 PMCID: PMC8656611 DOI: 10.3390/ijerph182312636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022]
Abstract
Waiting for an effective treatment against the SARS-CoV-2 virus (the cause of COVID-19), the current alternatives include prevention and the use of vaccines. At the moment, vaccination is the most effective strategy in the fight against pandemic. Vaccines can be administered with different natural biological products (adjuvants) with immunomodulating properties. Adjuvants can be taken orally, complementing vaccine action. Adjuvant compounds could play a key role in alleviating the symptoms of the disease, as well as in enhancing vaccine action. Adjuvants also contribute to an effective immune response and can enhance the protective effect of vaccines in immunocompromised individuals such as the elderly. Adjuvants must not produce adverse effects, toxicity, or any other symptoms that could alter immune system function. Vaccine adjuvants are substances of wide varying chemical structure that are used to boost the immune response against a simultaneously administered antigen. Glucans could work as adjuvants due to their immunomodulatory biological activity. In this respect, β-(1,3)-(1,6) glucans are considered the most effective and safe according to the list issued by the European Commission. Only glucans with a β-(1,3) bond linked to a β-(1,6) are considered modulators of certain biological responses. The aim of this review is to present the possible effects of β-glucans as adjuvants in the efficacy of vaccines against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Alfredo Córdova-Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR: “Physical Exercise and Ageing”, University Campus “Los Pajaritos”, Valladolid University, 42004 Soria, Spain
- Correspondence:
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR: “Physical Exercise and Ageing”, University Campus “Los Pajaritos”, Valladolid University, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University, 03202 Elche, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - David C. Noriega
- Spine Unit, Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain;
| |
Collapse
|
46
|
Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021; 6:406. [PMID: 34815399 PMCID: PMC8609271 DOI: 10.1038/s41392-021-00818-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Currently, SARS-CoV-2 has caused a global pandemic and threatened many lives. Although SARS-CoV-2 mainly causes respiratory diseases, growing data indicate that SARS-CoV-2 can also invade the central nervous system (CNS) and peripheral nervous system (PNS) causing multiple neurological diseases, such as encephalitis, encephalopathy, Guillain-Barré syndrome, meningitis, and skeletal muscular symptoms. Despite the increasing incidences of clinical neurological complications of SARS-CoV-2, the precise neuroinvasion mechanisms of SARS-CoV-2 have not been fully established. In this review, we primarily describe the clinical neurological complications associated with SARS-CoV-2 and discuss the potential mechanisms through which SARS-CoV-2 invades the brain based on the current evidence. Finally, we summarize the experimental models were used to study SARS-CoV-2 neuroinvasion. These data form the basis for studies on the significance of SARS-CoV-2 infection in the brain.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular, Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
47
|
Seth S, Sharma R, Mishra P, Solanki HK, Singh M, Singh M. Role of Short-Term Estradiol Supplementation in Symptomatic Postmenopausal COVID-19 Females: A Randomized Controlled Trial. J Midlife Health 2021; 12:211-218. [PMID: 34759703 PMCID: PMC8569453 DOI: 10.4103/jmh.jmh_57_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Protective role of estrogen in COVID-19 was speculated once the epidemiological studies reported increased susceptibility of estrogen-deficient population – males and postmenopausal females to severe disease category and involvement of angiotensin-converting enzyme 2 receptors and renin–angiotensin– aldosterone system in pathophysiology. Materials & Methods: An open-label randomized controlled trial was planned to assess the efficacy of short-course oral estradiol in preventing the clinical progression to severe disease and reduce case-fatality rate and the hospital stay duration in estrogen-deficient postmenopausal women. The intervention group (n = 40) received 2 mg per day of estradiol valerate per orally for 7 days along with the standard care, while the control group (n = 40) received only the standard care. Results: A significant difference was observed in the rate of reverse transcriptase–polymerase chain reaction negativization in the intervention versus control group at day 5 and day 7 of admission (42.5% vs. 15%, P = 0.007; 72.5% versus 50%, P = −0.026). No significant difference was noted in the duration of hospitalization (P = 0.213). A significant decrease was noted in the mean values of inflammatory biomarkers – D-dimer, lactate dehydrogenase, and C-reactive protein on day 5 in the intervention group. Interleukin-6 also showed a declining trend on day 5 in the intervention group, while a rising trend was noted in the control arm. Only one case (2.5%) in the intervention group while seven in the control group (17.5%) progressed to the moderate category; however, the difference was not statistically significant (P = 0.057). Conclusion Oral estradiol in postmenopausal females can be a novel and efficient option for managing nonsevere COVID-19 infection.
Collapse
Affiliation(s)
- Shikha Seth
- Department of Obstetrics and Gynaecology, GIMS, Greater Noida, Uttar Pradesh, India
| | - Ritu Sharma
- Department of Obstetrics and Gynaecology, GIMS, Greater Noida, Uttar Pradesh, India
| | - Pinky Mishra
- Department of Obstetrics and Gynaecology, GIMS, Greater Noida, Uttar Pradesh, India
| | | | - Monika Singh
- Department of Obstetrics and Gynaecology, GIMS, Greater Noida, Uttar Pradesh, India
| | - Manisha Singh
- Department of Biochemistry, GIMS, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
48
|
Chowdhury UN, Faruqe MO, Mehedy M, Ahmad S, Islam MB, Shoombuatong W, Azad A, Moni MA. Effects of Bacille Calmette Guerin (BCG) vaccination during COVID-19 infection. Comput Biol Med 2021; 138:104891. [PMID: 34624759 PMCID: PMC8479467 DOI: 10.1016/j.compbiomed.2021.104891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by the infection of highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as the novel coronavirus. In most countries, the containment of this virus spread is not controlled, which is driving the pandemic towards a more difficult phase. In this study, we investigated the impact of the Bacille Calmette Guerin (BCG) vaccination on the severity and mortality of COVID-19 by performing transcriptomic analyses of SARS-CoV-2 infected and BCG vaccinated samples in peripheral blood mononuclear cells (PBMC). A set of common differentially expressed genes (DEGs) were identified and seeded into their functional enrichment analyses via Gene Ontology (GO)-based functional terms and pre-annotated molecular pathways databases, and their Protein-Protein Interaction (PPI) network analysis. We further analysed the regulatory elements, possible comorbidities and putative drug candidates for COVID-19 patients who have not been BCG-vaccinated. Differential expression analyses of both BCG-vaccinated and COVID-19 infected samples identified 62 shared DEGs indicating their discordant expression pattern in their respected conditions compared to control. Next, PPI analysis of those DEGs revealed 10 hub genes, namely ITGB2, CXCL8, CXCL1, CCR2, IFNG, CCL4, PTGS2, ADORA3, TLR5 and CD33. Functional enrichment analyses found significantly enriched pathways/GO terms including cytokine activities, lysosome, IL-17 signalling pathway, TNF-signalling pathways. Moreover, a set of identified TFs, miRNAs and potential drug molecules were further investigated to assess their biological involvements in COVID-19 and their therapeutic possibilities. Findings showed significant genetic interactions between BCG vaccination and SARS-CoV-2 infection, suggesting an interesting prospect of the BCG vaccine in relation to the COVID-19 pandemic. We hope it may potentially trigger further research on this critical phenomenon to combat COVID-19 spread.
Collapse
Affiliation(s)
- Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Mehedy
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamim Ahmad
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - M. Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - A.K.M. Azad
- Faculty of Science, Engineering & Technology, Swinburne University of Technology Sydney, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4072, Australia,Corresponding author
| |
Collapse
|
49
|
Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J, Piplani S, Bebin-Blackwell AG, Forgacs D, Sakamoto K, Stella A, Turville S, Chataway T, Colella A, Triccas J, Ross TM, Petrovsky N. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 2021; 39:5940-5953. [PMID: 34420786 PMCID: PMC8328570 DOI: 10.1016/j.vaccine.2021.07.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19™). A synthetic gene encoding the spike extracellular domain (ECD) was inserted into a baculovirus backbone to express the protein in insect cell cultures. The spike ECD was formulated with Advax-SM adjuvant and first tested for immunogenicity in C57BL/6 and BALB/c mice. Covax-19 vaccine induced high spike protein binding antibody levels that neutralised the original lineage B.1.319 virus from which the vaccine spike protein was derived, as well as the variant B.1.1.7 lineage virus. Covax-19 vaccine also induced a high frequency of spike-specific CD4 + and CD8 + memory T-cells with a dominant Th1 phenotype associated with the ability to kill spike-labelled target cells in vivo. Ferrets immunised with Covax-19 vaccine intramuscularly twice 2 weeks apart made spike receptor binding domain (RBD) IgG and were protected against an intranasal challenge with SARS-CoV-2 virus given two weeks after the last immunisation. Notably, ferrets that received the two higher doses of Covax-19 vaccine had no detectable virus in their lungs or in nasal washes at day 3 post-challenge, suggesting that in addition to lung protection, Covax-19 vaccine may have the potential to reduce virus transmission. This data supports advancement of Covax-19 vaccine into human clinical trials.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Jeremy Baldwin
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | | | - David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, GA, USA
| | - Alberto Stella
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Stuart Turville
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Alex Colella
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Jamie Triccas
- School of Medical Sciences and Marie Bashir Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
50
|
Nara H, Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22189889. [PMID: 34576053 PMCID: PMC8471880 DOI: 10.3390/ijms22189889] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.
Collapse
|