1
|
Frankenfeld F, Wagmann L, Meyer MR. Studies on the Stability and Microbial Biotransformation of Five Deschloroketamine Derivatives as Prerequisite for Wastewater-Based Epidemiology Screening. Drug Test Anal 2024. [PMID: 39659189 DOI: 10.1002/dta.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Wastewater (WW)-based epidemiology (WBE) is a powerful tool for screening and surveillance of drugs (of abuse) or new psychoactive substances (NPSs) in larger population. Since the drug market changes frequently, it is crucial for WBE to define screening and surveillance biomarkers considering drug metabolism and (microbial) stability. The aims of the presented work were first to identify metabolites, potentially serving as a WBE biomarker of five deschloroketamine derivatives (DCKDs) in rat feces samples after oral administration in addition to already known urinary metabolites, and second to elucidate the microbial biotransformation and WW stability of five DCKDs and their metabolites detected in urine and feces. Microbial biotransformation and stability of DCKD and their metabolites in WW were assessed by incubating parent compounds at 0.1 mg/L or rat urine or rat feces samples in freshly collected, untreated, influent WW over a period of 24 h. All samples were analyzed using liquid chromatography-high-resolution tandem mass spectrometry. All parent compounds, seven Phase I, and one Phase II metabolite were detected in rat feces samples. After WW incubations, all tested DCKD and their metabolites were still detectable at least in trace amounts, but particularly, peak areas of the Phase II N- and O-glucuronides showed a markable decrease. This is in line with previous findings where Phase II conjugates were identified to be unstable in WW and thus not recommended as a WW biomarker. Hence, incubations demonstrated that the five DCKD and most of their metabolites were sufficiently stable in WW influent and can thus be used as analytical targets in the context of WBE.
Collapse
Affiliation(s)
- Fabian Frankenfeld
- Department of Experimental and Clinical Toxicology and Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology and Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology and Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Frankenfeld F, Wagmann L, Jacobs CM, Meyer MR. Quantitative analysis of drugs of abuse and cognitive enhancers in influent wastewater by means of two chromatographic methods. Drug Test Anal 2024; 16:893-902. [PMID: 38012832 DOI: 10.1002/dta.3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Sewage-based epidemiology using influent wastewater is used to estimate the consumption trends of (illicit) drugs over a short or long period of time in a subpopulation. The current study aimed to develop two separate methods for the quantitative analysis of selected drugs of abuse (DOA) and cognitive enhancers in influent wastewater using reversed-phase (RP) or hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS). The performance of RP and HILIC column was evaluated. A simple solid phase extraction was used for sample preparation. Short runtimes of 10 and 15 min on the RP and the HILIC column, respectively, allowed sufficient throughput. A six-point calibration was used for quantification with calibration ranges between 10 and 100 ng/L for all analytes except for benzoylecgonine (BZE, 30-300 ng/L). Method validation was performed according to ICH guideline M10. Analytes such as amphetamine (AMPH), BZE, cocaethylene (CE), cocaine (COC), ethyl sulfate, 4-hydroxy-3-methoxymethamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine, methylphenidate (MPH), and ritalinic acid (RA) were included in method development and validation. Two different column types were necessary for sufficient chromatographic resolution. The analytical setup allowed detection of all other analytes at concentration levels between 1 ng/L for methylphenidate to 10 ng/L for amphetamine. A method for the detection and quantification of DOA, cognitive enhancers, and their biomarkers in wastewater was successfully developed and validated. Moreover, six proof-of-concept samples were analyzed in which AMPH, BZE, COC, MDMA, MPH, and RA were identified and further quantified.
Collapse
Affiliation(s)
- Fabian Frankenfeld
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Cathy M Jacobs
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
4
|
Gracia-Lor E, Pérez-Valenciano A, De Oro-Carretero P, Ramírez-García L, Sanz-Landaluze J, Martín-Gutiérrez MJ. Consumption of illicit drugs and benzodiazepines in six Spanish cities during different periods of the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173356. [PMID: 38772484 DOI: 10.1016/j.scitotenv.2024.173356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Wastewater-based epidemiology (WBE) can provide objective and real time information about the use of addictive substances. A national study was conducted by measuring the most consumed illicit drugs, other drugs whose consumption is not so widespread but has increased significantly in recent years, and benzodiazepines in untreated wastewater from seven wastewater treatment plants (WWTPs) in six Spanish cities. Raw composite wastewater samples were collected from December 2020 to December 2021, a period in which the Spanish and regional governments adopted different restriction measures to contain the spread of the COVID-19 pandemic. Samples were analyzed using a validated analytical methodology for the simultaneous determination of 18 substances, based on solid-phase extraction and liquid-chromatography tandem mass spectrometry. Except for heroin, fentanyl, 6-acetylmorphine and alprazolam, all the compounds were found in at least one city and 9 out of 18 compounds were found in all the samples. In general, the consumption of illicit drugs was particularly high in one of the cities monitored in December 2020, when the restrictions were more severe, especially for cannabis and cocaine with values up to 46 and 6.9 g/day/1000 inhabitants (g/day/1000 inh), respectively. The consumption of MDMA, methamphetamine and mephedrone was notably higher in June 2021, after the end of the state of alarm, in the biggest population investigated in this study. Regarding the use of benzodiazepines, the highest mass loads corresponded to lorazepam. This study demonstrates that WBE is suitable for complementing epidemiological studies about the prevalence of illicit drugs and benzodiazepines during the COVID-19 pandemic restrictions.
Collapse
Affiliation(s)
- Emma Gracia-Lor
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Azara Pérez-Valenciano
- Laboratorio de Salud Pública de Madrid, Madrid Salud, Emigrantes 20, 28043 Madrid, Spain
| | - Paloma De Oro-Carretero
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Lorena Ramírez-García
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | | |
Collapse
|
5
|
Dixit A, Pandey H, Rana R, Kumar A, Herojeet R, Lata R, Mukhopadhyay R, Mukherjee S, Sarkar B. Ecological and human health risk assessment of pharmaceutical compounds in the Sirsa River of Indian Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123668. [PMID: 38442820 DOI: 10.1016/j.envpol.2024.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 μgL-1 with some exception for CIP (50-100 μgL-1) and CTZ (100-150 μgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.
Collapse
Affiliation(s)
- Arohi Dixit
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Himanshu Pandey
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rajiv Rana
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Anil Kumar
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; School of Health Sciences, Amity University Punjab, Mohali, 140306, India
| | - Rajkumar Herojeet
- Department of Environmental Studies, Post Graduate Government College, Sector 11, Chandigarh, India
| | - Renu Lata
- G.B. Pant National Institute of Himalayan Environment, Mohal-Kullu, 175126, Himachal Pradesh, India
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, 15213, United States; Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
6
|
Yuan S, Xiang Y, Chen L, Xiang P, Li Y. Magnetic solid-phase extraction based on polydopamine-coated magnetic nanoparticles for rapid and sensitive analysis of eleven illicit drugs and metabolites in wastewater with the aid of UHPLC-MS/MS. J Chromatogr A 2024; 1718:464703. [PMID: 38340459 DOI: 10.1016/j.chroma.2024.464703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The quantification of illicit drugs in wastewater has become a valuable tool for monitoring illicit drug abuse. The commonly utilized methods for detecting drugs in wastewater require a substantial sample volume, extended pretreatment durations, and intricate procedures. This study first employed polydopamine-coated magnetic nanocomposites as adsorbents for magnetic solid-phase extraction, combined with UPLC-MS/MS, to simultaneously determine the concentrations of eleven common illicit drugs in wastewater. The synthesis process for Fe3O4@PDA is straightforward and high-yield. Benefiting from the strong magnetic response, good dispersibility, and abundant binding sites of the prepared nanocomposites, the extraction of illicit drugs from wastewater could be achieved in just 15 min. The method exhibited satisfactory limits of quantitation (ranging from 5 to 10 ng/L), commendable accuracy (ranging from 90.59 % to 106.80 %), good precision (with RSDs below 10 %), and less sample consumption (only 1 mL). The efficacy of this method was successfully validated through its application to actual wastewater samples collected from ten wastewater treatment plants. The results indicated that morphine, codeine, methamphetamine, and ketamine were the predominant illicit drugs present in the samples. The method developed is able to meet the needs of common illicit drug monitoring and high-throughput analysis requirements.
Collapse
Affiliation(s)
- Shuai Yuan
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Yangjiayi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lizhu Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
7
|
Shao XT, Wang YS, Gong ZF, Li YY, Tan DQ, Lin JG, Pei W, Wang DG. Surveillance of COVID-19 and influenza A(H1N1) prevalence in China via medicine-based wastewater biomarkers. WATER RESEARCH 2023; 247:120783. [PMID: 37924682 DOI: 10.1016/j.watres.2023.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
The simultaneous monitoring of individual or multiple diseases can be achieved by selecting therapeutic medicines used to treat the primary symptoms of the condition as biomarkers in wastewater. This study proposes a novel approach to monitor the prevalence of COVID-19 and influenza A (H1N1) by selecting nine medicines to serve as biomarkers, including three antipyretics, three antivirals, and three cough suppressants. To verify our approach, wastewater samples were collected from seventeen urban and five rural wastewater treatment plants (WWTPs) in a Chinese city over a period of one year. The use of antipyretics increased notably during the COVID-19 pandemic, while the consumption of antivirals for influenza A (H1N1) rose in the post-COVID-19 pandemic period, indicating a minor spike in the occurrence of influenza A (H1N1) after the COVID-19 pandemic. Fever is a significant symptom of COVID-19 and can serve as a reliable indicator of disease prevalence. Our research found that the prevalence of COVID-19 in urban areas was significantly higher (at 78.5 %, 95 % CI: 73.4 % - 83.9 %) than in rural areas (with a prevalence of 48.1 %, 95 % CI: 42.4 % - 53.8 %). The prevalence of COVID-19 in urban areas in this study was consistent with the data reported by the Chinese center for Disease Control and Prevention (82.4 %). Continuous monitoring of WWTPs in urban areas with fluctuating populations and complex demographics can provide early disease warning. Our results demonstrate the feasibility of evaluating community disease prevalence by selecting major therapeutic medicines as biomarkers in wastewater.
Collapse
Affiliation(s)
- Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Song Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Zhen-Fang Gong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Ying Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Jian-Guo Lin
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026.
| |
Collapse
|
8
|
Desyaterik Y, Mwangi JN, McRae M, Jones AM, Kashuba ADM, Rosen EP. Application of infrared matrix-assisted laser desorption electrospray ionization mass spectrometry for morphine imaging in brain tissue. Anal Bioanal Chem 2023; 415:5809-5817. [PMID: 37490153 PMCID: PMC10474208 DOI: 10.1007/s00216-023-04861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Here, we present a method developed for the analysis of spatial distributions of morphine in mouse brain tissue using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to a Q Exactive Plus mass spectrometer. The method is also capable of evaluating spatial distributions of the antiretroviral drug abacavir. To maximize sensitivity to morphine, we analyze various Orbitrap mass spectrometry acquisition modes utilizing signal abundance and frequency of detection as evaluation criteria. We demonstrate detection of morphine in mouse brain and establish that the selected ion monitoring mode provides 2.5 times higher sensitivity than the full-scan mode. We find that distributions of morphine and abacavir are highly correlated with the Pearson correlation coefficient R = 0.87. Calibration showed that instrument response is linear up to 40 pg/mm2 (3.8 μg/g of tissue).
Collapse
Affiliation(s)
- Yury Desyaterik
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - MaryPeace McRae
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Austin M Jones
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Angela D M Kashuba
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elias P Rosen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Krishnan RY, Manikandan S, Subbaiya R, Biruntha M, Balachandar R, Karmegam N. Origin, transport and ecological risk assessment of illicit drugs in the environment - A review. CHEMOSPHERE 2023; 311:137091. [PMID: 36356815 DOI: 10.1016/j.chemosphere.2022.137091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Illicit drugs are a novel group of emerging pollutants. A growing global environmental load and ecological risk is created by the ongoing release of these toxins into the environment. Conventional water processing plants fail to completely remove drugs of abuse from both surface water and wastewater. The origin, environmental fate and ecological repercussions of illicit drugs, despite their detection in surface waterways around the world, are not well understood. In this review, illicit drug detections in potable water, surface water and wastewater globally have been studied during the past 15 years in order to establish a baseline for future years. The most common drugs with abuse potential detected in different sources of potable and surface water were methadone (0.12-22.7 ng/L), cocaine (0.05-506.6 ng/L), benzoylecgonine (0.07-1019 ng/L), amphetamine (1.4-342.6 ng/L), and codeine (0.002-42 ng/L). The bulk of research only looked at a small number of drugs of abuse, indicating that despite widespread use, a large spectrum of these intoxicants has yet to be detected. This review focuses on the origin of illicit drug contaminants in water bodies, air, and soil, their persistence in the environment, and the typical concentrations at which they occur in the environment. The impact of these drugs on aquatic organisms like Elliptio complanata mussels, crayfish and zebrafish has also been reviewed.
Collapse
Affiliation(s)
- R Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam, 686 518, Kerala, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105. Tamil Nadu, India.
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Balachandar
- Department of Biotechnology, Prathyusha Engineering College, Chennai, 602 025, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
10
|
Aberg D, Chaplin D, Freeman C, Paizs B, Dunn C. The environmental release and ecosystem risks of illicit drugs during Glastonbury Festival. ENVIRONMENTAL RESEARCH 2022; 204:112061. [PMID: 34543637 DOI: 10.1016/j.envres.2021.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Reported high drug use at music festivals coupled with factors such as public urination can lead to the direct release of illicit drugs into the environment. Glastonbury Festival 2019 had 203,000 attendees, its site is intercepted by the Whitelake River providing a direct route for illicit drug pollution into the local environment. We tested for popular illicit drugs such as cocaine and MDMA in the river upstream and downstream of the festival site as well as in the neighbouring Redlake River. Both rivers were sampled the weeks before, during and after the festival. Cocaine, benzoylecgonine and MDMA were found at all sample sites; concentrations, and mass loads (mass carried by the river per unit of time) were significantly higher in the Whitelake site, downstream of the festival. MDMA mass loads were 104 times greater downstream in comparison to upstream sites (1.1-61.0 mg/h vs 114.7 mg/h; p < .01). Cocaine and benzoylecgonine mass loads were also 40 times higher downstream of the festival (1.3-4.2 mg/h vs 50.4 mg/h; p < .01) (22.7-81.4 mg/h vs 854.6 mg/h; p < .01). MDMA reached its highest level during the weekend after the festival with a concentration of 322 ng/L. This concentration is deemed harmful to aquatic life using Risk Quotient assessment (RQ) and provides evidence of continuous release after the festival due to leaching of MDMA from the site. Cocaine and benzoylecgonine concentrations were not at levels deemed harmful to aquatic life according to RQ assessment yet were three times higher than MDMA concentrations. Redlake River experienced no significant changes (p > .05) in any illicit drug levels, further confirming that drug release was likely dependent on the festival site. The release of environmentally damaging levels of illicit drugs into Whitelake River during the period of Glastonbury Festival suggests an underreported potential source of environmental contamination from greenfield festival sites.
Collapse
Affiliation(s)
- Dan Aberg
- Wolfson Carbon Capture Lab, Bangor University, Bangor, Wales, UK.
| | - Daniel Chaplin
- Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK.
| | - Chris Freeman
- Wolfson Carbon Capture Lab, Bangor University, Bangor, Wales, UK.
| | - Bela Paizs
- Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor, LL57 2UW, UK
| | - Christian Dunn
- Wolfson Carbon Capture Lab, Bangor University, Bangor, Wales, UK.
| |
Collapse
|
11
|
Udo MSB, da Silva MAA, de Souza Prates S, Dal'Jovem LF, de Oliveira Duro S, Faião-Flores F, Garcia RCT, Maria-Engler SS, Marcourakis T. Anhydroecgonine methyl ester, a cocaine pyrolysis product, contributes to cocaine-induced rat primary hippocampal neuronal death in a synergistic and time-dependent manner. Arch Toxicol 2021; 95:1779-1791. [PMID: 33674969 DOI: 10.1007/s00204-021-03017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023]
Abstract
Crack cocaine users are simultaneously exposed to volatilized cocaine and to its main pyrolysis product, anhydroecgonine methyl ester (AEME). Although the neurotoxic effects of cocaine have been extensively studied, little is known about AEME or its combination. We investigated cell death processes using rat primary hippocampal cells exposed to cocaine (2 mM), AEME (1 mM) and their combination (C + A), after 1, 3, 6 and 12 h. Cocaine increased LC3 I after 6 h and LC3 II after 12 h, but reduced the percentage of cells with acid vesicles, suggesting failure in the autophagic flux, which activated the extrinsic apoptotic pathway after 12 h. AEME neurotoxicity did not involve the autophagic process; rather, it activated caspase-9 after 6 h and caspase-8 after 12 h leading to a high percentage of cells in early apoptosis. C + A progressively reduced the percentage of undamaged cells, starting after 3 h; it activated both apoptotic pathways after 6 h, and was more neurotoxic than cocaine and AEME alone. Also, C + A increased the phosphorylation of p62 after 12 h, but there was little difference in LC3 I or II, and a small percentage of cells with acid vesicles at all time points investigated. In summary, the present study provides new evidence for the neurotoxic mechanism and timing response of each substance alone and in combination, indicating that AEME is more than just a biological marker for crack cocaine consumption, as it may intensify and hasten cocaine neurotoxicity.
Collapse
Affiliation(s)
- Mariana Sayuri Berto Udo
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Sara de Souza Prates
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro Ferreira Dal'Jovem
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie de Oliveira Duro
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Faião-Flores
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raphael Caio Tamborelli Garcia
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Silvya Stuchi Maria-Engler
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
How ZT, Gamal El-Din M. A critical review on the detection, occurrence, fate, toxicity, and removal of cannabinoids in the water system and the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115642. [PMID: 33032096 PMCID: PMC7489229 DOI: 10.1016/j.envpol.2020.115642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 05/23/2023]
Abstract
Cannabinoids are a group of organic compounds found in cannabis. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two major constituents of cannabinoids, and their metabolites are contaminants of emerging concern due to the limited information on their environmental impacts. As well, their releases to the water systems and environment are expected to increase due to recent legalization. Solid-phase extraction is the most common technique for the extraction and pre-concentration of cannabinoids in water samples as well as a clean-up step after the extraction of cannabinoids from solid samples. Liquid chromatography coupled with mass spectrometry is the most common technique used for the analysis of cannabinoids. THC and its metabolites have been detected in wastewater, surface water, and drinking water. In particular, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) has been detected at concentrations up to 2590 and 169 ng L-1 in untreated and treated wastewater, respectively, 79.9 ng L-1 in surface water, and 1 ng L-1 in drinking water. High removal of cannabinoids has been observed in wastewater treatment plants; this is likely a result of adsorption due to the low aqueous solubility of cannabinoids. Based on the estrogenicity and cytotoxicity studies and modelling, it has been predicted that THC and THC-COOH pose moderate risk for adverse impact on the environment. While chlorination and photo-oxidation have been shown to be effective in the removal of THC-COOH, they also produce by-products that are potentially more toxic than regulated disinfection by-products. The potential of indirect exposure to cannabinoids and their metabolites through recreational water is of great interest. As cannabinoids and especially their by-products may have adverse impacts on the environment and public health, more studies on their occurrence in various types of water and environmental systems, as well as on their environmental toxicity, would be required to accurately assess their impact on the environment and public health.
Collapse
Affiliation(s)
- Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9.
| |
Collapse
|
13
|
Li H, Yang S, Li T, Li X, Huang X, Gao Y, Li B, Lin J, Mu W. Determination of pyraclostrobin dynamic residual distribution in tilapia tissues by UPLC-MS/MS under acute toxicity conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111182. [PMID: 32911370 DOI: 10.1016/j.ecoenv.2020.111182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
As a lipophilic fungicide, pyraclostrobin is highly toxic to aquatic organisms, especially to fish. In recent years, research has mainly focused on the pyraclostrobin residue in fish tissues under chronic toxicity, but less is known about its distribution in fish tissues under acute toxicity conditions. In this study, the distribution of pyraclostrobin in fish tissues (blood, liver, muscle and gill) was determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The purification effects of different purification materials [1) mixtures of PSA, C18 and MgSO4; 2) QuEChERS-PC; and 3) Oasis HLB SPE] were compared for the detection of pyraclostrobin in fish tissues. Finally, the quick and easy clean-up tool of the Oasis HLB SPE procedure was selected. Under optimum conditions, the linearities had a good relationship (determination coefficient R2 > 0.999). The mean recoveries of the analyte for all tested concentrations ranged from 86.94% to 108.81% with RSDs of 0.7%-4.9%. The pyraclostrobin residue amount was much different in fish tissues. Furthermore, the pyraclostrobin residue in different fish tissues increased initially and then decreased gradually. The concentrations in each tissue were initially ranked before 120 min in the following order: gill > liver > blood > muscle. These phenomena may be attributed to the stress response of fish under acute poisoning. This is the first study to document the distribution of pyraclostrobin in fish tissues under acute toxicity conditions, and it provides reference for the management of agrochemicals in terms of aquatic ecological risks.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Song Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Tongbin Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiuhuan Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueping Huang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
14
|
Zarei S, Salimi Y, Repo E, Daglioglu N, Safaei Z, Güzel E, Asadi A. A global systematic review and meta-analysis on illicit drug consumption rate through wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36037-36051. [PMID: 32594443 DOI: 10.1007/s11356-020-09818-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Wastewater-based epidemiology (WBE) is a complementary, well-established comprehensive, cost-effective, and rapid technique for monitoring of illicit drugs used in a general population. This systematic review and meta-analysis is the first to estimate the rank and consumption rate of illicit drugs through WBE studies. In the current study, the related investigations regarding the illicit drug consumption rate based on WBE were searched among the international databases including Scopus, PubMed, Science direct, Google scholar, and local database, Magiran from 2012 up to May 2019. The illicit drug consumption rate with 95% confidence intervals was pooled between studies by using random effect model. The heterogeneity was determined using I2 statistics. Also, subgroup analyses were conducted to examine the possible effects of year and location of studies on observed heterogeneity. Meta-analysis of 37 articles indicates that the overall rank order of illicit drugs according to their pooled consumption rate can be summarized as tetrahydrocannabinol or cannabis (7417.9 mg/day/1000 people) > cocaine (655.7 mg/day/1000 people) > morphine (384.9 mg/day/1000 people) > methamphetamine (296.2 mg/day/1000 people) > codeine (222.7 mg/day/1000 people) > methadone (200.2 mg/day/1000 people) > 3,4-methylenedioxymethamphetamine (126.3 mg/day/1000 people) > amphetamine (118.2 mg/day/1000 people) > 2-ethylidene-1,5-dimethyl-3, 3-diphenylpyrrolidine (33.7 mg/day/1000 people). The pooled level rate was 190.16 mg/day/1000 people for benzoylecgonine (main urinary cocaine metabolite), 137.9 mg/day/1000 people for 11-nor-9-carboxy-delta9-tetrahydrocannabinol (main metabolite of cannabis), and 33.7 mg/day/1000 people for 2-ethylidene-1,5-dimethyl-3, 3-diphenylpyrrolidine (main metabolite of methadone). The I2 values for all selected drugs were 100% (P value < 0.001). The results of year subgroup indicated that the changes of heterogeneity for all selected drugs were nearly negligible. The heterogeneity within studies based on continents subgroup just decreased in America for drugs like 11-nor-9-carboxy-delta9-tetrahydrocannabinol (I2 = 24.4%) and benzoylecgonine (I2 = 94.1%). The outcome of this meta-analysis can be used for finding the illicit drugs with global serious problem in view of consumption rate (i.e., cannabis and cocaine) and helping authorities to combat them.
Collapse
Affiliation(s)
- Shabnam Zarei
- Students Research Committee, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Salimi
- Social Development & Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, LUT University, Mikkeli, Finland
| | - Nebile Daglioglu
- Department of Forensic Medicine, School of Medicine, University of Cukurova, 01330, Adana, Turkey
| | - Zahra Safaei
- Department of Separation Science, School of Engineering Science, LUT University, Mikkeli, Finland
| | - Evsen Güzel
- Department of Basic Sciences, Faculty of Fisheries, University of Cukurova, 01330, Adana, Turkey
| | - Anvar Asadi
- Department of Environmental Health Engineering, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Bijlsma L, Celma A, Castiglioni S, Salgueiro-González N, Bou-Iserte L, Baz-Lomba JA, Reid MJ, Dias MJ, Lopes A, Matias J, Pastor-Alcañiz L, Radonić J, Turk Sekulic M, Shine T, van Nuijs ALN, Hernandez F, Zuccato E. Monitoring psychoactive substance use at six European festivals through wastewater and pooled urine analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138376. [PMID: 32298891 DOI: 10.1016/j.scitotenv.2020.138376] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The consumption of psychoactive substances is considered a growing problem in many communities. Moreover, new psychoactive substances (NPS) designed as (legal) substitutes to traditional illicit drugs are relatively easily available to the public through e-commerce and retail shops, but there is little knowledge regarding the extent and actual use of these substances. This study aims to gain new and complementary information on NPS and traditional illicit drug use at six music festivals across Europe by investigating wastewater and pooled urine. Samples were collected, between 2015 and 2018, at six music festivals across Europe with approximately 465.000 attendees. Wastewater samples were also collected during a period not coinciding with festivals. A wide-scope screening for 197 NPS, six illicit drugs and known metabolites was applied using different chromatography-mass spectrometric strategies. Several illicit drugs and in total 21 different NPS, mainly synthetic cathinones, phenethylamines and tryptamines, were identified in the samples. Ketamine and the traditional illicit drugs, such as amphetamine-type stimulants, cannabis and cocaine were most abundant and/or frequently detected in the samples collected, suggesting a higher use compared to NPS. The analyses of urine and wastewater is quick and a high number of attendees may be monitored anonymously by analysing only a few samples which allows identifying the local profiles of use of different drugs within a wide panel of psychoactive substances. This approach contributes to the development of an efficient surveillance system which can provide timely insight in the trends of NPS and illicit drugs use.
Collapse
Affiliation(s)
- L Bijlsma
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain.
| | - A Celma
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - S Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri -IRCCS, , Milan, Italy
| | | | - L Bou-Iserte
- Department of Inorganic and Organic Chemistry, University Jaume I, Castellón, Spain
| | - J A Baz-Lomba
- Norwegian Institute for Water Research, Oslo, Norway
| | - M J Reid
- Norwegian Institute for Water Research, Oslo, Norway
| | - M J Dias
- Instituto Nacional de Medicina Legal e Ciencias Forenses, Lisbon, Portugal
| | - A Lopes
- Egas Moniz, Cooperativa de Ensino Superior, Lisbon, Portugal
| | - J Matias
- European Monitoring Centre for Drugs and Drug Addiction, Lisbon, Portugal
| | | | - J Radonić
- University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
| | - M Turk Sekulic
- University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia
| | - T Shine
- TICTAC Communications Ltd., London, United Kingdom
| | - A L N van Nuijs
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - F Hernandez
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - E Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri -IRCCS, , Milan, Italy
| |
Collapse
|
16
|
Mayer A, Copp B, Bogun B, Miskelly G. Identification and characterization of chemically masked derivatives of pseudoephedrine, ephedrine, methamphetamine, and MDMA. Drug Test Anal 2020; 12:524-537. [DOI: 10.1002/dta.2764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra Mayer
- School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- Institute of Environmental Science and Research Mt Albert, Auckland New Zealand
| | - Brent Copp
- School of Chemical SciencesUniversity of Auckland Auckland New Zealand
| | - Ben Bogun
- Institute of Environmental Science and Research Mt Albert, Auckland New Zealand
| | - Gordon Miskelly
- School of Chemical SciencesUniversity of Auckland Auckland New Zealand
| |
Collapse
|
17
|
Sulej-Suchomska AM, Klupczynska A, Dereziński P, Matysiak J, Przybyłowski P, Kokot ZJ. Urban wastewater analysis as an effective tool for monitoring illegal drugs, including new psychoactive substances, in the Eastern European region. Sci Rep 2020; 10:4885. [PMID: 32184422 PMCID: PMC7078280 DOI: 10.1038/s41598-020-61628-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/27/2020] [Indexed: 11/26/2022] Open
Abstract
The use of illicit drugs causes unquestionable societal and economic damage. To implement actions aimed at combating drug abuse, it is necessary to assess illicit drug consumption patterns. The purpose of this paper was to develop, optimize, validate and apply a procedure for determining new psychoactive substances (NPSs) and classic drugs of abuse and their main metabolites in wastewater samples by using solid phase extraction (SPE) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Moreover, detailed validation of the procedure was conducted. The developed SPE–HPLC-MS/MS procedure (within the sewage-based epidemiology strategy) allowed for the simultaneous, selective, very sensitive, accurate (recoveries ≥ 80.1%) and precise (CV ≤ 8.1%) determination of new and classic psychoactive substances in wastewater samples. This study is characterized by new scientific elements, especially in terms of the freeze-thaw and post-preparative stability of the selected psychoactive substances. This is the first time that NPSs (mephedrone and ketamine), the main metabolites of heroin (6-acetylmorphine, 6-AM) and marijuana (11-nor-9-carboxy-Δ9-tetrahydrocannabinol, THC-COOH) have been detected and monitored in Poland. This study is also the first to corroborate the data available from the EMCDDA and EUROPOL report and indicates that the retail market for cocaine is expanding in Eastern Europe.
Collapse
Affiliation(s)
- Anna Maria Sulej-Suchomska
- Gdynia Maritime University, Faculty of Entrepreneurship and Quality Science, Department of Commodity and Quality Science, 81-87, Morska Str., 81-225, Gdynia, Poland.
| | - Agnieszka Klupczynska
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Paweł Dereziński
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Jan Matysiak
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| | - Piotr Przybyłowski
- Gdynia Maritime University, Faculty of Entrepreneurship and Quality Science, Department of Commodity and Quality Science, 81-87, Morska Str., 81-225, Gdynia, Poland
| | - Zenon J Kokot
- Poznan University of Medical Sciences, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 6, Grunwaldzka Str., 60-780, Poznań, Poland
| |
Collapse
|
18
|
Detection, identification and determination of chiral pharmaceutical residues in wastewater: Problems and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115710] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Gumbi BP, Moodley B, Birungi G, Ndungu PG. Target, Suspect and Non-Target Screening of Silylated Derivatives of Polar Compounds Based on Single Ion Monitoring GC-MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204022. [PMID: 31640145 PMCID: PMC6843951 DOI: 10.3390/ijerph16204022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022]
Abstract
There is growing interest in determining the unidentified peaks within a sample spectra besides the analytes of interest. Availability of reference standards and hyphenated instruments has been a key and limiting factor in the rapid determination of emerging pollutants in the environment. In this work, polar compounds were silylated and analyzed with gas chromatography mass spectrometry (GC-MS) to determine the abundant fragments within the single ion monitoring (SIM) mode and methodology. Detection limits and recoveries of the compounds were established in river water, wastewater, biosolid and sediment matrices. Then, specific types of polar compounds that are classified as emerging contaminants, pharmaceuticals and personal care products, in the environment were targeted in the Mgeni and Msunduzi Rivers. We also performed suspect and non-target analysis screening to identify several other polar compounds in these rivers. A total of 12 compounds were quantified out of approximately 50 detected emerging contaminants in the Mgeni and Msunduzi Rivers. This study is significant for Africa, where the studies of emerging contaminants are limited and not usually prioritized.
Collapse
Affiliation(s)
- Bhekumuzi Prince Gumbi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Grace Birungi
- Department of Chemistry, Mbarara University of Science and Technology, Mbarara 1410, Uganda.
| | - Patrick Gathura Ndungu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| |
Collapse
|
20
|
Dual enantioselective LC–MS/MS method to analyse chiral drugs in surface water: Monitoring in Douro River estuary. J Pharm Biomed Anal 2019; 170:89-101. [DOI: 10.1016/j.jpba.2019.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
|
21
|
Cipoletti N, Jorgenson ZG, Banda JA, Hummel SL, Kohno S, Schoenfuss HL. Land Use Contributions to Adverse Biological Effects in a Complex Agricultural and Urban Watershed: A Case Study of the Maumee River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1035-1051. [PMID: 30883853 DOI: 10.1002/etc.4409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
Agricultural and urban contaminants are an environmental concern because runoff may contaminate aquatic ecosystems, resulting in stress for exposed fish. The objective of the present controlled, field-based study was to assess the impacts of high-intensity agriculture and urban land use on multiple life stages of the fathead minnow (Pimephales promelas), using the Maumee River (Toledo, OH, USA) as a case study. Laboratory cultured adult and larval fathead minnows were exposed for 21 d, and embryos were exposed until hatching to site-specific water along the lower reach of the Maumee River. Adult minnows were analyzed for reproduction and alterations to hematologic characteristics (vitellogenin, glucose, estradiol, 11-ketotestosterone). Water and fish tissue samples were analyzed for a suite of multiresidue pesticides, hormones, and pharmaceuticals. Contaminants were detected in every water and tissue sample, with 6 pesticides and 8 pharmaceuticals detected in at least 82% of water samples and at least half of tissue samples. Effects differed by exposed life stage and year of exposure. Fecundity was the most sensitive endpoint measured and was altered by water from multiple sites in both years. Physiological parameters associated with fecundity, such as plasma vitellogenin and steroid hormone concentrations, were seldom impacted. Larval fathead minnows appeared to be unaffected. Embryonic morphological development was delayed in embryos exposed to site waters collected in 2016 but not in 2017. A distinction between agricultural and urban influences in the Maumee River was not realized due to the great overlap in contaminant presence and biological effects. Differences in precipitation patterns between study years likely contributed to the observed biological differences and highlight the need for environmental exposure studies to assess the environmental risk of contaminants. Environ Toxicol Chem 2019;00:1-17. © 2019 SETAC.
Collapse
Affiliation(s)
- Nicholas Cipoletti
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Zachary G Jorgenson
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Jo A Banda
- US Fish & Wildlife Service, Columbus, Ohio, USA
| | | | - Satomi Kohno
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
22
|
Peng Y, Gautam L, Hall SW. The detection of drugs of abuse and pharmaceuticals in drinking water using solid-phase extraction and liquid chromatography-mass spectrometry. CHEMOSPHERE 2019; 223:438-447. [PMID: 30784750 DOI: 10.1016/j.chemosphere.2019.02.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and drugs of abuse including novel psychoactive substances (NPS) are emerging as newer contaminants in the aquatic environment. The presence of such pollutants has implications on the environment as well as public health and therefore their identification is important when monitoring water quality. This research presents a new method for the simultaneous detection of 20 drugs of abuse and pharmaceuticals in drinking water, including 15 NPS, three traditional illicit drugs and two antidepressants. The developed method is based on the use of solid-phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS). The SPE recoveries for the majority of target analytes ranged between 62 and 107%. The method detection and quantification limits ranged between 0.01 and 1.09 ng/L and 0.02-3.64 ng/L respectively. Both instrumental and method precisions resulted in relative standard deviations <15.04%, with an accuracy of < ±8.66%. The results show that LC-MS can be an alternative to the more popular technique of liquid chromatography-tandem mass spectrometry for the analysis of drugs of abuse and pharmaceuticals in drinking water. This newly developed simultaneous detection method has been applied to drinking water collected from the East Anglia region of the UK. Citalopram, cocaine, fluoxetine, ketamine, mephedrone, methamphetamine and methylone were detected at the range of 0.14 and 2.81 ng/L. This is the first time that the two NPS mephedrone and methylone, have been detected in UK drinking water.
Collapse
Affiliation(s)
- Yan Peng
- Forensic and Investigative Sciences Research Group, Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom.
| | - Lata Gautam
- Forensic and Investigative Sciences Research Group, Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom.
| | - Sarah W Hall
- Forensic and Investigative Sciences Research Group, Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom.
| |
Collapse
|
23
|
González-Mariño I, Estévez-Danta A, Rodil R, Da Silva KM, Sodré FF, Cela R, Quintana JB. Profiling cocaine residues and pyrolytic products in wastewater by mixed-mode liquid chromatography-tandem mass spectrometry. Drug Test Anal 2019; 11:1018-1027. [PMID: 30891957 DOI: 10.1002/dta.2590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 02/04/2023]
Abstract
This work provides a new analytical method for the determination of cocaine, its metabolites benzoylecgonine and cocaethylene, the pyrolytic products anhydroecgonine and anhydroecgonine methyl ester, and the pharmaceutical levamisole in wastewater. Samples were solid-phase extracted and extracts analyzed by liquid chromatography-tandem mass spectrometry using, for the first time in the illicit drug field, a stationary phase that combines reversed-phase and weak cation-exchange functionalities. The overall method performance was satisfactory, with limits of detection below 1 ng/L, relative standard deviations below 21%, and percentages of recovery between 93% and 121%. Analysis of 24-hour composite raw wastewater samples collected in Santiago de Compostela (Spain) and Brasilia (Brazil) highlighted benzoylecgonine as the compound showing the highest population-normalized mass loads (300-1000 mg/day/1000 inhabitants). In Brasilia, cocaine and levamisole loads underwent an upsurge on Sunday, indicating a high consumption, and likely a direct disposal, of cocaine powder on this day. Conversely, the pyrolytic product resulting from the smoke of crack, anhydroecgonine methyl ester, and its metabolite anhydroecgonine were relatively stable over the four days, agreeing with a non-recreational-associated use of crack.
Collapse
Affiliation(s)
- Iria González-Mariño
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Estévez-Danta
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Rafael Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 827] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Fluorescence Excitation-Emission Spectroscopy: An Analytical Technique to Monitor Drugs of Addiction in Wastewater. WATER 2019. [DOI: 10.3390/w11020377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging contaminants of concern have become a serious issue for the scientific community and society more broadly in recent years due to their increasingly widespread environmental distribution and largely unknown environmental and human health impacts. This study aimed to explore the use of fluorescence excitation-emission (F-EEM) spectroscopy as an alternative analytical method to evaluate the presence of key drugs of addiction (benzoylecgonine, methamphetamine, MDMA, codeine and morphine) in wastewater treatment plants. The chemicals of interest from wastewater were extracted by mixed-mode solid phase extraction and quantified using liquid chromatography tandem mass spectrometry. The same wastewater samples were also analysed by a fluorescence spectrophotometer for fluorescence spectra at wavelengths 280–600 nm (emission) and 200–600 nm (excitation). The study also investigated the relevance of different methods for interpreting F-EEM matrices data including parallel factor analysis (PARAFAC) modelling and fluorescence regional integration technique. PARAFAC identified four components, and among them, component C2, identified at the λex/λem = 275/340 nm wavelength associated with proteinaceous compounds most likely related to tryptophan amino acid, showed significant correlation with codeine removal. MDMA and morphine were not correlated to any of the fluorescence regions. The fluorescence regions related to aromatic protein-like fluorescence were correlated significantly with drug concentration and so may offer a suitable alternative approach for monitoring drugs including benzoylecgonine, methamphetamine and codeine.
Collapse
|
26
|
The analysis of latent fingermarks on polymer banknotes using MALDI-MS. Sci Rep 2018; 8:8765. [PMID: 29884869 PMCID: PMC5993810 DOI: 10.1038/s41598-018-27004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 11/12/2022] Open
Abstract
In September 2016, the UK adopted a new Bank of England (BoE) £5 polymer banknote, followed by the £10 polymer banknote in September 2017. They are designed to be cleaner, stronger and have increased counterfeit resilience; however, fingermark development can be problematic from the polymer material as various security features and coloured/textured areas have been found to alter the effectiveness of conventional fingermark enhancement techniques (FETs). As fingermarks are one of the most widely used forms of identification in forensic cases, it is important that maximum ridge detail be obtained in order to allow for comparison. This research explores the use of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) profiling and imaging for the analysis of fingermarks deposited on polymer banknotes. The proposed methodology was able to obtain both physical and chemical information from fingermarks deposited in a range of scenarios including; different note areas, depletion series, aged samples and following conventional FETs. The analysis of forensically important molecular targets within these fingermarks was also explored, focussing specifically on cocaine. The ability of MALDI-MS to provide ridge detail and chemical information highlights the forensic applicability of this technique and potential for the analysis of fingermarks deposited onto this problematic surface.
Collapse
|
27
|
Sanz G, Ferreira Garcia L, Yepez A, Colletes de Carvalho T, Gontijo Vaz B, Romão W, Ivars-Barcelo F, de Souza Gil E, Luque R. TiO2
@C Nanostructured Electrodes for the Anodic Removal of Cocaine. ELECTROANAL 2018. [DOI: 10.1002/elan.201800297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Germán Sanz
- Instituto Nacional de Ciência e Tecnologia em Ciências Forenses. Instituto de Química.; Universidade Federal de Goiás; Brazil
| | | | - Alfonso Yepez
- Departamento de Química Orgánica; Universidad de Córdoba; Spain
| | | | | | - Wanderson Romão
- Instituto Federal de Educação; Ciência e Tecnologia do Espírito Santo; Brazil
| | | | | | - Rafael Luque
- Departamento de Química Orgánica; Universidad de Córdoba; Spain
- Peoples Friendship University of Russia (RUDN University); Russia
| |
Collapse
|
28
|
Hernández F, Castiglioni S, Covaci A, de Voogt P, Emke E, Kasprzyk‐Hordern B, Ort C, Reid M, Sancho JV, Thomas KV, van Nuijs AL, Zuccato E, Bijlsma L. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater. MASS SPECTROMETRY REVIEWS 2018; 37:258-280. [PMID: 27750373 PMCID: PMC6191649 DOI: 10.1002/mas.21525] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 09/30/2016] [Indexed: 05/04/2023]
Abstract
The analysis of illicit drugs in urban wastewater is the basis of wastewater-based epidemiology (WBE), and has received much scientific attention because the concentrations measured can be used as a new non-intrusive tool to provide evidence-based and real-time estimates of community-wide drug consumption. Moreover, WBE allows monitoring patterns and spatial and temporal trends of drug use. Although information and expertise from other disciplines is required to refine and effectively apply WBE, analytical chemistry is the fundamental driver in this field. The use of advanced analytical techniques, commonly based on combined chromatography-mass spectrometry, is mandatory because the very low analyte concentration and the complexity of samples (raw wastewater) make quantification and identification/confirmation of illicit drug biomarkers (IDBs) troublesome. We review the most-recent literature available (mostly from the last 5 years) on the determination of IDBs in wastewater with particular emphasis on the different analytical strategies applied. The predominance of liquid chromatography coupled to tandem mass spectrometry to quantify target IDBs and the essence to produce reliable and comparable results is illustrated. Accordingly, the importance to perform inter-laboratory exercises and the need to analyze appropriate quality controls in each sample sequence is highlighted. Other crucial steps in WBE, such as sample collection and sample pre-treatment, are briefly and carefully discussed. The article further focuses on the potential of high-resolution mass spectrometry. Different approaches for target and non-target analysis are discussed, and the interest to perform experiments under laboratory-controlled conditions, as a complementary tool to investigate related compounds (e.g., minor metabolites and/or transformation products in wastewater) is treated. The article ends up with the trends and future perspectives in this field from the authors' point of view. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:258-280, 2018.
Collapse
Affiliation(s)
- Félix Hernández
- Research Institute for Pesticides and WaterUniversity Jaume ICastellónSpain
| | - Sara Castiglioni
- Department of Environmental Health SciencesIRCCS—Istituto di Ricerche Farmacologiche Mario NegriMilanItaly
| | - Adrian Covaci
- Toxicological CenterUniversity of AntwerpAntwerpBelgium
| | - Pim de Voogt
- KWR Watercycle Research InstituteNieuwegeinthe Netherlands
- IBED—University of AmsterdamAmsterdamthe Netherlands
| | - Erik Emke
- KWR Watercycle Research InstituteNieuwegeinthe Netherlands
| | | | - Christoph Ort
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Malcolm Reid
- Norwegian Institute for Water Research (NIVA)OsloNorway
| | - Juan V. Sancho
- Research Institute for Pesticides and WaterUniversity Jaume ICastellónSpain
| | | | | | - Ettore Zuccato
- Department of Environmental Health SciencesIRCCS—Istituto di Ricerche Farmacologiche Mario NegriMilanItaly
| | - Lubertus Bijlsma
- Research Institute for Pesticides and WaterUniversity Jaume ICastellónSpain
| |
Collapse
|
29
|
Huber D, Bleymaier K, Pellis A, Vielnascher R, Daxbacher A, Greimel KJ, Guebitz GM. Laccase catalyzed elimination of morphine from aqueous systems. N Biotechnol 2018; 42:19-25. [DOI: 10.1016/j.nbt.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/29/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
|
30
|
Yadav MK, Short MD, Aryal R, Gerber C, van den Akker B, Saint CP. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment. WATER RESEARCH 2017; 124:713-727. [PMID: 28843086 DOI: 10.1016/j.watres.2017.07.068] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving environments.
Collapse
Affiliation(s)
- Meena K Yadav
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Michael D Short
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Rupak Aryal
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Cobus Gerber
- School of Pharmacy and Medical Science, City East Campus, North Terrace, Playford Building, Level 4, Room 47, Adelaide, SA 5000, Australia.
| | - Ben van den Akker
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Australian Water Quality Centre, SA Water, 250 Victoria Square, Adelaide SA 5000; GPO Box 1751, Adelaide SA 5001, Australia.
| | - Christopher P Saint
- Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
31
|
Been F, Bastiaensen M, Lai FY, van Nuijs ALN, Covaci A. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Biomarkers of Exposure to Phosphorus Flame Retardants in Wastewater to Monitor Community-Wide Exposure. Anal Chem 2017; 89:10045-10053. [PMID: 28836434 DOI: 10.1021/acs.analchem.7b02705] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphorus flame retardants and plasticizers (PFRs) are increasingly used in consumer goods, from which they can leach and pose potential threats to human health. Monitoring human exposure to these compounds is thus highly relevant. Current assessment of exposure through analysis of biological matrices is, however, tedious as well as logistically and financially demanding. Analysis of selected biomarkers of exposure to PFRs in wastewater could be a simple and complementary approach to monitoring, over space and time, exposure at the population level. An analytical procedure, based on solid-phase extraction (SPE) and liquid chromatography coupled to tandem mass spectrometry, was developed and validated to monitor the occurrence in wastewater of human exposure biomarkers of 2-ethylhexyldiphenyl phosphate (EHDPHP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), tris(2-chloroisopropyl) phosphate (TCIPP), and tris(2-chloroethyl) phosphate (TCEP). Various SPE sorbents and extraction protocols were evaluated, and for the optimized method, absolute extraction recoveries ranged between 46% and 100%. Accuracy and precision were satisfactory for the selected compounds. Method detection limits ranged from 1.6 to 19 ng L-1. Biomarkers of exposure to PFRs were measured for the first time in influent wastewater. Concentrations in samples collected in Belgium ranged from below the limit of quantitation to 1072 ng L-1, with 2-ethylhexyl phenyl phosphate (EHPHP) and TCEP being the most abundant. Per capita loads of target biomarkers varied greatly, suggesting potential differences in exposure between the investigated communities. The developed method allowed implementation of the concepts of human biomonitoring at the community scale, opening the possibility to assess population-wide exposure to PFRs.
Collapse
Affiliation(s)
- Frederic Been
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Michiel Bastiaensen
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Foon Yin Lai
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
32
|
Cecinato A, Romagnoli P, Perilli M, Balducci C. Psychotropic substances in house dusts: a preliminary assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21256-21261. [PMID: 28736802 DOI: 10.1007/s11356-017-9549-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Psychotropic substances (PSs) are known to affect air and waters, while scarce attention has been paid to their occurrence in settled dusts although they can reach important concentrations there; moreover, no procedures have been developed for this specific purpose. In this study, a list of PSs (i.e., nicotine, cotinine, caffeine, cocaine, cannabinol, Δ9-tetrahydrocannabinol, cannabidiol, amphetamine, heroin, and methadone) were characterized in dusts from Rome and Fiumicino international airport, Italy, and from Ouargla city, Algeria. The analytical procedure, based on ultra-sonic bath extraction, silica column chromatography, and GC-MSD analysis, provided good recovery, uncertainty, sensitivity, and lack of interferences for all substances except amphetamine. In NIST SRM-2585 house dust, nicotine, cotinine, caffeine, cocaine, and cannabinol accounted for ~5.95, 0.87, 4.17, 7.0, and 2.2 μg/g, respectively; on the other hand, methadone, tetrahydrocannabinol, cannabidiol, and heroin (all <0.025 μg/g) were below the detection limit of the method. Two sites at the Fiumicino airport were affected by different loads of PSs (e.g., 0.76 and 2.80 ng/m2 of cocaine). In Ouargla, where dust was collected in a primary school and a dwelling, nicotine ranged from ~60 ± 50 to ~86 ± 89 ng/m2, cocaine was absent, and cannabinoids (0.35 ± 0.43 ng/m2 as total) were found only in the home. In Rome, nicotine, caffeine, cocaine, and cannabinol reached ca. 700, 1470, 0.82, and 2.4 ng/m2, respectively, in a smokers' home, but they were ca. 1300, 25,000, 670, and 1700 ng/m2 in a non-smoker home. In conclusion, all dusts revealed the presence of illicit PSs. Further studies are necessary to understand the links between the PS amounts in airborne particulates and in dusts, as well as the PS origin and fate in interiors.
Collapse
Affiliation(s)
- Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy.
| | - Paola Romagnoli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Mattia Perilli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| |
Collapse
|
33
|
Liquid chromatography–mass spectrometry as a tool for wastewater-based epidemiology: Assessing new psychoactive substances and other human biomarkers. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
González-Mariño I, Zuccato E, Santos MM, Castiglioni S. Monitoring MDMA metabolites in urban wastewater as novel biomarkers of consumption. WATER RESEARCH 2017; 115:1-8. [PMID: 28254532 DOI: 10.1016/j.watres.2017.01.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 05/06/2023]
Abstract
Consumption of 3,4-methylendioxymethamphetamine (MDMA) has been always estimated by measuring the parent substance through chemical analysis of wastewater. However, this may result in an overestimation of the use if the substance is directly disposed in sinks or toilets. Using specific urinary metabolites may overcome this limitation. This study investigated for the first time the suitability of a panel of MDMA metabolites as biomarkers of consumption, considering the specific criteria recently proposed, i.e. being detectable and stable in wastewater, being excreted in a known percentage in urine, and having human excretion as the sole source. A new analytical method was developed and validated for the extraction and analysis of MDMA and three of its main metabolites in wastewater. 24-h composite raw wastewater samples from three European cities were analysed and MDMA use was back-calculated. Results from single MDMA loads, 4-hydroxy-3-methoxymethamphetamine (HMMA) loads and from the sum of MDMA, HMMA and 4-hydroxy-3-methoxyamphetamine (HMA) loads were in line with the well-known recreational use of this drug: consumption was higher during the weekend in all cities. HMMA and HMA turned out to be suitable biomarkers of consumption; however, concentrations measured in wastewater did not resemble the expected pharmacokinetic profiles, quite likely due to the very limited information available on excretion profiles. Different options were tested to back-calculate MDMA use, including the sum of MDMA and its metabolites, to balance the biases associated with each single substance. Nevertheless, additional pharmacokinetic studies are urgently needed in order to get more accurate excretion rates and, therefore, improve the estimates of MDMA use.
Collapse
Affiliation(s)
- Iria González-Mariño
- Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy; Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782, Santiago de Compostela, Spain.
| | - Ettore Zuccato
- Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy
| | - Miquel M Santos
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Sara Castiglioni
- Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy.
| |
Collapse
|
35
|
Gracia-Lor E, Castiglioni S, Bade R, Been F, Castrignanò E, Covaci A, González-Mariño I, Hapeshi E, Kasprzyk-Hordern B, Kinyua J, Lai FY, Letzel T, Lopardo L, Meyer MR, O'Brien J, Ramin P, Rousis NI, Rydevik A, Ryu Y, Santos MM, Senta I, Thomaidis NS, Veloutsou S, Yang Z, Zuccato E, Bijlsma L. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. ENVIRONMENT INTERNATIONAL 2017; 99:131-150. [PMID: 28038971 DOI: 10.1016/j.envint.2016.12.016] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 05/19/2023]
Abstract
The information obtained from the chemical analysis of specific human excretion products (biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the population under investigation to a defined substance. A proper biomarker can provide relevant information about lifestyle habits, health and wellbeing, but its selection is not an easy task as it should fulfil several specific requirements in order to be successfully employed. This paper aims to summarize the current knowledge related to the most relevant biomarkers used so far. In addition, some potential wastewater biomarkers that could be used for future applications were evaluated. For this purpose, representative chemical classes have been chosen and grouped in four main categories: (i) those that provide estimates of lifestyle factors and substance use, (ii) those used to estimate the exposure to toxicants present in the environment and food, (iii) those that have the potential to provide information about public health and illness and (iv) those used to estimate the population size. To facilitate the evaluation of the eligibility of a compound as a biomarker, information, when available, on stability in urine and wastewater and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed.
Collapse
Affiliation(s)
- Emma Gracia-Lor
- Research Institute for Pesticides and Water, Universitat Jaume I, Castellon, Spain; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Milan, Italy.
| | - Sara Castiglioni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Milan, Italy.
| | - Richard Bade
- Research Institute for Pesticides and Water, Universitat Jaume I, Castellon, Spain.
| | - Frederic Been
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Erika Castrignanò
- Deparment of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, UK.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Iria González-Mariño
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Milan, Italy.
| | - Evroula Hapeshi
- NIREAS-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| | | | - Juliet Kinyua
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Foon Yin Lai
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Thomas Letzel
- Analytical Group, Chair of Urban Water Systems Engineering, Technical University of Munich, Germany.
| | - Luigi Lopardo
- Deparment of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, UK.
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany.
| | - Jake O'Brien
- National Research Center for Environmental Toxicology, The University of Queensland, Coopers Plains, QLD 4108, Australia.
| | - Pedram Ramin
- Dept. of Environmental Engineering, Technical University of Denmark, Denmark.
| | - Nikolaos I Rousis
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Milan, Italy.
| | - Axel Rydevik
- Deparment of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, UK.
| | - Yeonsuk Ryu
- Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway.
| | - Miguel M Santos
- CIMAR/CIIMAR, LA-Interdisciplinary Centre for marine and Environmental Research, University of Porto, Portugal; FCUP-Dept of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Ivan Senta
- Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Sofia Veloutsou
- Analytical Group, Chair of Urban Water Systems Engineering, Technical University of Munich, Germany.
| | - Zhugen Yang
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, G128LT Glasgow, United Kingdom.
| | - Ettore Zuccato
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Milan, Italy.
| | - Lubertus Bijlsma
- Research Institute for Pesticides and Water, Universitat Jaume I, Castellon, Spain.
| |
Collapse
|
36
|
Canzani D, Hsieh K, Standland M, Hammack W, Aldeek F. UHPLC-MS/MS method for the quantitation of penicillin G and metabolites in citrus fruit using internal standards. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:87-94. [PMID: 28088045 DOI: 10.1016/j.jchromb.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/08/2016] [Accepted: 01/08/2017] [Indexed: 11/17/2022]
Abstract
Penicillin G has been applied to citrus trees as a potential treatment in the fight against Huanglongbing (HLB). Here, we have developed and validated a method to identify and quantitate penicillin G and two of its metabolites, penillic acid and penilloic acid, in citrus fruit using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). This method improves upon a previous method by incorporating isotopically labeled internal standards, namely, penillic acid-D5, and penilloic acid-D5. These standards greatly enhanced the accuracy and precision of our measurements by compensating for recovery losses, degradation, and matrix effects. When 2g of citrus fruit sample is extracted, the limits of detection (LOD) were determined to be 0.1ng/g for penicillin G and penilloic acid, and 0.25ng/g for penillic acid. At fortification levels of 0.1, 0.25, 1, and 10ng/g, absolute recoveries for penillic and penilloic acids were generally between 50-70%. Recoveries corrected with the isotopically labeled standards were approximately 90-110%. This method will be useful for the identification and quantitation of drug residues and their degradation products using isotopically labeled standards and UHPLC-MS/MS.
Collapse
Affiliation(s)
- Daniele Canzani
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Kevin Hsieh
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Matthew Standland
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Walter Hammack
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Fadi Aldeek
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States.
| |
Collapse
|
37
|
Drugs of abuse in drinking water – a review of current detection methods, occurrence, elimination and health risks. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Spasiano D, Russo D, Vaccaro M, Siciliano A, Marotta R, Guida M, Reis NM, Li Puma G, Andreozzi R. Removal of benzoylecgonine from water matrices through UV254/H2O2 process: Reaction kinetic modeling, ecotoxicity and genotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:515-525. [PMID: 27450344 DOI: 10.1016/j.jhazmat.2016.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Benzoylecgonine (BE), the main cocaine metabolite, has been detected in numerous surface water and treatment plants effluents in Europe and there is urgent need for effective treatment methods. In this study, the removal of BE by the UV254/H2O2 process from different water matrices was investigated. By means of competition kinetics method, the kinetic constant of reaction between BE and the photogenerated hydroxyl radicals (OH) was estimated resulting in kOH/BE=5.13×10(9)M(-1)s(-1). By-products and water matrices scavengers effects were estimated by numerical modeling of the reaction kinetics for the UV254/H2O2 process and validated in an innovative microcapillary film (MCF) array photoreactor and in a conventional batch photoreactor. The ecotoxicity of the water before and after treatment was evaluated with four organisms Raphidocelis subcapitata, Daphnia magna, Caenorhabditis elegans, and Vicia faba. The results provided evidence that BE and its transformation by-products do not have significant adverse effects on R. subcapitata, while D. magna underwent an increase of lipid droplets. C. elegans was the most sensitive to BE and its by-products. Furthermore, a genotoxicity assay, using V. faba, showed cytogenic damages during the cell mitosis of primary roots.
Collapse
Affiliation(s)
- D Spasiano
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via E. Orabona, 4-70125 Bari, Italy.
| | - D Russo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80-80125 Napoli, Italy
| | - M Vaccaro
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80-80125 Napoli, Italy
| | - A Siciliano
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy
| | - R Marotta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80-80125 Napoli, Italy
| | - M Guida
- Dipartimento di Biologia, Università di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy
| | - N M Reis
- Environmental Nanocatalysis & Photoreaction Engineering Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - G Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| | - R Andreozzi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80-80125 Napoli, Italy
| |
Collapse
|
39
|
Population surveys compared with wastewater analysis for monitoring illicit drug consumption in Italy in 2010-2014. Drug Alcohol Depend 2016; 161:178-88. [PMID: 26875670 DOI: 10.1016/j.drugalcdep.2016.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 01/12/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monitoring consumption by population surveys (PS) is an important way to challenge the spread of illicit drugs (ID). To improve the information, we explored a complementary method, particularly wastewater analysis (WWA). METHODS We estimated the prevalence of use by PS, and the consumption by WWA, of cocaine, opioids, cannabis, methamphetamine and MDMA (ecstasy) from 2010 to 2014 in Italy and compared the results. RESULTS According to PS, cannabis and cocaine were the ID most used in Italy (last month prevalence 3.0% and 0.43% respectively in 2010) followed by opioids (0.17%) and amphetamines (0.14%). WWA gave similar findings, with cannabis consumption (4.35 g THC/day/1000 inhabitants) exceeding cocaine (0.78 g), heroin (0.092 g), methamphetamine and MDMA (0.103 g). The time trend investigated by PS showed significant decreases for all ID from 2010 to 2012. WWA also indicated a reduction of consumption for methamphetamine (p<0.0001) and heroin (p<0.01). Both methods showed an increase for cannabis in 2014 (p<0.001) with the other ID unchanged. Spatial investigations by WWA showed that cannabis and cocaine were consumed significantly more in central Italy than in the north and south. PS indicated the same but only for cannabis. WWA was helpful to study weekly patterns of consumption, showing increases in cocaine and MDMA at weekends. CONCLUSIONS PS and WWA were confirmed as complementary methods and when used together improved the information on ID use in Italy. We suggest that the combined use of the two approaches can give better information on ID use in the population.
Collapse
|
40
|
Duvivier WF, van Putten MR, van Beek TA, Nielen MWF. (Un)targeted Scanning of Locks of Hair for Drugs of Abuse by Direct Analysis in Real Time-High-Resolution Mass Spectrometry. Anal Chem 2016; 88:2489-96. [PMID: 26813807 DOI: 10.1021/acs.analchem.5b04759] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forensic hair evidence can be used to obtain retrospective timelines of drug use by analysis of hair segments. However, this is a laborious and time-consuming process, and mass spectrometric (MS) imaging techniques, which show great potential for single-hair targeted analysis, are less useful due to differences in hair growth rate between individual hairs. As an alternative, a fast untargeted analysis method was developed that uses direct analysis in real time-high-resolution mass spectrometry (DART-HRMS) to longitudinally scan intact locks of hair without extensive sample preparation or segmentation. The hair scan method was validated for cocaine against an accredited liquid chromatography/tandem mass spectrometry (LC/MS/MS) method. The detection limit for cocaine in hair was found to comply with the cutoff value of 0.5 ng/mg recommended by the Society of Hair Testing; that is, the DART hair scan method is amenable to forensic cases. Under DART conditions, no significant thermal degradation of cocaine occurred. The standard DART spot size of 5.1 ± 1.1 mm could be improved to 3.3 ± 1.0 mm, corresponding to approximately 10 days of hair growth, by using a high spatial resolution exit cone. By use of data-dependent product ion scans, multiple drugs of abuse could be detected in a single drug user hair scan with confirmation of identity by both exact mass and MS/HRMS fragmentation patterns. Furthermore, full-scan high-resolution data were retrospectively interrogated versus a list of more than 100 compounds and revealed additional hits and temporal profiles in good correlation with reported drug use.
Collapse
Affiliation(s)
- Wilco F Duvivier
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Marc R van Putten
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Teris A van Beek
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University , Dreijenplein 8, 6703 HB Wageningen, The Netherlands.,RIKILT Wageningen UR , Post Office Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
41
|
Russo D, Spasiano D, Vaccaro M, Cochran KH, Richardson SD, Andreozzi R, Li Puma G, Reis NM, Marotta R. Investigation on the removal of the major cocaine metabolite (benzoylecgonine) in water matrices by UV254/H2O2 process by using a flow microcapillary film array photoreactor as an efficient experimental tool. WATER RESEARCH 2016; 89:375-383. [PMID: 26735209 DOI: 10.1016/j.watres.2015.11.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
A microcapillary film reactor (MCF) was adopted to evaluate and compare the removal efficiency of benzoylecgonine (BE), an emerging micropollutant deriving from illicit drug abuse (cocaine), in different aqueous matrices: milliQ water, synthetic and real wastewater and surface water. The removal processes investigated were the direct photolysis with UV radiation at 254 nm, and the advanced oxidation process (AOP) with the same UV radiation and hydrogen peroxide. As a result of the microfluidics approach developed through an innovative experimental apparatus, full conversion of BE was reached within a few seconds or minutes of residence time in the MCF depending on the process conditions adopted. The radiation dose was estimated to be approximately 5.5 J cm(-2). The innovative MCF reactor was found to be an effective tool for photochemical studies, especially when using highly priced, uncommon, or regulated substances. The removal efficiency was affected by the nature of the aqueous matrix, due to the presence of different xenobiotics and natural compounds that act primarily as HO(•) radical scavengers and secondly as inner UV254 filters. Moreover, nano-liquid chromatography (LC)-high resolution-mass spectrometry analysis was utilized to identify the main reaction transformation products, showing the formation of hydroxylated aromatics during the photochemical treatment.
Collapse
Affiliation(s)
- Danilo Russo
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università di Napoli "Federico II", P.le V. Tecchio, 80, Napoli 80125, Italy.
| | - Danilo Spasiano
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università di Napoli "Federico II", P.le V. Tecchio, 80, Napoli 80125, Italy
| | - Marianna Vaccaro
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università di Napoli "Federico II", P.le V. Tecchio, 80, Napoli 80125, Italy
| | - Kristin H Cochran
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Roberto Andreozzi
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università di Napoli "Federico II", P.le V. Tecchio, 80, Napoli 80125, Italy
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| | - Nuno M Reis
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Raffaele Marotta
- Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università di Napoli "Federico II", P.le V. Tecchio, 80, Napoli 80125, Italy
| |
Collapse
|
42
|
Abstract
Pharmaceuticals and their active metabolites are one of the significantly emerging environmental toxicants. The major routes of entry of pharmaceuticals into the environment are industries, hospitals, or direct disposal of unwanted or expired drugs made by the patient. The most important and distinct features of pharmaceuticals are that they are deliberately designed to have an explicit mode of action and designed to exert an effect on humans and other living systems. This distinctive feature makes pharmaceuticals and their metabolites different from other chemicals, and this necessitates the evaluation of the direct effects of pharmaceuticals in various environmental compartments as well as to living systems. In this background, the alarming situation of ecotoxicity of diverse pharmaceuticals have forced government and nongovernment regulatory authorities to recommend the application of in silico methods to provide quick information about the risk assessment and fate properties of pharmaceuticals as well as their ecological and indirect human health effects. This chapter aims to offer information regarding occurrence of pharmaceuticals in the environment, their persistence, environmental fate, and toxicity as well as application of in silico methods to provide information about the basic risk management and fate prediction of pharmaceuticals in the environment. Brief ideas about toxicity endpoints, available ecotoxicity databases, and expert systems employed for rapid toxicity predictions of ecotoxicity of pharmaceuticals are also discussed.
Collapse
Affiliation(s)
- Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Supratik Kar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
43
|
McCall AK, Bade R, Kinyua J, Lai FY, Thai PK, Covaci A, Bijlsma L, van Nuijs ALN, Ort C. Critical review on the stability of illicit drugs in sewers and wastewater samples. WATER RESEARCH 2016; 88:933-947. [PMID: 26618807 DOI: 10.1016/j.watres.2015.10.040] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/09/2015] [Accepted: 10/18/2015] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology (WBE) applies advanced analytical methods to quantify drug residues in wastewater with the aim to estimate illicit drug use at the population level. Transformation processes during transport in sewers (chemical and biological reactors) and storage of wastewater samples before analysis are expected to change concentrations of different drugs to varying degrees. Ignoring transformation for drugs with low to medium stability will lead to an unknown degree of systematic under- or overestimation of drug use, which should be avoided. This review aims to summarize the current knowledge related to the stability of commonly investigated drugs and, furthermore, suggest a more effective approach to future experiments. From over 100 WBE studies, around 50 mentioned the importance of stability and 24 included tests in wastewater. Most focused on in-sample stability (i.e., sample preparation, preservation and storage) and some extrapolated to in-sewer stability (i.e., during transport in real sewers). While consistent results were reported for rather stable compounds (e.g., MDMA and methamphetamine), a varying range of stability under different or similar conditions was observed for other compounds (e.g., cocaine, amphetamine and morphine). Wastewater composition can vary considerably over time, and different conditions prevail in different sewer systems. In summary, this indicates that more systematic studies are needed to: i) cover the range of possible conditions in sewers and ii) compare results more objectively. To facilitate the latter, we propose a set of parameters that should be reported for in-sewer stability experiments. Finally, a best practice of sample collection, preservation, and preparation before analysis is suggested in order to minimize transformation during these steps.
Collapse
Affiliation(s)
- Ann-Kathrin McCall
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600 Dübendorf, Switzerland
| | - Richard Bade
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón, Spain
| | - Juliet Kinyua
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Foon Yin Lai
- The University of Queensland, The National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd., Coopers Plains, Brisbane, QLD 4108, Australia
| | - Phong K Thai
- The University of Queensland, The National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd., Coopers Plains, Brisbane, QLD 4108, Australia; Queensland University of Technology, International Laboratory for Air Quality & Health, 2 George Street, Brisbane, QLD 4001, Australia
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Lubertus Bijlsma
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellón, Spain
| | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600 Dübendorf, Switzerland.
| |
Collapse
|
44
|
Prevalence and distribution patterns of amphetamine and methamphetamine consumption in a federal state in southwestern Germany using wastewater analysis. Drug Alcohol Depend 2015; 156:311-314. [PMID: 26416694 DOI: 10.1016/j.drugalcdep.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Wastewater analysis is a new approach developed to estimate drug (of abuse) consumption in large communities, such as cities or even whole countries. AIMS This paper presents data on the loads of amphetamine and methamphetamine measured in ten wastewater treatment plants in different parts of a German federal state. It provides an estimation of the intensity of the consumption and a comparison to other regions in Germany and Europe. METHODS Consumption of amphetamine and methamphetamine was estimated by analysis of drug residues in composite 24h samples of wastewater after mechanical treatment over one week by liquid chromatography-high resolution tandem mass spectrometry. Samples were collected from the inlet of ten wastewater treatment plants (WWTP) in the federal state of Saarland, representing bigger cities (>200,000 inhabitants), medium sized cities (>50,000 inhabitants), small cities (>25,000 inhabitants), and villages (<25,000 inhabitants). In each WWTP, samples were taken daily for seven consecutive days in July 2014. RESULTS We observed differences of amphetamine versus methamphetamine loads (expressed as mg/day/1000 inhabitants): Amphetamine loads were much higher in all tested WWTPs indicating a low prevalence of methamphetamine abuse in the federal state of Saarland at the tested period. These findings are in line with previous reports about the distribution of amphetamine and methamphetamine in Germany and Europe. CONCLUSIONS The approach confirms that wastewater analysis can provide valuable data about the abuse pattern of drugs of abuse in cities and larger areas. It can be useful for planning interventions aimed at specific areas and substances.
Collapse
|
45
|
Parolini M, Magni S, Castiglioni S, Zuccato E, Binelli A. Realistic mixture of illicit drugs impaired the oxidative status of the zebra mussel (Dreissena polymorpha). CHEMOSPHERE 2015; 128:96-102. [PMID: 25676616 DOI: 10.1016/j.chemosphere.2014.12.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Illicit drugs are considered to be emerging aquatic pollutants since they are commonly found in freshwater ecosystems in the high ng L(-1) to low μg L(-1) range concentrations. Although the environmental occurrence of the most common psychoactive compounds is well known, recently some investigations showed their potential toxicity toward non-target aquatic organisms. However, to date, these studies completely neglected that organisms in the real environment are exposed to a complex mixture, which could lead to dissimilar adverse effects. The present study investigated the oxidative alterations of the freshwater bivalve Dreissena polymorpha induced by a 14-d exposure to an environmentally relevant mixture of the most common illicit drugs found in the aquatic environment, namely cocaine (50 ng L(-1)), benzoylecgonine (300 ng L(-1)), amphetamine (300 ng L(-1)), morphine (100 ng L(-1)) and 3,4-methylenedioxymethamphetamine (50 ng L(-1)). The total oxidant status (TOS) was measured to investigate the increase in the reactive oxygen species' levels, while the activity of antioxidant enzymes and glutathione S-transferase were measured to note the eventual imbalances between pro-oxidant and antioxidant molecules. In addition, oxidative damage was assessed by measuring the levels of lipid peroxidation and protein carbonylation. Significant time-dependent increases of all the antioxidant activities were induced by the mixture. Moreover, the illicit drug mixture significantly increased the levels of carbonylated proteins and caused a slight variation in lipid peroxidation. Our results showed that a mixture of illicit drugs at realistic environmental concentrations can impair the oxidative status of the zebra mussel, posing a serious hazard to the health status of this bivalve species.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Sara Castiglioni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Ettore Zuccato
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
46
|
Heuett NV, Ramirez CE, Fernandez A, Gardinali PR. Analysis of drugs of abuse by online SPE-LC high resolution mass spectrometry: communal assessment of consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:319-30. [PMID: 25553546 DOI: 10.1016/j.scitotenv.2014.12.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 05/21/2023]
Abstract
An online SPE-LC-HRMS method was developed to monitor the consumption of 18 drugs of abuse (DOAs) including amphetamines, opioids, cocainics, cannabinoids, lysergics, and their corresponding metabolites in a well characterized college campus setting via wastewater analysis. Filtered and diluted (10×) sewage water samples (5 mL inj.) were automatically pre-concentrated and analyzed in 15 min using a Thermo EQuan MAX online SPE system equipped with a HyperSep™ Retain PEP (20×2.1 mm×12 μm) SPE column and a Hypersil Gold™ aQ (150×2.1 mm×3 μm) analytical column. A Q Exactive™ Hybrid Quadrupole-Orbitrap HRMS was used in full scan mode (R=140,000) for positive identification, and quantitation of target compounds. Method detection limits for all analytes ranged between 0.6 and 1.7 ng/L in sewage. A total of 14 DOAs were detected from two different locations (dorms and main college campus) within a one-year period. Most frequently detected drugs throughout the entire study were amphetamine (>96%) and THC's metabolite 11-nor-9-carboxy-Δ-9-THC (>100%) with maximum concentrations of 5956 and 2413 ng/L respectively. Daily doses per 1000 people were determined in order to assess consumption of THC, amphetamine, heroin and cocaine, in both dorms and main campus.
Collapse
Affiliation(s)
- Nubia V Heuett
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| | - Adolfo Fernandez
- Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| | - Piero R Gardinali
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
47
|
Heuett NV, Batchu SR, Gardinali PR. Understanding the magnitude of emergent contaminant releases through target screening and metabolite identification using high resolution mass spectrometry: Illicit drugs in raw sewage influents. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:41-50. [PMID: 25174793 DOI: 10.1016/j.jhazmat.2014.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
A QExactive Orbitrap was used for the identification of phase I and II transformation products (TPs) of illicit drugs in raw sewage influents. Two operating modes (targeted MS(2) and Data-dependent screening) were used for data acquisition. Even though, data-dependent scan is a faster route towards the potential identification of metabolites, it suffered from its limitation to provide enough data points across the chromatographic peak during the MS(2) cycle in contrast to targeted MS(2). Therefore, the later technique was implemented as the method of choice in this study for the positive confirmation and quantitation of TPs (n=54). The vast majority of the identified TPs were products of phase I transformation reactions, with the latter being more prevalent in the nature. Estimated mole fractions showed that for a large number of the analytes, TPs must also be monitored in order to fully understand their environmental fate and calculate potential consumption.
Collapse
Affiliation(s)
- Nubia V Heuett
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| | - Sudha Rani Batchu
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| | - Piero R Gardinali
- Department of Chemistry and Biochemistry, Florida International University, North Miami, FL 33181, USA; Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
48
|
Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry. Anal Chim Acta 2015; 861:47-54. [PMID: 25702273 DOI: 10.1016/j.aca.2015.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
Fourteen common drugs of abuse were identified in spiked oral fluid (ng mL(-1) levels), analyzed directly from medical swabs using touch spray mass spectrometry (TS-MS), exemplifying a rapid test for drug detection. Multiple stages of mass analysis (MS(2) and MS(3)) provided identification and detection limits sought by international forensic and toxicological societies, Δ(9)-THC and buprenorphine excluded. The measurements were made using a medical swab as both the sampling probe and means of ionization. The adaptation of medical swabs for TS-MS analysis allows non-invasive and direct sampling of neat oral fluid. Data acquisition was rapid, seconds per drug, and MS(3) ensured reliable identification of illicit drugs. The reported data were acquired to investigate (i) ionization of common drugs from commercial swabs, (ii) ion intensity over spray duration, and (iii) dynamic range, all as initial steps in development of a quantitative method. The approach outlined is intended for point-of-care drug testing using oral fluid in clinical applications as well as in situ settings, viz. in forensic applications. The proof-of-concept results presented will require extension to other controlled substances and refinement in analytical procedures to meet clinical/legal requirements.
Collapse
|
49
|
Castiglioni S, Borsotti A, Riva F, Zuccato E. Illicit drug consumption estimated by wastewater analysis in different districts of Milan: A case study. Drug Alcohol Rev 2014; 35:128-32. [DOI: 10.1111/dar.12233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Castiglioni
- Department of Environmental Health Sciences; IRCCS Istituto di Ricerche Farmacologiche ‘Mario Negri’; Milan Italy
| | - Andrea Borsotti
- Department of Environmental Health Sciences; IRCCS Istituto di Ricerche Farmacologiche ‘Mario Negri’; Milan Italy
| | - Francesco Riva
- Department of Environmental Health Sciences; IRCCS Istituto di Ricerche Farmacologiche ‘Mario Negri’; Milan Italy
| | - Ettore Zuccato
- Department of Environmental Health Sciences; IRCCS Istituto di Ricerche Farmacologiche ‘Mario Negri’; Milan Italy
| |
Collapse
|
50
|
Rapid and sensitive screening and selective quantification of antibiotics in human urine by two-dimensional ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 2014; 406:8049-58. [DOI: 10.1007/s00216-014-8197-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022]
|