1
|
Singh N, Chattopadhyay G, Sundaramoorthy NS, Varadarajan R, Singh R. Understanding the physiological role and cross-interaction network of VapBC35 toxin-antitoxin system from Mycobacterium tuberculosis. Commun Biol 2025; 8:327. [PMID: 40016306 PMCID: PMC11868609 DOI: 10.1038/s42003-025-07663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
The VapBC toxin-antitoxin (TA) system, composed of VapC toxin and VapB antitoxin, has gained attention due to its relative abundance in members of the M. tuberculosis complex. Here, we have functionally characterised VapBC35 TA system from M. tuberculosis. We show that ectopic expression of VapC35 inhibits M. smegmatis growth in a bacteriostatic manner. Also, an increase in the VapB35 antitoxin to VapC35 toxin ratio results in a stronger binding affinity of the complex with the promoter-operator DNA. We show that VapBC35 is necessary for M. tuberculosis adaptation in oxidative stress conditions but is dispensable for M. tuberculosis growth in guinea pigs. Further, using a combination of co-expression studies and biophysical methods, we report that VapC35 also interacts with non-cognate antitoxin VapB3. Taken together, the present study advances our understanding of cross-interaction networks among VapBC TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | | | - Niranjana Sri Sundaramoorthy
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Reyes-González LV, Hernández de la Cruz ON, Castañón-Arreola M. Expression of Resuscitation-Promoting Factor C Stimulates the Growth of Mycobacterium bovis BCG and Delays DevR Regulon Activation in Hypoxia. Int J Microbiol 2025; 2025:2139933. [PMID: 39996126 PMCID: PMC11850072 DOI: 10.1155/ijm/2139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Latent tuberculosis is characterized by the presence of dormant, nonreplicating (DNR) bacilli for years without causing clinical signs and symptoms, remaining as a major reservoir for active tuberculosis. The mechanism through which M. tuberculosis transits from DNR to active bacilli remains unclear. However, resuscitation-promoting factors (Rpfs) could participate in the reactivation. Using recombinant M. bovis BCG that expresses rpfC (M. bovis BCG-pMV261::rpfC), we evaluated the role of RpfC in the growth of bacilli and the expression of 11 hypoxia-regulated genes in comparison with M. bovis BCG-pMV261. The strains were grown in normoxic (21% O2), hypoxic (5% O2), and anoxic (< 0.1% O2) conditions. In normoxic culture, M. bovis BCG-pMV261::rpfC displays a lower expression of sigB and fdxA. In anoxic culture, we did not observe drastic changes in the gene expression, except for those involved in electron transport during anaerobic respiration (pdxA, pfkB, and nark2), whose expression was significantly lower in M. bovis BCG-pMV261. When the strains were cultured in hypoxia, significantly higher culturability was observed in M. bovis BCG-pMV261::rpfC compared to M. bovis BCG-pMV261. This response was accompanied by a higher sigB and sigE expression. In both strains, we observed a higher dosT, devR, fdxA, and fpkB expression in response to hypoxia. Interestingly, except for fdxA, the expression of these genes was lower in M. bovis BCG-pMV261::rpfC. The protein profiles of M. bovis BCG-pMV261::rpfC reflected the maintenance of an active replicative state (similar to that of the strain grown in normoxic conditions). In anoxic cultures, no significant changes were observed in the expression of hypoxia-response genes. These findings suggest that rpfC may have a significant physiological role in inducing the growth of M. bovis BCG-pMV261::rpfC, which results in the delayed activation of genes related to the transition to anaerobic metabolism.
Collapse
|
3
|
Pandey A, Meitei HN, Konjengbam BD, Rahaman H, Haobam R. Association of NOS2A Gene Polymorphisms with Susceptibility to Tuberculosis in Manipuri Population of Northeast India. Biochem Genet 2025:10.1007/s10528-024-11015-w. [PMID: 39776372 DOI: 10.1007/s10528-024-11015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Single nucleotide polymorphisms (SNPs) have been reported to influence the activity of specific genes involved with the innate immune response to Mycobacterium; hence, they are crucial in tuberculosis (TB) susceptibility studies. The study aimed to investigate the polymorphism in the NOS2A (Nitric oxide synthase 2A) gene and its association with susceptibility to TB in the Manipuri population of northeast India. This case-control study includes 495 subjects- 220 TB patients and 275 control individuals. TaqMan allelic discrimination assay was used to study the gene polymorphism, and Griess's test was employed to determine the serum nitric oxide (NO) levels. Serum NO levels were analysed to correlate with the functional changes associated with the polymorphisms. Two SNPs of the gene, NOS2A (rs8078340 and rs2274894), were studied. For the SNP-rs8078340, a significant difference in the genotypic and allelic frequencies was observed between the cases and control groups (p = 0.001; AA genotype OR = 30.288, 95% CI: 1.703-538.44 and A allele OR = 2.937, 95% CI: 1.762-4.896). However, for the SNP-rs2274894, only the T allele (with OR = 1.464; 95% CI: 1.080-1.983, p = 0.014) was associated with susceptibility to TB. Serum levels of NO were significantly different between the cases and control groups (p < 0.05). Significant associations of both homozygous AA genotype and allele A of the NOS2A (rs8078340) and minor allele T of NOS2A (rs2274894) were observed with susceptibility to TB. Patients with the AA genotype of NOS2A show a higher NO level, suggesting its role in greater expression of the NOS2A gene.
Collapse
Affiliation(s)
- Anupama Pandey
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | | | | | - Hamidur Rahaman
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, 795003, Manipur, India.
| |
Collapse
|
4
|
Zohaib Ali M, Dutt TS, MacNeill A, Walz A, Pearce C, Lam H, Philp JS, Patterson J, Henao-Tamayo M, Lee R, Liu J, Robertson GT, Hickey AJ, Meibohm B, Gonzalez Juarrero M. A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. eLife 2024; 13:RP96190. [PMID: 39378165 PMCID: PMC11460978 DOI: 10.7554/elife.96190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The Nix-TB clinical trial evaluated a new 6 month regimen containing three oral drugs; bedaquiline (B), pretomanid (Pa), and linezolid (L) (BPaL regimen) for the treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug-resistant or extensively drug-resistant TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile, but it lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of the BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effects in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested the development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but not the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen without L-associated AEs.
Collapse
Affiliation(s)
- Malik Zohaib Ali
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Taru S Dutt
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amy MacNeill
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amanda Walz
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Camron Pearce
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Ha Lam
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Jamie S Philp
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Johnathan Patterson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Richard Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI InternationalResearch Triangle ParkUnited States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphisUnited States
| | - Mercedes Gonzalez Juarrero
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| |
Collapse
|
5
|
Cheng H, Ji Z, Wang Y, Li S, Tang T, Wang F, Peng C, Wu X, Cheng Y, Liu Z, Ma M, Wang J, Huang X, Wang L, Qin L, Liu H, Chen J, Zheng R, Feng CG, Cai X, Qu D, Ye L, Yang H, Ge B. Mycobacterium tuberculosis produces D-serine under hypoxia to limit CD8 + T cell-dependent immunity in mice. Nat Microbiol 2024; 9:1856-1872. [PMID: 38806671 PMCID: PMC11222154 DOI: 10.1038/s41564-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
Adaptation to hypoxia is a major challenge for the survival of Mycobacterium tuberculosis (Mtb) in vivo. Interferon (IFN)-γ-producing CD8+ T cells contribute to control of Mtb infection, in part by promoting antimicrobial activities of macrophages. Whether Mtb counters these responses, particularly during hypoxic conditions, remains unknown. Using metabolomic, proteomic and genetic approaches, here we show that Mtb induced Rv0884c (SerC), an Mtb phosphoserine aminotransferase, to produce D-serine. This activity increased Mtb pathogenesis in mice but did not directly affect intramacrophage Mtb survival. Instead, D-serine inhibited IFN-γ production by CD8+ T cells, which indirectly reduced the ability of macrophages to restrict Mtb upon co-culture. Mechanistically, D-serine interacted with WDR24 and inhibited mTORC1 activation in CD8+ T cells. This decreased T-bet expression and reduced IFN-γ production by CD8+ T cells. Our findings suggest an Mtb evasion mechanism where pathogen metabolic adaptation to hypoxia leads to amino acid-dependent suppression of adaptive anti-TB immunity.
Collapse
Affiliation(s)
- Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhe Ji
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Yang Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Shenzhi Li
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Tianqi Tang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Fei Wang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Cheng Peng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yuanna Cheng
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Mingtong Ma
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Carl G Feng
- Immunology and Host Defense Group, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, P. R. China.
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, PR China.
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China.
| |
Collapse
|
6
|
Ali MZ, Dutt TS, MacNeill A, Walz A, Pearce C, Lam H, Philp J, Patterson J, Henao-Tamayo M, Lee RE, Liu J, Robertson GT, Hickey AJ, Meibohm B, Gonzalez-Juarrero M. A Modified BPaL Regimen for Tuberculosis Treatment replaces Linezolid with Inhaled Spectinamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567434. [PMID: 38014249 PMCID: PMC10680823 DOI: 10.1101/2023.11.16.567434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The Nix-TB clinical trial evaluated a new 6-month regimen containing three-oral- drugs; bedaquiline (B), pretomanid (Pa) and linezolid (L) (BPaL regimen) for treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug resistant (MDR) or extensively drug resistant (XDR) TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile but which lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effect in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but no the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. During therapy both regimens improved the lung lesion burden, reduced neutrophil and cytotoxic T cells counts while increased the number of B and helper and regulatory T cells. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen that avoids L-associated AEs. IMPORTANCE Tuberculosis (TB) is an airborne infectious disease that spreads via aerosols containing Mycobacterium tuberculosis (Mtb), the causative agent of TB. TB can be cured by administration of 3-4 drugs for 6-9 months but there are limited treatment options for patients infected with multidrug (MDR) and extensively resistant (XDR) strains of Mtb. BPaL is a new all-oral combination of drugs consisting of Bedaquiline (B), Pretomanid (Pa) and Linezolid (L). This regimen was able to cure ∼90% of MDR and XDR TB patients in clinical trials but many patients developed severe adverse events (AEs) associated to the long-term administration of linezolid. We evaluated a new regimen in which Linezolid in the BPaL regimen was replaced with inhaled spectinamide 1599. In the current study, we demonstrate that 4-weeks of treatment with inhaled spectinamide 1599 in combination with Bedaquiline and Pretomanid has equivalent efficacy to the BPaL drug combination and avoids the L-associated-AEs.
Collapse
|
7
|
Gorityala N, Baidya AS, Sagurthi SR. Genome mining of Mycobacterium tuberculosis: targeting SufD as a novel drug candidate through in silico characterization and inhibitor screening. Front Microbiol 2024; 15:1369645. [PMID: 38686111 PMCID: PMC11057465 DOI: 10.3389/fmicb.2024.1369645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Tuberculosis (TB) stands as the second most fatal infectious disease globally, causing 1.3 million deaths in 2022. The resurgence of TB and the alarming rise of antibiotic resistance demand urgent call to develop novel antituberculosis drugs. Despite concerted efforts to control TB, the disease persists and spreads rapidly on a global scale. Targeting stress response pathways in Mycobacterium tuberculosis (Mtb) has become imperative to achieve complete eradication. This study employs subtractive genomics to identify and prioritize potential drug targets among the hypothetical proteins of Mtb, focusing on indispensable pathways. Amongst 177 essential hypothetical proteins, 152 were nonhomologous to human. These proteins participated in 34 pathways, and a 20-fold enrichment of SUF pathway genes led to its selection as a target pathway. Fe-S clusters are fundamental, widely distributed protein cofactors involved in vital cellular processes. The survival of Mtb in a hypoxic environment relies on the iron-sulfur (Fe-S) cluster biogenesis pathway for the repair of damaged Fe-S clusters. It also protects pathogen against drugs, ensuring controlled iron utilization and contributing to drug resistance. In Mtb, six proteins of Fe-S cluster assembly pathway are encoded by the suf operon. The present study was focused on SufD because of its role in iron acquisition and prevention of Fenton reaction. The research further delves into the in silico characterization of SufD, utilizing bioinformatics tools for sequence and structure based analysis. The protein's structural features, including the identification of conserved regions, motifs, and 3D structure prediction enhanced functional annotation. Target based virtual screening of compounds from the ChEMBL database resulted in 12 inhibitors with best binding affinities. Drug likeness and ADMET profiling of potential inhibitors identified promising compounds with favorable drug-like properties. The study also involved cloning in SUMO-pRSF-Duet1 expression vector, overexpression, and purification of recombinant SufD from E. coli BL21 (DE3) cells. Optimization of expression conditions resulted in soluble production, and subsequent purification highlighting the efficacy of the SUMO fusion system for challenging Mtb proteins in E. coli. These findings provide valuable insights into pharmacological targets for future experimental studies, holding promise for the development of targeted therapy against Mtb.
Collapse
Affiliation(s)
- Neelima Gorityala
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Anthony Samit Baidya
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Someswar R Sagurthi
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Xu Y, Ma S, Huang Z, Wang L, Raza SHA, Wang Z. Nitrogen metabolism in mycobacteria: the key genes and targeted antimicrobials. Front Microbiol 2023; 14:1149041. [PMID: 37275154 PMCID: PMC10232911 DOI: 10.3389/fmicb.2023.1149041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Nitrogen metabolism is an important physiological process that affects the survival and virulence of Mycobacterium tuberculosis. M. tuberculosis's utilization of nitrogen in the environment and its adaptation to the harsh environment of acid and low oxygen in macrophages are closely related to nitrogen metabolism. In addition, the dormancy state and drug resistance of M. tuberculosis are closely related to nitrogen metabolism. Although nitrogen metabolism is so important, limited research was performed on nitrogen metabolism as compared with carbon metabolism. M. tuberculosis can use a variety of inorganic or organic nitrogen sources, including ammonium salts, nitrate, glutamine, asparagine, etc. In these metabolic pathways, some enzymes encoded by key genes, such as GlnA1, AnsP2, etc, play important regulatory roles in the pathogenesis of TB. Although various small molecule inhibitors and drugs have been developed for different nitrogen metabolism processes, however, long-term validation is needed before their practical application. Most importantly, with the emergence of multidrug-resistant strains, eradication, and control of M. tuberculosis will still be very challenging.
Collapse
Affiliation(s)
- Yufan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Longlong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
10
|
Sannigrahi A, Chattopadhyay K. Pore formation by pore forming membrane proteins towards infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:79-111. [PMID: 35034727 DOI: 10.1016/bs.apcsb.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last 25 years, the biology of membrane proteins, including the PFPs-membranes interactions is seeking attention for the development of successful drug molecules against a number of infectious diseases. Pore forming toxins (PFTs), the largest family of PFPs are considered as a group of virulence factors produced in a large number of pathogenic systems which include streptococcus, pneumonia, Staphylococcus aureus, E. coli, Mycobacterium tuberculosis, group A and B streptococci, Corynebacterium diphtheria and many more. PFTs are generally utilized by the disease causing pathogens to disrupt the host first line of defense i.e. host cell membranes through pore formation strategy. Although, pore formation is the principal mode of action of the PFTs but they can have additional adverse effects on the hosts including immune evasion. Recently, structural investigation of different PFTs have imparted the molecular mechanistic insights into how PFTs get transformed from its inactive state to active toxic state. On the basis of their structural entity, PFTs have been classified in different types and their mode of actions alters in terms of pore formation and corresponding cellular toxicity. Although pathogen genome analysis can identify the probable PFTs depending upon their structural diversity, there are so many PFTs which utilize the local environmental conditions to generate their pore forming ability using a novel strategy which is known as "conformational switch" of a protein. This conformational switch is considered as characteristics of the phase shifting proteins which were often utilized by many pathogenic systems to protect them from the invaders through allosteric communication between distant regions of the protein. In this chapter, we discuss the structure function relationships of PFTs and how activity of PFTs varies with the change in the environmental conditions has been explored. Finally, we demonstrate these structural insights to develop therapeutic potential to treat the infections caused by multidrug resistant pathogens.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|
11
|
Structure and inhibition of Cryptococcus neoformans sterylglucosidase to develop antifungal agents. Nat Commun 2021; 12:5885. [PMID: 34620873 PMCID: PMC8497620 DOI: 10.1038/s41467-021-26163-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022] Open
Abstract
Pathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3β-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3β-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1’s substrate specificity and enable the rational design of antifungal agents targeting Sgl1. Sterylglucosidase 1 (Sgl1) is a virulence factor in Cryptococcus neoformans that modulates fungal pathogenesis and host response. Here, the authors characterize Sgl1 structurally, identify Sgl1 inhibitors, and demonstrate Sgl1 inhibition has efficacy in mouse models of infection.
Collapse
|
12
|
A larval granuloma in the lung: An extremely rare phenomenon. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 29:404-407. [PMID: 34589262 PMCID: PMC8462113 DOI: 10.5606/tgkdc.dergisi.2021.20045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/16/2020] [Indexed: 12/03/2022]
Abstract
The formation of pulmonary nodules is associated with benign or malignant pathologies. Based on the sizes, growth rates, and morphological features of nodules, surgical treatment or follow-up can be performed. Pulmonary nodules are frequently encountered in the practice of thoracic surgery. A 37-year-old male patient who had a 2.0x1.9 cm nodule in the right lung was followed. His medical history revealed no chronic disease. During follow-up, the sizes of the nodule increased and, therefore, it was removed by wedge resection. The pathological examination result was reported as a larval granuloma. In conclusion, larval granulomas in the lung are extremely rare phenomena and should be further examined.
Collapse
|
13
|
Abstract
Models of nonreplication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against nonreplicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states and to development of drugs that can overcome phenotypic resistance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multistress model of nonreplication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide, and other reactive nitrogen intermediates arising from nitrite at low pH and low concentrations of a fatty acid (butyrate) as a carbon source.
Collapse
|
14
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Putra MD, Rahyussalim AJ, Jusman SWA, Iswanti FC, Sadikin M. Phagocytosis and the antigen-processing abilities of macrophages derived from monocytes in spinal tuberculosis patients. J Clin Tuberc Other Mycobact Dis 2021; 23:100215. [PMID: 33532629 PMCID: PMC7823046 DOI: 10.1016/j.jctube.2021.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study examined the hypothesis that there is an impairment of macrophageal function in spinal TB. We examined macrophageal functions in spinal TB patients. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of five spinal TB patients and five healthy persons as control. The isolated monocytes were cultured with stimulation of macrophage colony-stimulating factor (M-CSF) for seven days for maturation. The phagocytic ability of the macrophages derived from monocytes was measured. Also, nitric oxide (NO), myeloperoxidase (MPO), beta-glucuronide, and acid phosphatase activity was investigated. We found that the monocytes collected from patient PBMCs were significantly fewer than those of the control group (2992.103 vs. 6474.103 (cells/mL)). There were also fewer macrophages that had adhered to sheep red blood cells (SRBC) (598.103 vs. 264.103 (cells/mL)). However, NO production (2346 vs. 325.17 (µmol/gram of protein)), and the MPO (570.7 vs. 17.4 (unit/mg), beta-glucuronide (0.149 vs. 0.123 (μmol/hour/100 mg of protein)), and acid phosphatase activities (1776.9 vs. 287.9 (μmol/hour/100 mg of protein)) of the macrophages in the spinal TB group were markedly higher than in the healthy group. Despite the low adhesion to foreign bodies, the intracellular processing of TB macrophages, including oxidative activity and lysosome function, was significantly high. These results suggested the impairment of macrophageal function in spinal TB. Possibly, there is a dominance of innate non-specific immunity in spinal TB infection.
Collapse
Key Words
- Acid phosphatase
- Beta-glucuronidase
- DOTS, directly observed treatment, short-course
- EDTA, Ethylene diamine tetra acetic acid
- HIV, human immunodeficiency virus
- LPS, lipopolysaccharide
- M-CSF, macrophage colony-stimulating factors
- M.tb, Mycobacterium tuberculosis
- MPO, myeloperoxidase
- Macrophage
- Myeloperoxidase
- NO, nitric oxide
- Nitric oxide
- PBMC, peripheral blood mononuclear cell
- PBS, Phosphate buffer saline
- RPMI, Rosewell Park Memorial Institute culture medium
- SRBC, sheep red blood cell
- Spinal tuberculosis
- TB, tuberculosis
- WHO, the World Health Organization
- WST, water-soluble tetrazolium salt
Collapse
Affiliation(s)
- Muhamad Dwi Putra
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia.,Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, 15419, Indonesia
| | - Ahmad Jabir Rahyussalim
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Ciptomangunkusumo Hospital, 10430, Indonesia
| | - Sri Widia A Jusman
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia.,Center of Hypoxia and Oxidative Stress Studies, Indonesia
| | - Febriana Catur Iswanti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia.,Center of Hypoxia and Oxidative Stress Studies, Indonesia
| | - Mohamad Sadikin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, 10430, Indonesia.,Center of Hypoxia and Oxidative Stress Studies, Indonesia
| |
Collapse
|
16
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
17
|
Sousa EH, Carepo MS, Moura JJ. Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Cumming BM, Pacl HT, Steyn AJC. Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Front Cell Infect Microbiol 2020; 10:576596. [PMID: 33072629 PMCID: PMC7531540 DOI: 10.3389/fcimb.2020.576596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) was responsible for more deaths in 2019 than any other infectious agent. This epidemic is exacerbated by the ongoing development of multi-drug resistance and HIV co-infection. Recent studies have therefore focused on identifying host-directed therapies (HDTs) that can be used in combination with anti-mycobacterial drugs to shorten the duration of TB treatment and improve TB outcomes. In searching for effective HDTs for TB, studies have looked toward immunometabolism, the study of the role of metabolism in host immunity and, in particular, the Warburg effect. Across a variety of experimental paradigms ranging from in vitro systems to the clinic, studies on the role of the Warburg effect in TB have produced seemingly conflicting results and contradictory conclusions. To reconcile this literature, we take a historical approach to revisit the definition of the Warburg effect, re-examine the foundational papers on the Warburg effect in the cancer field and explore its application to immunometabolism. With a firm context established, we assess the literature investigating metabolism and immunometabolism in TB for sufficient evidence to support the role of the Warburg effect in TB immunity. The effects of the differences between animal models, species of origin of the macrophages, duration of infection and Mycobacterium tuberculosis strains used for these studies are highlighted. In addition, the shortcomings of using 2-deoxyglucose as an inhibitor of glycolysis are discussed. We conclude by proposing experimental criteria that are essential for future studies on the Warburg effect in TB to assist with the research for HDTs to combat TB.
Collapse
Affiliation(s)
| | - Hayden T Pacl
- Department of Microbiology, University of Alabama, Birmingham, AL, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama, Birmingham, AL, United States.,Centers for Free Radical Biology (CFRB) and AIDS Research (CFAR), University of Alabama, Birmingham, AL, United States
| |
Collapse
|
19
|
Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev 2020; 33:e00159-19. [PMID: 32238365 PMCID: PMC7117546 DOI: 10.1128/cmr.00159-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.
Collapse
Affiliation(s)
- Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
20
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
Moreira-Teixeira L, Tabone O, Graham CM, Singhania A, Stavropoulos E, Redford PS, Chakravarty P, Priestnall SL, Suarez-Bonnet A, Herbert E, Mayer-Barber KD, Sher A, Fonseca KL, Sousa J, Cá B, Verma R, Haldar P, Saraiva M, O'Garra A. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat Immunol 2020; 21:464-476. [PMID: 32205882 PMCID: PMC7116040 DOI: 10.1038/s41590-020-0610-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 12/22/2022]
Abstract
Although mouse infection models have been extensively used to study the host response to Mycobacterium tuberculosis, their validity in revealing determinants of human tuberculosis (TB) resistance and disease progression has been heavily debated. Here, we show that the modular transcriptional signature in the blood of susceptible mice infected with a clinical isolate of M. tuberculosis resembles that of active human TB disease, with dominance of a type I interferon response and neutrophil activation and recruitment, together with a loss in B lymphocyte, natural killer and T cell effector responses. In addition, resistant but not susceptible strains of mice show increased lung B cell, natural killer and T cell effector responses in the lung upon infection. Notably, the blood signature of active disease shared by mice and humans is also evident in latent TB progressors before diagnosis, suggesting that these responses both predict and contribute to the pathogenesis of progressive M. tuberculosis infection.
Collapse
Affiliation(s)
| | - Olivier Tabone
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | - Christine M Graham
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | - Akul Singhania
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
| | | | - Paul S Redford
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK
- GSK R&D, Medicines Research Centre, Stevenage, UK
| | | | - Simon L Priestnall
- Department of Pathobiology & Population Sciences, Royal Veterinary College, London, UK
- Experimental Histopathology Team, The Francis Crick Institute, London, UK
| | - Alejandro Suarez-Bonnet
- Department of Pathobiology & Population Sciences, Royal Veterinary College, London, UK
- Experimental Histopathology Team, The Francis Crick Institute, London, UK
| | - Eleanor Herbert
- Department of Pathobiology & Population Sciences, Royal Veterinary College, London, UK
- Experimental Histopathology Team, The Francis Crick Institute, London, UK
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaori L Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Programa de Pós-Graduação Ciência para o Desenvolvimento (PGCD), Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Jeremy Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Baltazar Cá
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Programa de Pós-Graduação Ciência para o Desenvolvimento (PGCD), Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Raman Verma
- Department of Respiratory Sciences, National Institute for Health Research Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Pranabashis Haldar
- Department of Respiratory Sciences, National Institute for Health Research Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
22
|
Hade MD, Sethi D, Datta H, Singh S, Thakur N, Chhaya A, Dikshit KL. Truncated Hemoglobin O Carries an Autokinase Activity and Facilitates Adaptation of Mycobacterium tuberculosis Under Hypoxia. Antioxid Redox Signal 2020; 32:351-362. [PMID: 31218881 DOI: 10.1089/ars.2018.7708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Although the human pathogen, Mycobacterium tuberculosis (Mtb), is strictly aerobic and requires efficient supply of oxygen, it can survive long stretches of severe hypoxia. The mechanism responsible for this metabolic flexibility is unknown. We have investigated a novel mechanism by which hemoglobin O (HbO), operates and supports its host under oxygen stress. Results: We discovered that the HbO exists in a phospho-bound state in Mtb and remains associated with the cell membrane under hypoxia. Deoxy-HbO carries an autokinase activity that disrupts its dimeric assembly into monomer and facilitates its association with the cell membrane, supporting survival and adaptation of Mtb under low oxygen conditions. Consistent with these observations, deletion of the glbO gene in Mycobacterium bovis bacillus Calmette-Guerin, which is identical to the glbO gene of Mtb, attenuated its survival under hypoxia and complementation of the glbO gene of Mtb rescued this inhibition, but phosphorylation-deficient mutant did not. These results demonstrated that autokinase activity of the HbO modulates its physiological function and plays a vital role in supporting the survival of its host under hypoxia. Innovation and Conclusion: Our study demonstrates that the redox-dependent autokinase activity regulates oligomeric state and membrane association of HbO that generates a reservoir of oxygen in the proximity of respiratory membranes to sustain viability of Mtb under hypoxia. These results thus provide a novel insight into the physiological function of the HbO and demonstrate its pivotal role in supporting the survival and adaptation of Mtb under hypoxia.
Collapse
Affiliation(s)
| | - Deepti Sethi
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Himani Datta
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Singh
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Naveen Thakur
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ajay Chhaya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kanak L Dikshit
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
23
|
Maarsingh JD, Yang S, Park JG, Haydel SE. Comparative transcriptomics reveals PrrAB-mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis. BMC Genomics 2019; 20:942. [PMID: 31810444 PMCID: PMC6898941 DOI: 10.1186/s12864-019-6105-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mycobacterium smegmatis is a saprophytic bacterium frequently used as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis. RESULTS RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB regulates 167 genes (q < 0.05), 57% of which are induced in the WT background. Gene ontology and cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis and 21 of the 25 M. smegmatis DosRS regulon homologues. Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene expression profiling correlated with these growth deficiency results, revealing that PrrAB induces transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic conditions. ATP synthesis was ~ 64% lower in the ΔprrAB mutant relative to the WT strain, further demonstrating that PrrAB regulates energy production. CONCLUSIONS The M. smegmatis PrrAB two-component system regulates respiratory and oxidative phosphorylation pathways, potentially to provide tolerance against the dynamic environmental conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels during exponential growth, presumably through transcriptional activation of both terminal respiratory branches (cytochrome c bc1-aa3 and cytochrome bd oxidases), despite transcriptional repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the dormancy-associated dosR response regulator genes in an oxygen-independent manner, which may serve to fine-tune sensory perception of environmental stimuli associated with metabolic repression.
Collapse
Affiliation(s)
- Jason D Maarsingh
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Shanshan Yang
- Bioinformatics Core, Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - Jin G Park
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Shelley E Haydel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,The Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
24
|
Lamont EA, Baughn AD. Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine 2019; 49:374-380. [PMID: 31669220 PMCID: PMC6945238 DOI: 10.1016/j.ebiom.2019.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023] Open
Abstract
Pyrazinamide remains the only drug in the tuberculosis pharmacopeia to drastically shorten first-line therapy from nine to six months. Due to its unparalleled ability to sterilize non-replicating bacilli and reduce relapse rates, PZA is expected to be irreplaceable in future therapies against tuberculosis. While the molecular target of PZA is unclear, recent pharmacokinetic studies using small animal models and patient samples have highlighted the importance of host metabolism and immune responses in PZA efficacy. Delineating which host factors are important for PZA action will be integral to the design of next-generation therapies to shorten current TB drug regimens as well as to overcome treatment limitations in some patients. In this review, we discuss evidence for influence of the host environment on PZA activity, targets for PZA mechanism of action, recent studies in PZA pharmacokinetics, PZA antagonism and synergy with other first-line anti-TB drugs, and implications for future research.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Jakkala K, Ajitkumar P. Hypoxic Non-replicating Persistent Mycobacterium tuberculosis Develops Thickened Outer Layer That Helps in Restricting Rifampicin Entry. Front Microbiol 2019; 10:2339. [PMID: 31681204 PMCID: PMC6797554 DOI: 10.3389/fmicb.2019.02339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteria undergo adaptive morphological changes to survive under stress conditions. The present work documents the morphological changes in Mycobacterium tuberculosis (Mtb) cells cultured under hypoxic condition using Wayne’s in vitro hypoxia model involving non-replicating persistence stages 1 and 2 (NRP stage 1 and NRP stage 2) and reveals their physiological significance. Transmission electron microscopy of the NRP stage 2 cells showed uneven but thick outer layer (TOL), unlike the evenly thin outer layer of the actively growing mid-log phase (MLP) cells. On the contrary, the saprophytic Mycobacterium smegmatis NRP stage 2 cells lacked TOL. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) of the Mtb NRP stage 2 cells confirmed the rough uneven surface unlike the smooth surface of the MLP cells. Zeta potential measurements showed high negative charge on the surface of NRP stage 2 cells and polysaccharide specific calcofluor white (CFW) staining of the cells revealed high content of polysaccharide in the TOL. This observation was supported by the real-time PCR data showing high levels of expression of the genes involved in the synthesis of sugars, such as trehalose, mannose and others, which are implicated in polysaccharide synthesis. Experiments to understand the physiological significance of the TOL revealed restricted entry of the biologically low-active 5-carboxyfluorescein-rifampicin (5-FAM-RIF), at concentrations equivalent to microbicidal concentrations of the unconjugated biologically active rifampicin, into the NRP stage 2 cells, unlike in the MLP cells. Further, as expected, mechanical removal of the TOL by mild bead beating or release of the NRP stage 2 cells from hypoxia into normoxia in fresh growth medium also significantly increased 5-FAM-RIF permeability into the NRP stage 2 cells to an extent comparable to that into the MLP cells. Taken together, these observations revealed that Mtb cells under hypoxia develop TOL that helps in restricting rifampicin entry, thereby conferring rifampicin tolerance.
Collapse
Affiliation(s)
- Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
26
|
The Mycobacterium tuberculosis Pup-proteasome system regulates nitrate metabolism through an essential protein quality control pathway. Proc Natl Acad Sci U S A 2019; 116:3202-3210. [PMID: 30723150 DOI: 10.1073/pnas.1819468116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The human pathogen Mycobacterium tuberculosis encodes a proteasome that carries out regulated degradation of bacterial proteins. It has been proposed that the proteasome contributes to nitrogen metabolism in M. tuberculosis, although this hypothesis had not been tested. Upon assessing M. tuberculosis growth in several nitrogen sources, we found that a mutant strain lacking the Mycobacterium proteasomal activator Mpa was unable to use nitrate as a sole nitrogen source due to a specific failure in the pathway of nitrate reduction to ammonium. We found that the robust activity of the nitrite reductase complex NirBD depended on expression of the groEL/groES chaperonin genes, which are regulated by the repressor HrcA. We identified HrcA as a likely proteasome substrate, and propose that the degradation of HrcA is required for the full expression of chaperonin genes. Furthermore, our data suggest that degradation of HrcA, along with numerous other proteasome substrates, is enhanced during growth in nitrate to facilitate the derepression of the chaperonin genes. Importantly, growth in nitrate is an example of a specific condition that reduces the steady-state levels of numerous proteasome substrates in M. tuberculosis.
Collapse
|
27
|
Willemse D, Weber B, Masino L, Warren RM, Adinolfi S, Pastore A, Williams MJ. Rv1460, a SufR homologue, is a repressor of the suf operon in Mycobacterium tuberculosis. PLoS One 2018; 13:e0200145. [PMID: 29979728 PMCID: PMC6034842 DOI: 10.1371/journal.pone.0200145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022] Open
Abstract
Iron–sulphur (Fe-S) clusters are ubiquitous co-factors which require multi-protein systems for their synthesis. In Mycobacterium tuberculosis, the Rv1460-Rv1461-Rv1462-Rv1463-csd-Rv1465-Rv1466 operon (suf operon) encodes the primary Fe-S cluster biogenesis system. The first gene in this operon, Rv1460, shares homology with the cyanobacterial SufR, which functions as a transcriptional repressor of the sufBCDS operon. Rv1460’s function in M. tuberculosis has however not been determined. In this study, we demonstrate that M. tuberculosis mutants lacking a functional Rv1460 protein are impaired for growth under standard culture conditions. Elevated expression of Rv1460 and Rv1461 was observed in the mutant, implicating Rv1460 in the regulation of the suf operon. Binding of an Fe-S cluster to purified recombinant Rv1460 was confirmed by UV-visible spectroscopy and circular dichroism. Furthermore, three conserved cysteine residues, C203, C216 and C244, proposed to provide ligands for the coordination of an Fe-S cluster, were shown to be required for the function of Rv1460 in M. tuberculosis. Rv1460 therefore seems to be functionally analogous to cyanobacterial SufR.
Collapse
Affiliation(s)
- Danicke Willemse
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Brandon Weber
- Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Laura Masino
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Robin M. Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Salvatore Adinolfi
- Pharmaceutical Science and Technology, University of Turin, Turin, Italy
| | - Annalisa Pastore
- Department of Basic and Clinical Neuroscience, Maurice Wohl Institute, King's College London, London, United Kingdom
| | - Monique J. Williams
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- * E-mail:
| |
Collapse
|
28
|
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJC. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4972762. [PMID: 29873719 PMCID: PMC5989597 DOI: 10.1093/femspd/fty036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Africa Health Research Institute, K-RITH Tower Building, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
29
|
Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 2018; 23:1502-1519. [PMID: 29635026 DOI: 10.1016/j.drudis.2018.04.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Incidence of pulmonary diseases caused by non-tuberculous mycobacteria (NTM), relatives of Mycobacterium tuberculosis, is increasing at an alarming rate, surpassing tuberculosis in many countries. Current chemotherapies require long treatment times and the clinical outcomes are often disappointing. There is an urgent medical need to discover and develop new, more-efficacious anti-NTM drugs. In this review, we summarize the current status of NTM drug development, and highlight knowledge gaps and scientific obstacles in NTM drug discovery. We propose strategies to reduce biological uncertainties and to begin to populate a NTM drug pipeline with attractive leads and drug candidates.
Collapse
Affiliation(s)
- Mu-Lu Wu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Dinah B Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | - Thomas Dick
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA.
| |
Collapse
|
30
|
Arora D, Chawla Y, Malakar B, Singh A, Nandicoori VK. The transpeptidase PbpA and noncanonical transglycosylase RodA of Mycobacterium tuberculosis play important roles in regulating bacterial cell lengths. J Biol Chem 2018. [PMID: 29530985 DOI: 10.1074/jbc.m117.811190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) is a complex structure that protects the pathogen in hostile environments. Peptidoglycan (PG), which helps determine the morphology of the cell envelope, undergoes substantial remodeling under stress. This meshwork of linear chains of sugars, cross-linked through attached peptides, is generated through the sequential action of enzymes termed transglycosylases and transpeptidases. The Mtb genome encodes two classical transglycosylases and four transpeptidases, the functions of which are not fully elucidated. Here, we present work on the yet uncharacterized transpeptidase PbpA and a nonclassical transglycosylase RodA. We elucidate their roles in regulating in vitro growth and in vivo survival of pathogenic mycobacteria. We find that RodA and PbpA are required for regulating cell length, but do not affect mycobacterial growth. Biochemical analyses show PbpA to be a classical transpeptidase, whereas RodA is identified to be a member of an emerging class of noncanonical transglycosylases. Phosphorylation of RodA at Thr-463 modulates its biological function. In a guinea pig infection model, RodA and PbpA are found to be required for both bacterial survival and formation of granuloma structures, thus underscoring the importance of these proteins in mediating mycobacterial virulence in the host. Our results emphasize the fact that whereas redundant enzymes probably compensate for the absence of RodA or PbpA during in vitro growth, the two proteins play critical roles for the survival of the pathogen inside its host.
Collapse
Affiliation(s)
- Divya Arora
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Yogesh Chawla
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Basanti Malakar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, 110025 New Delhi, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| |
Collapse
|
31
|
Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation. PLoS Pathog 2017; 13:e1006752. [PMID: 29176894 PMCID: PMC5720804 DOI: 10.1371/journal.ppat.1006752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen. Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), can persist for years and even decades in the lungs of its human host. Here we report that a unique M. tuberculosis gene cluster involved in the synthesis of the molybdenum cofactor, a cofactor for several oxidoreductases including the nitrate reductase, allows this major pathogen to respire nitrate and to persist in a dormant state under hypoxia, a stress condition encountered in lung TB lesions. Strikingly the M. tuberculosis ancestor, which most likely was an environmental harmless bacterium, acquired this gene cluster, together with its hypoxia-responsive transcriptional regulator, horizontally from neighboring bacteria. Our results uncover a key step in M. tuberculosis evolution towards pathogenicity.
Collapse
|
32
|
López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R. Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC SYSTEMS BIOLOGY 2017; 11:107. [PMID: 29157227 PMCID: PMC5697012 DOI: 10.1186/s12918-017-0496-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment. Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional conditions on Mtb's vulnerability and metabolic adaptation have been carried out. RESULTS A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the metabolic reprogramming of two Mtb knockout mutants (pfkA- and icl-mutants), lacking key enzymes of central carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources). A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic reprogramming of the icl-mutant (icl1&icl2) showed the importance of the methylmalonyl pathway for the detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that might create redox imbalance. Finally, findings regarding Mtb-mutant metabolic adaptation associated with asparagine consumption and acetate, succinate and alanine production, were in agreement with literature reports. CONCLUSIONS This study demonstrates the potential application of genome-scale modeling, flux balance analysis (FBA), phenotypic phase plane (PhPP) analysis and shadow pricing to generate valuable insights about Mtb metabolic reprogramming in the context of human granulomas.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | | - Silvia Ochoa
- Grupo de investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
33
|
Sousa EHS, Gonzalez G, Gilles-Gonzalez MA. Target DNA stabilizes Mycobacterium tuberculosis DevR/DosR phosphorylation by the full-length oxygen sensors DevS/DosS and DosT. FEBS J 2017; 284:3954-3967. [PMID: 28977726 DOI: 10.1111/febs.14284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis strongly relies on a latency, or nonreplicating persistence, to escape a human host's immune system. The DevR (DosR), DevS (DosS), and DosT proteins are key components of this process. Like the rhizobial FixL oxygen sensor, DevS and DosT are histidine protein kinases with a heme-binding domain. Like the FixJ partner and substrate of FixL, DevR is a classical response regulator of the two-component class. When activated by DevS or DosT during hypoxia in vivo, DevR induces a dormancy regulon of more than 40 genes. To investigate the contributions of DevS, DosT, and target DNA to the phosphorylation of DevR, we developed an in vitro assay in which the full-length, sensing, DevS and DosT proteins were used to phosphorylate DevR with ATP, in the presence of target DNAs that were introduced as oligonucleotides linked to magnetic nanoparticles. We found that the DevR phosphorylations proceeded only for the deoxy states of the sensors. The reaction was strongly inhibited by O2 , but not CO or NO. The production of phospho-DevR was enhanced sixfold by target consensus DNA or acr-DNA. The phospho-DevR bound tightly to that DNA (Kd ~ 0.8 nm toward acr-DNA), and it was only slightly displaced by a 200-fold excess of unphosphorylated DevR or of a truncated DevR with only a DNA-binding domain. To our knowledge, this represents the first in vitro study of the ligand regulation of DevR phosphorylation by full-length DevS and DosT, and demonstration of a positive effect of DNA on this reaction.
Collapse
Affiliation(s)
- Eduardo H S Sousa
- Laboratory of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceara, Center for Sciences, Fortaleza, Brazil
| | - Gonzalo Gonzalez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
34
|
Shaping the niche in macrophages: Genetic diversity of the M. tuberculosis complex and its consequences for the infected host. Int J Med Microbiol 2017; 308:118-128. [PMID: 28969988 DOI: 10.1016/j.ijmm.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mycobacteria of the Mycobacterium tuberculosis complex (MTBC) have co-evolved with their individual hosts and are able to transform the hostile environment of the macrophage into a permissive cellular habitat. The impact of MTBC genetic variability has long been considered largely unimportant in TB pathogenesis. Members of the MTBC can now be distinguished into three major phylogenetic groups consisting of 7 phylogenetic lineages and more than 30 so called sub-lineages/subgroups. MTBC genetic diversity indeed influences the transmissibility and virulence of clinical MTBC isolates as well as the immune response and the clinical outcome. Here we review the genetic diversity and epidemiology of MTBC strains and describe the current knowledge about the host immune response to infection with MTBC clinical isolates using human and murine experimental model systems in vivo and in vitro. We discuss the role of innate cytokines in detail and portray two in our group recently developed approaches to characterize the intracellular niches of MTBC strains. Characterizing the niches and deciphering the strategies of MTBC strains to transform an antibacterial effector cell into a permissive cellular habitat offers the opportunity to identify strain- and lineage-specific key factors which may represent targets for novel antimicrobial or host directed therapies for tuberculosis.
Collapse
|
35
|
Delamanid Kills Dormant Mycobacteria In Vitro and in a Guinea Pig Model of Tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.02402-16. [PMID: 28373190 DOI: 10.1128/aac.02402-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) treatment is long and requires multiple drugs, likely due to various phenotypes of TB bacilli with variable drug susceptibilities. Drugs with broad activity are urgently needed. This study aimed to evaluate delamanid's activity against growing or dormant bacilli in vitro as well as in vivo Cultures of Mycobacterium bovis BCG Tokyo under aerobic and anaerobic conditions were used to study the activity of delamanid against growing and dormant bacilli, respectively. Delamanid exhibited significant bactericidal activity against replicating and dormant bacilli at or above concentrations of 0.016 and 0.4 mg/liter, respectively. To evaluate delamanid's antituberculosis activity in vivo, we used a guinea pig model of chronic TB infection in which the lung lesions were similar to those in human TB disease. In the guinea pig TB model, a daily dose of 100 mg delamanid/kg of body weight for 4 or 8 weeks demonstrated strong bactericidal activity against Mycobacterium tuberculosis Importantly, histological examination revealed that delamanid killed TB bacilli within hypoxic lesions of the lung. The combination regimens containing delamanid with rifampin and pyrazinamide or delamanid with levofloxacin, ethionamide, pyrazinamide, and amikacin were more effective than the standard regimen (rifampin, isoniazid, and pyrazinamide). Our data show that delamanid is effective in killing both growing and dormant bacilli in vitro and in the guinea pig TB model. Adding delamanid to current TB regimens may improve treatment outcomes, as demonstrated in recent clinical trials with pulmonary multidrug-resistant (MDR) TB patients. Delamanid may be an important drug for consideration in the construction of new regimens to shorten TB treatment duration.
Collapse
|
36
|
Xu X, Lu X, Dong X, Luo Y, Wang Q, Liu X, Fu J, Zhang Y, Zhu B, Ma X. Effects of hMASP-2 on the formation of BCG infection-induced granuloma in the lungs of BALB/c mice. Sci Rep 2017; 7:2300. [PMID: 28536447 PMCID: PMC5442121 DOI: 10.1038/s41598-017-02374-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, affects the functions of the lung and causes high morbidity and mortality rates worldwide. MASP-2 is an executioner enzyme, which plays an essential role in the activation of lectin pathway. In our previous studies, the MASP-2 played a dual role in promoting the progress of lesions in BCG-infected rabbit skin models. However, the really effects of MASP-2 on tuberculosis are unknown. The aim of this study was to investigate the effects of MASP-2 in granuloma formation with BCG-infected mice. Compared to the control group, rAd-hMASP-2 treated group showed increasing in survival rate of BCG-infected mice (P = 0.042), and decreasing of bacteria loads (P = 0.005) in the lung tissue. MASP-2 displayed a protective efficacy in BCG-infected mice, which promoted the activation and recruitment of macrophages and lymphocytes to the granuloma. Moreover, the data obtained from the ELISA and RT-PCR demonstrated that mRNA expression for IL-6, CCL12, CCL2 and cytokines of IFN-γ, TNF-α in lung were significantly elevated by treatment of rAd-hMASP-2. Those findings provided an evidence that MASP-2 may be as a newly immunomodulatory in targeting granuloma formation, which displayed a potential protective role in control of tuberculosis.
Collapse
Affiliation(s)
- Xiaoying Xu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaoling Lu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xingfang Dong
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xun Liu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jie Fu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bingdong Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xingming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
37
|
Viana MVC, Figueiredo H, Ramos R, Guimarães LC, Pereira FL, Dorella FA, Selim SAK, Salaheldean M, Silva A, Wattam AR, Azevedo V. Comparative genomic analysis between Corynebacterium pseudotuberculosis strains isolated from buffalo. PLoS One 2017; 12:e0176347. [PMID: 28445543 PMCID: PMC5406005 DOI: 10.1371/journal.pone.0176347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, pleomorphic, facultative intracellular pathogen that causes Oedematous Skin Disease (OSD) in buffalo. To better understand the pathogenic mechanisms of OSD, we performed a comparative genomic analysis of 11 strains of C. pseudotuberculosis isolated from different buffalo found to be infected in Egypt during an outbreak that occurred in 2008. Sixteen previously described pathogenicity islands (PiCp) were present in all of the new buffalo strains, but one of them, PiCp12, had an insertion that contained both a corynephage and a diphtheria toxin gene, both of which may play a role in the adaptation of C. pseudotuberculosis to this new host. Synteny analysis showed variations in the site of insertion of the corynephage during the same outbreak. A gene functional comparison showed the presence of a nitrate reductase operon that included genes involved in molybdenum cofactor biosynthesis, which is necessary for a positive nitrate reductase phenotype and is a possible adaptation for intracellular survival. Genomes from the buffalo strains also had fusions in minor pilin genes in the spaA and spaD gene cluster (spaCX and spaYEF), which could suggest either an adaptation to this particular host, or mutation events in the immediate ancestor before this particular epidemic. A phylogenomic analysis confirmed a clear separation between the Ovis and Equi biovars, but also showed what appears to be a clustering by host species within the Equi strains.
Collapse
Affiliation(s)
- Marcus Vinicius Canário Viana
- Departament of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Henrique Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rommel Ramos
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Luis Carlos Guimarães
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Felipe Luiz Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Alves Dorella
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mohammad Salaheldean
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Artur Silva
- Center of Genomic and System Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Alice R. Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vasco Azevedo
- Departament of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
38
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
39
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
40
|
Prosser G, Brandenburg J, Reiling N, Barry CE, Wilkinson RJ, Wilkinson KA. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect 2016; 19:177-192. [PMID: 27780773 PMCID: PMC5335906 DOI: 10.1016/j.micinf.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines.
Collapse
Affiliation(s)
- Gareth Prosser
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Clifton Earl Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States; Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom; Department of Medicine, Imperial College, London, W2 1PG, United Kingdom.
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom
| |
Collapse
|
41
|
Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence. mBio 2016; 7:mBio.01515-16. [PMID: 27651366 PMCID: PMC5040115 DOI: 10.1128/mbio.01515-16] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Previous work has shown that environmental and clinical isolates of Aspergillus fumigatus represent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence among A. fumigatus isolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence of A. fumigatus in this model. To test this hypothesis, we performed in vitro fitness and in vivo virulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates of A. fumigatus Among these isolates, we observed a strong correlation between fitness in low oxygen in vitro and virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence of A. fumigatus isolates in the context of steroid-mediated murine immunosuppression. IMPORTANCE Aspergillus fumigatus occupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation between A. fumigatus isolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence of A. fumigatus We describe here the first observation of a model-specific virulence phenotype correlative with in vitro fitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogen A. fumigatus.
Collapse
|
42
|
Walter ND, de Jong BC, Garcia BJ, Dolganov GM, Worodria W, Byanyima P, Musisi E, Huang L, Chan ED, Van TT, Antonio M, Ayorinde A, Kato-Maeda M, Nahid P, Leung AM, Yen A, Fingerlin TE, Kechris K, Strong M, Voskuil MI, Davis JL, Schoolnik GK. Adaptation of Mycobacterium tuberculosis to Impaired Host Immunity in HIV-Infected Patients. J Infect Dis 2016; 214:1205-11. [PMID: 27534685 DOI: 10.1093/infdis/jiw364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It is unknown whether immunosuppression influences the physiologic state of Mycobacterium tuberculosis in vivo. We evaluated the impact of host immunity by comparing M. tuberculosis and human gene transcription in sputum between human immunodeficiency virus (HIV)-infected and uninfected patients with tuberculosis. METHODS We collected sputum specimens before treatment from Gambians and Ugandans with pulmonary tuberculosis, revealed by positive results of acid-fast bacillus smears. We quantified expression of 2179 M. tuberculosis genes and 234 human immune genes via quantitative reverse transcription-polymerase chain reaction. We summarized genes from key functional categories with significantly increased or decreased expression. RESULTS A total of 24 of 65 patients with tuberculosis were HIV infected. M. tuberculosis DosR regulon genes were less highly expressed among HIV-infected patients with tuberculosis than among HIV-uninfected patients with tuberculosis (Gambia, P < .0001; Uganda, P = .037). In profiling of human genes from the same sputa, HIV-infected patients had 3.4-fold lower expression of IFNG (P = .005), 4.9-fold higher expression of ARG1 (P = .0006), and 3.4-fold higher expression of IL10 (P = .0002) than in HIV-uninfected patients with tuberculosis. CONCLUSIONS M. tuberculosis in HIV-infected patients had lower expression of the DosR regulon, a critical metabolic and immunomodulatory switch induced by NO, carbon monoxide, and hypoxia. Our human data suggest that decreased DosR expression may result from alternative pathway activation of macrophages, with consequent decreased NO expression and/or by poor granuloma formation with consequent decreased hypoxic stress.
Collapse
Affiliation(s)
- Nicholas D Walter
- Pulmonary Section, Denver Veterans Affairs Medical Center Integrated Center for Genes, Environment, and Health Division of Pulmonary Sciences and Critical Care Medicine
| | - Bouke C de Jong
- New York University, New York Institute of Tropical Medicine, Antwerp, Belgium Medical Research Council Laboratories, Serrekunda, Gambia
| | - Benjamin J Garcia
- Integrated Center for Genes, Environment, and Health Computational Bioscience Program
| | | | - William Worodria
- Makerere University-UCSF Research Collaboration, Kampala, Uganda
| | - Patrick Byanyima
- Makerere University-UCSF Research Collaboration, Kampala, Uganda
| | - Emmanuel Musisi
- Makerere University-UCSF Research Collaboration, Kampala, Uganda
| | - Laurence Huang
- Division of Pulmonary and Critical Care Medicine HIV/AIDS Division, University of California-San Francisco (UCSF)
| | - Edward D Chan
- Pulmonary Section, Denver Veterans Affairs Medical Center Department of Academic Affairs and Medicine, National Jewish Health, Denver Division of Pulmonary Sciences and Critical Care Medicine
| | - Tran T Van
- Department of Microbiology and Immunology
| | - Martin Antonio
- Medical Research Council Laboratories, Serrekunda, Gambia
| | | | | | - Payam Nahid
- Division of Pulmonary and Critical Care Medicine
| | - Ann M Leung
- Department of Radiology, Stanford University Medical Center
| | - Andrew Yen
- Department of Radiology, University of California-San Diego
| | | | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora
| | - Michael Strong
- Integrated Center for Genes, Environment, and Health Computational Bioscience Program
| | - Martin I Voskuil
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus
| | - J Lucian Davis
- Department of Epidemiology of Microbial Diseases Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
43
|
Jurcic Smith KL, Lee S. Inhibition of apoptosis by Rv2456c through Nuclear factor-κB extends the survival of Mycobacterium tuberculosis. Int J Mycobacteriol 2016; 5:426-436. [PMID: 27931684 PMCID: PMC5975360 DOI: 10.1016/j.ijmyco.2016.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen with several survival mechanisms aimed at subverting the host immune system. Apoptosis has been shown to be mycobactericidal, to activate CD8+ T cells, and to be modulated by mycobacterial proteins. Since few mycobacterial proteins have so far been directly implicated in the interactions between M. tuberculosis and host cell apoptosis, we screened M. tuberculosis H37Rv transposon mutants to identify mutants that fail to inhibit cell death (FID). One of these FID mutants, FID19, had a transposon insertion in Rv2456c and is important for survival in host cells. The lack of the protein resulted in enhanced caspase-3 mediated apoptosis, which is probably due to an inability to activate nuclear factor-κB. Additionally, FID19 infection enhanced polyfunctional CD8+ T cells and induced a higher frequency of interferon-γ secreting immune cells in a murine model. Taken together, our data suggest that Rv2456c is important for the survival of H37Rv by subduing the innate and ultimately adaptive immune responses of its host by preventing apoptosis of the infected cell. Better understanding of the host-mycobacterial interactions may be beneficial to develop novel drug targets and engineer more efficacious vaccine strains against tuberculosis.
Collapse
Affiliation(s)
- Kristen L Jurcic Smith
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sunhee Lee
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
44
|
Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. HIF-1α Is an Essential Mediator of IFN-γ-Dependent Immunity to Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:1287-97. [PMID: 27430718 DOI: 10.4049/jimmunol.1600266] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022]
Abstract
The cytokine IFN-γ coordinates macrophage activation and is essential for control of pathogens, including Mycobacterium tuberculosis However, the mechanisms by which IFN-γ controls M. tuberculosis infection are only partially understood. In this study, we show that the transcription factor hypoxia-inducible factor-1α (HIF-1α) is an essential mediator of IFN-γ-dependent control of M. tuberculosis infection both in vitro and in vivo. M. tuberculosis infection of IFN-γ-activated macrophages results in a synergistic increase in HIF-1α protein levels. This increase in HIF-1α levels is functionally important, as macrophages lacking HIF-1α are defective for IFN-γ-dependent control of infection. RNA-sequencing demonstrates that HIF-1α regulates nearly one-half of all IFN-γ-inducible genes during infection of macrophages. In particular, HIF-1α regulates production of important immune effectors, including inflammatory cytokines and chemokines, eicosanoids, and NO. In addition, we find that during infection HIF-1α coordinates a metabolic shift to aerobic glycolysis in IFN-γ-activated macrophages. We find that this enhanced glycolytic flux is crucial for IFN-γ-dependent control of infection in macrophages. Furthermore, we identify a positive feedback loop between HIF-1α and aerobic glycolysis that amplifies macrophage activation. Finally, we demonstrate that HIF-1α is crucial for control of infection in vivo as mice lacking HIF-1α in the myeloid lineage are strikingly susceptible to infection and exhibit defective production of inflammatory cytokines and microbicidal effectors. In conclusion, we have identified HIF-1α as a novel regulator of IFN-γ-dependent immunity that coordinates an immunometabolic program essential for control of M. tuberculosis infection in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan Braverman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Kimberly M Sogi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720; Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720; and
| | - Daniel Benjamin
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel K Nomura
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Sarah A Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720; Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720; and
| |
Collapse
|
45
|
Lipworth S, Hammond RJH, Baron VO, Hu Y, Coates A, Gillespie SH. Defining dormancy in mycobacterial disease. Tuberculosis (Edinb) 2016; 99:131-142. [PMID: 27450015 DOI: 10.1016/j.tube.2016.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
Tuberculosis remains a threat to global health and recent attempts to shorten therapy have not succeeded mainly due to cases of clinical relapse. This has focussed attention on the importance of "dormancy" in tuberculosis. There are a number of different definitions of the term and a similar multiplicity of different in vitro and in vivo models. The danger with this is the implicit assumption of equivalence between the terms and models, which will make even more difficult to unravel this complex conundrum. In this review we summarise the main models and definitions and their impact on susceptibility of Mycobacterium tuberculosis. We also suggest a potential nomenclature for debate. Dormancy researchers agree that factors underpinning this phenomenon are complex and nuanced. If we are to make progress we must agree the terms to be used and be consistent in using them.
Collapse
Affiliation(s)
- S Lipworth
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - R J H Hammond
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - V O Baron
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Yanmin Hu
- Institute for Infection and Immunity, St George's, University of London, London SW17 ORE, United Kingdom
| | - A Coates
- Institute for Infection and Immunity, St George's, University of London, London SW17 ORE, United Kingdom
| | - S H Gillespie
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom.
| |
Collapse
|
46
|
Dutta NK, He R, Pinn ML, He Y, Burrows F, Zhang ZY, Karakousis PC. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infect Dis 2016; 2:231-239. [PMID: 27478867 DOI: 10.1021/acsinfecdis.5b00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12-24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment.
Collapse
Affiliation(s)
- Noton K. Dutta
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
| | - Rongjun He
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Michael L. Pinn
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
| | - Yantao He
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Francis Burrows
- Aarden Pharmaceuticals, Inc., 351 West 10th Street, Suite 248, Indianapolis, Indiana 46202, United States
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular
Biology Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, Indiana 46202, United States
| | - Petros C. Karakousis
- Center for Tuberculosis
Research, Department of Medicine, Johns Hopkins University School of Medicine, 1551 East Jefferson Street, Baltimore, Maryland 21287, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
47
|
Lenaerts A, Barry CE, Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 2015; 264:288-307. [PMID: 25703567 PMCID: PMC4368385 DOI: 10.1111/imr.12252] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) lesions are extremely complex and dynamic. Here, we review the multiple types and fates of pulmonary lesions that form following infection by Mycobacterium tuberculosis and the impact of this spatial and temporal heterogeneity on the bacteria they harbor. The diverse immunopathology of granulomas and cavities generates a plethora of microenvironments to which M. tuberculosis bacilli must adapt. This in turn affects the replication, metabolism, and relative density of bacterial subpopulations, and consequently their respective susceptibility to chemotherapy. We outline recent developments that support a paradigm shift in our understanding of lesion progression. The simple model according to which lesions within a single individual react similarly to the systemic immune response no longer prevails. Host-pathogen interactions within lesions are a dynamic process, driven by subtle and local differences in signaling pathways, resulting in diverging trajectories of lesions within a single host. The spectrum of TB lesions is a continuum with a large overlap in the lesion types found in latently infected and active TB patients. We hope this overview will guide TB researchers in the design, choice of read-outs, and interpretation of future studies in the search for predictive biomarkers and novel therapies.
Collapse
Affiliation(s)
- Anne Lenaerts
- Department of Microbiology, Immunology and Pathology, Colorado State University, Ft. Collins, CO, USA
| | | | | |
Collapse
|
48
|
Dhouib R, Pg Othman DSM, Essilfie AT, Hansbro PM, Hanson JO, McEwan AG, Kappler U. Maturation of molybdoenzymes and its influence on the pathogenesis of non-typeable Haemophilus influenzae. Front Microbiol 2015; 6:1219. [PMID: 26594204 PMCID: PMC4633490 DOI: 10.3389/fmicb.2015.01219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023] Open
Abstract
Mononuclear molybdenum enzymes of the dimethylsulfoxide (DMSO) reductase family occur exclusively in prokaryotes, and a loss of some these enzymes has been linked to a loss of bacterial virulence in several cases. The MobA protein catalyzes the final step in the synthesis of the molybdenum guanine dinucleotide (MGD) cofactor that is exclusive to enzymes of the DMSO reductase family. MobA has been proposed as a potential target for control of virulence since its inhibition would affect the activities of all molybdoenzymes dependent upon MGD. Here, we have studied the phenotype of a mobA mutant of the host-adapted human pathogen Haemophilus influenzae. H. influenzae causes and contributes to a variety of acute and chronic diseases of the respiratory tract, and several enzymes of the DMSO reductase family are conserved and highly expressed in this bacterium. The mobA mutation caused a significant decrease in the activities of all Mo-enzymes present, and also resulted in a small defect in anaerobic growth. However, we did not detect a defect in in vitro biofilm formation nor in invasion and adherence to human epithelial cells in tissue culture compared to the wild-type. In a murine in vivo model, the mobA mutant showed only a mild attenuation compared to the wild-type. In summary, our data show that MobA is essential for the activities of molybdenum enzymes, but does not appear to affect the fitness of H. influenzae. These results suggest that MobA is unlikely to be a useful target for antimicrobials, at least for the purpose of treating H. influenzae infections.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Dk S M Pg Othman
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle Newcastle, NSW, Australia
| | - Phil M Hansbro
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle Newcastle, NSW, Australia
| | - Jeffrey O Hanson
- School of Biological Sciences, The University of Queensland St. Lucia, QLD, Australia
| | - Alastair G McEwan
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| |
Collapse
|
49
|
Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol 2015; 38:167-83. [PMID: 26510950 PMCID: PMC4779125 DOI: 10.1007/s00281-015-0537-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Abstract
Infection by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb) is a major cause of morbidity and mortality worldwide. Slow progress has been made in lessening the impact of tuberculosis (TB) on human health, especially in parts of the world where Mtb is endemic. Due to the complexity of TB disease, there is still an urgent need to improve diagnosis, prevention, and treatment strategies to control global spread of disease. Active research targeting avenues to prevent infection or transmission through vaccination, to diagnose asymptomatic carriers of Mtb, and to improve antimicrobial drug treatment responses is ongoing. However, this research is hampered by a relatively poor understanding of the pathogenesis of early infection and the factors that contribute to host susceptibility, protection, and the development of active disease. There is increasing interest in the development of adjunctive therapy that will aid the host in responding to Mtb infection appropriately thereby improving the effectiveness of current and future drug treatments. In this review, we summarize what is known about the host response to Mtb infection in humans and animal models and highlight potential therapeutic targets involved in TB granuloma formation and resolution. Strategies designed to shift the balance of TB granuloma formation toward protective rather than destructive processes are discussed based on our current knowledge. These therapeutic strategies are based on the assumption that granuloma formation, although thought to prevent the spread of the tubercle bacillus within and between individuals contributes to manifestations of active TB disease in human patients when left unchecked. This effect of granuloma formation favors the spread of infection and impairs antimicrobial drug treatment. By gaining a better understanding of the mechanisms by which Mtb infection contributes to irreversible tissue damage, down regulates protective immune responses, and delays tissue healing, new treatment strategies can be rationally designed. Granuloma-targeted therapy is advantageous because it allows for the repurpose of existing drugs used to treat other communicable and non-communicable diseases as adjunctive therapies combined with existing and future anti-TB drugs. Thus, the development of adjunctive, granuloma-targeted therapy, like other host-directed therapies, may benefit from the availability of approved drugs to aid in treatment and prevention of TB. In this review, we have attempted to summarize the results of published studies in the context of new innovative approaches to host-directed therapy that need to be more thoroughly explored in pre-clinical animal studies and in human clinical trials.
Collapse
Affiliation(s)
- Dilara Kiran
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Mark Chambers
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.,School of Veterinary Medicine Faculty of Health and Medical Sciences, University of Surrey, Vet School Main Building, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA.
| |
Collapse
|
50
|
DuBois JC, Pasula R, Dade JE, Smulian AG. Yeast Transcriptome and In Vivo Hypoxia Detection Reveals Histoplasma capsulatum Response to Low Oxygen Tension. Med Mycol 2015; 54:40-58. [PMID: 26483436 DOI: 10.1093/mmy/myv073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022] Open
Abstract
Although there is growing understanding of the microenvironmental conditions fungal pathogens encounter as they colonize their host, nothing is known about Histoplasma capsulatum's response to hypoxia. Here we characterized hypoxia during murine histoplasmosis using an in vivo hypoxia detection agent, Hypoxyprobe-2 (HP-2); and analyzed H. capsulatum's transcriptional profile in response to in vitro hypoxia. Immunohistopathology and flow cytometry analyses revealed distinct regions of hypoxia during infection. Granuloma cells, enriched with macrophages and T-cells isolated from infected livers were 66-76% positive for HP-2, of which, 95% of macrophages and 55% of T-cells were hypoxic. Although inhibited, H. capsulatum was able to survive under in vitro hypoxic conditions (<1% O2), and restored growth when replaced in normoxia. Next-generation sequencing (RNA-seq) analysis after 24 hours of hypoxia demonstrated a significant increase in NIT50 (swirm domain DNA binding protein), a predicted ABC transporter (ABC), NADPH oxidoreductase (NADP/FAD), and guanine nucleotide exchange factor (RSP/GEF); and other genes with no known designated function. Computational transcription factor binding site analysis predicted human sterol regulatory element binding protein (SREBP) binding sites upstream of NIT50, ABC, NADP/FAD and RSP/GEF. Hypoxia resulted in a time-dependent increase in the H. capsulatum homolog of SREBP, here named Srb1. Srb1 peaked at 8 hours and returned to basal levels by 24 hours. Our findings demonstrate that H. capsulatum encounters and survives severe hypoxia during infection. Additionally, the hypoxic response may be regulated at the level of transcription, and these studies contribute to the understanding of hypoxic regulation and adaptation in H. capsulatum.
Collapse
Affiliation(s)
- Juwen C DuBois
- Department of Pathology and Laboratory Medicine
- Cincinnati VA Medical Center, Cincinnati Ohio
| | - Rajamouli Pasula
- Department of Internal Medicine, University of Cincinnati, Cincinnati Ohio
- Cincinnati VA Medical Center, Cincinnati Ohio
| | - Jessica E Dade
- Department of Internal Medicine, University of Cincinnati, Cincinnati Ohio
- Cincinnati VA Medical Center, Cincinnati Ohio
| | - A George Smulian
- Department of Internal Medicine, University of Cincinnati, Cincinnati Ohio
- Cincinnati VA Medical Center, Cincinnati Ohio
| |
Collapse
|