1
|
Akissoe L, Sautot P, Mertz C, Morel G, Bohin M, Avallone S, Servent A. Development of a Specific Fluorescence Post-column Derivatization Method Coupled with Ion-Pair Chromatography for Phytate Analysis in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39721600 DOI: 10.1021/acs.jafc.4c09065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Phytate in plants (inositol phosphates, InsPs) affects mineral bioavailability. However, methods for their quantification may lead to variable results, and some are nonspecific (spectrophotometric techniques). In this study, ion-pair high-performance liquid chromatography (HPLC) was coupled with post-column derivatization to allow fluorescence detection (FLD, λexcitation324/λemission364 nm) of InsPs. The fluorescence derivatization reaction, the main input of this study, was based on a ternary complex among phytate, iron(III), and 1,10-phenanthroline. Phytic acid (InsP6) and three other InsPs (InsP3-5) were analyzed in peanuts and soybean products after extraction in HCl 0.66 M, followed by purification on strong anion exchange cartridges. The novel method, named IP-HPLC-FLD, selectively separated InsP3-6 with linear ranges between 600 and 2000 mg 100 g-1 (R2 > 0.99). The limits of detection and quantification were between 120-180 and 340-540 mg 100 g-1, respectively. As the relative standard deviations were under 10%, the IP-HPLC-FLD method is suitable for phytate analysis.
Collapse
Affiliation(s)
- Lorène Akissoe
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier 34093, France
- CIRAD, UMR QualiSud, Montpellier F-34398, France
| | | | - Christian Mertz
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier 34093, France
- CIRAD, UMR QualiSud, Montpellier F-34398, France
| | - Gilles Morel
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier 34093, France
- CIRAD, UMR QualiSud, Montpellier F-34398, France
| | | | - Sylvie Avallone
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier 34093, France
| | - Adrien Servent
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier 34093, France
- CIRAD, UMR QualiSud, Montpellier F-34398, France
| |
Collapse
|
2
|
Huyskens M, Lemmens E, Grootaert C, Van Camp J, Verbeke K, Goos P, Smolders E, Delcour JA. Acidic hydrothermal processing of wheat using citrate buffer largely enhances iron and zinc bioaccessibility and bioavailability to Caco-2 cells. Food Chem 2024; 467:142340. [PMID: 39667302 DOI: 10.1016/j.foodchem.2024.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Phytate chelates iron (Fe) and zinc (Zn) in wheat. A multifactorial experiment showed that hydrothermal processing (45-60 °C, pH 4.0-6.0, 8-24 h) of wheat using acetate or lactate buffers reduced phytate contents by a factor 1.4 to 2.8 and increased bioaccessibility, determined with an in vitro digestion, maximally 1.9 (Fe) or 1.5 (Zn) times relative to unprocessed wheat. In contrast, hydrothermal processing using citrate buffer reduced phytate contents by a factor 1.3 to 2.0 and increased bioaccessibility values 9.8 (Fe) and 8.8 (Zn) times, due to formation of soluble chelates. The in vitro digests were supplied to Caco-2 cells, showing that mineral bioavailabilities in these processed wheat grains were 6-fold (Fe) and 12-fold (Zn) higher than in unprocessed wheat. Thus, hydrothermal processing of wheat using citrate buffer can be used for developing whole grain-based products with increased Fe and Zn bioavailability.
Collapse
Affiliation(s)
- Marie Huyskens
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Belgium.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Belgium.
| | | | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, UGent, Belgium.
| | | | - Peter Goos
- Department of Biosystems, Division of Mechatronics, KU Leuven, Belgium.
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Belgium.
| |
Collapse
|
3
|
Turck D, Bohn T, Cámara M, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Jos Á, Maciuk A, Mangelsdorf I, McNulty B, Naska A, Pentieva K, Siani A, Thies F, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Neuhäuser‐Berthold M, Poulsen HKKM, Maradona MP, Schlatter JR, Siskos A, van Loveren H, Azzollini D, McArdle HJ. Safety of frozen, dried and powder forms of house crickets (Acheta domesticus) as a novel food pursuant. EFSA J 2024; 22:e9101. [PMID: 39687912 PMCID: PMC11647177 DOI: 10.2903/j.efsa.2024.9101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of frozen, dried and powder forms of house crickets (Acheta domesticus) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is proposed in three forms: (i) frozen, (ii) dried, (iii) powder. The main components of the NF are protein, fat and dietary fibre (chitin). The Panel notes that the concentration of contaminants in the NF depends on the occurrence levels of these substances in the insect feed. The NF has a protein content that ranges between 19.7 and 20.9 g/100 g in the frozen form and 61.7-68.6 g/100 g in the dried and powder forms. The Panel acknowledges that the true protein content is overestimated when using the nitrogen-to-protein conversion factor of 6.25 due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF as food ingredient in a number of food products. The target population proposed by the applicant is the general population. Considering the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The Panel notes that no safety concerns arise from the toxicological information on A. domesticus. The Panel considers that the consumption of the NF might trigger primary sensitisation to A. domesticus proteins and may cause allergic reactions in subjects allergic to crustaceans, mites and molluscs. Additionally, allergens from the feed may end up in the NF. The Panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
4
|
Hernandez MS, Coyle K, Siebecker MG, Woerner DR, Brooks JC, Legako JF. Nutritional profiling of plant-based meat alternatives and ground beef. J Food Sci 2024; 89:9230-9242. [PMID: 39617864 DOI: 10.1111/1750-3841.17579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024]
Abstract
The objective of this study was to characterize the nutritional profile of plant-based meat alternatives (PBMA) and ground beef (GB). Beyond Beef (BEY); Impossible Burger (IMP), a third available product of plant-based protein, including SWEET EARTH, Incogmeato, Open Nature, and Good & Gather (GEN); and two lean levels of GB (regular [80%-85% lean, regular ground beef] and Lean [>93% lean, lean ground beef, LGB]) were purchased from retail stores across the United States. Proximate composition, mineral content, fatty acid profile, amino acid profile, and B-vitamin content were measured in raw products. Generally, PBMA had increased ash content which coincided with increased mineral concentration compared to GB, namely sodium, calcium, and zinc (p < 0.05). Similar trends were observed for B-vitamins. The fatty acid profile of IMP was primarily saturated due to lauric acid (12:0) and myristic acid (14:0) concentrations. Both BEY and GEN were highly unsaturated because of linoleic acid concentration (18:2n6). LGB possessed the greatest total amino acid concentration and total essential amino acid content (p < 0.05). Phenylalanine was increased in PBMA compared to GB (p < 0.05). Overall, these data show differences and similarities between the nutritional profile of PBMA and GB. However, the bioavailability of these nutrients and associated health outcomes, particularly in PBMA, require further investigation.
Collapse
Affiliation(s)
| | - Katherine Coyle
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Matthew G Siebecker
- Department of Plant and Soil Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Dale R Woerner
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - J Chance Brooks
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
5
|
Di D, He S, Zhang R, Gao K, Qiu M, Li X, Sun H, Xue S, Shi J. Exploring the dual role of anti-nutritional factors in soybeans: a comprehensive analysis of health risks and benefits. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39561089 DOI: 10.1080/10408398.2024.2430757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Soybeans (Glycine max [L.] Merr.) are a globally significant crop, valued for their high protein content and nutritional versatility. However, they contain anti-nutritional factors (ANFs) that can interfere with nutrient absorption and pose health risks. This comprehensive review examines the presence and impact of key ANFs in soybeans, such as trypsin inhibitors, lectins, oxalates, phytates, tannins, and soybean polysaccharides, based on recent literature. The physiological roles, potential health hazards of the ANFs, and the detailed balance between their harmful and beneficial effects on human health, as well as the efficacy of deactivation or removal techniques in food processing, were discussed. The findings highlight the dual nature of ANFs in soybeans. Some ANFs have been found to offer health benefits include acting as antioxidants, potentially reducing the risk of cancer, and exhibiting anti-inflammatory effects. However, it is important to note that the same ANFs can also have negative impacts. For instance, trypsin inhibitors, lectins, and tannins may lead to gastrointestinal discomfort and contribute to mineral deficiencies when consumed in excess or without proper processing. This review will provide a clear understanding of the role of ANFs in soybean-based diets and to inform future research and food processing strategies.
Collapse
Affiliation(s)
- Dakai Di
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Rong Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Kuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Min Qiu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, P.R. China
| | - Sophia Xue
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - John Shi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| |
Collapse
|
6
|
Manikandan A, Muthusamy S, Wang ES, Ivarson E, Manickam S, Sivakami R, Narayanan MB, Zhu LH, Rajasekaran R, Kanagarajan S. Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review. FRONTIERS IN PLANT SCIENCE 2024; 15:1468675. [PMID: 39588088 PMCID: PMC11586226 DOI: 10.3389/fpls.2024.1468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Global protein consumption is increasing exponentially, which requires efficient identification of potential, healthy, and simple protein sources to fulfil the demands. The existing sources of animal proteins are high in fat and low in fiber composition, which might cause serious health risks when consumed regularly. Moreover, protein production from animal sources can negatively affect the environment, as it often requires more energy and natural resources and contributes to greenhouse gas emissions. Thus, finding alternative plant-based protein sources becomes indispensable. Rapeseed is an important oilseed crop and the world's third leading oil source. Rapeseed byproducts, such as seed cakes or meals, are considered the best alternative protein source after soybean owing to their promising protein profile (30%-60% crude protein) to supplement dietary requirements. After oil extraction, these rapeseed byproducts can be utilized as food for human consumption and animal feed. However, anti-nutritional factors (ANFs) like glucosinolates, phytic acid, tannins, and sinapines make them unsuitable for direct consumption. Techniques like microbial fermentation, advanced breeding, and genome editing can improve protein quality, reduce ANFs in rapeseed byproducts, and facilitate their usage in the food and feed industry. This review summarizes these approaches and offers the best bio-nutrition breakthroughs to develop nutrient-rich rapeseed byproducts as plant-based protein sources.
Collapse
Affiliation(s)
- Anandhavalli Manikandan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saraladevi Muthusamy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eu Sheng Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajeswari Sivakami
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manikanda Boopathi Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ravikesavan Rajasekaran
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
7
|
Radványi Z, Schnitzbauer U, Pastor-Arroyo EM, Hölker S, Himmerkus N, Bleich M, Müller D, Breiderhoff T, Hernando N, Wagner CA. Absence of claudin-3 does not alter intestinal absorption of phosphate in mice. Pflugers Arch 2024; 476:1597-1612. [PMID: 39115555 PMCID: PMC11381482 DOI: 10.1007/s00424-024-02998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice. Cldn3-deficient mice and wildtype littermates were fed standard diet or challenged for 3 days with high dietary phosphate. Feces, urine, blood, intestinal segments and kidneys were collected. Measurements included fecal, urinary, and plasma concentrations of phosphate and calcium, plasma levels of phosphate-regulating hormones, evaluation of trans- and paracellular phosphate transport across jejunum and ileum, and analysis of intestinal phosphate and calcium permeabilities. Fecal and urinary excretion of phosphate as well as its plasma concentration was similar in both genotypes, under standard and high-phosphate diet. However, Cldn3-deficient mice challenged with high dietary phosphate had a reduced urinary calcium excretion and increased plasma levels of calcitriol. Intact FGF23 concentration was also similar in both groups, regardless of the dietary conditions. We found no differences either in intestinal phosphate transport (trans- or paracellular) and phosphate and calcium permeabilities between genotypes. The intestinal expression of claudin-7 remained unaltered in Cldn3-deficient mice. Our data do not provide evidence for a decisive role of Cldn3 for intestinal phosphate absorption and phosphate homeostasis. In addition, our data suggest a novel role of Cldn3 in regulating calcitriol levels.
Collapse
Affiliation(s)
- Zsuzsa Radványi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Simone Hölker
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Breiderhoff
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Verma D, Vashisht P, Pahariya P, Adu Poku F, Kohli P, Sharma A, Albiol Tapia M, Choudhary R. Compatibility of pulse protein in the formulation of plant based yogurt: a review of nutri-functional properties and processing impact. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38973295 DOI: 10.1080/10408398.2024.2373383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the increased environmental concerns and health awareness among consumers, there has been a notable interest in plant-based dairy alternatives. The plant-based yogurt market has experienced rapid expansion in recent years. Due to challenges related to cultivation, higher cost of production and lower protein content researchers have explored the viability of pulse-based yogurt which has arisen as an economically and nutritionally abundant solution. This review aims to examine the feasibility of utilizing pulse protein for yogurt production. The nutritional, antinutritional, and functional characteristics of various pulses were discussed in detail, alongside the modifications in these properties during the various stages of yogurt manufacturing. The review also sheds light on pivotal findings from existing literature and outlines challenges associated with the production of pulse-based yogurt. Pulses have emerged as promising base materials for yogurt manufacturing due to their favorable nutritional and functional characteristics. Further, the fermentation process can effectively reduce antinutritional components and enhance digestibility. Nonetheless, variations in sensorial and rheological properties were noted when different types of pulses were employed. This issue can be addressed by employing suitable combinations to achieve the desired properties in pulse-based yogurt.
Collapse
Affiliation(s)
- Digvijay Verma
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | | | - Prachi Pahariya
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Felicia Adu Poku
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Amandeep Sharma
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Marta Albiol Tapia
- Fermentation Science Institute, Southern Illinois University, Carbondale, Illinois, USA
| | - Ruplal Choudhary
- School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
9
|
De Vos WM, Nguyen Trung M, Davids M, Liu G, Rios-Morales M, Jessen H, Fiedler D, Nieuwdorp M, Bui TPN. Phytate metabolism is mediated by microbial cross-feeding in the gut microbiota. Nat Microbiol 2024; 9:1812-1827. [PMID: 38858593 DOI: 10.1038/s41564-024-01698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.
Collapse
Affiliation(s)
- Willem M De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mark Davids
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Guizhen Liu
- Institute of Organic Chemistry & Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Melany Rios-Morales
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Henning Jessen
- Institute of Organic Chemistry & Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
- Department of Surgery, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Maradona MP, Neuhäuser‐Berthold M, Siskos A, Poulsen M, Schlatter JR, van Loveren H, Azzollini D, Knutsen HK. Safety of Acheta domesticus powder as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2024; 22:e8919. [PMID: 39077636 PMCID: PMC11284454 DOI: 10.2903/j.efsa.2024.8919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on Acheta (A.) domesticus powder as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The main components of the NF are protein, fat and dietary fibre (chitin). The Panel notes that the concentration of contaminants in the NF depends on the occurrence levels of these substances in the insect feed. The Panel further notes that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf-life. The NF has a high protein content, although the true protein content is overestimated when using the nitrogen-to-protein conversion factor of 6.25 due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF as food ingredient in a number of food products. The target population proposed by the applicant is the general population. Considering the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The panel notes that no safety concerns arise from the toxicological information of A. domesticus. The panel considers that the consumption of the NF might trigger primary sensitisation to A. domesticus proteins and may cause allergic reactions in subjects allergic to crustaceans, mites and molluscs. Additionally, allergens from the feed may end up in the NF. The panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
11
|
Pellowski D, Heinze T, Tuchtenhagen M, Müller SM, Meyer S, Maares M, Gerbracht C, Wernicke C, Haase H, Kipp AP, Grune T, Pfeiffer AFH, Mai K, Schwerdtle T. Fostering healthy aging through selective nutrition: A long-term comparison of two dietary patterns and their holistic impact on mineral status in middle-aged individuals-A randomized controlled intervention trial in Germany. J Trace Elem Med Biol 2024; 84:127462. [PMID: 38701651 DOI: 10.1016/j.jtemb.2024.127462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with a decline in physiological functions and an increased risk of age-related diseases, emphasizing the importance of identifying dietary strategies for healthy aging. Minerals play a crucial role in maintaining optimal health during aging, making them relevant targets for investigation. Therefore, we aimed to analyze the effect of different dietary pattern on mineral status in the elderly. We included 502 individuals aged 50-80 years in a 36-month randomized controlled trial (RCT) (NutriAct study). This article focuses on the results within the two-year intervention period. NutriAct is not a mineral-modulating-targeted intervention study, rather examining nutrition in the context of healthy aging in general. However, mineral status might be affected in an incidental manner. Participants were assigned to either NutriAct dietary pattern (proportionate intake of total energy consumption (%E) of 35-45 %E carbohydrates, 35-40 %E fats, and 15-25 %E protein) or the German Nutrition Society (DGE) dietary pattern (proportionate intake of total energy consumption (%E) of 55 %E carbohydrates, 30 %E fats, and 15 %E protein), differing in the composition of macronutrients. Data from 368 participants regarding dietary intake (energy, calcium, magnesium, iron, and zinc) and serum mineral concentrations of calcium, magnesium, iron, copper, zinc, selenium, iodine, and manganese, free zinc, and selenoprotein P were analyzed at baseline, as well as after 12 and 24 months to gain comprehensive insight into the characteristics of the mineral status. Additionally, inflammatory status - sensitive to changes in mineral status - was assessed by measurement of C-reactive protein and interleukin-6. At baseline, inadequate dietary mineral intake and low serum concentrations of zinc and selenium were observed in both dietary patterns. Throughout two years, serum zinc concentrations decreased, while an increase of serum selenium, manganese and magnesium concentrations was observable, likely influenced by both dietary interventions. No significant changes were observed for serum calcium, iron, copper, or iodine concentrations. In conclusion, long-term dietary interventions can influence serum mineral concentrations in a middle-aged population. Our findings provide valuable insights into the associations between dietary habits, mineral status, and disease, contributing to dietary strategies for healthy aging.
Collapse
Affiliation(s)
- Denny Pellowski
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany
| | - Tom Heinze
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Max Tuchtenhagen
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Sandra M Müller
- Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany
| | - Sören Meyer
- Institute of Nutritional Science, Department Food Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Maria Maares
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin 13355, Germany
| | - Christiana Gerbracht
- Human Study Center, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
| | - Charlotte Wernicke
- NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin 10117, Germany
| | - Hajo Haase
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin 13355, Germany
| | - Anna P Kipp
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Tilman Grune
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Andreas F H Pfeiffer
- NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin 10117, Germany
| | - Knut Mai
- NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin 10117, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, 85764, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin 10115, Germany; Department of Human Nutrition, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany
| | - Tanja Schwerdtle
- Trace-Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Nuthetal, 14558, Germany; NutriAct Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14558, Germany; German Federal Institute for Risk Assessment (BfR), Berlin 10589, Germany.
| |
Collapse
|
12
|
Bilska A, Kurasiak-Popowska D, Szablewski T, Radzimirska-Graczyk M, Stuper-Szablewska K. Camelina sativa Seeds and Oil as Ingredients in Model Muffins in Order to Enhance Their Health-Promoting Value. Foods 2024; 13:2027. [PMID: 38998533 PMCID: PMC11241813 DOI: 10.3390/foods13132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to see whether it is possible to add camelina oil and seeds as ingredients in muffins in order to enhance their health-promoting value, such as their bioactive compound content, while maintaining the organoleptic attributes considered desirable by consumers. Camelina oil is characterised by a high linolenic acid content. Four types of muffins were prepared for analysis: MBnO-control muffins (containing 11.85% rapeseed oil), MCsO-muffins containing camelina oil instead of rapeseed oil, MCsS-muffins containing 6.65% camelina seeds in relation to the mass of prepared dough, and MCsOS-muffins containing both camelina oil and camelina seeds. The change in the fatty acid profile in muffins with the addition of camelina oil was significant; however, it was found that, as a result of thermal treatment, lower amounts of saturated fatty acids were formed. Among all the investigated experimental variants, muffins were characterised by the highest contents of all the phenolic acids analysed. The substitution of rapeseed oil with camelina oil had no negative effect on most of the organoleptic attributes of the muffins. Moreover, thanks to a greater content of carotenoids, camelina oil had an advantageous effect on the improvement of product colour, thus improving its overall desirability.
Collapse
Affiliation(s)
- Agnieszka Bilska
- Department of Food and Nutrition, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland;
| | - Danuta Kurasiak-Popowska
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Horticulture and Biotechnology, Poznan University of Life Sciences, ul. Dojazd 11, 60-632 Poznan, Poland;
| | - Tomasz Szablewski
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| | - Monika Radzimirska-Graczyk
- Department of Food and Nutrition, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznan, Poland;
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 75, 60-625 Poznan, Poland;
| |
Collapse
|
13
|
Cladis DP, Burstad KM, Biruete A, Jannasch AH, Cooper BR, Hill Gallant KM. Dietary Phosphorus Levels Influence Protein-Derived Uremic Toxin Production in Nephrectomized Male Rats. Nutrients 2024; 16:1807. [PMID: 38931160 PMCID: PMC11207110 DOI: 10.3390/nu16121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gut microbiota-derived uremic toxins (UT) accumulate in patients with chronic kidney disease (CKD). Dietary phosphorus and protein restriction are common in CKD treatment, but the relationship between dietary phosphorus, a key nutrient for the gut microbiota, and protein-derived UT is poorly studied. Thus, we explored the relationship between dietary phosphorus and serum UT in CKD rats. For this exploratory study, we used serum samples from a larger study on the effects of dietary phosphorus on intestinal phosphorus absorption in nephrectomized (Nx, n = 22) or sham-operated (sham, n = 18) male Sprague Dawley rats. Rats were randomized to diet treatment groups of low or high phosphorus (0.1% or 1.2% w/w, respectively) for 1 week, with serum trimethylamine oxide (TMAO), indoxyl sulfate (IS), and p-cresol sulfate (pCS) analyzed by LC-MS. Nx rats had significantly higher levels of serum TMAO, IS, and pCS compared to sham rats (all p < 0.0001). IS showed a significant interaction between diet and CKD status, where serum IS was higher with the high-phosphorus diet in both Nx and sham rats, but to a greater extent in the Nx rats. Serum TMAO (p = 0.24) and pCS (p = 0.34) were not affected by dietary phosphorus levels. High dietary phosphorus intake for 1 week results in higher serum IS in both Nx and sham rats. The results of this exploratory study indicate that reducing dietary phosphorus intake in CKD may have beneficial effects on UT accumulation.
Collapse
Affiliation(s)
- Dennis P. Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (D.P.C.); (K.M.B.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Kendal M. Burstad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (D.P.C.); (K.M.B.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Annabel Biruete
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Department of Nutrition and Dietetics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber H. Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; (A.H.J.); (B.R.C.)
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; (A.H.J.); (B.R.C.)
| | - Kathleen M. Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; (D.P.C.); (K.M.B.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Alkay Z, Falah F, Cankurt H, Dertli E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024; 13:1732. [PMID: 38890959 PMCID: PMC11172170 DOI: 10.3390/foods13111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Sourdough fermentation is one of the oldest traditional methods in food technology and occurs as a result of fermentation of flour prepared from grains. The nutritional role of sourdough is related to the final composition of fermented foods prepared through sourdough fermentation, and recently, sourdough has become an important application to improve nutrition characteristics of bread. Thanks to lactic acid bacteria (LAB) presented in sourdough microflora and metabolites partially produced by yeasts, technological and important nutritional features of the bread improve and an increase in shelf life is achieved. In addition, sourdough bread has a low glycemic index value, high protein digestibility, high mineral and antioxidant content, and improved dietary fiber composition, making it more attractive for human nutrition compared to regular bread. When the sourdough process is applied, the chemical and physical properties of fibers vary according to the degree of fermentation, revealing the physiological importance of dietary fiber and its importance to humans' large intestine microbiota. Therefore, taking these approach frameworks into consideration, this review highlights the benefits of sourdough fermentation in increasing nutrient availability and contributing positively to support human health.
Collapse
Affiliation(s)
- Zuhal Alkay
- Food Engineering Department, Faculty of Engineering, Necmettin Erbakan University, Konya 42010, Türkiye;
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Türkiye;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul 34210, Türkiye
| |
Collapse
|
15
|
Gräfenhahn M, Beyrer M. Plant-Based Meat Analogues in the Human Diet: What Are the Hazards? Foods 2024; 13:1541. [PMID: 38790841 PMCID: PMC11121679 DOI: 10.3390/foods13101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Research regarding meat analogues is mostly based on formulation and process development. Information concerning their safety, shelf life, and long-term nutritional and health effects is limited. This article reviews the existing literature and analyzes potential hazards introduced or modified throughout the processing chain of plant-based meat analogues via extrusion processing, encompassing nutritional, microbiological, chemical, and allergen aspects. It was found that the nutritional value of plant-based raw materials and proteins extracted thereof increases along the processing chain. However, the nutritional value of plant-based meat analogues is lower than that of e.g., animal-based products. Consequently, higher quantities of these products might be needed to achieve a nutritional profile similar to e.g., meat. This could lead to an increased ingestion of undigestible proteins and dietary fiber. Although dietary fibers are known to have many positive health benefits, they present a hazard since their consumption at high concentrations might lead to gastrointestinal reactions. Even though there is plenty of ongoing research on this topic, it is still not clear how the sole absorption of metabolites derived from plant-based products compared with animal-based products ultimately affects human health. Allergens were identified as a hazard since plant-based proteins can induce an allergic reaction, are known to have cross-reactivities with other allergens and cannot be eliminated during the processing of meat analogues. Microbiological hazards, especially the occurrence of spore- and non-spore-forming bacteria, do not represent a particular case if requirements and regulations are met. Lastly, it was concluded that there are still many unknown variables and open questions regarding potential hazards possibly present in meat analogues, including processing-related compounds such as n-nitrosamines, acrylamide, and heterocyclic aromatic amino acids.
Collapse
Affiliation(s)
- Maria Gräfenhahn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO VS), 1950 Sion, Switzerland
| | | |
Collapse
|
16
|
Malin AJ, Wang Z, Khan D, McKune SL. The Potential Systemic Role of Diet in Dental Caries Development and Arrest: A Narrative Review. Nutrients 2024; 16:1463. [PMID: 38794700 PMCID: PMC11124059 DOI: 10.3390/nu16101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Current conceptualizations of dental caries etiology center primarily on the local role of sugar, starch, or other fermentable carbohydrates on tooth enamel demineralization-a well-established and empirically supported mechanism. However, in addition to this mechanism, studies dating back to the early 1900s point to an important systemic role of diet and nutrition, particularly from pasture-raised animal-source foods (ASF), in dental caries etiology and arrest. Findings from animal and human studies suggest that adherence to a diet high in calcium, phosphorus, fat-soluble vitamins A and D, and antioxidant vitamin C, as well as low in phytates, may contribute to arrest and reversal of dental caries, particularly among children. Furthermore, findings from observational and experimental studies of humans across the life-course suggest that fat-soluble vitamins A, D, and K2 may interact to protect against dental caries progression, even within a diet that regularly contains sugar. While these historic studies have not been revisited in decades, we emphasize the need for them to be reinvestigated and contextualized in the 21st century. Specifically, methodologically rigorous studies are needed to reinvestigate whether historical knowledge of systemic impacts of nutrition on dental health can help to inform current conceptualizations of dental caries etiology, prevention, and arrest.
Collapse
Affiliation(s)
- Ashley J. Malin
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhilin Wang
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Durdana Khan
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sarah L. McKune
- College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA; (Z.W.); (D.K.); (S.L.M.)
| |
Collapse
|
17
|
van Soest APM, van de Rest O, Witkamp RF, de Groot LCPGM. The association between adherence to the EAT-Lancet diet and cognitive ageing. Age Ageing 2024; 53:ii39-ii46. [PMID: 38745489 PMCID: PMC11094393 DOI: 10.1093/ageing/afae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The EAT-Lancet commission has proposed a dietary pattern that is both sustainable and healthy. However, the impact of this diet on cognition in older adults remains unexplored. Therefore, we examined the association between adherence to the EAT-Lancet diet and cognitive ageing. METHODS We used data from a previous intervention study involving cognitively healthy community-dwelling adults aged ≥65 years. Adherence to the EAT-Lancet diet was calculated using a recently published index and a 190-item food frequency questionnaire. Global and domain-specific cognitive functioning were assessed at baseline and after 2 years using a neuropsychological test battery. Multivariate-adjusted linear regression was conducted to examine associations between EAT-Lancet diet adherence and cognitive functioning (n = 630) and 2-year change (n = 302). RESULTS Greater adherence to the EAT-Lancet diet was associated with better global cognitive functioning (β per SD = 3.7 points [95% CI]: 0.04 [0.00, 0.08]) and slower rate of decline (β per SD [95% CI]: 0.05 [0.02, 0.08]). With respect to domain-specific functioning, beneficial associations were observed cross-sectionally for executive functioning (P < 0.01), and longitudinally for change in executive functioning (P < 0.01) and attention and working memory (P < 0.01). The degree of adherence to the EAT-Lancet was not associated with (changes in) information processing speed or episodic memory. CONCLUSION We demonstrated that greater adherence to the EAT-Lancet diet is associated with better global cognitive functioning and slower cognitive decline among cognitively healthy older adults. Further research is needed to confirm these findings and assess the potential benefits of the EAT-Lancet diet for the ageing population in a broader context.
Collapse
Affiliation(s)
- Annick P M van Soest
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Ondine van de Rest
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
18
|
Lisciani S, Marconi S, Le Donne C, Camilli E, Aguzzi A, Gabrielli P, Gambelli L, Kunert K, Marais D, Vorster BJ, Alvarado-Ramos K, Reboul E, Cominelli E, Preite C, Sparvoli F, Losa A, Sala T, Botha AM, Ferrari M. Legumes and common beans in sustainable diets: nutritional quality, environmental benefits, spread and use in food preparations. Front Nutr 2024; 11:1385232. [PMID: 38769988 PMCID: PMC11104268 DOI: 10.3389/fnut.2024.1385232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
In recent decades, scarcity of available resources, population growth and the widening in the consumption of processed foods and of animal origin have made the current food system unsustainable. High-income countries have shifted towards food consumption patterns which is causing an increasingly process of environmental degradation and depletion of natural resources, with the increased incidence of malnutrition due to excess (obesity and non-communicable disease) and due to chronic food deprivation. An urgent challenge is, therefore, to move towards more healthy and sustainable eating choices and reorientating food production and distribution to obtain a human and planetary health benefit. In this regard, legumes represent a less expensive source of nutrients for low-income countries, and a sustainable healthier option than animal-based proteins in developed countries. Although legumes are the basis of many traditional dishes worldwide, and in recent years they have also been used in the formulation of new food products, their consumption is still scarce. Common beans, which are among the most consumed pulses worldwide, have been the focus of many studies to boost their nutritional properties, to find strategies to facilitate cultivation under biotic/abiotic stress, to increase yield, reduce antinutrients contents and rise the micronutrient level. The versatility of beans could be the key for the increase of their consumption, as it allows to include them in a vast range of food preparations, to create new formulations and to reinvent traditional legume-based recipes with optimal nutritional healthy characteristics.
Collapse
Affiliation(s)
- Silvia Lisciani
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Stefania Marconi
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Cinzia Le Donne
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Emanuela Camilli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Altero Aguzzi
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Paolo Gabrielli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Loretta Gambelli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Karl Kunert
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Diana Marais
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Barend Juan Vorster
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Chiara Preite
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Milan, Italy
| | - Alessia Losa
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Montanaso Lombardo, Italy
| | - Tea Sala
- Research Centre for Genomics and Bioinformatics, Council for Agricultural and Economics Research, Montanaso Lombardo, Italy
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Marika Ferrari
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
19
|
Wehrmaker AM, de Groot W, Jan van der Goot A, Keppler JK, Bosch G. In vitro digestibility and solubility of phosphorus of three plant-based meat analogues. J Anim Physiol Anim Nutr (Berl) 2024; 108 Suppl 1:24-35. [PMID: 38576126 DOI: 10.1111/jpn.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Interest in plant-based meat analogues has increased and can be expected to be applied to pet foods, which necessitates the understanding of the nutrient supply in those foods. Our primary aim was to advance our understanding of the digestive properties of sterilized plant-based meat analogues. The impact of the preparatory processing steps on the solubility of meat analogues was studied. Meat analogues were made by mixing water, salt, and wheat gluten with soy protein isolate, pea protein isolate, or faba bean concentrate. Mixed materials were processed into model meat analogues using shear cell technology. Products were canned in water or gravy and sterilized. An animal-based canned pet food was made as a reference. Products sampled at the processing steps (mixing, shearing, sterilization) were digested in vitro. Samples of digestate were taken at the gastric phase (0 and 120 min) and small intestinal phase (120, 200, 280, and 360 min) for analysis of protein hydrolysis. The extent digestion of nitrogen and dry matter was determined at the end of incubation. Total phosphorus, soluble phosphorus after acid treatment, and after acid and enzymatic treatment were determined. The degree of hydrolysis after gastric digestion was low but increased immediately in the small intestinal phase; products based on pea had the highest values (56%). Nitrogen digestibility was above 90% for all materials at each processing step, indicating that bioactive compounds were absent or inactivated in the protein isolates and concentrate. Phytate seemed to play a minor role in meat analogues, but phosphorus solubility was influenced by processing. Shearing decreased soluble phosphorus, but this effect was partly reversed by sterilization. Nutrient digestibility as well as phosphorus solubility in plant-based products was higher than or comparable with the reference pet food. These findings show that the digestive properties of the tested plant-based meat analogues do not limit the supply of amino acids and phosphorus.
Collapse
Affiliation(s)
- Ariane Maike Wehrmaker
- Saturn Petcare GmbH, Senator-Mester-Straße 1, Bremen, Germany
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | - Wouter de Groot
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, the Netherlands
| | | | - Guido Bosch
- Animal Nutrition Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
20
|
Axentii M, Codină GG. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1195. [PMID: 38732410 PMCID: PMC11085551 DOI: 10.3390/plants13091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
Collapse
|
21
|
Islam MH, Nayan MM, Jubayer A, Amin MR. A review of the dietary diversity and micronutrient adequacy among the women of reproductive age in low- and middle-income countries. Food Sci Nutr 2024; 12:1367-1379. [PMID: 38455218 PMCID: PMC10916566 DOI: 10.1002/fsn3.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024] Open
Abstract
The dietary quality of women of reproductive age (WRA) is particularly important during preconception, conception, and pregnancy for themselves and their offspring. Poorly diversified diets resulting in inadequate micronutrient consumption may have adverse effects on their health. This narrative review summarizes the findings of studies reporting on dietary diversity and micronutrient intake by WRA in low- and middle-income countries (LMICs). Studies on WRA aged 15-49 years in LMICs, with a sample size of more than 150, report dietary diversity and multiple micronutrient intake based on 24-h dietary recall/food weighed record/food frequency questionnaire, and published between January 2011 and June 2021 were included. The results were compared to the Food and Agriculture Organization (FAO) recommended cut-off for dietary diversity and the Indian Council of Medical Research (ICMR) recommended age- and sex-specific estimated average requirements (EARs) for micronutrient intake. This review includes 35 articles, of which 21 focused on dietary diversity and 14 on micronutrient intake. The results showed that WRA in LMICs had inadequate dietary diversity, with mean food group consumption of only 3.0-4.84, and around 42.3%-90% of women consumed inadequately diversified diets (<5 food groups). Additionally, most studies found that WRA did not consume adequate amounts of essential micronutrients, particularly calcium, iron, zinc, vitamin A, thiamin, riboflavin, folate, and vitamin B12. However, the intake of vitamin C, niacin, and vitamin B6 was above the required levels. In conclusion, this review highlights the common inadequacy of dietary diversity and multiple micronutrient intake among WRA in most LMICs. Effective measures involving improving dietary diversity, food fortification with micronutrients, and supplementation programs could help improve the dietary quality and intake of optimal micronutrients by women in LMICs.
Collapse
Affiliation(s)
- Md. Hafizul Islam
- Institute of Nutrition and Food Science, University of DhakaDhakaBangladesh
| | - Md. Moniruzzaman Nayan
- Institute of Nutrition and Food Science, University of DhakaDhakaBangladesh
- Inspira Advisory and Consulting LimitedDhakaBangladesh
| | - Ahmed Jubayer
- Institute of Nutrition and Food Science, University of DhakaDhakaBangladesh
- Bangladesh Institute of Social Research (BISR) TrustDhakaBangladesh
| | - Md. Ruhul Amin
- Institute of Nutrition and Food Science, University of DhakaDhakaBangladesh
| |
Collapse
|
22
|
Turner ME, Beck L, Hill Gallant KM, Chen Y, Moe OW, Kuro-o M, Moe S, Aikawa E. Phosphate in Cardiovascular Disease: From New Insights Into Molecular Mechanisms to Clinical Implications. Arterioscler Thromb Vasc Biol 2024; 44:584-602. [PMID: 38205639 PMCID: PMC10922848 DOI: 10.1161/atvbaha.123.319198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.
Collapse
Affiliation(s)
- Mandy E. Turner
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurent Beck
- Nantes Université, CNRS, Inserm, l’institut du thorax, F-44000 Nantes, France
| | - Kathleen M Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sharon Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Kim KH, Lim SH, Hwang JH, Lee J. Inhibition of Glial Activation and Subsequent Reduction in White Matter Damage through Supplementation with a Combined Extract of Wheat Bran, Citrus Peel, and Jujube in a Rat Model of Vascular Dementia. Curr Issues Mol Biol 2024; 46:1485-1502. [PMID: 38392214 PMCID: PMC10888096 DOI: 10.3390/cimb46020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease. In our previous studies, we showed that wheat bran extract (WBE) reduced white matter damage in a rat VaD model and improved memory in a human clinical trial. However, starch gelatinization made the large-scale preparation of WBE difficult. To simplify the manufacturing process and increase efficacy, we attempted to find a decoction containing an optimum ratio of wheat bran, sliced citrus peel, and sliced jujube (WCJ). To find an optimal ratio, the cell survival of C6 (rat glioma) cultured under hypoxic conditions (1% O2) was measured, and apoptosis was assessed. To confirm the efficacies of the optimized WCJ for VaD, pupillary light reflex, white matter damage, and the activation of astrocytes and microglia were assessed in a rat model of bilateral common carotid artery occlusion (BCCAO) causing chronic hypoperfusion. Using a combination of both searching the literature and cell survival experiments, we chose 6:2:1 as the optimal ratio of wheat bran to sliced citrus peel to sliced jujube to prepare WCJ. We showed that phytic acid contained only in wheat bran can be used as an indicator component for the quality control of WCJ. We observed in vitro that the WCJ treatment improved cell survival by reducing apoptosis through an increase in the Bcl-2/Bax ratio. In the BCCAO experiments, the WCJ-supplemented diet prevented astrocytic and microglial activation, mitigated myelin damage in the corpus callosum and optic tract, and, consequently, improved pupillary light reflex at dosages over 100 mg/kg/day. The results suggest that the consumption of WCJ can prevent VaD by reducing white matter damage, and WCJ can be developed as a safe, herbal medicine to prevent VaD.
Collapse
Affiliation(s)
- Ki Hong Kim
- Department of Neurosurgery, School of Medicine, Daegu Catholic University, Daegu 42105, Republic of Korea
| | - Sun-Ha Lim
- DigmBio, Inc., Seongnam 13486, Republic of Korea
| | - Jeong Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jongwon Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu 42105, Republic of Korea
| |
Collapse
|
24
|
Liu C, Xu Y, Wang L, Huang Q, Yan X, Sun Y, Qin X, Liang X. Variations in Cadmium and Lead Bioaccessibility in Wheat Cultivars and Their Correlations with Nutrient Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1768-1778. [PMID: 38217861 DOI: 10.1021/acs.jafc.3c08234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
To reduce the health risks of exposure to Cd and Pb in wheat, a field experiment was conducted to investigate the differences in Cd and Pb bioaccessibility among the grains of 11 wheat cultivars and their relationships with the nutrient compositions of grains. The grain concentrations (Cd: 0.14-0.56 mg kg-1, Pb: 0.08-0.39 mg kg-1) and bioaccessibility (5.28-57.43% and 0.72-7.72% for Cd and Pb in the intestinal phase, respectively) of Cd and Pb differed significantly among the 11 cultivars. A safe wheat cultivar (Shannong16) with a relatively low health risk and the lowest grain Cd and Pb concentrations was selected. Ca, Mg, phytate, and methionine played key roles in affecting Cd and Pb bioaccessibility in wheat, with Ca and phytate significantly negatively correlated with Cd and Pb bioaccessibility. These findings can be used to optimize the selection strategy for safe wheat cultivars for healthy grain production in Cd-polluted farmland.
Collapse
Affiliation(s)
- Chang Liu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
- Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingming Xu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lin Wang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiuxiu Yan
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuebing Sun
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xu Qin
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xuefeng Liang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
25
|
Blommaert H, Sarret G, Chavez E, Smolders E, Vanderschueren R. Cadmium speciation in cacao beans changes during a fermentation-like incubation. Food Chem 2024; 431:137068. [PMID: 37562334 DOI: 10.1016/j.foodchem.2023.137068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Cadmium (Cd) concentrations in cacao often exceed food limits. Recently, it was shown that cacao bean fermentation enhances Cd solubility, opening potential for Cd mitigation in cacao products. This study was set-up to identify changes in Cd speciation during fermentation. X-Ray absorption spectroscopy (XAS) complemented with speciation calculations, were used on samples collected from high and low Cd farms, that were subjected to a fermentation-like incubation that reached high temperatures (>45 °C) and acidic pH (<5). Incubation decreased nib Cd concentration up to a factor 1.5 and changed Cd complexation in high Cd beans from sulphur to oxygen ligands, likely due to pH changes. In beans with lower Cd concentrations, Cd was complexed before and after incubation with oxygen-ligands. A combination of pH changes and/or phytate breakdown may explain the migration of Cd outward from the nib. XAS and speciation calculations proved complimentary techniques and indicated similar speciation changes during fermentation.
Collapse
Affiliation(s)
- Hester Blommaert
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, ISTerre, Grenoble, France.
| | - Géraldine Sarret
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Univ. G. Eiffel, ISTerre, Grenoble, France.
| | - Eduardo Chavez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.
| | - Ruth Vanderschueren
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.
| |
Collapse
|
26
|
Samukha V, Fantasma F, D’Urso G, Caprari C, De Felice V, Saviano G, Lauro G, Casapullo A, Chini MG, Bifulco G, Iorizzi M. NMR Metabolomics and Chemometrics of Commercial Varieties of Phaseolus vulgaris L. Seeds from Italy and In Vitro Antioxidant and Antifungal Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:227. [PMID: 38256780 PMCID: PMC10820859 DOI: 10.3390/plants13020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The metabolite fingerprinting of four Italian commercial bean seed cultivars, i.e., Phaseolus Cannellino (PCANN), Controne (PCON), Vellutina (PVEL), and Occhio Nero (PON), were investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis. The hydroalcoholic and organic extract analysis disclosed more than 32 metabolites from various classes, i.e., carbohydrates, amino acids, organic acids, nucleosides, alkaloids, and fatty acids. PVEL, PCON, and PCANN varieties displayed similar chemical profiles, albeit with somewhat different quantitative results. The PON metabolite composition was slightly different from the others; it lacked GABA and pipecolic acid, featured a higher percentage of malic acid than the other samples, and showed quantitative variations of several metabolites. The lipophilic extracts from all four cultivars demonstrated the presence of omega-3 and omega-6 unsaturated fatty acids. After the determination of the total phenolic, flavonoids, and condensed tannins content, in vitro antioxidant activity was then assessed using the DPPH scavenging activity, the ABTS scavenging assay, and ferric-reducing antioxidant power (FRAP). Compared to non-dark seeds (PCON, PCANN), brown seeds (PVEL, PON) featured a higher antioxidant capacity. Lastly, only PON extract showed in vitro antifungal activity against the sclerotia growth of S. rolfsii, by inhibiting halo growth by 75%.
Collapse
Affiliation(s)
- Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Claudio Caprari
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| |
Collapse
|
27
|
Gupta OP, Singh A, Pandey V, Sendhil R, Khan MK, Pandey A, Kumar S, Hamurcu M, Ram S, Singh G. Critical assessment of wheat biofortification for iron and zinc: a comprehensive review of conceptualization, trends, approaches, bioavailability, health impact, and policy framework. Front Nutr 2024; 10:1310020. [PMID: 38239835 PMCID: PMC10794668 DOI: 10.3389/fnut.2023.1310020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Addressing global hidden hunger, particularly in women of childbearing age and children under five, presents a significant challenge, with a focus on iron (Fe) and zinc (Zn) deficiency. Wheat, a staple crop in the developing world, is crucial for addressing this issue through biofortification efforts. While extensive research has explored various approaches to enhance Fe and Zn content in wheat, there remains a scarcity of comprehensive data on their bioavailability and impact on human and animal health. This systematic review examines the latest trends in wheat biofortification approaches, assesses bioavailability, evaluates the effects of biofortified wheat on health outcomes in humans and animals, and analyzes global policy frameworks. Additionally, a meta-analysis of per capita daily Fe and Zn intake from average wheat consumption was conducted. Notably, breeding-based approaches have led to the release of 40 biofortified wheat varieties for commercial cultivation in India, Pakistan, Bangladesh, Mexico, Bolivia, and Nepal, but this progress has overlooked Africa, a particularly vulnerable continent. Despite these advancements, there is a critical need for large-scale systematic investigations into the nutritional impact of biofortified wheat, indicating a crucial area for future research. This article can serve as a valuable resource for multidisciplinary researchers engaged in wheat biofortification, aiding in the refinement of ongoing and future strategies to achieve the Sustainable Development Goal of eradicating hunger and malnutrition by 2030.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Ajeet Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Vanita Pandey
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Ramadas Sendhil
- Division of Social Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Türkiye
| | - Sunil Kumar
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Türkiye
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Gyanendra Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
28
|
Welham S, Rose P, Kirk C, Coneyworth L, Avery A. Mineral Supplements in Ageing. Subcell Biochem 2024; 107:269-306. [PMID: 39693029 DOI: 10.1007/978-3-031-66768-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With advancing age, achievement of dietary adequacy for all nutrients is increasingly difficult and this is particularly so for minerals. Various factors impede mineral acquisition and absorption including reduced appetite, depressed gastric acid production and dysregulation across a range of signalling pathways in the intestinal mucosa. Minerals are required in sufficient levels since they are critical for the proper functioning of metabolic processes in cells and tissues, including energy metabolism, DNA and protein synthesis, immune function, mobility, and skeletal integrity. When uptake is diminished or loss exceeds absorption, alternative approaches are required to enable individuals to maintain adequate mineral levels. Currently, supplementation has been used effectively in populations for the restoration of levels of some minerals like iron, zinc, and calcium, but these may not be without inherent challenges. Therefore, in this chapter we review the current understanding around the effectiveness of mineral supplementation for the minerals most clinically relevant for the elderly.
Collapse
Affiliation(s)
- Simon Welham
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
| | - Peter Rose
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Charlotte Kirk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Lisa Coneyworth
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Amanda Avery
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
29
|
Karabulut G, Kahraman O, Pandalaneni K, Kapoor R, Feng H. A comprehensive review on hempseed protein: Production, functional and nutritional properties, novel modification methods, applications, and limitations. Int J Biol Macromol 2023; 253:127240. [PMID: 37806421 DOI: 10.1016/j.ijbiomac.2023.127240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
With the global population on the rise, challenges in meeting protein demands are amplified by recent crises, prompting a swift shift to alternative protein sources due to disruptions in the supply chain. Plant-based proteins are gaining momentum due to economic, cultural, and environmental considerations, aligning with the preference for sustainable diets and resulting in more affordable plant-based products. The distinction between drug and industrial hemp fuels demand for its nutritional value, digestibility, low allergenicity, and bioactive properties. Industrial hempseed, featuring minimal Δ9-Tetrahydrocannabinol (THC) content (<0.2 %), emerges as a promising crop, offering high-quality protein and oil. The de-oiled hempseed cake stands as an eco-friendly and promising protein source enriched with phenolic compounds and fiber. Ongoing research seeks to enhance techno-functional properties of hempseed protein, surmounting initial limitations for integration into various foods. A range of techniques, both conventional and innovative, optimize protein characteristics, while modifying plant-based protein structures augments their application potential. Modification approaches like ultrasound, high-pressure homogenization, conjugation, complexation, fibrillization, and enzymatic methods enhance hempseed protein functionality. The review critically evaluates the techno-functional attributes of hempseed protein and explores strategies for customization through structural modifications. Lastly, the review assesses its composition, potential as a plant-based source, addresses challenges, and discusses strategies for enhanced functionality.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Sakarya University, Sakarya 54187, Turkey
| | - Ozan Kahraman
- Applied Food Sciences, 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Karthik Pandalaneni
- Plant Protein Innovation Center, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
30
|
Yılmaz B, Sırbu A, Altıntaş Başar HB, Goksen G, Chabı IB, Kumagaı H, Ozogul F. Potential roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes: A review of the current knowledge. Crit Rev Food Sci Nutr 2023:1-18. [PMID: 38148641 DOI: 10.1080/10408398.2023.2292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Diabetes is one of the most common non-communicable diseases in both developed and underdeveloped countries with a 9.3% prevalence. Unhealthy diets and sedentary lifestyles are among the most common reasons for type 2 diabetes mellitus (T2DM). Diet plays a crucial role in both the etiology and treatment of T2DM. There are several recommendations regarding the carbohydrate intake of patients with T2DM. One of them is about reducing the total carbohydrate intake and/or changing the type of carbohydrate to reduce the glycaemic index. Cereals are good sources of carbohydrates in the diet with a significant amount of soluble and non-soluble fiber content. Apart from fiber, it has been shown that the bioactive compounds present in cereals such as proteins, phenolic compounds, carotenoids, and tocols have beneficial impacts in the prevention and treatment of T2DM. Moreover, cereal by-products especially the by-products of milling processes, which are bran and germ, have been reported to have anti-diabetic activities mainly because of their fiber and polyphenols content. Considering the potential functions of cereals in patients with T2DM, this review focuses on the roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | - Alexandrina Sırbu
- FMMAE Ramnicu Valcea, Constantin Brancoveanu University of Pitesti, Valcea, Romania
| | | | - Gülden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Ifagbémi Bienvenue Chabı
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Jericho Cotonou, Benin
| | - Hitomi Kumagaı
- Nihon University College of Bioresource Sciences Graduate School of Bioresource Sciences, Fujisawa, Japan
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
31
|
Nunta R, Khemacheewakul J, Techapun C, Sommanee S, Feng J, Htike SL, Mahakuntha C, Porninta K, Phimolsiripol Y, Jantanasakulwong K, Moukamnerd C, Watanabe M, Kumar A, Leksawasdi N. Kinetics of Phosphate Ions and Phytase Activity Production for Lactic Acid-Producing Bacteria Utilizing Milling and Whitening Stages Rice Bran as Biopolymer Substrates. Biomolecules 2023; 13:1770. [PMID: 38136641 PMCID: PMC10741578 DOI: 10.3390/biom13121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
A study evaluated nine kinetic data and four kinetic parameters related to growth, production of various phytase activities (PEact), and released phosphate ion concentration ([Pi]) from five lactic acid bacteria (LAB) strains cultivated in three types of media: phytate (IP6), milling stage rice bran (MsRB), and whitening stage rice bran (WsRB). Score ranking techniques were used, combining these kinetic data and parameters to select the most suitable LAB strain for each medium across three cultivation time periods (24, 48, and 72 h). In the IP6 medium, Lacticaseibacillus casei TISTR 1500 exhibited statistically significant highest (p ≤ 0.05) normalized summation scores using a 2:1 weighting between kinetic and parameter data sets. This strain also had the statistically highest levels (p ≤ 0.05) of produced phosphate ion concentration ([Pi]) (0.55 g/L) at 72 h and produced extracellular specific phytase activity (ExSp-PEact) (0.278 U/mgprotein) at 48 h. For the MsRB and WsRB media, Lactiplantibacillus plantarum TISTR 877 performed exceptionally well after 72 h of cultivation. It produced ([Pi], ExSp-PEact) pairs of (0.53 g/L, 0.0790 U/mgprotein) in MsRB and (0.85 g/L, 0.0593 U/mgprotein) in WsRB, respectively. Overall, these findings indicate the most promising LAB strains for each medium and cultivation time based on their ability to produce phosphate ions and extracellular specific phytase activity. The selection process utilized a combination of kinetic data and parameter analysis.
Collapse
Affiliation(s)
- Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Kritsadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | | | - Masanori Watanabe
- Graduate School of Agriculture, Yamagata University, 1-23 Wakada-Machi, Tsuruoka, Yamagata 997-8555, Japan;
| | - Anbarasu Kumar
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur 613403, India
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG) & Bioprocess Research Cluster (BRC), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (R.N.); (J.K.); (S.S.); (J.F.); (S.L.H.); (C.M.); (K.P.); (Y.P.); (K.J.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| |
Collapse
|
32
|
Knez M, Stangoulis JCR. Dietary Zn deficiency, the current situation and potential solutions. Nutr Res Rev 2023; 36:199-215. [PMID: 37062532 DOI: 10.1017/s0954422421000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Zinc (Zn) deficiency is a worldwide problem, and this review presents an overview of the magnitude of Zn deficiency with a particular emphasis on present global challenges, current recommendations for Zn intake, and factors that affect dietary requirements. The challenges of monitoring Zn status are clarified together with the discussion of relevant Zn bioaccessibility and bioavailability issues. Modern lifestyle factors that may exacerbate Zn deficiency and new strategies of reducing its effects are presented. Biofortification, as a potentially useful strategy for improving Zn status in sensitive populations, is discussed. The review proposes potential actions that could deliver promising results both in terms of monitoring dietary and physiological Zn status as well as in alleviating dietary Zn deficiency in affected populations.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
- Center of Research Excellence in Nutrition and Metabolism, University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, 11000Belgrade, Serbia
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
| |
Collapse
|
33
|
Guja H, Belgiu M, Embibel L, Baye K, Stein A. Examining energy and nutrient production across the different agroecological zones in rural Ethiopia using statistical methods. Food Sci Nutr 2023; 11:7565-7580. [PMID: 38107096 PMCID: PMC10724589 DOI: 10.1002/fsn3.3676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 12/19/2023] Open
Abstract
Poor-quality diets are of huge concern in areas where consumption is dominated by locally sourced foods that provide inadequate nutrients. In agroecologically diverse countries like Ethiopia, food production is also likely to vary spatially. Yet, little is known about how nutrient production varies by agroecology. Our study looked at the adequacy of essential nutrients from local production in the midland, highland, and upper highland agroecological zones (AEZs). Data were collected at the village level from the kebele agriculture office and at the farm and household levels through surveys in rural districts of the South Wollo zone, Ethiopia. Household data were acquired from 478 households, and crop samples were collected from 120 plots during the 2020 production year. Annual crop and livestock production across the three AEZs was converted into energy and nutrient supply using locally developed crops' energy and nutrient composition data. The total produced energy (kcal) met significant proportions of per capita energy demand in the highland and upper highland, while the supply had a 50% energy deficit in the midland. Shortfalls in per capita vitamin A supply decreased across the agroecological gradient from midland (46%) to upper highland (31%). The estimated shortfall in folate supply was significantly higher in the upper highlands (63%) and negligible in the highlands (2%). The risk of deficient iron and zinc supply was relatively low across all AEZs (<10%), but the deficiency risk of calcium was unacceptably high. Agroecology determines the choice of crop produced and, in this way, affects the available supply of energy and nutrients. Therefore, agroecological variations should be a key consideration when designing food system interventions dedicated to improving diets.
Collapse
Affiliation(s)
- Habtamu Guja
- Faculty of Geo‐information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands
- Center for Food Science and Nutrition, College of Natural and Computational SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Mariana Belgiu
- Faculty of Geo‐information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands
| | - Lidya Embibel
- Center for Food Science and Nutrition, College of Natural and Computational SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Alfred Stein
- Faculty of Geo‐information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands
| |
Collapse
|
34
|
Cordero-Varela JA, Reyes-Corral M, Lao-Pérez M, Fernández-Santos B, Montenegro-Elvira F, Sempere L, Ybot-González P. Analysis of Gut Characteristics and Microbiota Changes with Maternal Supplementation in a Neural Tube Defect Mouse Model. Nutrients 2023; 15:4944. [PMID: 38068802 PMCID: PMC10708240 DOI: 10.3390/nu15234944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Adequate nutrient supply is crucial for the proper development of the embryo. Although nutrient supply is determined by maternal diet, the gut microbiota also influences nutrient availability. While currently there is no cure for neural tube defects (NTDs), their prevention is largely amenable to maternal folic acid and inositol supplementation. The gut microbiota also contributes to the production of these nutrients, which are absorbed by the host, but its role in this context remains largely unexplored. In this study, we performed a functional and morphological analysis of the intestinal tract of loop-tail mice (Vangl2 mutants), a mouse model of folate/inositol-resistant NTDs. In addition, we investigated the changes in gut microbiota using 16S rRNA gene sequencing regarding (1) the host genotype; (2) the sample source for metagenomics analysis; (3) the pregnancy status in the gestational window of neural tube closure; (4) folic acid and (5) D-chiro-inositol supplementation. We observed that Vangl2+/Lp mice showed no apparent changes in gastrointestinal transit time or fecal output, yet exhibited increased intestinal length and cecal weight and gut dysbiosis. Moreover, our results showed that the mice supplemented with folic acid and D-chiro-inositol had significant changes in their microbiota composition, which are changes that could have implications for nutrient absorption.
Collapse
Affiliation(s)
- Juan Antonio Cordero-Varela
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Beatriz Fernández-Santos
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Fernando Montenegro-Elvira
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Lluis Sempere
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (J.A.C.-V.); (M.L.-P.); (B.F.-S.); (F.M.-E.); (L.S.)
- Consejo Superior de Investigaciones Científicas (CSIC), Spain
| |
Collapse
|
35
|
Lu WC, Chiu CS, Chan YJ, Mulio AT, Li PH. New perspectives on different Sacha inchi seed oil extractions and its applications in the food and cosmetic industries. Crit Rev Food Sci Nutr 2023; 65:475-493. [PMID: 37950645 DOI: 10.1080/10408398.2023.2276882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Sacha inchi oil is growing in demand worldwide owing to its high fatty acid content of linolenic acid (44.30%-51.62%) and linoleic acid (34.08%-36.13%). In addition, Sacha inchi oil also contains phytosterols, such as stigmasterols (346- 456 μg/g), sitosterols (435-563 μg/g), and campesterols (10.47% ± 4.36%). Its main tocopherol is gamma-tocopherol (120.41-125.69 mg/100 g). The antinutrients in Sacha inchi seeds can be reduced by roasting prior to extraction. Various extractions, including both conventional and novel methods, have been used to extract Sacha inchi oil. However, the variety of extraction methods and origins of the seeds change the nutrient profiles, antinutrient content, and physicochemical properties. Incorporation of Sacha inchi oil into food products can increase its nutritional value, and it works as a moisturizing agent in cosmetic products. To obtain Sacha inchi oil with the desired properties and nutritional profile, this review summarizes the effects of different Sacha inchi seed oil extraction methods and processes on chemical compounds, antinutrient content, and physicochemical properties, including their potential and recent applications in food and cosmetic industries.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, Taiwan
| | - Chien-Shan Chiu
- Department of Dermatology, Taichung Veterans General Hospital, Taichung city, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua county, Taiwan
| | | | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung City, Taiwan
| |
Collapse
|
36
|
Amat T, Assifaoui A, Schmitt C, Saurel R. Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium. Crit Rev Food Sci Nutr 2023; 63:12036-12058. [PMID: 35852135 DOI: 10.1080/10408398.2022.2098247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, legumes are considered as a good source of plant-based proteins to replace animal ones. They are more favorable regarding environmental aspects and health benefits, therefore many people consider moving toward a greener diet. Interestingly, recent consumer trends are promoting pea and faba bean as alternatives to soybean. Both are rich in protein and a good source of essential nutrients and minerals (calcium). However, these advantages can be partially impaired due to their high phytic acid content. This natural polyphosphate is a major antinutrient in plant-based foods, as it can bind minerals (particularly calcium) and proteins, thereby reducing their digestibility and subsequent bioavailability. Indeed, complexes formed are insoluble and limiting the absorption of nutrients, thus lowering the nutritional value of pulses. To understand and overcome these issues, the present review will refine specific mechanisms involved in assemblies between these three essential compounds in legumes as soluble/insoluble binary or ternary complexes. Molecular interactions are influenced by the environmental medium including pH, ionic strength and molar concentrations modulating the stability of these complexes during protein extraction. Protein/phytic acid/calcium complexes stability is of high relevance for food processing affecting not only structure but also functional and nutritional properties of proteins in legume-based foods.
Collapse
Affiliation(s)
- Tiffany Amat
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| | - Ali Assifaoui
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| | - Christophe Schmitt
- Department of Chemistry, Nestlé Research, Nestlé Institute of Material Sciences, Lausanne 26, Switzerland
| | - Rémi Saurel
- Université de Bourgogne Franche-Comté (UBFC), L'Institut Agro Dijon, UMR PAM A 02.102, Dijon, France
| |
Collapse
|
37
|
Biruete A, Hill Gallant KM, Lloyd L, Meade A, Moe SM, St-Jules DE, Kistler BM. 'Phos'tering a Clear Message: The Evolution of Dietary Phosphorus Management in Chronic Kidney Disease. J Ren Nutr 2023; 33:S13-S20. [PMID: 37343779 PMCID: PMC10728341 DOI: 10.1053/j.jrn.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Phosphorus is a vital nutrient, but disturbances in phosphorus homeostasis are central to chronic kidney disease-mineral and bone disorder. To minimize disturbances, traditional dietary guidance focused on a numerical phosphorus target leading to the exclusion of many healthy foods and implementation challenges. Contemporary phosphorus guidance focuses on dietary source, avoiding additives, and emphasizing low-phosphorus bioaccessibility foods, leading to a more liberal approach. Additional work is needed to demonstrate the efficacy of these contemporary approaches and understand the influence of specific foods, processing, and cooking methods. Unfortunately, patient education using traditional and contemporary strategies may give mixed messages, particularly related to plant-based foods. Thus, greater clarity on the effects of specific foods and dietary patterns may improve phosphorus education. This review aims to discuss the evolution of dietary phosphorus management while highlighting areas for future research that can help move the field toward stronger evidence-based guidance to prevent and treat hyperphosphatemia.
Collapse
Affiliation(s)
- Annabel Biruete
- Department of Nutrition and Dietetics, Indiana University-Purdue University Indianapolis, Indianapolis; Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis; Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Kathleen M Hill Gallant
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis; Department of Food Science and Nutrition, University of Minnesota, St. Paul
| | - Lyn Lloyd
- Nutrition and Dietetics, Auckland City Hospital, Auckland, New Zealand
| | - Anthony Meade
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, Australia
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis
| | | | - Brandon M Kistler
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Department of Nutrition and Health Science, Ball State University, Muncie.
| |
Collapse
|
38
|
Misella Hansen N, Kamper AL, Rix M, Feldt-Rasmussen B, Leipziger J, Sørensen MV, Berg P, Astrup A, Salomo L. Health effects of the New Nordic Renal Diet in patients with stage 3 and 4 chronic kidney disease, compared with habitual diet: a randomized trial. Am J Clin Nutr 2023; 118:1042-1054. [PMID: 37598748 DOI: 10.1016/j.ajcnut.2023.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) leads to an accumulation of waste products and causes adverse cardiometabolic effects. OBJECTIVES We investigated the health effects of the New Nordic Renal Diet (NNRD), a novel meal pattern reduced in phosphorus, protein, and sodium. METHODS A 26-wk randomized trial compared the NNRD with a habitual diet. The NNRD group received weekly home deliveries of food and recipes. Monthly study visits included fasting blood samples, 24-h urine samples, blood pressure, and anthropometric measurements. Intention-to-treat analysis used linear mixed-effects models. RESULTS Sixty patients, mean estimated glomerular filtration rate (eGFR) 34 mL/min/1.73 m2 and body mass index of 25-27 kg/m2, were included and 58 completed. Metabolic syndrome was present in 53% (NNRD group) and 57% (control group). The NNRD group (n = 30) reduced their 24-h urine phosphorus excretion by 19% (-153 mg; 95% confidence interval [CI]: -210, -95), control group (n = 30) (no change), between-group difference -171 mg (95% CI: -233, -109; P < 0.001). Proteinuria was reduced by 39% in the NNRD group (-0.33 g/d; 95% CI: -0.47, -0.18), control group (no change), between-group difference -0.34 g/d (95% CI: -0.52, -0.17; P < 0.001). Plasma urea was reduced by -1.5 mmol/L in the NNRD group (95% CI: -2.1, -0.9), control group (no change), between-group difference -1.4 mmol/L (95% CI: -2.0, -0.7; P < 0.001). Systolic blood pressure fell by -5.2 mmHg in the NNRD group (95% CI: -8.4, -2.1), control group (no change), between-group difference -3.9 mmHg (95% CI; -7.6, -0.2; P = 0.04). The NNRD group lost -1.7 kg (95% CI: -2.6, -0.8), control group (no change), between-group difference -2.0 kg (95% CI: -3.0, -1.0; P < 0.001). There were no effects on eGFR during the 26-wk intervention. CONCLUSION NNRD in moderate CKD reduces phosphorus excretion, proteinuria, systolic blood pressure, and weight, mainly by reducing abdominal fat. This trial was registered at clinicaltrials.gov as NCT04579315.
Collapse
Affiliation(s)
- Nikita Misella Hansen
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anne-Lise Kamper
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marianne Rix
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Bo Feldt-Rasmussen
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Peder Berg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Arne Astrup
- Department of Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| | - Louise Salomo
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
39
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
40
|
Johnston M, O'Sullivan T, Devine A, Wallace R, Costello L, Sambell R. Toddlers may be getting enough iron in long day-care services after all. J Hum Nutr Diet 2023; 36:1901-1911. [PMID: 37143380 DOI: 10.1111/jhn.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Previous research has suggested that toddlers are not provided with adequate dietary iron in long-day care (LDC) services. However, the iron bioavailability provided is unknown. The present study aimed to investigate the amount and bioavailability of iron provided to toddlers aged 2-3 years at LDC services. METHODS A cross-sectional audit was conducted using a 2-day weighed food record of 30 LDC services. Iron provision (not child intake) in LDC services across Perth, Australia was compared with the estimated average requirements (EAR) and LDC services provision guidelines (50% of EAR = 2 mg/day based on a 14% bioavailability factor). Bioavailability was estimated per mealtime using haem and non-haem iron, ascorbic acid, animal protein, calcium, soy, eggs and phytates using two pre-existing algorithms (by A. P. Rickard and colleagues and H. Hallberg and H. Hulten). RESULTS Median iron supplied (2.52 mg/day, interquartile range [IQR] = 2.43-3.17) was above the 50% of EAR of 2.0 mg/day (p < 0.001). Median bioavailable iron was 0.6 mg/day (IQR = 0.54-0.8) using the method of Rickard et al. and 0.51 mg/day (IQR = 0.43, 0.76 using that of Hallberg and Hulthen). The top three foods contributing to iron provision were bread, breakfast cereals and beef. CONCLUSIONS Our results suggest that LDC services in Perth are meeting the minimum recommendation of provision of 50% of the iron EAR, and also that toddlers are provided with sufficient bioavailable iron. Future strategies should focus on promoting food combinations to maintain the iron bioavailability in meals currently served at LDC services.
Collapse
Affiliation(s)
- Michaela Johnston
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Therese O'Sullivan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
| | - Ruth Wallace
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Leesa Costello
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ros Sambell
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Medical and Health Sciences, Nutrition & Health Innovation Research Institute, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
41
|
Moore SS, Costa A, Pozza M, Vamerali T, Niero G, Censi S, De Marchi M. How animal milk and plant-based alternatives diverge in terms of fatty acid, amino acid, and mineral composition. NPJ Sci Food 2023; 7:50. [PMID: 37717060 PMCID: PMC10505177 DOI: 10.1038/s41538-023-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The decline in fresh milk in the Western world has in part been substituted by an increased consumption of plant-based beverages (PBB). These are often marketed as healthy and sustainable alternatives to milk and dairy foodstuff, although studies have suggested PBB to be of lower nutrient quality. The current study considered different brands of almond-, oat-, rice-, coconut- and soya-based beverages for a comparative analysis and found that they indeed presented lower contents of total protein, lipids, amino acids, and minerals than cow and goat milk. The only exception was given by soya-based beverages which approximated the protein content (3.47% vs. 3.42 and 3.25% in cow and goat milk, respectively) and amino acid composition of animal milk, and also demonstrated high mineral content. The natural presence of phyto-compounds in PBB characterised as antinutrients and their potential to exacerbate the issue of low nutrient quality by lowering bioavailability have been discussed.
Collapse
Affiliation(s)
- S S Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - A Costa
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Padova, Italy.
| | - M Pozza
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - T Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - G Niero
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - S Censi
- Department of Medicine, Endocrinology Unit, University of Padova, 35121, Padova, Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| |
Collapse
|
42
|
Cuyas L, David P, de Craieye D, Ng S, Arkoun M, Plassard C, Faharidine M, Hourcade D, Degan F, Pluchon S, Nussaume L. Identification and interest of molecular markers to monitor plant Pi status. BMC PLANT BIOLOGY 2023; 23:401. [PMID: 37612632 PMCID: PMC10463364 DOI: 10.1186/s12870-023-04411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.
Collapse
Affiliation(s)
- Laura Cuyas
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Damien de Craieye
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Sophia Ng
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
- Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Victoria, 3086, Australia
| | - Mustapha Arkoun
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Claude Plassard
- INRAE, CIRAD, IRD, Univ Montpellier, Eco&Sols, Institut Agro, 34060, Montpellier, France
| | | | - Delphine Hourcade
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Francesca Degan
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Sylvain Pluchon
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France.
| |
Collapse
|
43
|
Klein L, Dawczynski C, Schwarz M, Maares M, Kipp K, Haase H, Kipp AP. Selenium, Zinc, and Copper Status of Vegetarians and Vegans in Comparison to Omnivores in the Nutritional Evaluation (NuEva) Study. Nutrients 2023; 15:3538. [PMID: 37630729 PMCID: PMC10459941 DOI: 10.3390/nu15163538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-based diets usually contain more nutrient-dense foods such as vegetables, legumes, whole grains, and fruits than a standard Western diet. Yet, the amount and especially the bioavailability of several nutrients, such as trace elements, is supposed to be lower in comparison to diets with consumption of animal-derived foods. Based on this, the Nutritional Evaluation (NuEva) study (172 participants) was initiated to compare the trace element status of omnivores, flexitarians, vegetarians, and vegans. Serum selenium, zinc, and copper concentrations and biomarkers were evaluated at baseline and during a 12-month intervention with energy- and nutrient-optimized menu plans. The implementation of optimized menu plans did not substantially influence the status of trace elements. At baseline, serum selenium biomarkers were lower in vegetarians and vegans compared to omnivores and flexitarians. The zinc intake of vegetarians and vegans was significantly lower compared to omnivores, whereas the Phytate Diet Score was increased. Accordingly, total serum zinc concentrations were reduced in vegans which was, however, only significant in women and was further supported by the analysis of free zinc. Regarding copper status, no differences were observed for total serum copper. Overall, we identified selenium and zinc as critical nutrients especially when maintaining a vegan diet.
Collapse
Affiliation(s)
- Lea Klein
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (L.K.); (M.S.)
- Junior Research Group Nutritional Concepts, 07743 Jena, Germany
| | - Christine Dawczynski
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (L.K.); (M.S.)
- Junior Research Group Nutritional Concepts, 07743 Jena, Germany
| | - Maria Schwarz
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (L.K.); (M.S.)
- TraceAge—DFG Research Unit 2558, 07743 Potsdam-Berlin-Jena-Wuppertal, Germany; (M.M.); (H.H.)
| | - Maria Maares
- TraceAge—DFG Research Unit 2558, 07743 Potsdam-Berlin-Jena-Wuppertal, Germany; (M.M.); (H.H.)
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Kristin Kipp
- Department for Pediatrics, Sophien- and Hufeland Klinikum, Hospital Weimar, 99425 Weimar, Germany;
| | - Hajo Haase
- TraceAge—DFG Research Unit 2558, 07743 Potsdam-Berlin-Jena-Wuppertal, Germany; (M.M.); (H.H.)
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Anna P. Kipp
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (L.K.); (M.S.)
- TraceAge—DFG Research Unit 2558, 07743 Potsdam-Berlin-Jena-Wuppertal, Germany; (M.M.); (H.H.)
| |
Collapse
|
44
|
Long M, Forbes LE, Papagerakis P, Lieffers JRL. YouTube Videos on Nutrition and Dental Caries: Content Analysis. JMIR INFODEMIOLOGY 2023; 3:e40003. [PMID: 37561564 PMCID: PMC10450531 DOI: 10.2196/40003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Dental caries is the most common health condition worldwide, and nutrition and dental caries have a strong interconnected relationship. Foods and eating behaviors can be both harmful (eg, sugar) and healthful (eg, meal spacing) for dental caries. YouTube is a popular source for the public to access information. To date, there is no information available on the nutrition and dental caries content of easily accessible YouTube videos. OBJECTIVE This study aimed to analyze the content of YouTube videos on nutrition and dental caries. METHODS In total, 6 YouTube searches were conducted using keywords related to nutrition and dental caries. The first 20 videos were selected from each search. Video content was scored (17 possible points; higher scores were associated with more topics covered) by 2 individuals based on the inclusion of information regarding various foods and eating behaviors that impact dental caries risk. For each video, information on video characteristics (ie, view count, length, number of likes, number of dislikes, and video age) was captured. Videos were divided into 2 groups by view rate (views/day); differences in scores and types of nutrition messages between groups were determined using nonparametric statistics. RESULTS In total, 42 videos were included. Most videos were posted by or featured oral health professionals (24/42, 57%). The mean score was 4.9 (SD 3.4) out of 17 points. Videos with >30 views/day (high view rate; 20/42, 48% videos) had a trend toward a lower score (mean 4.0, SD 3.7) than videos with ≤30 views/day (low view rate; 22/42, 52%; mean 5.8, SD 3.0; P=.06), but this result was not statistically significant. Sugar was the most consistently mentioned topic in the videos (31/42, 74%). No other topics were mentioned in more than 50% of videos. Low-view rate videos were more likely to mention messaging on acidic foods and beverages (P=.04), water (P=.09), and frequency of sugar intake (P=.047) than high-view rate videos. CONCLUSIONS Overall, the analyzed videos had low scores for nutritional and dental caries content. This study provides insights into the messaging available on nutrition and dental caries for the public and guidance on how to make improvements in this area.
Collapse
Affiliation(s)
- Memphis Long
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Laura E Forbes
- Department of Family Relations & Applied Nutrition, University of Guelph, Guelph, ON, Canada
| | | | - Jessica R L Lieffers
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
45
|
Calvó P, Costa-Bauza A, Grases F. Effect of Phytate (InsP6) and Other Inositol-Phosphates (InsP5, InsP4, InsP3, InsP2) on Crystallization of Calcium Oxalate, Brushite, and Hydroxyapatite. Biomolecules 2023; 13:1061. [PMID: 37509097 PMCID: PMC10377479 DOI: 10.3390/biom13071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Pathological calcifications may consist of calcium oxalate (CaOx), hydroxyapatite (HAP), and brushite (BRU). The objective of this study was to evaluate the effect of phytate (inositol hexakisphosphate, InsP6), InsP6 hydrolysates, and individual lower InsPs (InsP5, InsP4, InsP3, and InsP2) on the crystallization of CaOx, HAP and BRU in artificial urine. All of the lower InsPs seem to inhibit the crystallization of calcium salts in biological fluids, although our in vitro results showed that InsP6 and InsP5 were stronger inhibitors of CaOx crystallization, and InsP5 and InsP4 were stronger inhibitors of BRU crystallization. For the specific in vitro experimental conditions we examined, the InsPs had very weak effects on HAP crystallization, although it is likely that a different mechanism is responsible for HAP crystallization in vivo. For example, calciprotein particles seem to have an important role in the formation of cardiovascular calcifications in vivo. The experimental conditions that we examined partially reproduced the in vivo conditions of CaOx and BRU crystallization, but not the in vivo conditions of HAP crystallization.
Collapse
Affiliation(s)
- Paula Calvó
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antònia Costa-Bauza
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Felix Grases
- Laboratory of Renal Lithiasis Research, University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| |
Collapse
|
46
|
Mallat F, Kaikati J, Kechichian E. Botulinum Toxins and Zinc: From Theory to Practice-A Systematic Review. Clin Neuropharmacol 2023; Publish Ahead of Print:00002826-990000000-00057. [PMID: 37335837 DOI: 10.1097/wnf.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE The aims of this study were to determine whether zinc supplementation affects botulinum toxin's effect and longevity and to establish a transition from the molecular to the clinical aspect. METHODS We conducted a systematic review in which we included all published studies on PubMed and Embase using the combination of the following terms: "zinc" AND (botox OR botulinum OR onabotulinumtoxinA OR abobotulinumtoxinA OR incobotulinumtoxinA). RESULTS From the 260 yielded articles, 3 randomized control trials and 1 case report were retained. Three of them found a significant improvement with zinc supplementation in the toxin's effect and longevity. This was observed in neurological conditions and cosmetic uses. CONCLUSIONS Zinc supplementation could be an interesting asset in the potentialization of botulinum neurotoxin effect and longevity. Larger clinical trials and objective measurement tools should be used to further defining the role of zinc in maximizing botulinum neurotoxin effect.
Collapse
Affiliation(s)
- Farid Mallat
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jerome Kaikati
- Dermatology Department, Hôtel Dieu de France, Beirut, Lebanon
| | | |
Collapse
|
47
|
Dilworth L, Stennett D, Omoruyi F. Cellular and Molecular Activities of IP6 in Disease Prevention and Therapy. Biomolecules 2023; 13:972. [PMID: 37371552 DOI: 10.3390/biom13060972] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
IP6 (phytic acid) is a naturally occurring compound in plant seeds and grains. It is a poly-phosphorylated inositol derivative that has been shown to exhibit many biological activities that accrue benefits in health and diseases (cancer, diabetes, renal lithiasis, cardiovascular diseases, etc.). IP6 has been shown to have several cellular and molecular activities associated with its potential role in disease prevention. These activities include anti-oxidant properties, chelation of metal ions, inhibition of inflammation, modulation of cell signaling pathways, and modulation of the activities of enzymes and hormones that are involved in carbohydrate and lipid metabolism. Studies have shown that IP6 has anti-oxidant properties and can scavenge free radicals known to cause cellular damage and contribute to the development of chronic diseases such as cancers and cardiovascular diseases, as well as diabetes mellitus. It has also been shown to possess anti-inflammatory properties that may modulate immune responses geared towards the prevention of inflammatory conditions. Moreover, IP6 exhibits anti-cancer properties through the induction of cell cycle arrest, promoting apoptosis and inhibiting cancer cell growth. Additionally, it has been shown to have anti-mutagenic properties, which reduce the risk of malignancies by preventing DNA damage and mutations. IP6 has also been reported to have a potential role in bone health. It inhibits bone resorption and promotes bone formation, which may help in the prevention of bone diseases such as osteoporosis. Overall, IP6's cellular and molecular activities make it a promising candidate for disease prevention. As reported in many studies, its anti-inflammatory, anti-oxidant, and anti-cancer properties support its inclusion as a dietary supplement that may protect against the development of chronic diseases. However, further studies are needed to understand the mechanisms of action of this dynamic molecule and its derivatives and determine the optimal doses and appropriate delivery methods for effective therapeutic use.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Felix Omoruyi
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| |
Collapse
|
48
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera‐Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Maradona MP, Siskos A, Schlatter JR, van Loveren H, Zakidou P, Ververis E, Knutsen HK. Safety of UV-treated powder of whole yellow mealworm ( Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08009. [PMID: 37274457 PMCID: PMC10233460 DOI: 10.2903/j.efsa.2023.8009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on UV-treated powder of whole yellow mealworm (Tenebrio molitor larva) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The term yellow mealworm refers to the larval form of the insect species T. molitor. The NF is the UV-treated powder of the whole, thermally dried yellow mealworm. The NF consists mainly of crude protein, fat, digestible carbohydrates and fibre (chitin). The Panel notes that the levels of contaminants in the NF highly depend on the occurrence levels of these substances in the insect feed. The Panel notes furthermore that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf life. The NF has a high protein content, although the true protein content in the NF is overestimated when using the nitrogen-to-protein conversion factor of 6.25, due to the presence of non-protein nitrogen. The applicant proposed to use the NF as an ingredient in various food products, such as bakery products, pasta, compotes of fruit/vegetables and cheese. The target population is the general population. The Panel notes that considering the composition of the NF, the proposed conditions of use and that the NF will not be the sole source of dietary protein, the consumption of the NF is not nutritionally disadvantageous. Despite the UV treatment, the Panel notes that the NF is not a significant dietary contributor of vitamin D3. The submitted toxicity studies from the literature did not raise safety concerns. The Panel considers that the consumption of the NF may induce primary sensitisation and allergic reactions to yellow mealworm proteins and may cause allergic reactions in subjects with allergies to crustaceans and dust mites. Additionally, allergens from the feed may end up in the NF. With the exception of possible allergenicity, the Panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
49
|
Nyakang'i CO, Marete E, Ebere R, Arimi JM. Physicochemical Properties of Avocado Seed Extract Model Beverages and Baked Products Incorporated with Avocado Seed Powder. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:6860806. [PMID: 37293187 PMCID: PMC10247324 DOI: 10.1155/2023/6860806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Abstract
Consumption of avocado (Persea americana Mill.) has increased worldwide in recent years. The avocado pulp is used, but the peel and seed are discarded as waste. Studies have shown that the seeds are rich in phytochemicals that can be utilized in food systems. The objective of this study was to evaluate the potential of Hass avocado seed as a source of polyphenols in the processing of model beverages and baked products with functional properties. The proximate analysis of the avocado seed powder was carried out. The shelf life of phenols in avocado seed powder (ASP) stored in dark, amber-colored bottle and transparent bottle was studied for six months. The seed extract was incorporated into model beverages of different pHs stored at refrigerated and ambient temperatures, and the shelf life was monitored for 20 weeks. The seed powder was incorporated into baked products at 0, 15, 30, or 50% followed by total phenolic content and sensory property analysis. Proximate composition of the seed powder for moisture, ash, protein, fiber, fat, and total carbohydrates was 14.19, 1.82, 7.05, 4.00, 13.64, and 59.30 percent, respectively. During storage of the seed powder, there was no significant difference (P > 0.05) in the phenol content under the different storage light conditions for six months. In the model beverages, lower pH levels (2.8, 3.8, and 4.8) and those stored at ambient temperatures (25°C) recorded lower phenol content than the control pH, i.e., 5.5, and those under refrigerated conditions throughout the storage period studied (20 weeks). The concentration of phenols in the baked products increased with increasing avocado seed powder. The color of all the queen cake formulations was liked very much by the sensory panel. The aroma of 0% and 15% ASP was liked very much, while the other formulations (30% and 50%) were liked moderately. The taste rating and overall acceptability decreased with an increasing avocado seed powder in the queen cake formulations. Avocado seed extracts can be incorporated to prepare functional beverages and functional baked products that are acceptable by sensory panelists.
Collapse
Affiliation(s)
- Clinton O. Nyakang'i
- Department of Food Science, Meru University of Science and Technology, Meru, Kenya
| | - Eunice Marete
- Department of Physical Sciences, Meru University of Science and Technology, Meru, Kenya
| | - Rebecca Ebere
- Department of Food Science, Meru University of Science and Technology, Meru, Kenya
| | - Joshua M. Arimi
- Department of Food Science, Meru University of Science and Technology, Meru, Kenya
| |
Collapse
|
50
|
Druzijanic A, Kovic M, Roguljic M, Cigic L, Majstorovic M, Vucenik I. Application of Inositol Hexaphosphate and Inositol in Dental Medicine: An Overview. Biomolecules 2023; 13:913. [PMID: 37371493 DOI: 10.3390/biom13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phosphorylated inositol hexaphosphate (IP6) is a naturally occurring carbohydrate, and its parent compound, myoinositol (Ins), is abundantly present in plants, particularly in certain high-fiber diets, but also in mammalian cells, where they regulate essential cellular functions. IP6 has profound modulation effects on macrophages, which warrants further research on the therapeutic benefits of IP6 for inflammatory diseases. Here, we review IP6 as a promising compound that has the potential to be used in various areas of dentistry, including endodontics, restorative dentistry, implantology, and oral hygiene products, due to its unique structure and characteristic properties. Available as a dietary supplement, IP6 + Ins has been shown to enhance the anti-inflammatory effect associated with preventing and suppressing the progression of chronic dental inflammatory diseases. IP6 in dentistry is now substantial, and this narrative review presents and discusses the different applications proposed in the literature and gives insights into future use of IP6 in the fields of orthodontics, periodontics, implants, and pediatric dentistry.
Collapse
Affiliation(s)
- Ana Druzijanic
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Mare Kovic
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Marija Roguljic
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Livia Cigic
- Department of Dental Medicine, University Hospital of Split, 21000 Split, Croatia
- Department of Oral Medicine and Periodontology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Martina Majstorovic
- Department of Orthodontics and Pediatric Dentistry, University of Maryland School of Dentistry, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, 100 Penn Street, Baltimore, MD 21201, USA
| |
Collapse
|