1
|
Nalepa IF, Nielsen V, Wolf TE, Touma C, Grupe M, Asuni AA, Ratner C. Sex differences in the murine HPA axis after acute and repeated restraint stress. Stress 2025; 28:2447079. [PMID: 39819340 DOI: 10.1080/10253890.2024.2447079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/08/2024] [Indexed: 01/19/2025] Open
Abstract
Chronic stress and stress-related mental illnesses such as major depressive disorder (MDD) constitute some of the leading causes of disability worldwide with a higher prevalence in women compared to men. However, preclinical research into stress and MDD is heavily biased toward using male animals only. Aberrant activity of the hypothalamic-pituitary-adrenal (HPA) axis has been linked to the development of MDD and several animal models of MDD have been established based on HPA axis dysregulation. In the present study, we compared stress biomarkers and behavior of male and female mice after acute and chronic restraint stress to investigate potential effects of sex differences in the stress response. Further, the validity of the interrupted repeated restraint stress (IRRS) model as an animal model for the HPA axis disturbances seen in MDD was assessed. After acute stress, female mice showed increased corticosterone secretion and changes in molecular markers suggesting increased HPA axis feedback sensitivity. Acute stress-induced signs of anxiety-like behavior were observed in male mice only suggesting that female mice may be more resilient to the anxiogenic effects of acute stress. Males and females responded similarly to IRRS with no sustained perturbations in HPA axis biomarkers. The IRRS model did not adequately translate to the changes reported in MDD with HPA axis overactivity and more severe perturbation models are likely needed. However, in alignment with previous studies, these data support that there are important sex differences in the HPA axis and that these may contribute to the etiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Isabella Flor Nalepa
- Department of Preclinical Fluid Biomarkers & Occupancy, H. Lundbeck A/S, Valby, Denmark
| | - Vibeke Nielsen
- Department of Preclinical Fluid Biomarkers & Occupancy, H. Lundbeck A/S, Valby, Denmark
| | | | - Chadi Touma
- Osnabrück University, Behavioural Biology, Osnabrück, Germany
| | - Morten Grupe
- Department of Symptom Biology, H. Lundbeck A/S, Valby, Denmark
| | - Ayodeji A Asuni
- Department of Preclinical Fluid Biomarkers & Occupancy, H. Lundbeck A/S, Valby, Denmark
| | - Cecilia Ratner
- Department of Preclinical Fluid Biomarkers & Occupancy, H. Lundbeck A/S, Valby, Denmark
| |
Collapse
|
2
|
Hasan-Kareem N, Alijanpour S, Zarrindast MR, Khakpai F. Synergistic anxiolytic-like effect of CPPG and harmaline in non-stressed and acute restraint stress (ARS) mice. Neurosci Lett 2025; 850:138157. [PMID: 39938675 DOI: 10.1016/j.neulet.2025.138157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Many studies revealed the role of metabotropic glutamate receptors (mGluRs) and harmaline in the modulation of anxiety-related behaviors. This study aimed to determine a possible interaction between harmaline and group III mGluR on the modulation of anxiety-correlated behaviors. The left lateral ventricle of male mice was unilaterally cannulated. Acute restraint stress (ARS) was induced by movement restraint for 4 h. Anxiety-like behaviors were measured using an elevated plus maze. The results showed that induction of ARS during 4 h reduced the percentage of time spent in open arms (%OAT) and percentage of entries to open arms (%OAE) without changing locomotor activity, indicating anxiogenic-like responses. Intraperitoneal (i.p.) administration of harmaline (2 mg/kg) increased %OAT in non-stressed and ARS mice, presenting anxiolytic-like responses. Intracerebroventricular (i.c.v.) infusion of CPPG (potent group III mGlu antagonist, 70 µg/mouse) induced anxiolytic-like behavior due to the augmentation of %OAT in non-stressed and ARS mice. Co-treatment of CPPG (70 µg/mouse, i.c.v.) along with harmaline (1 mg/kg, i.p) induced an anxiolytic-like effect. I.c.v. infusion of L-AP4 (selective group III mGlu agonist) or co-administration of it along harmaline had no significant effect on anxiety-like behaviors both in non-stressed and ARS mice. When harmaline and CPPG were co-administrated, CPPG potentiated the anxiolytic-like behavior induced by harmaline in non-stressed and ARS mice. The results revealed a synergistic effect between CPPG and harmaline on the induction of anxiolytic-like effect in non-stressed and ARS mice. Our results indicated an interaction between harmaline and group III mGluR on the modulation of anxiety-like responses in non-stressed and ARS mice.
Collapse
Affiliation(s)
- Nazahnin Hasan-Kareem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Chitsaz A, Ebrahimi-Ghiri M, Zarrindast MR, Khakpai F. Synergistic interaction between clonidine and ACPA on the modulation of anxiety-like behaviors in non-acute restraint stress and acute restraint stress conditions. Brain Res 2025; 1847:149304. [PMID: 39481745 DOI: 10.1016/j.brainres.2024.149304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The present research examined the possible role of α-2 adrenergic receptor drugs (clonidine, selective α-2 adrenergic receptor agonist, and yohimbine, competitive α-2 adrenoreceptor antagonist,) on the effect of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor agonist, in non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. The animals were unilaterally implanted with a cannula in the left lateral ventricle. ARS was carried out by movement restraint at a period of 4 h. An elevated plus-maze (EPM) apparatus was used to evaluate anxiety-like behaviors. The results indicated that induction of ARS for 4 h induced anxiogenic-like behavior due to the reduction of %OAT (the percentage of time spent in the open arms) in male mice. Additionally, ARS caused neuronal degeneration in the prefrontal cortex. On the other hand, alone intracerebroventricularly (i.c.v.) infusions of ACPA (0.5 µg/mouse) and clonidine (0.5 µg/mouse) increased %OAT, indicating an anxiolytic-like response in the NARS and ARS mice. In contrast, alone i.c.v. infusions of yohimbine (0.5 µg/mouse) decreased %OAT and %OAE (the percentage of entries to the open arms), proposing an anxiogenic-like effect in the NARS and ARS mice. When the subthreshold dose of ACPA and different doses of clonidine were co-injected, ACPA potentiated the anxiolytic-like behavior produced by clonidine in the ARS mice. On the other hand, when the ineffective dosage of ACPA and different dosages of yohimbine were co-infused, ACPA reversed the anxiogenic-like effect induced by yohimbine in the NARS and ARS mice. Moreover, the results revealed a synergistic effect between ACPA and clonidine upon induction of anxiolytic-like behaviors. It can be concluded that the interaction between clonidine and ACPA modulates the anxiety-like behaviors induced by stress in male mice.
Collapse
Affiliation(s)
- Amir Chitsaz
- Department of Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Mueller LE, Wexler RS, Lovejoy DA, Stein RB, Slee AM. Teneurin C-Terminal Associated Peptide (TCAP)-1 Attenuates Restraint Stress-Induced Corticosterone Increases in Male Mice and Rats. Pharmacol Res Perspect 2024; 12:e70045. [PMID: 39651597 PMCID: PMC11626411 DOI: 10.1002/prp2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis response can result in anxiety and other neuropsychiatric disorders and effective therapeutics are needed to mitigate this maladaptive response. Here we examined the effects of Teneurin C-terminal Associated Peptide (TCAP)-1, a peptide known to inhibit corticotropin releasing factor (CRF)-mediated stress, on the physiological expression of stress, and whether the effects of TCAP-1 were dependent on the route of administration. We first examined whether subcutaneous administration of TCAP-1 influenced tube restraint stress-induced corticosterone (CORT) increases in both male mice and rats. Using a similar model, we further examined the efficacy and time course of intranasal TCAP-1. Results showed that subcutaneous TCAP-1 administration attenuated the expression of the physiological manifestation of stress in male mice and rats, and that intranasal TCAP-1 delivered prophylactically is effective at attenuating stress-induced CORT increases in male rats. These data indicate that TCAP-1 delivered though non-invasive routes of administration could have potential as a clinically relevant anxiolytic.
Collapse
Affiliation(s)
| | | | - David A. Lovejoy
- Protagenic Therapeutics Inc.New YorkNew YorkUSA
- Department of Cell and Systems BiologyUniversity of TorontoTorontoOntarioCanada
| | | | | |
Collapse
|
5
|
Jang MA, Song JW, Kim RH, Kang DO, Kang U, Kim HJ, Kim JH, Park EJ, Park YH, Lee BH, Kim CK, Park K, Kim JW, Yoo H. Real-Time Imaging Assessment of Stress-Induced Vascular Inflammation Using Heartbeat-Synchronized Motion Compensation. Arterioscler Thromb Vasc Biol 2024; 44:2493-2506. [PMID: 39387121 DOI: 10.1161/atvbaha.124.321566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Chronic mental stress accelerates atherosclerosis through complicated neuroimmune pathways, needing for advanced imaging techniques to delineate underlying cellular mechanisms. While histopathology, ex vivo imaging, and snapshots of in vivo images offer promising evidence, they lack the ability to capture real-time visualization of blood cell dynamics within pulsatile arteries in longitudinal studies. METHODS An electrically tunable lens was implemented in intravital optical microscopy, synchronizing the focal plane with heartbeats to follow artery movements. ApoE-/- mice underwent 2 weeks of restraint stress before baseline imaging followed by 2 weeks of stress exposure in the longitudinal imaging, while nonstressed mice remained undisturbed. The progression of vascular inflammation was assessed in the carotid arteries through intravital imaging and histological analyses. RESULTS A 4-fold reduction of motion artifact, assessed by interframe SD, and an effective temporal resolution of 25.2 Hz were achieved in beating murine carotid arteries. Longitudinal intravital imaging showed chronic stress led to a 6.09-fold (P=0.017) increase in myeloid cell infiltration compared with nonstressed mice. After 3 weeks, we observed that chronic stress intensified vascular inflammation, increasing adhered myeloid cells by 2.45-fold (P=0.031), while no significant changes were noted in nonstressed mice. Microcirculation imaging revealed increased circulating, rolling, and adhered cells in stressed mice's venules. Histological analysis of the carotid arteries confirmed the in vivo findings that stress augmented plaque area, myeloid cell and macrophage accumulation, and necrotic core volume while reducing fibrous cap thickness indicating accelerated plaque formation. We visualized the 3-dimensional structure of the carotid artery and 4-dimensional dynamics of the venules in the cremaster muscle. CONCLUSIONS Dynamic focusing motion compensation intravital microscopy enabled subcellular resolution in vivo imaging of blood cell dynamics in beating arteries under chronic restraint stress in real time. This novel technique emphasizes the importance of advanced in vivo imaging for understanding cardiovascular disease.
Collapse
Affiliation(s)
- Minseok A Jang
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| | - Joon Woo Song
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ryeong Hyun Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Dong Oh Kang
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ungyo Kang
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Jin Hyuk Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Eun Jin Park
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Ye Hee Park
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Bo-Hyung Lee
- Department of Neurology (B.-H.L., C.K.K.), Korea University Guro Hospital, Seoul
| | - Chi Kyung Kim
- Department of Neurology (B.-H.L., C.K.K.), Korea University Guro Hospital, Seoul
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea (K.P.)
| | - Jin Won Kim
- Multimodal Imaging and Theranostics Laboratory, Cardiovascular Center (J.W.S., R.H.K., D.O.K., H.J.K., J.H.K., E.J.P., Y.H.P., J.W.K.), Korea University Guro Hospital, Seoul
| | - Hongki Yoo
- Department of Mechanical Engineering, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, Korea (M.A.J., U.K., H.Y.)
| |
Collapse
|
6
|
Cheng Y, Nie H, Qian J, Lu J, Li Y, Li H, Yan F. Effects of restraint stress and orthodontic treatment on physical and psychological states in rats. J World Fed Orthod 2024:S2212-4438(24)00086-9. [PMID: 39609118 DOI: 10.1016/j.ejwf.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE To explore the effects of restraint stress and orthodontic tooth movement on the body weight and behavior of rats. MATERIALS AND METHODS Twenty 8-week-old male Wistar rats were randomly divided into four groups: sham stress nonorthodontic (CC), sham stress orthodontic (CO), stress nonorthodontic (SC) and stress orthodontic (SO). Rats in the stress group were subjected to restraint stress for 21 days, and those in the orthodontic group received molar retraction on days 8 to 21 (D8-D21). The weights of the rats were measured, and behavioral tests were performed on D0, D10, and D20. Serum corticosterone levels in the rats were measured on D0, D4, D8, D12, D16, and D21. RESULTS The weights of rats in the CO, SC, and SO groups were significantly lower than those in the CC group. In the open-field test, the number of times the rats entered the central zone in the CC group was significantly higher than that in the other three groups. In the elevated plus maze test, at D10, the number of times the rats entered the open arms in the SO, SC, and CO groups was significantly lower than that in the CC group. From D12, the serum corticosterone levels in the CO, SC, and SO groups were significantly higher than those in the CC group. CONCLUSIONS Both restraint stress and orthodontic tooth movement interventions may have adverse effects on weight, behavior, and neuroendocrine responses. However, overlapping the two intervention methods did not increase the magnitude of the effect.
Collapse
Affiliation(s)
- Ye Cheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hua Nie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jun Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiangyue Lu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Huang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Bederska-Łojewska D, Szczepanik K, Turek J, Machaczka A, Gąsior Ł, Pochwat B, Piotrowska J, Rospond B, Szewczyk B. Dietary Zinc Restriction and Chronic Restraint Stress Affect Mice Physiology, Immune Organ Morphology, and Liver Function. Nutrients 2024; 16:3934. [PMID: 39599720 PMCID: PMC11597199 DOI: 10.3390/nu16223934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice. METHODS The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction. Mice spleen and thymus weights were measured, and hematoxylin-eosin staining was conducted for liver and intestinal morphometry. Moreover, metallothionein (MT-1, MT-2, and MT-3), zinc transporter (ZnT-1), oxidative stress markers (TBARS, SOD, and GSH-Px), and zinc, iron, and copper concentrations in the liver were evaluated. Immunohistochemical analysis of the jejunum for ZIP1 and ZIP4 was also performed. CONCLUSIONS Our findings reveal that dietary zinc restriction and chronic stress induce structural changes in the intestines and immune organs and impact metallothionein expression, oxidative stress, and liver iron and copper homeostasis.
Collapse
Affiliation(s)
- Dorota Bederska-Łojewska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland;
| | - Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bartłomiej Rospond
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| |
Collapse
|
8
|
Tillmon H, Soteros BM, Shen L, Cong Q, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice. Nat Commun 2024; 15:9803. [PMID: 39532876 PMCID: PMC11557709 DOI: 10.1038/s41467-024-54007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the medial prefrontal cortex (mPFC) in male mice. Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (Apoehigh) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the Apoehigh microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
Affiliation(s)
- Haven Tillmon
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Liang Shen
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qifei Cong
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Clinical Research Center of Neurological Disease, Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Julianne General
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Hanna Chin
- University of Rochester, Rochester, NY, 14627, USA
| | - John Beichen Lee
- Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Flavia R Carreno
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veteran's Health Care System, San Antonio, TX, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gek Ming Sia
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Shoji H, Maeda Y, Miyakawa T. Chronic corticosterone exposure causes anxiety- and depression-related behaviors with altered gut microbial and brain metabolomic profiles in adult male C57BL/6J mice. Mol Brain 2024; 17:79. [PMID: 39511657 PMCID: PMC11545877 DOI: 10.1186/s13041-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic exposure to glucocorticoids in response to long-term stress is thought to be a risk factor for major depression. Depression is associated with disturbances in the gut microbiota composition and peripheral and central energy metabolism. However, the relationship between chronic glucocorticoid exposure, the gut microbiota, and brain metabolism remains largely unknown. In this study, we first investigated the effects of chronic corticosterone exposure on various domains of behavior in adult male C57BL/6J mice treated with the glucocorticoid corticosterone to evaluate them as an animal model of depression. We then examined the gut microbial composition and brain and plasma metabolome in corticosterone-treated mice. Chronic corticosterone treatment resulted in reduced locomotor activity, increased anxiety-like and depression-related behaviors, decreased rotarod latency, reduced acoustic startle response, decreased social behavior, working memory deficits, impaired contextual fear memory, and enhanced cued fear memory. Chronic corticosterone treatment also altered the composition of gut microbiota, which has been reported to be associated with depression, such as increased abundance of Bifidobacterium, Turicibacter, and Corynebacterium and decreased abundance of Barnesiella. Metabolomic data revealed that long-term exposure to corticosterone led to a decrease in brain neurotransmitter metabolites, such as serotonin, 5-hydroxyindoleacetic acid, acetylcholine, and gamma-aminobutyric acid, as well as changes in betaine and methionine metabolism, as indicated by decreased levels of adenosine, dimethylglycine, choline, and methionine in the brain. These results indicate that mice treated with corticosterone have good face and construct validity as an animal model for studying anxiety and depression with altered gut microbial composition and brain metabolism, offering new insights into the neurobiological basis of depression arising from gut-brain axis dysfunction caused by prolonged exposure to excessive glucocorticoids.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
10
|
Chagas LA, Penna J, Gonçalves JF, Elias L, Antunes-Rodrigues J, Ruginsk SG. Acute rimonabant treatment prevents anhedonia and memory loss in rats submitted to mild restraint stress. Behav Brain Res 2024; 474:115175. [PMID: 39098399 DOI: 10.1016/j.bbr.2024.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stress-related disorders are becoming increasingly common and are often associated with cognitive impairments. Within this context, the endocannabinoid (ECB) system, particularly the type 1 cannabinoid (CB1) receptor, seems to play a decisive role in restoring body homeostasis. There is consistent evidence in the literature that disrupted CB1-mediated neurotransmission can ultimately contribute to stress-related diseases. Therefore, the present study aimed to evaluate the participation of CB1 receptors in the integrity of stress-induced peripheral and behavioral responses. For this purpose, male adult Wistar rats underwent physical restraint (1 h/day, for 7 days), followed by a single administration of rimonabant (CB1 receptor antagonist, 3 mg/Kg, intraperitonial) at the end of stress protocol. Animals were then subjected to evaluation of neuroendocrine responses, behavioral tests and quantification of Iba-1 (microglial) immunoreactivity in the parvocellular subdivisions of the paraventricular nucleus of the hypothalamus (PVN). No effects of restraint stress or rimonabant administration were detected on body mass variation. However, stress significantly increased adrenal relative mass and corticosterone secretion, and reduced thymus relative size. The stress effects on adrenal size and corticosterone plasma levels were absent in rimonabant-treated rats, but the thymus size was further reduced in the restraint-rimonabant group. Restraint stress also induced anhedonia, a depression-like behavior, and reduced object recognition index, indicating memory recovery impairment. Treatment with the CB1 antagonist significantly reversed stress-induced anhedonia and memory deficit. In the PVN, restraint stress reduced the number of Iba-1 positive cells in the medial parvocellular region of vehicle- but not rimonabant-treated animals. Taken together, these results indicate that the acute inhibition of the CB1-mediated endogenous pathway restores stress-induced depression-like behaviors and memory loss, suggesting a role for endocannabinoids in the neuro-immune-endocrine interplay at both peripheral and hypothalamic levels.
Collapse
Affiliation(s)
- L A Chagas
- Graduate Program in Biosciences applied to Health, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Jct Penna
- Undergraduate student in Medicine, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - J F Gonçalves
- Undergraduate student in Medicine, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Llk Elias
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - S G Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Abe Y, Murase T, Mitsuma M, Shinba Y, Yamashita H, Ikematsu K. Dynamics of somatostatin 4 receptor expression during chronic-stress loading and its potential as a chronic-stress marker. Sci Rep 2024; 14:10045. [PMID: 38698013 PMCID: PMC11066077 DOI: 10.1038/s41598-024-58621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Chronic stress has been implicated in mental illnesses and depressive behaviors. Somatostatin 4 receptor (SSTR4) has been shown to mediate anxiolytic and depression-like effects. Here, we aimed to explore the potential of SSTR4 as a diagnostic marker for chronic stress in mice. The mice were divided into single stress, chronic restraint stress, and control groups, and Sstr4 mRNA expression in the pituitary, lungs, and thymus, its protein expression in the thymus, were analyzed. Compared to controls, Sstr4 mRNA expression decreased significantly in the pituitary gland of the chronic and single-stress groups (P = 0.0181 and 0.0022, respectively) and lungs of the single-stress group (P = 0.0124), whereas it significantly increased in the thymus of the chronic-stress group (P = 0.0313). Thymic SSTR4 expression did not decrease significantly in stress groups compared to that in the control group (P = 0.0963). These results suggest that SSTR4 expression fluctuates in response to stress. Furthermore, Sstr4 mRNA expression dynamics in each organ differed based on single or chronic restraint stress-loading periods. In conclusion, this study suggests that investigating SSTR4 expression in each organ could allow for its use as a stress marker to estimate the stress-loading period and aid in diagnosing chronic stress.
Collapse
Affiliation(s)
- Yuki Abe
- Division of Forensic Pathology and Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Miki, Kita, Kagawa, 761-0793, Japan.
| | - Masahide Mitsuma
- Division of Forensic Pathology and Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoriko Shinba
- Division of Forensic Pathology and Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Hiromi Yamashita
- Division of Forensic Dental Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
12
|
Nazari-Serenjeh F, Sadeghi M, Azizbeigi R, Semizeh H, Mazaheri S, Haghparast A, Haghparast A. Blocking the dopaminergic receptors within the hippocampal dentate gyrus reduced analgesic responses induced by restraint stress in the formalin test. Behav Brain Res 2024; 463:114914. [PMID: 38368953 DOI: 10.1016/j.bbr.2024.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Previous studies have shown that various receptors, including dopamine receptors, are expressed in the hippocampal dentate gyrus (DG). Besides, indicatively, dopamine receptors play an essential role in the modulation of pain perception. On the other hand, stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). The current study examined the probable role of dopamine receptors within the DG in antinociception induced by restraint stress (RS). Ninety-seven male albino Wistar rats were unilaterally implanted with a cannula in the DG. Animals received intra-DG microinjections of SCH23390 or Sulpiride (0.25, 1, and 4 μg/rat) as D1-and D2-like dopamine receptor antagonists, respectively, five minutes before RS. Ten minutes after the end of the induction of RS for three hours, 50 μl 2.5% formalin was injected subcutaneously into the plantar surface of the hind paw to induce persistent inflammatory pain. Pain scores were evaluated at 5-minute intervals for 60 minutes. These findings showed that; exposure to RS for three hours produced SIA in both phases of the formalin test, while this RS-induced analgesia was attenuated in the early and late phases of the formalin test by intra-DG microinjection of SCH23390 and Sulpiride. The results of the present study suggested that both D1- and D2-like dopamine receptors in the DG have a considerable role in the induced analgesia by RS.
Collapse
Affiliation(s)
| | - Mehdi Sadeghi
- Department of Physiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Hadi Semizeh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Mazaheri
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Amanzade A, Khakpai F, Zarrindast MR. Synergistic antidepressant-like effect of citicoline and CB 1 agonist in male mice. Psychopharmacology (Berl) 2024; 241:753-766. [PMID: 38383902 DOI: 10.1007/s00213-023-06507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/14/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND The endocannabinoid system plays a key role in the control of many emotional-correlated reactions such as stress, depressed mood, and anxiety. Moreover, citicoline has neuroprotective properties and indicates beneficial effects in the treatment of depressive problems. Acute restraint stress (ARS) is an experimental model used for the induction of rodent models of depression. OBJECTIVE This research was designed to assess the effects of intracerebroventricular (i.c.v.) injection of cannabinoid CB1 receptor agents on citicoline-induced response to depression-like behaviors in the non-acute restraint stress (NARS) and ARS mice. METHODS For i.c.v. microinjection, a guide cannula was implanted in the left lateral ventricle of male mice. The ARS model was carried out by movement restraint for 4 h. Depression-related behaviors were assessed by forced swimming test (FST), tail suspension test (TST), and splash test. RESULTS The results exhibited that the ARS mice showed depressive-like responses. I.c.v. infusion of ACPA (1 μg/mouse) induced an antidepressant-like effect in the NARS and ARS mice by reduction of immobility time in the FST and TST as well as enhancement of grooming activity time in the splash test. On the other hand, i.c.v. microinjection of AM251 dose-dependently (0.5 and 1 μg/mouse) induced a depressant-like effect in the NARS mice. I.p. injection of citicoline (80 mg/kg) induced an antidepressant-like response in the NARS and ARS mice. Furthermore, ACPA (0.25 μg/mouse, i.c.v.) potentiated the antidepressant-like response induced by citicoline (20 mg/kg, i.p.) in the NARS and ARS mice. However, AM251 (0.25 μg/mouse, i.c.v.) reversed the antidepressant-like effect produced by the citicoline (80 mg/kg, i.p.) in the NARS and ARS mice. Interestingly, our results indicated a synergistic effect between citicoline and ACPA based on the induction of an antidepressant-like effect in the NARS and ARS mice. CONCLUSIONS These results suggested an interaction between citicoline and cannabinoid CB1 receptors on the modulation of depression-like behaviors in the NARS and ARS mice.
Collapse
Affiliation(s)
- Aysan Amanzade
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| |
Collapse
|
14
|
Amnzade A, Zarrindast MR, Khakpai F. Additive anxiolytic-like effect of citicoline and ACPA in the non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. Physiol Behav 2024; 277:114506. [PMID: 38432442 DOI: 10.1016/j.physbeh.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The cannabinoid system plays a key role in stress-related emotional symptoms such as anxiety. Citicoline is a supplemental substance with neuroprotective properties that alleviates anxiety-related behaviors. There is a relation between the actions of cannabinoids and cholinergic systems. So, we decided to evaluate the effects of intracerebroventricular (i.c.v.) infusion of cannabinoid CB1 receptor agents on citicoline-produced response to anxiety-like behaviors in the non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. For i.c.v. microinjection of drugs, a guide cannula was inserted in the left lateral ventricle. ARS was induced by movement restraint for 4 h. Anxiety-related behaviors were assessed using an elevated plus maze (EPM). The results showed that induction of ARS for 4 h decreased the percentage of time spent in the open arms (%OAT) and the percentage of entries to the open arms (%OAE) without affecting locomotor activity, showing anxiogenic-like behaviors. i.c.v. infusion of ACPA (1 µg/mouse) induced an anxiolytic-like effect due to the enhancement of %OAT in the NARS and ARS mice. Nonetheless, i.c.v. microinjection of AM251 (1 µg/mouse) decreased %OAT in the NARS and ARS mice which suggested an anxiogenic-like response. Intraperitoneal (i.p.) administration of citicoline (80 mg/kg) induced an anxiolytic-like effect by the augmentation of %OAT in the ARS mice. Furthermore, when ACPA and citicoline were co-administrated, ACPA potentiated the anxiolytic-like effect induced by citicoline in the NARS and ARS mice. On the other hand, when AM251 and the citicoline were co-injected, AM251 reversed the anxiolytic-like response induced by the citicoline in the NARS and ARS mice. The results of this research exhibited an additive effect between citicoline and ACPA on the induction of anxiolytic-like response in the NARS and ARS mice. Our results indicated an interaction between citicoline and cannabinoid CB1 receptor drugs on the control of anxiety-like behaviors in the NARS and ARS mice.
Collapse
Affiliation(s)
- Aysan Amnzade
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Hosseini F, Khakpai F, Fazli-Tabaei S, Nasehi M, Zarrindast MR. Interaction between citalopram and omega-3 fatty acids on anxiety and depression behaviors and maintaining the stability of brain pyramidal neurons in mice. Neurosci Lett 2024; 824:137688. [PMID: 38360146 DOI: 10.1016/j.neulet.2024.137688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
This research was done to examine the combination of citalopram, an antidepressant drug, and omega-3 in a mice model of depression. Mice received citalopram (1 and 2 mg/kg) or omega-3 (10 and 20 mg/kg) daily over 30 days. Then, they were exposed to acute and chronic restraint stress to assess the possible increasing effect of omega-3 on the antidepressant and anxiolytic effects of citalopram. Elevated plus-maze (EPM) and forced swimming test (FST) were used to assess anxiety and depression symptoms in non-restraint stress (NRS), acute restraint stress (ARS), and chronic restraint stress (CRS) mice. The results indicated that induction of acute and chronic restraint stress reduced %OAT (Open arm time) and %OAE (Open arm entrance) in the EPM test but enhanced immobility time in the FST, showing anxiogenic- and depressive-like effects. These stresses reduced the stability of pyramidal neurons in the prefrontal cortex (PFC) and hippocampus. Aone and combination administration with citalopram and omega-3 induced anxiolytic- and antidepressant-like effects in NRS, ARS, and CRS mice. This combination usage increased the stability of pyramidal neurons in the PFC and hippocampus. These results suggested an interaction between citalopram and omega-3 upon the induction of anxiolytic- and antidepressant-like effects as well as augmentation of the ratio of pyramidal live to dark neurons in the PFC and hippocampus of the ARS and CRS mice.
Collapse
Affiliation(s)
- Fayezeh Hosseini
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Soheila Fazli-Tabaei
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Scanes CG, Pierzchała-Koziec K, Gajewska A. Effects of Restraint Stress on Circulating Corticosterone and Met Enkephalin in Chickens: Induction of Shifts in Insulin Secretion and Carbohydrate Metabolism. Animals (Basel) 2024; 14:752. [PMID: 38473137 DOI: 10.3390/ani14050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
This study examined the effects of acute restraint stress in the presence or absence of naltrexone on the circulating concentrations of insulin, glucose, Met-enkephalin and corticosterone in 14-week-old chickens [design: 2 sex × 2 stress/non-stress × 2 +/- naltrexone]. In chickens (five male and five females per treatment) subjected to restraint for 30 min, there were increases in the plasma concentrations of corticosterone and Met-enkephalin. The plasma concentrations of insulin and glucose were also increased in the chickens during restraint. Moreover, there were increases in the plasma concentrations of insulin and glucose in the chickens. The patterns of expression of the proenkephalin gene (PENK) in both the anterior pituitary gland and the adrenal gland were very similar to that of plasma Met-enkephalin. There were relationships between the plasma concentrations of corticosterone, Met-enkephalin, insulin and glucose after 30 min of restraint. The effects of naltrexone treatment on both untreated and stressed chickens were also examined, with naltrexone attenuating the stress-induced increases in the plasma concentrations of corticosterone, Met-enkephalin and glucose but not in those of insulin. The present study demonstrates that stress increases insulin secretion in chickens but also induces insulin resistance.
Collapse
Affiliation(s)
- Colin G Scanes
- Department of Biological Science, University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA
| | - Krystyna Pierzchała-Koziec
- Department of Animal Physiology and Endocrinology, University of Agriculture, Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Alina Gajewska
- Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
| |
Collapse
|
17
|
Sun DS, Lien TS, Chang HH. Restraint stress-associated gastrointestinal injury and implications from the Evans blue-fed restraint stress mouse model. Tzu Chi Med J 2024; 36:23-29. [PMID: 38406572 PMCID: PMC10887336 DOI: 10.4103/tcmj.tcmj_101_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 02/27/2024] Open
Abstract
The association between stress and gastrointestinal (GI) tract diseases is well established, while the exact mechanism remains elusive. As a result, it is urgent to establish mouse models to investigate restraint stress-associated GI leakage, but current models have their limitations. A new Evans blue-fed restraint mouse model has recently been developed that allows researchers to study restraint stress-associated GI leakage in live animals. This review article will focus on this model, including its mechanisms, clinical implications, and applications for studying restraint stress-associated GI injury. Recent findings from studies using this model will also be highlighted, along with their potential for diagnosis and treatment. The article aims to discuss about current research and provide recommendations for further study, ultimately improving our understanding of the link between stress and GI injury and improving patient outcomes.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
18
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of home-cage elevation on behavioral tests in mice. Brain Behav 2023; 14:e3269. [PMID: 38064177 PMCID: PMC10897499 DOI: 10.1002/brb3.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Research reproducibility is a common problem in preclinical behavioral science. Mice are an important animal model for studying human behavioral disorders. Experimenters, processing methods, and rearing environments are the main causes of data variability in behavioral neuroscience. It is likely that mice adapt their behavior according to the environment outside the breeding cage. We speculated that mice housed on elevated shelves and mice housed on low shelves might have differently altered anxiety-like behavior toward heights. PURPOSE The purpose of this study was to investigate potential behavioral changes in mice raised at different heights for 3 weeks. Changes in behavior were examined using various experimental tests. RESULTS Mice housed on elevated shelves showed reduced anxiety-like behavior in a light/dark traffic test compared with mice housed on low shelves. There were no significant differences between the two groups in terms of activity, exploratory behavior, muscle strength, or depression-like behavior. CONCLUSIONS Our results indicate that different cage heights and corresponding light exposure may alter the anxiety-like behavior of mice in response to brightness. Researchers need to carefully control the cage height and light intensity experienced by the mice to produce reproducible test results.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical TechnologyKawasaki University of Medical WelfareOkayamaJapan
| | - Yu Takahashi
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Shinji Murakami
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Kenta Wani
- Department of PsychiatryKawasaki Medical SchoolKurashikiJapan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health SciencesOkayama UniversityOkayamaJapan
| | | |
Collapse
|
19
|
Fushuku S, Ushikai M, Arimura E, Komaki Y, Horiuchi M. Acute repeated cage exchange stress modifies urinary stress and plasma metabolic profiles in male mice. PLoS One 2023; 18:e0292649. [PMID: 37815996 PMCID: PMC10564260 DOI: 10.1371/journal.pone.0292649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Exposure to a novel environment is psychologically and physically stressful for humans and animals. The response has been reported to involve enhanced sympathetic nervous system activity, but changes in nutrient levels under stress are not fully understood. As a form of exposure to a novel environment, repeated cage exchange (CE, four times at 2-h intervals for 8 h from 08:00 h) during the light phase with no restraint on movement was applied to A/J mice, a strain particularly prone to stress. Body temperature was measured with a temperature-sensing microchip implanted in the interscapular region. The stress conditions and anxiety level were evaluated by measuring urinary catecholamines and corticosterone and by performing an anxiety-like behavior test, respectively. Major nutrients such as glucose, fatty acids, and amino acids in the plasma were also examined. CE mice showed a significant increase in body temperature with each CE. They also showed a significantly greater reduction of body weight change, more water intake, and higher levels of urinary catecholamines and corticosterone and anxiety-like behavior score than control mice. The model revealed a significantly lower plasma glucose level and higher levels of several essential amino acids, such as branched-chain amino acids and phenylalanine, than those of control mice. Meanwhile, free fatty acids and several amino acids such as arginine, aspartic acid, proline, threonine, and tryptophan in both sets of mice were significantly decreased from the corresponding levels at 08:00 h, while similar plasma levels were exhibited between mice with and without CE. In conclusion, repeated CE stress was associated with changes in glucose and amino acids in plasma. Although further study is needed to clarify how these changes are specifically linked to anxiety-like behavior, this study suggests the potential for nutritional intervention to counter stress in humans exposed to novel environments.
Collapse
Affiliation(s)
- Sayuri Fushuku
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Miharu Ushikai
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Emi Arimura
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Major in Food and Nutrition, Department of Life and Environmental Science, Kagoshima Prefectural College, Kagoshima, Japan
| | - Yuga Komaki
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahisa Horiuchi
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
20
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with Krtcap3. Physiol Genomics 2023; 55:452-467. [PMID: 37458463 PMCID: PMC10642928 DOI: 10.1152/physiolgenomics.00019.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| |
Collapse
|
21
|
Soteros BM, Tillmon H, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Heterogeneous complement and microglia activation mediates stress-induced synapse loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546889. [PMID: 37425856 PMCID: PMC10327081 DOI: 10.1101/2023.06.28.546889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
|
22
|
Li CC, Munalisa R, Lee HY, Lien TS, Chan H, Hung SC, Sun DS, Cheng CF, Chang HH. Restraint Stress-Induced Immunosuppression Is Associated with Concurrent Macrophage Pyroptosis Cell Death in Mice. Int J Mol Sci 2023; 24:12877. [PMID: 37629059 PMCID: PMC10454201 DOI: 10.3390/ijms241612877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Psychological stress is widely acknowledged as a major contributor to immunosuppression, rendering individuals more susceptible to various diseases. The complex interplay between the nervous, endocrine, and immune systems underlies stress-induced immunosuppression. However, the underlying mechanisms of psychological-stress-induced immunosuppression remain unclear. In this study, we utilized a restraint stress mouse model known for its suitability in investigating physiological regulations during psychological stress. Comparing it with cold exposure, we observed markedly elevated levels of stress hormones corticosterone and cortisol in the plasma of mice subjected to restraint stress. Furthermore, restraint-stress-induced immunosuppression differed from the intravenous immunoglobulin-like immunosuppression observed in cold exposure, with restraint stress leading to increased macrophage cell death in the spleen. Suppression of pyroptosis through treatments of inflammasome inhibitors markedly ameliorated restraint-stress-induced spleen infiltration and pyroptosis cell death of macrophages in mice. These findings suggest that the macrophage pyroptosis associated with restraint stress may contribute to its immunosuppressive effects. These insights have implications for the development of treatments targeting stress-induced immunosuppression, emphasizing the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Rina Munalisa
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hsuan-Yun Lee
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hao Chan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Shih-Che Hung
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| |
Collapse
|
23
|
Tan YZ, Thomsen LR, Shrestha N, Camisasca A, Giordani S, Rosengren R. Short-Term Intravenous Administration of Carbon Nano-Onions is Non-Toxic in Female Mice. Int J Nanomedicine 2023; 18:3897-3912. [PMID: 37483316 PMCID: PMC10361275 DOI: 10.2147/ijn.s414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background A nanoscale drug carrier could have a variety of therapeutic and diagnostic uses provided that the carrier is biocompatible in vivo. Carbon nano-onions (CNOs) have shown promising results as a nanocarrier for drug delivery. However, the systemic effect of CNOs in rodents is unknown. Therefore, we investigated the toxicity of CNOs following intravenous administration in female BALB/c mice. Results Single or repeated administration of oxi-CNOs (125, 250 or 500 µg) did not affect mouse behavior or organ weight and there was also no evidence of hepatotoxicity or nephrotoxicity. Histological examination of organ slices revealed a significant dose-dependent accumulation of CNO aggregates in the spleen, liver and lungs (p<0.05, ANOVA), with a trace amount of aggregates appearing in the kidneys. However, CNO aggregates in the liver did not affect CYP450 enzymes, as total hepatic CYP450 as well as CYP3A catalytic activity, as meased by erythromycin N-demethylation, and protein levels showed no significant changes between the treatment groups compared to vehicle control. CNOs also failed to act as competitive inhibitors of CYP3A in vitro in both mouse and human liver microsomes. Furthermore, CNOs did not cause oxidative stress, as indicated by the unchanged malondialdehyde levels and superoxide dismutase activity in liver microsomes and organ homogenates. Conclusion This study provides the first evidence that short-term intravenous administration of oxi-CNOs is non-toxic to female mice and thus could be a promising novel and safe drug carrier.
Collapse
Affiliation(s)
- Yi Zhen Tan
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Lucy R Thomsen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Nensi Shrestha
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Adalberto Camisasca
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Rhonda Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
24
|
Dhaibar HA, Kamberov L, Carroll NG, Amatya S, Cosic D, Gomez-Torres O, Vital S, Sivandzade F, Bhalerao A, Mancuso S, Shen X, Nam H, Orr AW, Dudenbostel T, Bailey SR, Kevil CG, Cucullo L, Cruz-Topete D. Exposure to Stress Alters Cardiac Gene Expression and Exacerbates Myocardial Ischemic Injury in the Female Murine Heart. Int J Mol Sci 2023; 24:10994. [PMID: 37446174 PMCID: PMC10341935 DOI: 10.3390/ijms241310994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Mental stress is a risk factor for myocardial infarction in women. The central hypothesis of this study is that restraint stress induces sex-specific changes in gene expression in the heart, which leads to an intensified response to ischemia/reperfusion injury due to the development of a pro-oxidative environment in female hearts. We challenged male and female C57BL/6 mice in a restraint stress model to mimic the effects of mental stress. Exposure to restraint stress led to sex differences in the expression of genes involved in cardiac hypertrophy, inflammation, and iron-dependent cell death (ferroptosis). Among those genes, we identified tumor protein p53 and cyclin-dependent kinase inhibitor 1A (p21), which have established controversial roles in ferroptosis. The exacerbated response to I/R injury in restraint-stressed females correlated with downregulation of p53 and nuclear factor erythroid 2-related factor 2 (Nrf2, a master regulator of the antioxidant response system-ARE). S-female hearts also showed increased superoxide levels, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (Ptgs2) expression (a hallmark of ferroptosis) compared with those of their male counterparts. Our study is the first to test the sex-specific impact of restraint stress on the heart in the setting of I/R and its outcome.
Collapse
Affiliation(s)
- Hemangini A. Dhaibar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Lilly Kamberov
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Natalie G. Carroll
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Shripa Amatya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Dario Cosic
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Oscar Gomez-Torres
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo 45004, Spain
| | - Shantel Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| | - Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Aditya Bhalerao
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Salvatore Mancuso
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Xinggui Shen
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Hyung Nam
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - A. Wayne Orr
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Tanja Dudenbostel
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- LSU Health Sciences Center, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Steven R. Bailey
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- LSU Health Sciences Center, Department of Internal Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Christopher G. Kevil
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Luca Cucullo
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (F.S.); (A.B.); (S.M.)
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA; (H.A.D.); (L.K.); (N.G.C.); (S.A.); (D.C.); (O.G.-T.); (S.V.)
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, LSU Health Sciences Center, Shreveport, LA 71103, USA; (X.S.); (H.N.); (A.W.O.); (T.D.); (S.R.B.); (C.G.K.)
| |
Collapse
|
25
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in Environmental Stress over COVID-19 Pandemic Likely Contributed to Failure to Replicate Adiposity Phenotype Associated with Krtcap3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532439. [PMID: 36993361 PMCID: PMC10055176 DOI: 10.1101/2023.03.15.532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| |
Collapse
|
26
|
Wongsaengchan C, McCafferty DJ, Evans NP, McKeegan DEF, Nager RG. Body surface temperature of rats reveals both magnitude and sex differences in the acute stress response. Physiol Behav 2023; 264:114138. [PMID: 36871696 DOI: 10.1016/j.physbeh.2023.114138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Understanding how biological markers of stress relate to stressor magnitude is much needed and can be used in welfare assessment. Changes in body surface temperature can be measured using infrared thermography (IRT) as a marker of a physiological response to acute stress. While an avian study has shown that changes in body surface temperature can reflect the intensity of acute stress, little is known about surface temperature responses to stressors of different magnitudes and its sex-specificity in mammals, and how they correlate with hormonal and behavioural responses. We used IRT to collect continuous surface temperature measurements of tail and eye of adult male and female rats (Rattus norvegicus), for 30 minutes after exposure to one of three stressors (small cage, encircling handling or rodent restraint cone) for one minute, and cross-validated the thermal response with plasma corticosterone (CORT) and behavioural assessment. To obtain individual baseline temperatures and thermal responses to stress, rats were imaged in a test arena (to which they were habituated) for 30 seconds before and 30 minutes after being exposed to the stressor. In response to the three stressors, tail temperature initially decreased and then recovered to, or overshot the baseline temperature. Tail temperature dynamics differed between stressors; being restrained in the small cage was associated with the smallest drop in temperature, in male rats, and the fastest thermal recovery, in both sexes. Increases in eye temperature only distinguished between stressors early in the response and only in females. The post stressor increase in eye temperature was greater in the right eye of males and the left eye of females. In both sexes encircling may have been associated with the fastest increase in CORT. These results were in line with observed behavioural changes, with greater movement in rats exposed to the small cage and higher immobility after encircling. The female tail and eye temperature, as well as the CORT concentrations did not return to pre-stressor levels in the observation period, in conjunction with the greater occurrence of escape-related behaviours in female rats. These results suggest that female rats are more vulnerable to acute restraint stress compared to male rats and emphasise the importance of using both sexes in future investigations of stressor magnitude. This study demonstrates that acute stress induced changes in mammalian surface temperature measured with IRT relate to the magnitude of restraint stress, indicate sex differences and correlate with hormonal and behavioural responses. Thus, IRT has the potential to become a non-invasive method of continuous welfare assessment in unrestrained mammals.
Collapse
Affiliation(s)
- Chanakarn Wongsaengchan
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, KY16 9JP, United Kingdom
| | - Dominic J McCafferty
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Scottish Centre for Ecology and the Natural Environment, Rowardennan, G63 0AW, United Kingdom
| | - Neil P Evans
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Dorothy E F McKeegan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Ruedi G Nager
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
27
|
Molina P, Andero R, Armario A. Restraint or immobilization: a comparison of methodologies for restricting free movement in rodents and their potential impact on physiology and behavior. Neurosci Biobehav Rev 2023; 151:105224. [PMID: 37156310 DOI: 10.1016/j.neubiorev.2023.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Restriction of free movement has historically been used as a model for inducing acute and chronic stress in laboratory animals. This paradigm is one of the most widely employed experimental procedures for basic research studies of stress-related disorders. It is easy to implement, and it rarely involves any physical harm to the animal. Many different restraint methods have been developed with variations in the apparatuses used and the degree of limitation of movement. Unfortunately, very few studies directly compare the differential impact of the distinct protocols. Additionally, restraint and immobilization terms are not differentiated and are sometimes used interchangeably in the literature. This review offers evidence of great physiological differences in the impact of distinct restraint procedures in rats and mice and emphasizes the need for a standardized language on this topic. Moreover, it illustrates the necessity of additional systematic studies that compare the effects of the distinct restraint methodologies, which would help to decide better which procedure should be used depending on the objectives of each particular study.
Collapse
Affiliation(s)
- Patricia Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Deparment of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain; ICREA, Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
28
|
Chernukha I, Vasilevskaya E, Klimina K, Yunes R, Kupaeva N, Tolmacheva G, Kibitkina A, Danilenko V, Karabanov S, Fedulova L. Effects of ultrasound-induced stress on gut microbiota of mice. Vet World 2023; 16:929-938. [PMID: 37576770 PMCID: PMC10420703 DOI: 10.14202/vetworld.2023.929-938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Prolonged stress causes deleterious effects on both the organism and its microbiota. In this study, we examined the effects of exposure to variable frequency ultrasound (US) on the gut microbiota-liver-brain axis of mice. Materials and Methods This study was conducted on 20 mature clinically healthy sexually naive C57BL/6J male mice (42-45 days old). Group 1 (Normal) consisted of healthy intact mice (n = 10). Group 2 (Stress) consisted of mice subjected to US-induced stress (n = 10) for 20 days with alternating frequencies (20-45 kHz). Stool samples were collected on days 0, 10, and 20, and the corresponding DNA was later subjected to 16SrRNA sequencing. After mice were sacrificed on day 21, the leukocyte count, blood serum biochemical parameters, and liver and brain antioxidant status were measured. Behavioral testing was performed on days 17, 18, and 19. Results Ultrasound lead to higher stress and anxiety levels; increase in creatinine by 8.29% and gamma-glutamyltransferase activity by 5 times, a decrease in alkaline phosphatase activity by 38.23%, increase of de Ritis coefficient by 21.34%; increased liver and brain superoxide dismutase level by 20.8% and 21.5%, respectively; the stress-related changes in the gut microbiota composition - Bacteroidaceae and Firmicutes. Conclusion Subjecting mice to 20 days of US-induced stress leads to systemic disorders due to oxidative stress and a decrease in the diversity of the gut microbiota.
Collapse
Affiliation(s)
- Irina Chernukha
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ekaterina Vasilevskaya
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Ksenia Klimina
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Roman Yunes
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda Kupaeva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Galina Tolmacheva
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Anastasiya Kibitkina
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Valery Danilenko
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Karabanov
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Liliya Fedulova
- Department of Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V.M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| |
Collapse
|
29
|
Nguyen TV, Yamanaka K, Tomita K, Zubcevic J, Gouraud SSS, Waki H. Impact of exercise on brain-bone marrow interactions in chronic stress: potential mechanisms preventing stress-induced hypertension. Physiol Genomics 2023; 55:222-234. [PMID: 36939204 PMCID: PMC10151049 DOI: 10.1152/physiolgenomics.00168.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023] Open
Abstract
We examined the effect of chronic restraint stress and the counteractive effects of daily exercise on the molecular basis of the brain-bone marrow (BM) interactions, by especially focusing on the paraventricular nucleus (PVN) of the hypothalamus. Male Wistar rats were assigned into control, restraint stress, and stress + daily spontaneous exercise (SE) groups. BM and hypothalamic gene expression profiles were examined through the undertaking of RT-PCR and microarrays, respectively. The inflammatory blood cell population was investigated through flow cytometry. Through the use of immunohistochemistry, we examined the presence of BM-derived C-C chemokine receptor type 2 (CCR2)-expressing microglial cells in the rat PVN. The gene expression levels of BM inflammatory factors such as those of interleukin 1 beta and CCR2, and the inflammatory blood cell population were found to be significantly higher in both restrained groups compared with control group. Interestingly, chronic restraint stress alone activated the recruitment of BM-derived CCR2-expressing microglial cells into the PVN, whereas daily spontaneous exercise prevented it. A notable finding was that restraint stress upregulated relative gene expression of hypothalamic matrix metalloproteinase 3 (MMP3), which increases the permeability of the blood-brain barrier (BBB), and that exercise managed to normalize it. Moreover, relative expression of some hypothalamic genes directly involved in the facilitation of cell migration was downregulated by daily exercise. Our findings suggest that daily spontaneous exercise can reduce the numbers of BM-derived CCR2-expressing microglial cells into the PVN through the prevention of stress-induced changes in the hypothalamic gene expression.NEW & NOTEWORTHY Chronic restraint stress can upregulate MMP3 gene expression in the rat hypothalamus, whereas daily spontaneous exercise can prevent this stress-induced effect. Stress-induced BM-derived inflammatory cell recruitment into the rat PVN can be prevented by daily spontaneous exercise. Stress-induced increase of hypothalamic MMP3 gene expression may be responsible for BBB injury, thereby allowing for BM-derived inflammatory cells to be recruited and to accumulate in the rat PVN, and to be subsequently involved in the onset of stress-induced hypertension.
Collapse
Affiliation(s)
- Thu Van Nguyen
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Military Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Keisuke Tomita
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, United States
| | - Sabine S S Gouraud
- College of Liberal Arts, International Christian University, Tokyo, Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| |
Collapse
|
30
|
Dual Cannabinoid and Orexin Regulation of Anhedonic Behaviour Caused by Prolonged Restraint Stress. Brain Sci 2023; 13:brainsci13020314. [PMID: 36831860 PMCID: PMC9954020 DOI: 10.3390/brainsci13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The endocannabinoid and orexin systems share many biological functions, including wakefulness, stress response, reward processing, and mood. While these systems work against one another with respect to arousal, chronic stress-induced downregulation of both systems often leads to anhedonia or the inability to experience pleasure from natural rewards. In the current study, a 24 h restraint stress test (24 h RST) reduced sucrose preference in adult male and female C57BL/6 mice. Prior to the stressor, subsets of mice were intraperitoneally administered cannabinoid and orexin receptor agonists, antagonists, and combinations of these drugs. Restraint mice that received the cannabinoid receptor type 1 (CB1R) antagonist SR141716A, orexin receptor type 2 (OX2R) agonist YNT-185, and the combination of SR141716A and YNT-185, exhibited less anhedonia compared to vehicle/control mice. Thus, the 24 h RST likely decreased orexin signaling, which was then restored by YNT-185. Receptor colocalization analysis throughout mesocorticolimbic brain regions revealed increased CB1R-OX1R colocalization from SR141716A and YNT-185 treatments. Although a previous study from our group showed additive cataleptic effects between CP55,940 and the dual orexin receptor antagonist (TCS-1102), the opposite combination of pharmacological agents proved additive for sucrose preference. Taken together, these results reveal more of the complex interactions between the endocannabinoid and orexin systems.
Collapse
|
31
|
Liao L, Liu X, Zhou S. IMPACTS OF SUSPENSION TRAINING ON THE PHYSICAL FITNESS OF SWIMMERS. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Introduction Suspension training develops the physical fitness of a swimmer and improves his or her abilities. The specific fitness of a swimmer is the body's ability to adapt to load in swimming. This is also a comprehensive reflection of their physical function, conditioning, athletic ability, and overall health. Objective This study aimed to analyze the effect of suspension training on swimmers’ balance, abdominal center strength, and athletic performance. Methods This paper selects several swimmers as research volunteers. They were randomly divided into experimental and control groups. Both of them underwent physical training for three months. The experimental group adopted the suspension training method. The control group used traditional training methods. Mathematical statistics performed data analysis in both groups. Results The physical fitness of the two groups of swimmers was improved substantially after the experiment (P<0.05). The strength balance ability of the experimental group showed better performance(P<0.05). There was a significant difference between the experimental and control groups in the results of fitness index tests (P<0.01). Conclusion Suspension training has a prominent effect on the physical development of swimmers. This modality proved a better efficacy on swimmers’ performance. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.
Collapse
|
32
|
Chronic Inhibition of Aggressive Behavior Induces Behavioral Change in Mice. Behav Neurol 2022; 2022:7630779. [PMID: 36619803 PMCID: PMC9815925 DOI: 10.1155/2022/7630779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Suppression of anger is more common than its expression among Asian individuals. Emotional suppression is considered an unhealthy emotional regulation. Most studies on emotional suppression have concluded that suppression adversely affects social outcomes, with approximately 5% of the world's population suffering from emotional disorders. However, anger suppression has not received academic attention, and details of the effects of chronic anger suppression on the central nervous system remain unclear. In this study, we performed the resident-intruder test to investigate the effect of chronic suppression of aggressive behavior in mice using a behavioral test battery and to clarify whether suppression of this aggressive behavior is stressful for mice. Mice chronically inhibited aggressive behavior and lost weight. Mice with inhibited aggressive behavior showed a reduced percentage of immobility time during the tail suspension test as well as no changes in activity, anxiety-like behavior, muscle strength, or temperature sensitivity. This study provides scientific evidence for the effects of chronic aggressive behavior inhibition on the body and central nervous system.
Collapse
|
33
|
Bąk J, Bobula B, Hess G. Restraint Stress and Repeated Corticosterone Administration Differentially Affect Neuronal Excitability, Synaptic Transmission and 5-HT 7 Receptor Reactivity in the Dorsal Raphe Nucleus of Young Adult Male Rats. Int J Mol Sci 2022; 23:ijms232214303. [PMID: 36430779 PMCID: PMC9698125 DOI: 10.3390/ijms232214303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Exogenous corticosterone administration reduces GABAergic transmission and impairs its 5-HT7 receptor-dependent modulation in the rat dorsal raphe nucleus (DRN), but it is largely unknown how neuronal functions of the DRN are affected by repeated physical and psychological stress. This study compared the effects of repeated restraint stress and corticosterone injections on DRN neuronal excitability, spontaneous synaptic transmission, and its 5-HT7 receptor-dependent modulation. Male Wistar rats received corticosterone injections for 7 or 14 days or were restrained for 10 min twice daily for 3 days. Repeated restraint stress and repeated corticosterone administration evoked similar changes in performance in the forced swim test. They increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from DRN neurons. In contrast to the treatment with corticosterone, restraint stress-induced changes in sEPSC kinetics and decreased intrinsic excitability of DRN neurons did not modify inhibitory transmission. Repeated injections of the 5-HT7 receptor antagonist SB 269970 ameliorated the effects of restraint on excitability and sEPSC frequency but did not restore the altered kinetics of sEPSCs. Thus, repeated restraint stress and repeated corticosterone administration differ in consequences for the intrinsic excitability of DRN projection neurons and their excitatory and inhibitory synaptic inputs. Effects of repeated restraint stress on DRN neurons can be partially abrogated by blocking the 5-HT7 receptor.
Collapse
|
34
|
The prevention of home-cage grid climbing affects muscle strength in mice. Sci Rep 2022; 12:15263. [PMID: 36088409 PMCID: PMC9464241 DOI: 10.1038/s41598-022-19713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExperimenters and treatment methods are the major contributors to data variability in behavioral neuroscience. However, home cage characteristics are likely associated with data variability. Mice housed in breeding cages spontaneously exhibit behavioral patterns such as biting into the wire grid and climbing on the grid lid. We aimed to clarify the effect of covering the stainless steel wire grid lid in commonly used home cage with Plexiglas to prevent climbing on muscle strength in mice. Furthermore, we investigated the effects of climbing prevention on activity and anxiety-like behavior, and the impact of climbing prevention during the postnatal development period and adulthood on muscle strength. Muscle strength, anxiety-like behavior, and locomotor activity were assessed by a battery of tests (wire hang, suspension, grip strength, rotarod, elevated-plus maze, and open field tests). Mice prevented from climbing the wire grid during postnatal development displayed lower muscle strength than those able to climb. Moreover, mice prevented from climbing for 3 weeks following maturity had weakened muscles. The muscle strength was decreased with 3 weeks of climbing prevention in even 1-year-old mice. In summary, the stainless steel wire grid in the home cage contributed to the development and maintenance of muscle strength in mice.
Collapse
|
35
|
Jin Q, Li J, Chen GY, Wu ZY, Liu XY, Liu Y, Chen L, Wu XY, Liu Y, Zhao X, Song YH. Network and Experimental Pharmacology to Decode the Action of Wendan Decoction Against Generalized Anxiety Disorder. Drug Des Devel Ther 2022; 16:3297-3314. [PMID: 36193286 PMCID: PMC9526509 DOI: 10.2147/dddt.s367871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Qi Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jie Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Guang-Yao Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Zi-Yu Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, People’s Republic of China
| | - Xiao-Yu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yi Liu
- Humanities School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Lin Chen
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin-Yi Wu
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- Correspondence: Xin Zhao; Yue-Han Song, Email ;
| | - Yue-Han Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
36
|
Boero G, Tyler RE, O’Buckley TK, Balan I, Besheer J, Morrow AL. (3α,5α)3-Hydroxypregnan-20-one (3α,5α-THP) Regulation of the HPA Axis in the Context of Different Stressors and Sex. Biomolecules 2022; 12:1134. [PMID: 36009028 PMCID: PMC9406198 DOI: 10.3390/biom12081134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022] Open
Abstract
Corticotropin-releasing factor (CRF) regulates the stress response in the hypothalamus and modulates neurotransmission across the brain through CRF receptors. Acute stress increases hypothalamic CRF and the GABAergic neurosteroid (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP). We previously showed that 3α,5α-THP regulation of CRF is sex and brain region dependent. In this study, we investigated 3α,5α-THP regulation of stress-induced hypothalamic CRF, CRF receptor type 1 (CRFR1), CRF binding protein (CRFBP), pro-opiomelanocortin (POMC), and glucocorticoid receptor (GR) by western blot and circulating corticosterone (CORT) by enzyme-linked immunosorbent assay (ELISA) in male and female Sprague Dawley rats. Tissue was collected after rats were injected with 3α,5α-THP (15 mg/kg, IP) or vehicle 15 min prior to 30 min of restraint stress (RS), or 10 min of forced swim stress (FSS) and 20 min recovery. The initial exposure to a stress stimulus increased circulating CORT levels in both males and females, but 3α,5α-THP attenuated the CORT response only in females after RS. 3α,5α-THP reduced GR levels in male and females, but differently between stressors. 3α,5α-THP decreased the CRF stress response after FSS in males and females, but after RS, only in female rats. 3α,5α-THP reduced the CRFR1, CRFBP, and POMC increases after RS and FSS in males, but in females only after FSS. Our results showed different stress responses following different types of stressors: 3α,5α-THP regulated the HPA axis at different levels, depending on sex.
Collapse
Affiliation(s)
- Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan E. Tyler
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Shoji H, Kunugi H, Miyakawa T. Acute and chronic effects of oral administration of a medium-chain fatty acid, capric acid, on locomotor activity and anxiety-like and depression-related behaviors in adult male C57BL/6J mice. Neuropsychopharmacol Rep 2022; 42:59-69. [PMID: 34994529 PMCID: PMC8919109 DOI: 10.1002/npr2.12226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023] Open
Abstract
Aim Capric acid (also known as decanoic acid or C10) is one of the fatty acids in the medium‐chain triglycerides (MCTs) commonly found in dietary fats. Although dietary treatment with MCTs is recently of great interest for the potential therapeutic effects on neuropsychiatric disorders, the effects of oral administration of C10 on behavior remain to be examined. This study investigated acute and chronic effects of oral administration of C10 on locomotor activity and anxiety‐like and depression‐related behaviors in adult male C57BL/6J mice. Methods To explore the acute effects of C10 administration, mice were subjected to a series of behavioral tests in the following order: light/dark transition, open field, elevated plus maze, Porsolt forced swim, and tail suspension tests, 30 minutes after oral gavage of either vehicle or C10 solution (30 mmol/kg dose in Experiment 1; 0.1, 0.3, 1.0, 3.0 mmol/kg doses in Experiment 2). Next, to examine chronic effects of C10, mice repeatedly administered with either vehicle or C10 solution (0.3, 3.0 mmol/kg doses per day, for 21 days, in Experiment 3) were subjected to behavioral tests without oral administration immediately before each test. Results The mice administrated with the high dose of C10 (30 mmol/kg) showed lower body weights, shorter distance traveled, and more anxiety‐like behavior than vehicle‐treated mice, and the results reached study‐wide statistical significance. The C10 administration at a lower dose of 0.3 mmol/kg had no significant effects on body weights and induced nominally significantly longer distance traveled than vehicle administration. Repeated administration of C10 at a dose of 3.0 mmol/kg for more than 21 days caused lower body weights and decreased depression‐related behavior, although the behavioral differences did not reach study‐wide significance. Conclusions Although these results suggest dose‐dependent effects of oral administration of capric acid on locomotor activity and anxiety‐like and depression‐related behaviors, further study will be needed to replicate the findings and explore the underlying brain mechanisms. Repeated oral administration of the medium‐chain fatty acid, capric acid, decreased depression‐related behavior in C57BL/6J mice. This study suggests that capric acid exerts an antidepressant effect. ![]()
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
38
|
Excessive energy expenditure due to acute physical restraint disrupts Drosophila motivational feeding response. Sci Rep 2021; 11:24208. [PMID: 34921197 PMCID: PMC8683507 DOI: 10.1038/s41598-021-03575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
To study the behavior of Drosophila, it is often necessary to restrain and mount individual flies. This requires removal from food, additional handling, anesthesia, and physical restraint. We find a strong positive correlation between the length of time flies are mounted and their subsequent reflexive feeding response, where one hour of mounting is the approximate motivational equivalent to ten hours of fasting. In an attempt to explain this correlation, we rule out anesthesia side-effects, handling, additional fasting, and desiccation. We use respirometric and metabolic techniques coupled with behavioral video scoring to assess energy expenditure in mounted and free flies. We isolate a specific behavior capable of exerting large amounts of energy in mounted flies and identify it as an attempt to escape from restraint. We present a model where physical restraint leads to elevated activity and subsequent faster nutrient storage depletion among mounted flies. This ultimately further accelerates starvation and thus increases reflexive feeding response. In addition, we show that the consequences of the physical restraint profoundly alter aerobic activity, energy depletion, taste, and feeding behavior, and suggest that careful consideration is given to the time-sensitive nature of these highly significant effects when conducting behavioral, physiological or imaging experiments that require immobilization.
Collapse
|
39
|
Chuang DJ, Pethaperumal S, Siwakoti B, Chien HJ, Cheng CF, Hung SC, Lien TS, Sun DS, Chang HH. Activating Transcription Factor 3 Protects against Restraint Stress-Induced Gastrointestinal Injury in Mice. Cells 2021; 10:3530. [PMID: 34944038 PMCID: PMC8700235 DOI: 10.3390/cells10123530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/11/2022] Open
Abstract
Psychological stress increases the risk of gastrointestinal (GI) tract diseases, which involve bidirectional communication of the GI and nerves systems. Acute stress leads to GI ulcers; however, the mechanism of the native cellular protection pathway, which safeguards tissue integrality and maintains GI homeostasis, remains to be investigated. In a mouse model of this study, restraint stress induced GI leakage, abnormal tight junction protein expression, and cell death of gut epithelial cells. The expression of activating transcription factor 3 (ATF3), a stress-responsive transcription factor, is upregulated in the GI tissues of stressed animals. ATF3-deficient mice displayed an exacerbated phenotype of GI injuries. These results suggested that, in response to stress, ATF3 is part of the native cellular protective pathway in the GI system, which could be a molecular target for managing psychological stress-induced GI tract diseases.
Collapse
Affiliation(s)
- Dun-Jie Chuang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Subhashree Pethaperumal
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Bijaya Siwakoti
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| |
Collapse
|
40
|
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021; 37:109820. [PMID: 34644564 DOI: 10.1016/j.celrep.2021.109820] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Lactate has diverse roles in the brain at the molecular and behavioral levels under physiological and pathophysiological conditions. This study investigates whether lysine lactylation (Kla), a lactate-derived post-translational modification in macrophages, occurs in brain cells and if it does, whether Kla is induced by the stimuli that accompany changes in lactate levels. Here, we show that Kla in brain cells is regulated by neural excitation and social stress, with parallel changes in lactate levels. These stimuli increase Kla, which is associated with the expression of the neuronal activity marker c-Fos, as well as with decreased social behavior and increased anxiety-like behavior in the stress model. In addition, we identify 63 candidate lysine-lactylated proteins and find that stress preferentially increases histone H1 Kla. This study may open an avenue for the exploration of a role of neuronal activity-induced lactate mediated by protein lactylation in the brain.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hikari Otabi
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
41
|
Yoon KJ, Park S, Kwak SH, Moon HY. Effects of Voluntary Running Wheel Exercise-Induced Extracellular Vesicles on Anxiety. Front Mol Neurosci 2021; 14:665800. [PMID: 34276303 PMCID: PMC8280765 DOI: 10.3389/fnmol.2021.665800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are the most frequently diagnosed psychological condition, associated with serious comorbidities including excessive fear and interference with daily life. Drugs for anxiety disorders are typically prescribed but the side effects include weight gain, nausea, and sleepiness. Exercise is an effective treatment for anxiety. Exercise induces the release of extracellular vesicles (EVs) into the circulation, which transmit signals between organs. However, the effects of exercise-induced EVs on anxiety remain poorly understood. Here, we isolated EVs from the sera of mice that were sedentary or that voluntarily exercised. We characterized the changes in the miRNA profile of serum EVs after 4 weeks of voluntary exercise. miRNA sequencing showed that 82 miRNAs (46 of which were positive and 36 negative regulators) changed after exercise. We selected genes affected by at least two miRNAs. Of these, 27.27% were associated with neurotrophin signaling (9.09% with each of central nervous system neuronal development, cerebral cortical cell migration, and peripheral neuronal development). We also analyzed behavioral changes in mice with 3 weeks of restraint stress-induced anxiety after injection of 20 μg amounts of EVs from exercised or sedentary mice into the left cerebral ventricle. We found that exercise-derived EVs reduced anxiety (compared to a control group) in a nest-building test but found no between-group differences in the rotarod or open field tests. Exercise-derived EVs enhanced the expression of neuroactive ligand-receptor interaction genes. Thus, exercise-derived EVs may exhibit anti-anxiety effects and may be of therapeutic utility.
Collapse
Affiliation(s)
- Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Suhong Park
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Seung Hee Kwak
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, South Korea.,Institute of Sport Science, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Schalbetter SM, Mueller FS, Scarborough J, Richetto J, Weber-Stadlbauer U, Meyer U, Notter T. Oral application of clozapine-N-oxide using the micropipette-guided drug administration (MDA) method in mouse DREADD systems. Lab Anim (NY) 2021; 50:69-75. [PMID: 33619409 DOI: 10.1038/s41684-021-00723-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
The designer receptor exclusively activated by designer drugs (DREADD) system is one of the most widely used chemogenetic techniques to modulate the activity of cell populations in the brains of behaving animals. DREADDs are activated by acute or chronic administration of their ligand, clozapine-N-oxide (CNO). There is, however, a current lack of a non-invasive CNO administration technique that can control for drug timing and dosing without inducing substantial distress for the animals. Here, we evaluated whether the recently developed micropipette-guided drug administration (MDA) method, which has been used as a non-invasive and minimally stressful alternative to oral gavages, may be applied to administer CNO orally to activate DREADDs in a dosing- and timing-controlled manner. Unlike standard intraperitoneal injections, administration of vehicle substances via MDA did not elevate plasma levels of the major stress hormone, corticosterone, and did not attenuate exploratory activity in the open field test. At the same time, however, administration of CNO via MDA or intraperitoneally was equally efficient in activating hM3DGq-expressing neurons in the medial prefrontal cortex, as evident by time-dependent increases in mRNA levels of neuronal immediate early genes (cFos, Arc and Zif268) and cFos-immunoreactive neurons. Compared to vehicle given via MDA, oral administration of CNO via MDA was also found to potently increase locomotor activity in mice that express hM3DGq in prefrontal neurons. Taken together, our study confirms the effectiveness of CNO given orally via MDA and provides a novel method for non-stressful, yet well controllable CNO treatments in mouse DREADD systems.
Collapse
Affiliation(s)
- Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Tina Notter
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
43
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. The environmental enrichment model revisited: A translatable paradigm to study the stress of our modern lifestyle. Eur J Neurosci 2021; 55:2359-2392. [PMID: 33638921 DOI: 10.1111/ejn.15160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 01/31/2023]
Abstract
Mounting evidence shows that physical activity, social interaction and sensorimotor stimulation provided by environmental enrichment (EE) exert several neurobehavioural effects traditionally interpreted as enhancements relative to standard housing (SH) conditions. However, this evidence rather indicates that SH induces many deficits, which could be ameliorated by exposing animals to an environment vaguely mimicking some features of their wild habitat. Rearing rodents in social isolation (SI) can aggravate such deficits, which can be restored by SH or EE. It is not surprising, therefore, that most preclinical stress models have included severe and unnatural stressors to produce a stress response prominent enough to be distinguishable from SH or SI-frequently used as control groups. Although current stress models induce a stress-related phenotype, they may fail to represent the stress of our urban lifestyle characterized by SI, poor housing and working environments, sedentarism, obesity and limited access to recreational activities and exercise. In the following review, we discuss the stress of living in urban areas and how exposures to and performing activities in green environments are stress relievers. Based on the commonalities between human and animal EE, we discuss how models of housing conditions (e.g., SI-SH-EE) could be adapted to study the stress of our modern lifestyle. The housing conditions model might be easy to implement and replicate leading to more translational results. It may also contribute to accomplishing some ethical commitments by promoting the refinement of procedures to model stress, diminishing animal suffering, enhancing animal welfare and eventually reducing the number of experimental animals needed.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica.,Instituto de Investigaciones en Salud, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, San Pedro, Costa Rica.,Centro de Investigación en Neurociencias, Universidad de Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
44
|
Mosaffa S, Ahmadi H, Khakpai F, Ebrahimi-Ghiri M, Zarrindast MR. Synergistic antidepressant- and anxiolytic-like effects of harmaline along with cinanserin in acute restraint stress-treated mice. Psychopharmacology (Berl) 2021; 238:259-269. [PMID: 33190164 PMCID: PMC7666640 DOI: 10.1007/s00213-020-05679-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Acute restraint stress (ARS) is an experimental paradigm used for the induction of rodent models of stress-produced neuropsychiatric disorders, such as depression and anxiety. β-carbolines and serotonin (5-HT) systems are involved in the modulation of depression and anxiety behaviors. OBJECTIVE This study was designed to examine the effects of intracerebroventricular (i.c.v.) injection of cinanserin (5-HT2 receptor antagonist) on harmaline-induced responses on depression- and anxiety-like behaviors in the ARS mice. METHODS For i.c.v. infusion, guide cannula was surgically implanted in the left lateral ventricle of mice. The ARS model was conducted via movement restraint at a period of 4 h. Depression- and anxiety-related behaviors were evaluated by forced swim test (FST) and elevated plus maze (EPM), respectively. RESULTS The results displayed that the ARS mice showed depressive- and anxiety-like responses. I.p. administration of different doses of harmaline (0.31, 0.625 and 1.25 mg/kg) or i.c.v. microinjection of cinanserin (1, 2.5, and 5 μg/mouse) blocked depression- and anxiogenic-like behaviors in the ARS mice. Furthermore, co-administration of harmaline (1.25 mg/kg; i.p.) and cinanserin (5 μg/mouse; i.c.v.) prevented the depression- and anxiogenic-like effects in the ARS mice. We found a synergistic antidepressant- and anxiolytic-like effects of harmaline and cinanserin in the ARS mice. CONCLUSIONS These results propose an interaction between harmaline and cinanserin to prevent depressive- and anxiogenic-like behaviors in the ARS mice.
Collapse
Affiliation(s)
- Sajedeh Mosaffa
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O.Box 13145-784, Tehran, Iran
| | - Hanieh Ahmadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O.Box 13145-784, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O.Box 13145-784, Tehran, Iran. .,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Mao Y, Chen Y, Yang X, Wang J, Ge L, Fu J, Sun H, Ma Y. Concurrent environmental enrichment and chronic restraint stress: Effects on innate anxiety and depressive-like behavior in male adolescent mice. Int J Dev Neurosci 2020; 80:730-736. [PMID: 32888366 DOI: 10.1002/jdn.10061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 11/06/2022] Open
Abstract
Adolescence is a period that exhibits both vulnerability and adaptation to environmental stimulus. This study explored the co-existence effect of environmental enrichment (EE) and restraint stress (RS) on innate anxiety and depressive-like behavior in adolescent mice. Male ICR mice were treated with daily EE and RS (4 h/d or 8 h/d) for 2 or 4 weeks from early adolescence (postnatal day 30) and emotional behaviors were evaluated 24 h after the end of treatment. 4 weeks of 8 h RS treatment decreased immobility time in forced swimming test, demonstrating an antidepressant-like effect. For 2 weeks of treatment, 8 h RS significantly reduced the time spent in the lighted compartment of the light-dark box, indicating an increased anxiety level. These results show that under the present experimental design, RS treatment with different duration could have different effect on mice emotion-related behavior, but there was no interaction between EE and RS.
Collapse
Affiliation(s)
- Yu Mao
- Scientific Research Center, Yunnan University of Chinese Medicine, Kunming, P.R. China
| | - Yanmei Chen
- Medical Faculty, Kunming University of Science & Technology, Kunming, P.R. China
| | - Xiaomi Yang
- Scientific Research Center, Yunnan University of Chinese Medicine, Kunming, P.R. China
| | - Jianhong Wang
- Kunming Primates Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China
| | - Longjiao Ge
- Kunming Primates Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China
| | - Juan Fu
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, P.R. China
| | - Huaying Sun
- Scientific Research Center, Yunnan University of Chinese Medicine, Kunming, P.R. China.,The Key Laboratory of External Drug Delivery System and Preparation Technology in University of Yunnan Province, School of Chinese Materia Medica, Yunnan Univertity of Chinese Medicine, Kunming, P.R. China
| | - Yuanye Ma
- Kunming Primates Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China
| |
Collapse
|
46
|
Shoji H, Miyakawa T. Differential effects of stress exposure via two types of restraint apparatuses on behavior and plasma corticosterone level in inbred male BALB/cAJcl mice. Neuropsychopharmacol Rep 2019; 40:73-84. [PMID: 31872573 PMCID: PMC7292218 DOI: 10.1002/npr2.12093] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023] Open
Abstract
Aims Restraint stress is one of the most widely used experimental methods for generating rodent models of stress‐induced neuropsychiatric disorders, such as depression and anxiety. Although various types of restraint apparatuses have been used to expose animals to stress, the magnitudes of the effects of stress exposure via different types of restraint apparatuses on physiology and behavior have not been compared in the same environment. Here, we investigated the effects of stress exposure via two types of restraint apparatuses on body weight, locomotor activity, anxiety‐ and depression‐related behaviors, and plasma corticosterone levels in mice. Methods Adult male BALB/cAJcl mice were restrained by placing them in either a well‐ventilated plastic conical tube or a tapered plastic film envelope for 6 hours per day for 10 or 21 consecutive days. Mice were weighed during and after the stress period and were subjected to a battery of behavioral tests, including light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, and sucrose preference tests, starting on the day after the last stress session. Plasma corticosterone levels were measured in another cohort of mice on the 1st and the 21st stress sessions and after the Porsolt forced swim test. Results Exposure to repeated stress via the two above mentioned types of restraint apparatuses caused body weight loss, heightened locomotor activity, altered immobility during forced swim, and increased plasma corticosterone levels, and some of these results differed between the restraint stress protocols. Film‐restraint–stressed mice had significantly lower body weights than tube‐restraint–stressed mice. Film‐restraint–stressed mice exhibited significantly higher or lower immobility during forced swim than tube‐restraint–stressed mice, depending on the test time. Additionally, the stress‐induced increase in plasma corticosterone levels was found to be higher in film‐restraint–stressed mice than in tube‐restraint–stressed mice. Conclusion Our results indicate that film‐restraint stress has more pronounced effects on body weight, depression‐related behavior, and corticosterone response than tube‐restraint stress in mice. These findings may help guide which restraint stress procedures to use, depending on the objectives of a given study, in generating animal models of stress‐induced neuropsychiatric disorders. This study investigated the effects of stress exposure via two types of restraint apparatuses, a well‐ventilated plastic conical tube and a tapered plastic film envelope, on body weights, behaviors, and plasma corticosterone levels in male BALB/cAJcl mice. Film‐restraint stress had more pronounced effects on body weight, depression‐related behavior, and corticosterone response than tube‐restraint stress, which may help guide which restraint stress procedures to use in generating animal models of stress‐induced disorders.![]()
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|