1
|
Babaei MJ, Ebrahimi A, Heidari P, Azadvari E, Gharanjik S, Chaghakaboodi Z. Titanium dioxide -mediated regulation of enzymatic and non-enzymatic antioxidants, pigments, and diosgenin content promotes cold stress tolerance in Trigonella foenum-graecum L. Sci Rep 2025; 15:1837. [PMID: 39805881 PMCID: PMC11730625 DOI: 10.1038/s41598-024-84472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions. This study explores the impact of titanium dioxide nanoparticles (TiO2 NPs) on cold-stress tolerance in fenugreek, as well as genes expression involved in the diosgenin biosynthesis pathway. Varied concentrations of TiO2 NPs (0, 2, 5, and 10 ppm) were sprayed on fenugreek plants subjected to cold stress at 10 °C during 6, 24, and 48 h. Our findings revealed that the utilization of 2 and 5 ppm of TiO2 NPs, positively influenced pigments biosynthesis and enzymatic and non-enzymatic antioxidant activities. It also effectively reduced electrolyte leakage and malondialdehyde content, mitigating the adverse effects of cold stress. The study also highlighted TiO2 NPs' affirmative impact on defense signaling pathways, including abscisic acid, nitric oxide, and auxin, in fenugreek. Moreover, TiO2 NPs significantly influenced the expression of genes related to diosgenin biosynthesis. Simultaneous exposure to cold stress and TiO2 NPs led to a substantial increase in diosgenin content, with the upregulation of SEP, SQS, CAS, and SSR genes compared to control conditions. This research indicated that TiO2 NPs application could effectively stimulate fenugreek biosynthesis of primary and secondary metabolites, consequently enhancing plant tolerance to cold stress. The study's outcomes hold promise for potential applications in the metabolic engineering of diosgenin in fenugreek.
Collapse
Affiliation(s)
- Mohamad Javad Babaei
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Parviz Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Elham Azadvari
- Horticultural Sciences Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Shahrokh Gharanjik
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Zeinab Chaghakaboodi
- Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Senthamizh R, Vishwakarma P, Sinharoy A, Sinha R, Sharma S, Mal J. Biogenic nanoparticles and its application in crop protection against abiotic stress: A new dimension in agri-nanotechnology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177884. [PMID: 39647194 DOI: 10.1016/j.scitotenv.2024.177884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The food demand to support the growing population worldwide is expected to increase up to 60 % by 2050. But, various abiotic stress including heat, drought, salinity, and heavy metal stress are becoming more prevalent due to global warming and seriously affecting the crop productivity. Nanotechnology has a great potential to solve this issue, as various nanoparticles (NPs) with their unique physical and chemical characteristics, have shown promising ability to enhance the stress tolerance and subsequently, improving the plant growth and development. Although NPs can be synthesized either via physically or chemically or biologically, application of biogenic NPs in agriculture are gaining strong attention due to their economic, environmental friendly, and sustainable benefits. The implementations of biogenic NPs have been reported to be enhancing both the quantitative and qualitative properties of crop production significantly by mitigating abiotic stress. Hence, this review paper critically discussed the application of biogenic NPs, synthesized using various biological methods i.e. bacteria, fungi, algae, and plant-based, in enhancing the abiotic stress resilience and crop production. Adverse effects of the major abiotic stresses on crops have also been highlighted in the paper. The paper also focused on the mechanistic insights of plant-NPs interactions, uptake, translocation and NPs-induced biochemical and molecular changes in plants to help mitigating the abiotic stress. The potential challenges and environmental implications of extensive use of biogenic NPs in agriculture compared to the chemogenic NPs has also been critically assessed. Future research direction is provided to delve into the potential of biogenic NPs as promising tools for mitigating abiotic stress, and improving plant growth and development for a sustainable agriculture via nanotechnology.
Collapse
Affiliation(s)
- R Senthamizh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Preeti Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arindam Sinharoy
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
3
|
Tripathi G, Dutta S, Mishra A, Basu S, Gupta V, Kamaraj C. Nanomaterials impact in phytohormone signaling networks of plants-A critical review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024:112373. [PMID: 39725164 DOI: 10.1016/j.plantsci.2024.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery. Nanoparticle-induced reactive oxygen species (ROS) generation plays a central role in altering secondary metabolite biosynthesis, highlighting their function as potent elicitors and stimulants in plant systems. The review underscores the significant contribution of nanoparticles in enhancing stress resilience through the modulation of phytohormonal signaling pathways, offering novel insights into their potential for improving crop health and productivity under environmental stressors.
Collapse
Affiliation(s)
- Garima Tripathi
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu - 632014, India; Department of Biomedical Engineering, School of Bioscience and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Shrestha Dutta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand - 826004, India
| | - Anamika Mishra
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu - 632014, India
| | - Soumyadeep Basu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom, G12 8QQ
| | - Vishesh Gupta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand - 826004, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| |
Collapse
|
4
|
Ameen M, Zia MA, Najeeb Alawadi HF, Naqve M, Mahmood A, Shahzad AN, Khan BA, Alhammad BA, Aljabri M, Seleiman MF. Exogenous application of selenium on sunflower ( Helianthus annuus L.) to enhance drought stress tolerance by morpho-physiological and biochemical adaptations. FRONTIERS IN PLANT SCIENCE 2024; 15:1427420. [PMID: 39091318 PMCID: PMC11291355 DOI: 10.3389/fpls.2024.1427420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024]
Abstract
Drought stress poses a significant obstacle to agricultural productivity, particularly in the case of oilseed crops such as sunflower (Helianthus annuus L.). Selenium (Se) is a fundamental micronutrient that has been recognized for its ability to enhance plant resilience in the face of various environmental stresses. The FH-770 sunflower variety was cultivated in pots subjected to three stress levels (100% FC, 75% FC, and 50% FC) and four Se application rates (0 ppm, 30 ppm, 60 ppm, and 90 ppm). This research aimed to investigate the effect of exogenously applied Se on morpho-physiological and biochemical attributes of sunflower to improve the drought tolerance. Foliar Se application significantly lowered H2O2 (hydrogen peroxide; ROS) (20.89%) accumulation that markedly improved glycine betaine (GB) (74.46%) and total soluble protein (Pro) (68.63%), improved the accumulation of ascorbic acid (AA) (25.51%), total phenolics (TP) (39.34%), flavonoids (Flv) (73.16%), and anthocyanin (Ant) (83.73%), and improved the activity of antioxidant system superoxide dismutase (SOD) (157.63%), peroxidase (POD) (100.20%), and catalase (CAT) (49.87%), which ultimately improved sunflower growth by 36.65% during drought stress. Supplemental Se significantly increased shoot Se content (93.86%) and improved calcium (Ca2+), potassium (K+), and sodium (Na+) ions in roots by 36.16%, 42.68%, and 63.40%, respectively. Selenium supplements at lower concentrations (60 and 90 ppm) promoted the growth, development, and biochemical attributes of sunflowers in controlled and water-deficient circumstances. However, selenium treatment improved photosynthetic efficiency, plant growth, enzymatic activities, osmoregulation, biochemical characteristics, and nutrient balance. The mechanisms and molecular processes through which Se induces these modifications need further investigation to be properly identified.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Maria Naqve
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj, Riyadh, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El Kom, Egypt
| |
Collapse
|
5
|
Neysanian M, Iranbakhsh A, Ahmadvand R, Ardebili ZO, Ebadi M. Selenium nanoparticles conferred drought tolerance in tomato plants by altering the transcription pattern of microRNA-172 (miR-172), bZIP, and CRTISO genes, upregulating the antioxidant system, and stimulating secondary metabolism. PROTOPLASMA 2024; 261:735-747. [PMID: 38291258 DOI: 10.1007/s00709-024-01929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Drought stress is one of the major limiting factors for the production of tomato in Iran. In this study, the efficiency of selenate and Se nanoparticle (SeNP) foliar application on tomato plants was assessed to vestigate mitigating the risk associated with water-deficit conditions. Tomato plants were treated with SeNPs at the concentrations of 0 and 4 mg L-1; after the third sprays, the plants were exposed to water-deficit conditions. The foliar spraying with SeNPs not only improved growth, yield, and developmental switch to the flowering phase but also noticeably mitigated the detrimental risk associated with the water-deficit conditions. Gene expression experiments showed a slight increase in expression of microRNA-172 (miR-172) in the SeNP-treated plants in normal irrigation, whereas miR-172 displayed a downregulation trend in response to drought stress. The bZIP transcription factor and CRTISO genes were upregulated following the SeNP and drought treatments. Drought stress significantly increased the H2O2 accumulation that is mitigated with SeNPs. The foliar spraying with Se or SeNPs shared a similar trend to alleviate the negative effect of drought stress on the membrane integrity. The applied supplements also conferred drought tolerance through noticeable improvements in the non-enzymatic (ascorbate and glutathione) and enzymatic (catalase and peroxidase) antioxidants. The SeNP-mediated improvement in drought stress tolerance correlated significantly with increases in the activity of phenylalanine ammonia-lyase, proline, non-protein thiols, and flavonoid concentrations. SeNPs also improved the fruit quality regarding K, Mg, Fe, and Se concentrations. It was concluded that foliar spraying with SeNPs could mitigate the detrimental risk associated with the water-deficit conditions.
Collapse
Affiliation(s)
- Maryam Neysanian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rahim Ahmadvand
- Department of Vegetables Research, Seed and Plant Improvement Institute, Agricultural Research, Education & Extension Organization, Karaj, Iran
| | | | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
6
|
Raza MAS, Amin J, Valipour M, Iqbal R, Aslam MU, Zulfiqar B, Muhammad F, Ibrahim MA, Al-Ghamdi AA, Elshikh MS, Iqbal J, Toleikienė M, Elsalahy HH. Cu-nanoparticles enhance the sustainable growth and yield of drought-subjected wheat through physiological progress. Sci Rep 2024; 14:14254. [PMID: 38902296 PMCID: PMC11190247 DOI: 10.1038/s41598-024-62680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Drought stress (DS) is a significant abiotic stress that limits agricultural productivity worldwide. In semi-arid climates, one potential solution to alleviate the deleterious effects of drought is the use of soil amendments such as nanoparticles. The current research was conducted out to probe the sway of drought at critical growth stages (CGS) of wheat crop (D0: Control, D1: Drought at tillering stage, and D2: Drought at anthesis stage) and the application of Cu-nanoparticles (T0: 0 mg L-1, T1: 300 mg L-1, T2: 700 mg L-1, and T3: 950 mg L-1) in order to improve drought resilience. Results of the study revealed that DS considerably decreased the wheat growth and yield during CGS. However, Cu-nanoparticles application alleviated the detrimental backlash of DS and led to improvements in various aspects of wheat growth and yield, including plant height, spike length, 1000 grain weight, stomatal conductance, leaf chlorophyll content, water use efficiency, leaf turgor potential, relative water content, and ultimately the grain yield. The use of principal component analysis allowed us to integrate and interpret the diverse findings of our study, elucidating the impact of Cu-nanoparticle treatment on wheat growth and yield under drought. Overall, the study concluded that DS during the anthesis stage had the most significant negative impact on crop yield. However, applying Cu-nanoparticles at the rate of 300 mg L-1 proved to be an effective strategy for improving crop productivity by reducing the harmful effects of drought.
Collapse
Affiliation(s)
- Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Jawad Amin
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | | | - Bilal Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Faqeer Muhammad
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Arif Ibrahim
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, 58344, Akademija, Kedainiai, Lithuania
| | - Heba H Elsalahy
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| |
Collapse
|
7
|
Hasanuzzaman M, Raihan MRH, Siddika A, Bardhan K, Hosen MS, Prasad PVV. Selenium and its nanoparticles modulate the metabolism of reactive oxygen species and morpho-physiology of wheat (Triticum aestivum L.) to combat oxidative stress under water deficit conditions. BMC PLANT BIOLOGY 2024; 24:578. [PMID: 38890566 PMCID: PMC11186265 DOI: 10.1186/s12870-024-05282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is one of the most important cereal crop species worldwide, but its growth and development are adversely influenced by drought stress. However, the application of trace elements is known to improve plant physiology under water-limited conditions. In this study, the effects of drought stress on wheat plants were investigated, with a focus on potential mitigation by foliar application of selenium nanoparticles (Se(np)) and sodium selenate (Na2SeO4). The experiment was conducted in a net house using a completely randomized design with four replications. The treatments involved three levels of drought stress (mild, moderate, and severe) started at 30 days after sowing (DAS), with foliar sprays of Se(np) and Se (both 25 µM) initiated at 27 DAS and repeated 4 times at 7-day intervals until 55 DAS. RESULTS Drought stress significantly reduced plant growth, whereas Se(np) and Se sprays enhanced it. Drought stress induced chlorophyll degradation, increased malondialdehyde and hydrogen peroxide levels, impaired membrane stability, and caused electrolyte leakage. Severe drought stress reduced the levels of antioxidants (e.g., proline, ascorbate, and glutathione by 4.18-fold, 80%, and 45%) and the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, and others). Conversely, treatment with Se(np) and Se restored these parameters, for example, 1.23-fold higher total chlorophyll content with Se(np) treatment, 26% higher APX activity with Se treatment, 15% lower electrolyte leakage with Se treatment in wheat plants under severe drought stress. This Se-associated enhancement facilitated rapid scavenging of reactive oxygen species and reduced methylglyoxal toxicity, thereby diminishing oxidative stress and positively affecting the morphophysiological and biochemical responses of the plants under drought. CONCLUSIONS Drought-stressed wheat plants exhibited reductions in physiological processes, including water uptake and photosynthetic activity. However, Se(np) and Se applied at 25 µM mitigated the detrimental effects of drought. The application of Se(np) was notably more effective than the application of Se in mitigating drought stress, indicating the potential of the application of Se(np) as a sustainable agricultural practice under water-limited conditions.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Md Rakib Hossain Raihan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Gujarat, India
| | - Md Sarwar Hosen
- Institute of Seed Technology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
8
|
Ahmad I, Mashwani ZUR, Zohaib Younas, Yousaf T, Ahmad A, Vladulescu C. Antioxidant activity, metabolic profiling, in-silico molecular docking and ADMET analysis of nano selenium treated sesame seed bioactive compounds as potential novel drug targets against cardiovascular disease related receptors. Heliyon 2024; 10:e27909. [PMID: 38571619 PMCID: PMC10987859 DOI: 10.1016/j.heliyon.2024.e27909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Sesame (Sesamum indicum) is abundant in a diverse range of lignans, including sesamin, and γ-tocopherol, constituting a cluster of bioactive phenolic compound used for food and medicinal purposes. Cardiovascular diseases remain a leading global health challenge, demanding vigilant prevention and innovative treatments. This study was carried out to evaluate the effect of plant mediated SeNPs on sesame metabolic profile and to screen and check the effect bioactive compounds against CVD via molecular drug docking technique. Three sesame germplasms TS-5, TH-6 and Till-18 were treated with varying concentrations (10, 20, 30, 40 and 50 ppm) of plant-mediated selenium nanoparticles (SeNPs). There were three groups of treatments group-1 got only seed pretreatments of SeNPs, Group-2 with only foliar applications of SeNPs and Group-3 with both seed pretreatments and foliar applications of SeNPs. It was found that plants treated with 40 ppm of SeNPS in group 3 exhibited the highest total phenolic and flavonoid content. Total phenolic content at T4 was highest for TS-5 (134%), TH-6 (132%), and Till-18 (112%). LCMS analysis revealed a total of 276 metabolites, with phenolics, flavonoids, and free fatty acids being most abundant. KEGG analysis indicated enrichment in free fatty acid and phenylalanine tryptophan pathways. ADMET analysis and virtual screening resulted in total of five metabolic compounds as a potential ligand against Hemoglobin beta subunit. Lowest binding energy was achieved by Delta-Tocopherol (-6.98) followed by Lactoflavin (-6.20) and Sesamin (-5.00). Lipinski rule of five revealed that all the compounds completely safe to be used as drug against CVD and specifically for HBB. It was concluded that bioactive compounds from sesame could be an alternative source of drug for CVD related problems and especially for HBB.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Department of Food Science and Nutrition, College of Food, Agriculture and Natural Resources, University of Minnesota, Twin Cities, Minneapolis, USA
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
- Pakistan Academy of Sciences, Islamabad 44010, Pakistan
| | - Zohaib Younas
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Tayyaba Yousaf
- Department of Botany, Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Carmen Vladulescu
- Department of Biology and Environmental Engineering, University of Craiova, A. I Cuza 13, Craiva, 200585, Romania
| |
Collapse
|
9
|
Jadoon L, Gul A, Fatima H, Babar MM. Nano-elicitation and hydroponics: a synergism to enhance plant productivity and secondary metabolism. PLANTA 2024; 259:80. [PMID: 38436711 DOI: 10.1007/s00425-024-04353-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
MAIN CONCLUSION This review has explored the importance of using a synergistic approach of nano-elicitation and hydroponics to improve plant growth and metabolite production. Furthermore, it emphasizes the significance of green nanotechnology and eco-friendly practices while utilizing this approach to promote the development of a sustainable agriculture system. Nano-elicitation stimulates metabolic processes in plants using nanoparticles (NPs) as elicitors. The stimulation of these biochemical processes can enhance plant yield and productivity, along with the production of secondary metabolites. Nanoparticles have garnered the attention of scientific community because of their unique characteristics, such as incredibly small size and large surface-to-volume ratio, which make them effective elicitors. Hydroponic systems, which optimize growing conditions to increase plant production, are typically used to study the effect of elicitors. By integrating these two approaches, the qualitative and quantitative output of plants can be increased while employing minimal resources. As the global demand for high-quality crops and bioactive compounds surges, embracing this synergistic approach alongside sustainable farming practices can pave the way for resilient agricultural systems, ensuring food security and fostering an eco-friendly environment.
Collapse
Affiliation(s)
- Linta Jadoon
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hunaiza Fatima
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, 44000, Pakistan.
| |
Collapse
|
10
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Javed R, Khan B, Sharafat U, Bilal M, Galagedara L, Abbey L, Cheema M. Dynamic interplay of metal and metal oxide nanoparticles with plants: Influencing factors, action mechanisms, and assessment of stimulatory and inhibitory effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115992. [PMID: 38262092 DOI: 10.1016/j.ecoenv.2024.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Nanoparticles (NPs) of metals and metal oxides have received increasing attention regarding their characteristic behavior in plant systems. The fate and transport of metal NPs and metal oxide NPs in plants is of emerging concern for researchers because they ultimately become part of the food chain. The widespread use of metal-based NPs (MBNPs) in plants has revealed their beneficial and harmful effects. This review addresses the main factors affecting the uptake, translocation, absorption, bioavailability, toxicity, and accumulation of MBNPs in different plant species. It appraises the mechanism of nanoparticle-plant interaction in detail and provides understanding of the estimation strategies for the associated pros and cons with this interplay. Critical parameters of NPs include, but are not limited to, particle size and shape, surface chemistry, surface charge, concentration, solubility, and exposure route. On exposure to MBNPs, the molecular, physiological, and biochemical reactions of plants have been assessed. We have filled knowledge gaps and answered research questions regarding the positive and negative effects of metal and metal oxide NPs on seed germination, callus induction, growth and yield of plant, nutritional content, antioxidants, and enzymes. Besides, the phytotoxicity, cytotoxicity, genotoxicity, and detoxification studies of MBNPs in plants have been outlined. Furthermore, the recent developments and future perspectives of the two-way traffic of interplay of MBNPs and plants have been provided in this comprehensive review.
Collapse
Affiliation(s)
- Rabia Javed
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Bakhtawar Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54320, Pakistan
| | - Uzma Sharafat
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Muhammad Bilal
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54320, Pakistan
| | - Lakshman Galagedara
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Lord Abbey
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, NS, Canada.
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| |
Collapse
|
12
|
Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, Jia Y, Pan Z, He S, Wang L, Qayyum A, Du X, Li H. Exploring the nano-wonders: unveiling the role of Nanoparticles in enhancing salinity and drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 14:1324176. [PMID: 38304455 PMCID: PMC10831664 DOI: 10.3389/fpls.2023.1324176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
Plants experience diverse abiotic stresses, encompassing low or high temperature, drought, water logging and salinity. The challenge of maintaining worldwide crop cultivation and food sustenance becomes particularly serious due to drought and salinity stress. Sustainable agriculture has significant promise with the use of nano-biotechnology. Nanoparticles (NPs) have evolved into remarkable assets to improve agricultural productivity under the robust climate alteration and increasing drought and salinity stress severity. Drought and salinity stress adversely impact plant development, and physiological and metabolic pathways, leading to disturbances in cell membranes, antioxidant activities, photosynthetic system, and nutrient uptake. NPs protect the membrane and photosynthetic apparatus, enhance photosynthetic efficiency, optimize hormone and phenolic levels, boost nutrient intake and antioxidant activities, and regulate gene expression, thereby strengthening plant's resilience to drought and salinity stress. In this paper, we explored the classification of NPs and their biological effects, nanoparticle absorption, plant toxicity, the relationship between NPs and genetic engineering, their molecular pathways, impact of NPs in salinity and drought stress tolerance because the effects of NPs vary with size, shape, structure, and concentration. We emphasized several areas of research that need to be addressed in future investigations. This comprehensive review will be a valuable resource for upcoming researchers who wish to embrace nanotechnology as an environmentally friendly approach for enhancing drought and salinity tolerance.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Fenlei Sun
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yinhua Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhaoe Pan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Supercomputer Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Lidong Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
13
|
Liu Y, Liu R, Li F, Yu S, Nie Y, Li JQ, Pan C, Zhu W, Zhou Z, Diao J. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105753. [PMID: 38225097 DOI: 10.1016/j.pestbp.2023.105753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Recently, studies have shown that pesticides may have adverse effects on the flavor quality of the fruits, but there is still a lack of appropriate methods to repair the damage. This study investigated the effects and mechanism of applying the emerging material, nano‑selenium, and two fungicides (Boscalid and Pydiflumetofen) alone or together on the flavor quality and antioxidant capacity of strawberries. The results showed that the two fungicides had a negative impact on strawberry color, flavor, antioxidant capacity and different enzymatic systems. The color damage was mainly attributed to the impact on anthocyanin content. Nano‑selenium alleviated the quality losses by increasing sugar-acid ratio, volatiles, anthocyanin levels, enzyme activities and DPPH scavenging ability and reducing ROS levels. Results also showed that these damage and repair processes were related to the regulation of flavor and ripening related transcription factors (including FaRIF, FaSnRK1, FaMYB10, FaMYB1, FaSnRK2.6 and FaABI1), the upregulation of genes on sugar-acid, volatile, and anthocyanin synthesis pathways, as well as the increase of sucrose and ABA signaling molecules. In addition, the application of nano-Se supplemented the selenium content in fruits, and was harmless to human health. This information is crucial for revealing the mechanisms of flavor damage caused by pesticides to strawberry and the repaired of nano‑selenium, and broadens the researching and applying of nano‑selenium in repairing the damage caused by pesticides.
Collapse
Affiliation(s)
- Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Feifei Li
- The Administrative Office of Beijing Shisanling Forestry Farm, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jia-Qi Li
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing 100193, China.
| |
Collapse
|
14
|
Yu H, Miao P, Li D, Wu Y, Zhou C, Pan C. Improving red pitaya fruit quality by nano-selenium biofortification to enhance phenylpropanoid and betalain biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115653. [PMID: 37948939 DOI: 10.1016/j.ecoenv.2023.115653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Red pitaya, the representative tropical and subtropical fruit, is vulnerable to quality deterioration due to climate or agronomic measures. Nano-selenium (Nano-Se) has shown positive effects on crop biofortification in favour of reversing this situation. In this study, Se could be enriched efficiently in red pitayas via root and foliar application by Nano-Se, which induced higher phenolic acids (16.9-94.2%), total phenols (15.7%), total flavonoids (29.5%) and betacyanins (34.1%) accumulation in flesh. Richer antioxidative features including activities of SOD (25.2%), CAT (33.8%), POD (77.2%), and levels of AsA (25.7%) and DPPH (14.7%) were obtained in Nano-Se-treated pitayas as well as in their 4-8 days shelf-life. The non-targeted metabolomics indicated a boost in amino acids, resulting in the stimulation of phenylpropanoid and betalain biosynthesis. In conclusion, the mechanism of Nano-Se biofortification for red pitaya might be fortifying pigment, as well as the enzymatic and non-enzymatic antioxidant substances formation by regulating primary and secondary metabolism facilitated by Se accumulation.
Collapse
Affiliation(s)
- Huan Yu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Peijuan Miao
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yangliu Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Chunran Zhou
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China
| | - Canping Pan
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, College of Science, China Agricultural University, Haikou 570311, China.
| |
Collapse
|
15
|
Ding Y, Zhao W, Zhu G, Wang Q, Zhang P, Rui Y. Recent Trends in Foliar Nanofertilizers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2906. [PMID: 37947750 PMCID: PMC10650792 DOI: 10.3390/nano13212906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
It is estimated that 40-70%, 80-90% and 50-90% of the conventional macronutrients N, P and K applied to the soil are lost, respectively, resulting in considerable loss of resources. Compared to conventional fertilizers, nanofertilizers have the advantages of controlled release, high nutrient utilization, low cost and relatively low environmental pollution due to their small size (1-100 nm) and high specific surface area. The application of nanofertilizers is an up-and-coming field of agricultural research and is an attractive and economical substitute for common fertilizers which can boost global food productivity sustainably. Foliar fertilization is a popular way to satisfy the needs of higher plants. Because of its small application dose, faster nutrient uptake than soil application and relatively less environmental pollution, foliar fertilization is more popular among plants. It can be seen that nanofertilizers and foliar fertilization are the hotspots of attention at present and that current research on the foliar application of nanofertilizers is not as extensive as that on soil application. Based on this background, this paper provides an overview of various applications of foliar spraying of nanofertilizers in agriculture, including applications in improving crop yield and quality as well as mitigating heavy metal stress, salt stress and drought stress.
Collapse
Affiliation(s)
- Yanru Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Weichen Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Guikai Zhu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Quanlong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.D.); (W.Z.); (G.Z.); (Q.W.)
| |
Collapse
|
16
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Chandrashekar HK, Singh G, Kaniyassery A, Thorat SA, Nayak R, Murali TS, Muthusamy A. Nanoparticle-mediated amelioration of drought stress in plants: a systematic review. 3 Biotech 2023; 13:336. [PMID: 37693636 PMCID: PMC10491566 DOI: 10.1007/s13205-023-03751-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Drought stress remains one of the most detrimental environmental constraints that hampers plant growth and development resulting in reduced yield and leading to economic losses. Studies have highlighted the beneficial role of carbon-based nanomaterials (NMs) such as multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), graphene, fullerene, and metal-based nanoparticles (NPs) (Ag, Au, Cu, Fe2O3, TiO2, and ZnO) in plants under unfavorable conditions such as drought. NPs help plants cope with drought by improving plant growth indices and enhancing biomass. It improves water and nutrient uptake and utilization. It helps retain water by altering the cell walls and regulating stomatal closure. The photosynthetic parameters in NP-treated plants reportedly improved with the increase in pigment content and rate of photosynthesis. Due to NP exposure, the activation of enzymatic and nonenzymatic antioxidants has reportedly improved. These antioxidants play a significant role in the defense system against stress. Studies have reported the accumulation of osmolytes and secondary metabolites. Osmolytes scavenge reactive oxygen species, which can cause oxidative stress in plants. Secondary metabolites are involved in the water retention process, thus improving plant coping strategies with stress. The deleterious effects of drought stress are alleviated by reducing malondialdehyde resulting from lipid peroxidation. Reactive oxygen species accumulation is also controlled with NP treatment. Furthermore, NPs have been reported to regulate the expression of drought-responsive genes and the biosynthesis of phytohormones such as abscisic acid, auxin, gibberellin, and cytokinin, which help plants defend against drought stress. This study reviewed 72 journal articles from 192 Google Scholar, ScienceDirect, and PubMed papers. In this review, we have discussed the impact of NP treatment on morphological, physio-biochemical, and molecular responses in monocot and dicot plants under drought conditions with an emphasis on NP uptake, transportation, and localization.
Collapse
Affiliation(s)
- Harsha K. Chandrashekar
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Gunjan Singh
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Roopa Nayak
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| |
Collapse
|
18
|
Abdi MJ, Ghanbari Jahromi M, Mortazavi SN, Kalateh Jari S, Nazarideljou MJ. Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100513-100525. [PMID: 37632614 DOI: 10.1007/s11356-023-29450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Soil salinity is a major environmental problem owing to its negative impact on agricultural productivity and sustainability. Nanoparticles (NPs) have recently been highlighted for their ability to alleviate salinity stress. The current study aimed to alleviate salt stress by using silicon (Si) and selenium (Se) NPs on the growth and physiological attributes of Physalis alkekengi L. Plants were irrigated with saline water at 50, 100, and 200 mM NaCl, and Si NPs (200 mg L-1) and Se NPs (50 mg L-1) were sprayed on leaves three times in a pot experiment in 2022. Leaf chlorophyll (Chl) content, antioxidant capacity, and fatty acid (FA) profile of fruits were measured to find the effects of NPs and salinity in the plants. Salinity at 50 mM did not significantly differ from the control, but at 100-200 mM, salt stress had a substantial impact on the majority of traits. Compared with non-saline conditions, 200 mM NaCl led to decreases in shoot weight (40%), fruit weight (30%), Chl a (30%), Chl b (39%), anthocyanin (31%), ascorbic acid (16%), total phenolic content (TPC, 11%) but increases in total soluble solids (TSS, 79%), titration acidity (TA, 17%), and TSS/TA (52%) in plants without spraying the NPs. However, Si and Se NPs modulated salinity stress by increasing shoot and fruit weight, Chl content, anthocyanin, and TPC, and with decreasing TSS and TSS/TA. Salinity elevated polyunsaturated fatty acids (PUFAs) and lowered monounsaturated fatty acids (MUFAs). According to multivariate analysis, 50 mM and control were found to be in the same cluster, whereas 100 and 200 mM were shown to be in different clusters. Foliar application of Si and Se NPs at 200 and 50 mg L-1, respectively, can be recommended for mitigating salt stress at 100-200 mM NaCl in P. alkekengi L. Plants. Farmers can use the findings to increase the ability of Si and Se NPs to protect plants against salt.
Collapse
Affiliation(s)
- Mohammad Javad Abdi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sepideh Kalateh Jari
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
19
|
Song J, Yu S, Yang R, Xiao J, Liu J. Opportunities for the use of selenium nanoparticles in agriculture. NANOIMPACT 2023; 31:100478. [PMID: 37499754 DOI: 10.1016/j.impact.2023.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Due to the growing number of the world's population, there is an urgent need for high-quality food to meet global food security. Traditional fertilizers and pesticides face the problems of low utilization efficiency and possible hazards to non-target organisms. Selenium (Se) is an essential trace element for animals and humans. As a result, Se nanoparticles (SeNPs) have aroused intense interest and found opportunities in agricultural use. Herein, we summarized representative studies on the potential application of SeNPs in agriculture, including mitigating biotic and abiotic stresses in plants, promoting seed germination and plant growth, and improving Se contents and nutritional values in crops, and the underlying mechanisms were also discussed. Finally, future directions are highlighted to get a deep insight into this field.
Collapse
Affiliation(s)
- Jiangyun Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rui Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junping Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| |
Collapse
|
20
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
21
|
El-Batal AI, Ismail MA, Amin MA, El-Sayyad GS, Osman MS. Selenium nanoparticles induce growth and physiological tolerance of wastewater‑stressed carrot plants. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
AbstractClimate changes have a direct impact on agricultural lands through their impact on the rate of water levels in the oceans and seas, which leads to a decrease in the amount of water used in agriculture, and therefore the use of alternative sources of irrigation such as wastewater and overcoming its harmful effect on plants was one of the solutions to face this problem. In the present study, the impacts of the synthesized selenium nanoparticles (Se NPs) alone or in combination with glycine betaine and proline treatments on the growth, physiological, and yield attributes of wastewater irrigated carrot plants are investigated. Furthermore, to evaluate heavy metals uptake and accumulation in edible plant parts. The usage of wastewater to carrot plants significantly increased free proline contents, total phenols, superoxide dismutase, catalase, peroxidase, polyphenol oxidase, Malondialdehyde (MDA), and hydrogen peroxide (H2O2) throughout the two growth stages. While total soluble carbohydrate and soluble protein content in carrot shoots and roots were significantly reduced. Moreover, the concentrations of nickel (Ni), cadmium (Cd), lead (Pb), and cobalt (Co) in carrot plants were considerably higher than the recommended limits set by international organizations. Application of selenium nanoparticles alone or in combination with glycine betaine and proline reduced the contents of Ni, Cd, Pb, and Co; free proline; total phenols; superoxide dismutase; catalase; peroxidase; polyphenol oxidase; Malondialdehyde (MDA) and Hydrogen peroxide (H2O2) in carrot plants. However, morphological aspects, photosynthetic pigments, soluble carbohydrates, soluble protein, total phenol, and β-Carotene were enhanced in response to Se NPs application. As an outcome, this research revealed that Se NPs combined with glycine betaine and proline can be used as a strategy to minimize heavy metal stress caused by wastewater irrigation in carrot plants, consequently enhancing crop productivity and growth.
Collapse
|
22
|
Ishtiaq M, Mazhar MW, Maqbool M, Hussain T, Hussain SA, Casini R, Abd-ElGawad AM, Elansary HO. Seed Priming with the Selenium Nanoparticles Maintains the Redox Status in the Water Stressed Tomato Plants by Modulating the Antioxidant Defense Enzymes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1556. [PMID: 37050182 PMCID: PMC10096850 DOI: 10.3390/plants12071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
In the present research, selenium nanoparticles (SeNPs) were tested for their use as seed priming agents under field trials on tomatoes (Solanum lycopersicum L.) for their efficacy in conferring drought tolerance. Four different seed priming regimes of SeNPs were created, comprising 25, 50, 75, and 100 ppm, along with a control treatment of 0 ppm. Seeds were planted in split plots under two irrigation regimes comprising water and water stress. The results suggest that seed priming with SeNPs can improve tomato crop performance under drought stress. Plants grown with 75 ppm SeNPs-primed seeds had lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels by 39.3% and 28.9%, respectively. Seed priming with 75 ppm SeNPs further increased the superoxide dismutase (SOD) and catalase (CAT) functions by 34.9 and 25.4%, respectively. The same treatment increased the total carotenoids content by 13.5%, α-tocopherols content by 22.8%, total flavonoids content by 25.2%, total anthocyanins content by 19.6%, ascorbic acid content by 26.4%, reduced glutathione (GSH) content by 14.8%, and oxidized glutathione (GSSG) content by 13.12%. Furthermore, seed priming with SeNPs upregulated the functions of enzymes of ascorbate glutathione cycle. Seed priming with SeNPs is a smart application to sustain tomato production in arid lands.
Collapse
Affiliation(s)
- Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Tanveer Hussain
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | | | - Ryan Casini
- School of Public Health, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA
| | - Ahmed M. Abd-ElGawad
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. PLANT GROWTH REGULATION 2023; 100:409-433. [PMID: 37197287 PMCID: PMC10036987 DOI: 10.1007/s10725-023-00988-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se), being an essential micronutrient, enhances plant growth and development in trace amounts. It also protects plants against different abiotic stresses by acting as an antioxidant or stimulator in a dose-dependent manner. Knowledge of Se uptake, translocation, and accumulation is crucial to achieving the inclusive benefits of Se in plants. Therefore, this review discusses the absorption, translocation, and signaling of Se in plants as well as proteomic and genomic investigations of Se shortage and toxicity. Furthermore, the physiological responses to Se in plants and its ability to mitigate abiotic stress have been included. In this golden age of nanotechnology, scientists are interested in nanostructured materials due to their advantages over bulk ones. Thus, the synthesis of nano-Se or Se nanoparticles (SeNP) and its impact on plants have been studied, highlighting the essential functions of Se NP in plant physiology. In this review, we survey the research literature from the perspective of the role of Se in plant metabolism. We also highlight the outstanding aspects of Se NP that enlighten the knowledge and importance of Se in the plant system. Graphical abstract
Collapse
Affiliation(s)
- Zesmin Khan
- Department of Botany, Cotton University, Guwahati, 781001 Assam India
| | | | - Devasish Chowdhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035 India
| | | |
Collapse
|
24
|
Soltanieh M, Talei D, Nejatkhah P. Performance reaction and biochemical properties of black cumin under the influence of different regimes of nitrogen, menthol and drought stress. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2023. [DOI: 10.11118/actaun.2023.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
25
|
Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AAS, Shehata WF, Almaghasla MI. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:292. [PMID: 36679005 PMCID: PMC9865530 DOI: 10.3390/plants12020292] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 05/22/2023]
Abstract
In recent years, the global agricultural system has been unfavorably impacted by adverse environmental changes. These changes in the climate, in turn, have altered the abiotic conditions of plants, affecting plant growth, physiology and production. Abiotic stress in plants is one of the main obstacles to global agricultural production and food security. Therefore, there is a need for the development of novel approaches to overcome these problems and achieve sustainability. Nanotechnology has emerged as one such novel approach to improve crop production, through the utilization of nanoscale products, such as nanofertilizer, nanofungicides, nanoherbicides and nanopesticides. Their ability to cross cellular barriers makes nanoparticles suitable for their application in agriculture. Since they are easily soluble, smaller, and effective for uptake by plants, nanoparticles are widely used as a modern agricultural tool. The implementation of nanoparticles has been found to be effective in improving the qualitative and quantitative aspects of crop production under various biotic and abiotic stress conditions. This review discusses various abiotic stresses to which plants are susceptible and highlights the importance of the application of nanoparticles in combating abiotic stress, in addition to the major physiological, biochemical and molecular-induced changes that can help plants tolerate stress conditions. It also addresses the potential environmental and health impacts as a result of the extensive use of nanoparticles.
Collapse
Affiliation(s)
- Jameel Mohammed Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Rutwick Surya Ulhas
- Faculty of Biological Sciences, Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität, Furstengraben 1, 07743 Jena, Germany
| | - Wudali N. Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Mohammed Ibrahim Aldaej
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Virus & Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 3725005, Egypt
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
26
|
Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU, Wu Z. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:976179. [PMID: 36507430 PMCID: PMC9730289 DOI: 10.3389/fpls.2022.976179] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Drought stress (DS) is a serious challenge for sustaining global crop production and food security. Nanoparticles (NPs) have emerged as an excellent tool to enhance crop production under current rapid climate change and increasing drought intensity. DS negatively affects plant growth, physiological and metabolic processes, and disturbs cellular membranes, nutrient and water uptake, photosynthetic apparatus, and antioxidant activities. The application of NPs protects the membranes, maintains water relationship, and enhances nutrient and water uptake, leading to an appreciable increase in plant growth under DS. NPs protect the photosynthetic apparatus and improve photosynthetic efficiency, accumulation of osmolytes, hormones, and phenolics, antioxidant activities, and gene expression, thus providing better resistance to plants against DS. In this review, we discuss the role of different metal-based NPs to mitigate DS in plants. We also highlighted various research gaps that should be filled in future research studies. This detailed review will be an excellent source of information for future researchers to adopt nanotechnology as an eco-friendly technique to improve drought tolerance.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huijie Li
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Majid M Tahir
- Department of Soil and Environmental Sciences, Faculty of Agriculture, University of Poonch, Rawalakot, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Talha Aslam
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sally Negm
- Life Sciences Department, College of Science and Art, King Khalid University, Mohail, Saudi Arabia
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Sharkia, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
27
|
Babashpour-Asl M, Farajzadeh-Memari-Tabrizi E, Yousefpour-Dokhanieh A. Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80021-80031. [PMID: 35397029 DOI: 10.1007/s11356-022-19941-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Since large areas of agricultural soils around the world are contaminated by Cd, a cost-effective and practical method is needed for the safe production of edible plants. The effective role of many nanomaterials to improve plant yield by mitigating environmental pollutions is addressed; however, the impacts of selenium nanoparticles (Se-NPs) have not been well-known yet. The aim of this work was to investigate foliar application of Se-NPs on yield, water content, proline concentration, phenolic content, lipid peroxidation, and essential oil (EO) attributes of coriander (Coriandrum sativum L.) under Cd stress. The plants were exposed to Cd contamination (0, 4, and 8 mg L-1) and foliar application of Se-NPs (0, 20, 40, and 60 mg L-1). The results showed increased Cd accumulation in roots and shoots of coriander plants upon Cd stress; however, Se-NPs alleviated the uptake of Cd. Cd toxicity, particularly 8 mg L-1, decreased shoot and root weight, chlorophyll (Chl), and relative water content (RWC), while Se-NPs improved these attributes. The Cd concentration at 4 mg L-1 and Se-NPs at 40 or 60 mg L-1 increased phenolic and flavonoid contents as well as EO yield. Proline concentration and malondialdehyde (MDA) increased by enhancing Cd stress, but Se-NPs decreased MDA. The GC/MS analysis showed that the main EO constitutes were n-decanal (18.80-29.70%), 2E-dodecanal (14.23-19.87%), 2E-decanal (12.60-19.40%), and n-nonane (7.23-12.87%), representing different amounts under Cd pollution and Se-NPs. To sum up, Se-NPs at 40-60 mg L-1 are effective in alleviating Cd stress.
Collapse
Affiliation(s)
- Marzieh Babashpour-Asl
- Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran.
| | | | | |
Collapse
|
28
|
Punicalagin Protects against the Development of Methotrexate-Induced Hepatotoxicity in Mice via Activating Nrf2 Signaling and Decreasing Oxidative Stress, Inflammation, and Cell Death. Int J Mol Sci 2022; 23:ijms232012334. [PMID: 36293191 PMCID: PMC9604463 DOI: 10.3390/ijms232012334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Despite its effectiveness in treating inflammatory diseases and various malignancies, methotrexate (MTX) is well known to cause hepatotoxicity, which involves increased oxidative stress and inflammation, limiting its clinical use. Herein, we looked into the effect of punicalagin (PU), a polyphenolic molecule having a variety of health-promoting attributes, on MTX-induced hepatotoxicity in mice. PU (25 and 50 mg/kg/day) was given orally to the mice for 10 days, while a single dose of MTX (20 mg/kg) was injected intraperitoneally (i.p.) at day 7. The MTX-induced liver damage was demonstrated by remarkably higher transaminases (ALT and AST), ALP, and LDH, as well as significant histological alterations in hepatic tissues. MTX-injected mice also demonstrated increases in hepatic oxidative stress markers, including malondialdehyde (MDA) and nitric oxide (NO), with a concordant drop in glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities. PU significantly attenuated the MTX-induced serum transaminases, ALP and LDH elevations, and hepatic oxidative stress measures and boosted antioxidant defenses in the liver. Moreover, the liver of MTX-treated mice showed increases in NF-κB p65 expression, pro-inflammatory cytokine (IL-6 and TNF-α) levels, and pro-apoptotic protein (caspase-3 and Bax) expression, whereas Bcl-2 and Nrf2 expressions were reduced, which were all attenuated by PU treatment. Collectively, PU inhibits oxidative damage, inflammation, and apoptosis and upregulates Nrf2 in the liver of MTX-induced mice. Thus, these findings suggest that PU may have great therapeutic potential for the prevention of MTX-induced hepatotoxicity, pending further exploration in upcoming studies.
Collapse
|
29
|
Bora KA, Hashmi S, Zulfiqar F, Abideen Z, Ali H, Siddiqui ZS, Siddique KHM. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:999505. [PMID: 36262650 PMCID: PMC9574372 DOI: 10.3389/fpls.2022.999505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing demand for agricultural food products, medicine, and other commercial sectors requires new technologies for agricultural practices and promoting the optimum utilization of natural resources. The application of engineered nanomaterials (ENMs) enhance the biomass production and yield of food crop while resisting harmful environmental stresses. Bio-mediated synthesis of ENMs are time-efficient, low-cost, environmentally friendly, green technology. The precedence of using a bio-mediated route over conventional precursors for ENM synthesis is non-toxic and readily available. It possesses many active agents that can facilitate the reduction and stabilization processes during nanoparticle formation. This review presents recent developments in bio-mediated ENMs and green synthesis techniques using plants, algae, fungi, and bacteria, including significant contributions to identifying major ENM applications in agriculture with potential impacts on sustainability, such as the role of different ENMs in agriculture and their impact on different plant species. The review also covers the advantages and disadvantages of different ENMs and potential future research in this field.
Collapse
Affiliation(s)
- Kainat Amin Bora
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
| | - Saud Hashmi
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Haibat Ali
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | | | | |
Collapse
|
30
|
Ojagh SE, Moaveni P. Foliar-applied magnesium nanoparticles modulate drought stress through changes in physio-biochemical attributes and essential oil profile of yarrow (Achillea millefolium L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59374-59384. [PMID: 35386083 DOI: 10.1007/s11356-022-19559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are an emerging tool for mitigating environmental stresses. Although beneficial roles of NPs have been reported in some plants, there is little data on magnesium (Mg)-NPs in alleviating drought stress. Therefore, the field experiment was conducted to study changes in biochemical attributes and essential oil (EO) compositions of yarrow (Achillea millefolium L.) plants under drought stress and Mg-NPs in 2016 and 2017. Irrigation regimes were used in two levels as well-watered (irrigation intervals of 7 days) and drought stress (irrigation intervals of 14 days) conditions, and Mg-NPs were sprayed on leaves in four levels (0, 0.1, 0.3, and 0.5 g L-1). The results showed drought stress led to increased electrolyte leakage (EL), proline, carotenoid, anthocyanin, and total flavonoid content (TFC). However, flowers yield and EO yield were lower in plants exposed to drought stress as compared to well-watered conditions. The 0.3 and 0.5 g L-1 Mg-NPs were more effective in alleviating drought stress by enhancing these traits. Heat map results showed that EL and TSS represented the high variability upon different treatments. The GC and GC/MS results represented that α-pinene (8.60-12.20%), 1,8-cineol (9.03-14.02%), camphor (6.84-9.80%), α-bisabolol (8.54-18.81%), chamazulene (14.23-22.50%), and caryophyllene oxide (7.20-9.80%) were the min EO constitutes of yarrow plants. Totally, drought decreased monopertens but increased sesquiterpenes of EO. To sum up, foliar applied Mg-NPs in a range of 0.3-0.5 g L-1 can be recommended as effective tool to improve plant yield through changes in biochemical attributes of yarrow plants.
Collapse
Affiliation(s)
- Seyyed Ebrahim Ojagh
- Department of Agronomy, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Payam Moaveni
- Department of Agronomy, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
31
|
Kandhol N, Jain M, Tripathi DK. Nanoparticles as potential hallmarks of drought stress tolerance in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13665. [PMID: 35279848 DOI: 10.1111/ppl.13665] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 05/12/2023]
Abstract
Plants are inevitably exposed to drought stress limiting their growth and causing yield loss, thus inciting food crises across the world. Nanoparticles (NPs) are regarded as effective and promising tools for modulation of crop yield to overcome current and future constraints in sustainable agricultural production by upgrading the plant tolerance mechanism under abiotic stress conditions, including drought. NPs exhibit alleviating effects against drought stress via induction of physiological and biochemical readjustments accompanied by modulation of gene expression involved in drought response/tolerance. NPs ameliorate drought-induced reduction in carbon assimilation via increasing the photosynthetic activity. The improved root growth, upregulation of aquaporins, modification of intracellular water metabolism, accumulation of compatible solutes and ion homeostasis are the major mechanisms used by NPs to mitigate the osmotic stress caused by water deficit. NPs reduce water loss from leaves through stomatal closure due to fostered abscisic acid (ABA) accumulation and ameliorate oxidative stress damage by reducing reactive oxygen species and activating the antioxidant defense system. This review provides an evolutionary foundation regarding drought stress in plant life and summarizes the interactions between NPs and plants under drought. The subsequent impact of NPs on plant development and productivity and recent nanobiotechnological approaches to improve drought stress resilience are presented. On the whole, this review highlights the significance of NPs in dealing with the global problem of water scarcity faced by farmers.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
32
|
Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. PLANTS 2021; 10:plants10061221. [PMID: 34203954 PMCID: PMC8232821 DOI: 10.3390/plants10061221] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Abiotic stress in plants is a crucial issue worldwide, especially heavy-metal contaminants, salinity, and drought. These stresses may raise a lot of issues such as the generation of reactive oxygen species, membrane damage, loss of photosynthetic efficiency, etc. that could alter crop growth and developments by affecting biochemical, physiological, and molecular processes, causing a significant loss in productivity. To overcome the impact of these abiotic stressors, many strategies could be considered to support plant growth including the use of nanoparticles (NPs). However, the majority of studies have focused on understanding the toxicity of NPs on aquatic flora and fauna, and relatively less attention has been paid to the topic of the beneficial role of NPs in plants stress response, growth, and development. More scientific attention is required to understand the behavior of NPs on crops under these stress conditions. Therefore, the present work aims to comprehensively review the beneficial roles of NPs in plants under different abiotic stresses, especially heavy metals, salinity, and drought. This review provides deep insights about mechanisms of abiotic stress alleviation in plants under NP application.
Collapse
|