1
|
Kummerová M, Zezulka Š, Babula P. Response of crop seed germination and primary root elongation to a binary mixture of diclofenac and naproxen. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1039-1046. [PMID: 39259420 DOI: 10.1007/s10646-024-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Non-steroidal anti-inflammatory drugs, diclofenac (DCF) and naproxen (NPX), represent a group of environmental contaminants often detected in various water and soil samples. This work aimed to assess possible phytotoxic effects of DCF and NPX in concentrations 0.1, 1 and 10 mg/L, both individually and in binary mixtures, on the seed germination and primary root elongation of crops, monocots Allium porrum and Zea mays, and dicots Lactuca sativa and Pisum sativum. Results proved that the seed germination was affected by neither individual drugs nor their mixture. The response of primary root length in monocot and dicot species to the same treatment was different. The Inhibition index (%) comparing the root length of drug-treated plants to controls proved to be approximately 10% inhibition in the case of dicots lettuce and pea, and nearly 20% inhibition in monocot leek, but almost 20% stimulation in monocot maize. Assessment of the binary mixture effect confirmed neither synergistic nor antagonistic interaction of DCF and NPX on early plant development in the applied concentration range.
Collapse
Affiliation(s)
- Marie Kummerová
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Brno, Czechia
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Brno, Czechia.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| |
Collapse
|
2
|
Saha G, Chandrasekaran N. A combined toxicological impact on Artemia salina caused by the presence of dust particles, microplastics from cosmetics, and paracetamol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123822. [PMID: 38522609 DOI: 10.1016/j.envpol.2024.123822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Environmental pollution poses a significant and pressing threat to the overall well-being of aquatic ecosystems in modern society. This study showed that pollutants like dusts from AC filter, fan wings and Traffic dust PM 2.5 were exposed to Artemia salina in pristine form and in combination. The findings indicated that exposure to multi-pollutants had a detrimental effect on the hatching rates of A. salina cysts. Compared to untreated A. salina, the morphology of adult (7th day old) A. salina changed noticeably after each incubation period (24-120 h). Oxidative stress increased considerably as the exposure duration increased from 24 to 120 h compared to the control group. There was a time-dependent decline in antioxidant enzyme activity and total protein concentration. When all particles were used all together, the total protein content in A. salina decreased significantly. All particles showed a considerable decline in survival rate. Those exposed to traffic dust particles showed significantly higher levels of oxidative stress and antioxidant activity than those exposed to other particles.
Collapse
Affiliation(s)
- Guria Saha
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
3
|
Wieczorkiewicz F, Sojka J, Poprawa I. Effect of paracetamol on the storage cells of Hypsibius exemplaris—ultrastructural analysis. Zool J Linn Soc 2024; 200:258-268. [DOI: 10.1093/zoolinnean/zlad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Tardigrades in their natural environment are exposed to various environmental toxicants, including non-steroidal anti-inflammatory drugs (NSAIDs) or antipyretics such as paracetamol. This drug can enter the animal’s body through the body wall or the digestive system with food and can affect the biology of organisms. In this paper, we report for the first time the effects of paracetamol on tardigrade storage cells. We analyzed the effects of short-term (7 days) and long-term (28 days) exposure of Hypsibius exemplaris storage cells to three paracetamol concentrations (0.2 µgxL−1, 230 µgxL−1, 1 mgxL−1). Our results showed that increasing paracetamol concentration and incubation time increases the number of damaged mitochondria in storage cells, and autophagy is activated and intensified. Moreover, the relocation of some organelles and cell deformation may indicate cytoskeleton damage.
Collapse
Affiliation(s)
- Filip Wieczorkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| | - Julia Sojka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| | - Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| |
Collapse
|
4
|
Bangia S, Bangia R, Daverey A. Pharmaceutically active compounds in aqueous environment: recent developments in their fate, occurrence and elimination for efficient water purification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1344. [PMID: 37857877 DOI: 10.1007/s10661-023-11858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
The existence of pharmaceutically active compounds (PhACs) in the water is a major concern for environmentalists due to their deleterious effects on living organisms even at minuscule concentrations. This review focuses on PhACs such as analgesics and anti-inflammatory compounds, which are massively excreted in urine and account for the majority of pharmaceutical pollution. Furthermore, other PhACs such as anti-epileptics, beta-blockers and antibiotics are discussed because they also contribute significantly to pharmaceutical pollution in the aquatic environment. This review is divided into two parts. In the first part, different classes of PhACs and their fate in the wastewater environment are presented. In the second part, recent advances in the removal of PhACs by conventional wastewater treatment plants, including membrane bioreactors (MBRs), activated carbon adsorption and bench-scale studies concerning a broad range of advanced oxidation processes (AOPs) that render practical and appropriate strategies for the complete mineralization and degradation of pharmaceutical drugs, are reviewed. This review indicates that drugs like diclofenac, naproxen, paracetamol and aspirin are removed efficiently by conventional systems. Activated carbon adsorption is suitable for the removal of diclofenac and carbamazepine, whereas AOPs are leading water treatment strategies for the effective removal of reviewed PhACs.
Collapse
Affiliation(s)
- Saulab Bangia
- Hamburg University of Technology, 21073, Hamburg, Germany
| | - Riya Bangia
- Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
5
|
Afsa S, De Marco G, Cristaldi A, Giannetto A, Galati M, Billè B, Conti GO, Ben Mansour H, Ferrante M, Cappello T. Single and combined effects of caffeine and salicylic acid on mussel Mytilus galloprovincialis: Changes at histomorphological, molecular and biochemical levels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104167. [PMID: 37286067 DOI: 10.1016/j.etap.2023.104167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5ng/L to 10µg/L) and SA (0.05µg/L to 100µg/L) alone and combined as CAF+SA (5ng/L+0.05µg/L to 10µg/L+100µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
6
|
Duarte C, Gravato C, Di Lorenzo T, Reboleira ASPS. Acetaminophen induced antioxidant and detoxification responses in a stygobitic crustacean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121749. [PMID: 37127234 DOI: 10.1016/j.envpol.2023.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
A variety of veterinary and human medicinal products (VHMPs) are found in groundwater, an often-neglected habitat inhabited by species with unique traits, stygobitic species. It is crucial to understand the effect of VHMPs on stygobitic species because they may respond differently to stressors than surface species. Our hypothesis is that groundwater species may be more susceptible to environmental contaminants due to less plasticity in their detoxification response and acquisition of energy because subterranean habitats are more stable and isolated from anthropogenic activities. We performed a battery of biomarkers associated with important physiological functions on the stygobitic asellid crustacean Proasellus lusitanicus, after a 14-day exposure to acetaminophen, a commonly used pharmaceutical and pollutant of groundwaters. Our results show an decrease in total glutathione levels and an increase in glutathione S-transferase activity, suggesting a successful detoxification response. This helps explaining why acetaminophen did not cause oxidative damage, as well as had no effect cholinesterase activity nor in aerobic production of energy. This study shows the remarkable capacity of P. lusitanicus to tolerate sublethal concentrations of VHMP acetaminophen. Most ecotoxicological studies on stygobitic species focused on the lethal effects of these compound. The present study focus on consequences at sublethal concentrations. Future studies should assess the stress levels induced to better predict and estimate the impacts of contaminants on groundwater ecosystems.
Collapse
Affiliation(s)
- Cláudia Duarte
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Carlos Gravato
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Tiziana Di Lorenzo
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET-CNR), Via Madonna Del Piano 10, 50019 Sesto Fiorentino, Florence, Italy; National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Ana Sofia P S Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
7
|
Nayak S, Patnaik L. Histopathological and Biochemical Changes in the Gills of Anabas testudineus on Exposure to Polycyclic Aromatic Hydrocarbon Naphthalene. Appl Biochem Biotechnol 2022; 195:2414-2431. [PMID: 36383310 DOI: 10.1007/s12010-022-04214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Naphthalene, a polycyclic aromatic hydrocarbon, is generated by various distillation, petroleum, and coal-tar production units and is used worldwide as mothballs, soil fumigants, and toilet deodorants. Considering the susceptibility of aquatic animals to different types of stressors in several water bodies, this study was carried out to evaluate the impact of naphthalene on the architecture of gill tissue including response of various enzymes like cholinesterase (ChE) activity, lactate dehydrogenase (LDH) activity, and lipid peroxidation (LPX) level of the freshwater fish Anabas testudineus. Activities of antioxidants like catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) were also evaluated. Constant loss of gill structure and secondary lamellar fusion was observed in fishes exposed to various concentrations of naphthalene. ChE, LDH, LPx, CAT, Gpx and GSH activities indicated significant variation (p < 0.05) between the control and experimental groups. ChE activity was lowered in experimental fishes; however, LDH activity, LPx levels, and CAT activity were elevated in response to various concentrations of naphthalene as compared to control group. Both GPx and GSH activities decreased in the gill tissue of the experimental fishes. Thus, a conclusion was drawn that naphthalene is a potent toxicant capable of inflicting tissue damage leading to physiological changes in the exposed fishes.
Collapse
Affiliation(s)
- Susri Nayak
- Environmental Science Laboratory, Department of Zoology, Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753008, Odisha, India
| | - Lipika Patnaik
- Environmental Science Laboratory, Department of Zoology, Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753008, Odisha, India.
| |
Collapse
|
8
|
De Marco G, Afsa S, Galati M, Billè B, Parrino V, Ben Mansour H, Cappello T. Comparison of cellular mechanisms induced by pharmaceutical exposure to caffeine and its combination with salicylic acid in mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103888. [PMID: 35598756 DOI: 10.1016/j.etap.2022.103888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Urban and hospital-sourced pharmaceuticals are continuously discharged into aquatic environments, threatening biota. To date, their impact as single compounds has been widely investigated, whereas few information exists on their effects as mixtures. We assessed the time-dependent biological impact induced by environmental concentrations of caffeine alone (CAF; 5 ng/L to 10 µg/L) and its combination with salicylic acid (CAF+SA; 5 ng/L+0.05 µg/L to 10 µg/L+100 µg/L) on gills of mussel Mytilus galloprovincialis during a 12-day exposure. Although no histological alteration was observed in mussel gills, haemocyte infiltration was noticed at T12 following CAF+SA exposure, as confirmed by flow cytometry with increased hyalinocytes. Both the treatments induced lipid peroxidation and cholinergic neurotoxicity, which the antioxidant system was unable to counteract. We have highlighted the biological risks posed by pharmaceuticals on biota under environmental scenarios, contributing to the enhancement of ecopharmacovigilance programmes and amelioration of the efficacy of wastewater treatment plants.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
9
|
Daniel D, Nunes B, Pinto E, Ferreira IMPLVO, Correia AT. Assessment of Paracetamol Toxic Effects under Varying Seawater pH Conditions on the Marine Polychaete Hediste diversicolor Using Biochemical Endpoints. BIOLOGY 2022; 11:biology11040581. [PMID: 35453782 PMCID: PMC9031096 DOI: 10.3390/biology11040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Context of climate change is being widely studied, nevertheless its effects in the toxicity of other contaminants have been poorly study. Particularly, the effects of ocean acidification on the modulation of pharmaceutical absorption and consequent effects, have not been extensively addressed before. In this study, we aimed to assess the effects of ocean acidification (specifically pH values of 8.2, 7.9, and 7.6) combined with paracetamol exposure (0, 30, 60, and 120 µg/L) on the polychaeta Hediste diversicolor. To do so, specific biomarkers were measured namely (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as thiobarbituric acid reactive substance (TBARS), were quantified to serve as ecotoxicological endpoints. Alterations of CAT, and GSTs activities, and TBARS levels indicate an alteration in redox balances. Differences in exposed pH levels indicate the possible modulation of the absorption of this pharmaceutical in ocean acidifications scenarios. Alterations in AChE were only observed following paracetamol exposure, not being altered by media pH. Hereby obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of pharmaceuticals. This work is crucial to understand the potential effects of pharmaceuticals in a climate change scenario. Abstract Increasing atmospheric carbon dioxide (CO2) levels are likely to lower ocean pH values, after its dissolution in seawater. Additionally, pharmaceuticals drugs are environmental stressors due to their intrinsic properties and worldwide occurrence. It is thus of the utmost importance to assess the combined effects of pH decreases and pharmaceutical contamination, considering that their absorption (and effects) are likely to be strongly affected by changes in oceanic pH. To attain this goal, individuals of the marine polychaete Hediste diversicolor were exposed to distinct pH levels (8.2, 7.9, and 7.6) and environmentally relevant concentrations of the acidic drug paracetamol (PAR: 0, 30, 60, and 120 µg/L). Biomarkers such as catalase (CAT), glutathione S-transferases (GSTs), acetylcholinesterase (AChE), and cyclooxygenase (COX) activities, as well as peroxidative damage (through thiobarbituric acid reactive substance (TBARS) quantification), were quantified to serve as ecotoxicological endpoints. Data showed a general increase in CAT and a decrease in GST activities (with significant fluctuations according to the tested conditions of PAR and pH). These changes are likely to be associated with alterations of the redox cycle driven by PAR exposure. In addition, pH levels seemed to condition the toxicity caused by PAR, suggesting that the toxic effects of this drug were in some cases enhanced by more acidic conditions. An inhibition of AChE was observed in animals exposed to the highest concentration of PAR, regardless of the pH value. Moreover, no lipid peroxidation was observed in most individuals, although a significant increase in TBARS levels was observed for polychaetes exposed to the lowest pH. Finally, no alterations of COX activities were recorded on polychaetes exposed to PAR, regardless of the pH level. The obtained results suggest that seawater acidification is detrimental to marine wildlife, since it may enhance toxic effects caused by environmental realistic concentrations of acidic drugs, such as PAR. This work was crucial to evidence that ocean acidification, in the context of a global change scenario of increased levels of both atmospheric and oceanic CO2, is a key factor in understanding the putative enhanced toxicity of most pharmaceutical drugs that are of an acidic nature.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro (UA), 3810-193 Aveiro, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal;
| | - Bruno Nunes
- Departamento de Biologia, Campus de Santiago, Universidade de Aveiro (UA), 3810-193 Aveiro, Portugal;
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| | - Edgar Pinto
- Escola Superior de Saúde (ESS) do Instituto Politécnico do Porto (IPP), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
- LAQV/REQUIMTE-Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4200-465 Porto, Portugal;
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE-Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4200-465 Porto, Portugal;
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal;
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS/UFP), Rua Carlos da Maia 296, 4200-150 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Environmental protection by the adsorptive elimination of acetaminophen from water: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Sousa AP, Nunes B. Dangerous connections: biochemical and behavioral traits in Daphnia magna and Daphnia longispina exposed to ecologically relevant amounts of paracetamol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38792-38808. [PMID: 33740191 DOI: 10.1007/s11356-021-13200-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Exposure of nontarget organisms to therapeutic agents can cause distinct toxic effects, even at low concentrations. Paracetamol is a painkiller drug, widely used in human and veterinary therapies, being frequently found in the aquatic compartment in considerable amounts. Its toxicity has already been established for some species, but its full ecotoxicological potential is still not sufficiently described. To characterize the ecotoxicity of paracetamol, the present study evaluated several parameters, such as acute immobilization (EC50 calculation), biochemical alterations, and behavioral effects, in two species of freshwater microcrustaceans of the genus Daphnia (D. magna and D. longispina). To increase the relevance of the data obtained, animals were exposed to levels of paracetamol similar to those already reported to occur in the wild. Data showed antioxidant responses in both species, namely an increase of catalase and GSTs activities in D. magna. On the contrary, effects of paracetamol on D. longispina included only an impairment of GSTs activity. Despite the absence of anticholinesterasic effects, behavioral modifications were also observed. This set of data indicates that realistic levels of paracetamol may trigger the activation of the antioxidant defense system of freshwater crustaceans, causing changes in behavioral traits (increase in swimming time, but with a reduction in swimming distance) of unknown etiology that are likely to affect normal life traits of wild populations.
Collapse
Affiliation(s)
- Ana Paula Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Bio S, Nunes B. Twists and turns of an oyster's life: effects of different depuration periods on physiological biochemical functions of oysters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29601-29614. [PMID: 33559825 DOI: 10.1007/s11356-021-12683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture activities are often established in the vicinity of highly populated, potentially contaminated areas. Animals cultured at such locations, namely bivalves, are frequently used as test organisms in ecotoxicological testing. In this case, a period of depuration is required to allow the normalization of physiological processes, which are likely to be altered after exposure to a multiplicity of waterborne contaminants occurring in the wild. One of the most important species in modern marine aquaculture is the oyster species Crassostrea gigas. The aim of this study was to assess if the current depuration time frame of 24 h (adopted by most aquaculture facilities), is long enough to permit oysters to revert potential toxic effects exerted by environmental contaminants, allowing their use in laboratory-based ecotoxicological studies. The selected approach involved the monitoring of biochemical (antioxidant defence, oxidative damage, phase II metabolism, and neurological homeostasis) and physiological (condition index) parameters, along a period of 42 days. The obtained results showed that a period of 24 h does not revert any of the potential toxic effects caused by environmental contaminants to which animals may have been previously subjected; even a period of 42 days was not long enough for the oysters to completely normalize the levels of their antioxidant defences, namely total GPx activity, which increased over time. Lipid peroxidation was also increased during the depuration period, and the activity of the metabolic isoenzymes GSTs was significantly decreased. Furthermore, AChE activity measured in the adductor muscle of oysters was increased over time. These assumptions suggest that a period of depuration longer than 24 h is mandatory to obtain adequate test organisms of this oyster species, to be used for ecotoxicological testing purposes.
Collapse
Affiliation(s)
- Sofia Bio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Nogueira AF, Nunes B. Effects of paracetamol on the polychaete Hediste diversicolor: occurrence of oxidative stress, cyclooxygenase inhibition and behavioural alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26772-26783. [PMID: 33496946 DOI: 10.1007/s11356-020-12046-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals are significant environmental stressors, since they are utilized around the world; they are usually released in to the aquatic system without adequate treatment and several non-target species can be harmed because of their intrinsic properties. Paracetamol is one of the most widely prescribed analgesics in human medical care. Consequently, this compound is systematically reported to occur in the wild, where it may exert toxic effects on non-target species, which are mostly uncharacterized so far. The objective of the present work was to assess the acute (control, 5, 25, 125, 625 and 3125 μg/L) and chronic (control, 5, 10, 20, 40 and 80 μg/L) effects of paracetamol on behavioural endpoints, as well as on selected oxidative stress biomarkers [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRed)] and the anti-inflammatory activity biomarker cyclooxygenase (COX), in the polychaete Hediste diversicolor (Annelida: Polychaeta). Exposure to paracetamol caused effects on behavioural traits, with increased burrowing time (96 h) and hypoactivity (28 days). In addition, exposure to paracetamol resulted also in significant increases of SOD activity, but only for intermediate levels of exposure, but for both acute and chronic exposures. Both forms of GPx had their activities significantly increased, especially after chronic exposure. Acutely exposed organisms had their GRed significantly decreased, while chronically exposed worms had their GRed activity augmented only for the lowest tested concentrations. Effects were also observed in terms of COX activity, showing that paracetamol absorption occurred and caused an inhibition of COX activity in both exposure regimes. It is possible to conclude that the exposure to concentrations of paracetamol close to the ones in the environment may be deleterious to marine ecosystems, endangering marine life by changing their overall redox balance, and the biochemical control of inflammatory intermediaries. Behaviour was also modified and the burrowing capacity was adversely affected. This set of effects clearly demonstrate that paracetamol exposure, under realistic conditions, it not exempt of adverse effects on marine invertebrates, such as polychaetes.
Collapse
Affiliation(s)
- Ana Filipa Nogueira
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and risk assessment of pharmaceuticals and cocaine around the coastal submarine sewage outfall in Guarujá, São Paulo State, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11384-11400. [PMID: 33123891 DOI: 10.1007/s11356-020-11320-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to screen and quantify 23 pharmaceutical compounds (including illicit drugs), at two sampling points near the diffusers of the Guarujá submarine outfall, State of São Paulo, Brazil. Samples were collected in triplicate during the high (January 2018) and low (April 2018) seasons at two different water column depths (surface and bottom). A total of 10 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Caffeine (42.3-141.0 ng/L), diclofenac (3.6-85.7 ng/L), valsartan (4.7-14.3 ng/L), benzoylecgonine (0.3-1.7 ng/L), and cocaine (0.3-0.6 ng/L) were frequently detected (75% occurrence). Orphenadrine (0.6-3.0 ng/L) and atenolol (0.1-0.3 ng/L), and acetaminophen (1.2-1.4 ng/L) and losartan (0.7-3.4 ng/L), were detected in 50% and 25% of the samples, respectively. Only one sample (12.5%) detected the presence of carbamazepine (< 0.001-0.1 ng/L). Unexpectedly a lower frequency of occurrence and concentration of these compounds occurred during the summer season, suggesting that other factors, such as the oceanographic and hydrodynamic regimes of the study area, besides the population rise, should be taken into account. Caffeine presented concentrations above the surface water safety limits (0.01 μg/L). For almost all compounds, the observed concentrations indicate nonenvironmental risk for the aquatic biota, except for caffeine, diclofenac, and acetaminophen that showed low to moderate ecological risk for the three trophic levels tested.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia (FCT), Universidade Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536, Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
15
|
Seoane M, Cid Á, Herrero C, Esperanza M. Comparative acute toxicity of benzophenone derivatives and bisphenol analogues in the Asian clam Corbicula fluminea. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:142-153. [PMID: 33159647 DOI: 10.1007/s10646-020-02299-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Among UV-filters, benzophenones are one of the most abundantly used and detected groups in the environment. Bisphenols are also one of the most widely used chemicals in plastics, but their demonstrated deleterious effects on several organisms and humans have led to the production of alternative analogues. However, few comparative studies on the ecotoxicological effects of these derivatives or analogues have been carried out. The present study aimed to investigate the effects of two benzophenones (BP-3 and BP-4) and two bisphenols (BPA and BPS) in a short-term exposure of the freshwater endobenthic bivalve Corbicula fluminea. Clams were exposed for 96 h to several concentrations of the four pollutants: BP-3 (0.63; 1.25; 2.5; 5 mg l-1), BP-4 (4.75; 9.5; 19; 38 mg l-1), BPA (3.75; 7.5; 15; 30 mg l-1), and BPS (2.5; 5; 10; 20 mg l-1). The comparative acute toxicity of these pollutants was evaluated by the analysis of the post-exposure filtering capacity of clams, lipid peroxidation (LP) levels and the activity of the antioxidant enzymes catalase (CAT) and glutathione reductase (GR). After the exposure period, except for BP-4, the chemicals tested seemed to be detected by clams and provoked valve closure, decreasing filter-feeding in a concentration-dependent manner. Furthermore, C. fluminea exposed to the highest concentrations of BP-3, BP-4 and BPA showed a significant increase in LP, CAT and GR activities with respect to their controls. BP-3 and BPA were the most toxic compounds showing significant differences in all the parameters analysed at the highest concentrations assayed. However, clams exposed to BPS showed only significant alterations in filtration parameters and in GR activity, in the two highest concentrations tested, indicating that this compound was the least toxic to clams. Obtained results highlight the importance of investigating the effects that emerging pollutants have on aquatic organisms.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A, Coruña, Spain.
| |
Collapse
|
16
|
Gomes AS, Castro BB, Nunes B. First characterization of the ecotoxicity of paraffin particles: assessment of biochemical effects in the marine polychaete Hediste diversicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45742-45754. [PMID: 32803587 DOI: 10.1007/s11356-020-10390-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Plastics are a widespread environmental problem, particularly in the form of small particles or fragments (microplastics). With the purpose of gradually replacing the use of plastics in cosmetic products (primary microplastics), the use of paraffin in microspheres has recently been applied. Paraffin waxes are composed by organic molecules usually derived from petroleum, thus assumed to be chemically and biologically inert, having a lower (eco)toxicity and residence time compared with plastic particles. However, the low ecotoxicity of paraffin waxes may be somewhat questionable, because some paraffin constituents can be absorbed and catabolized, thus exerting biological effects. The main objective of this study was to understand the potential toxic effects of paraffin microparticles on key physiological processes of the polychaete Hediste diversicolor. To attain this objective, this work assessed the acute and chronic effects of three densities (5, 20, and 80 mg L-1) of four size ranges of paraffin particles (from 100 to 1200 μm) on this epibenthic organism. Although paraffin wax can be generically considered innocuous, the present study was able to demonstrate a significant inhibition in the activity of acetylcholinesterase in acutely exposed organisms and an increase in the activity of glutathione peroxidase, catalase, and glutathione S-transferase under some specific scenarios.
Collapse
Affiliation(s)
- Ana Sofia Gomes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno B Castro
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Stepnowski P, Wolecki D, Puckowski A, Paszkiewicz M, Caban M. Anti-inflammatory drugs in the Vistula River following the failure of the Warsaw sewage collection system in 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140848. [PMID: 32758731 DOI: 10.1016/j.scitotenv.2020.140848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
At the end of August 2019, in Warsaw, the sewage collection system of the Wastewater Treatment Plant malfunctioned. During the subsequent 12 days, over 3.6 million m3 of untreated sewage was introduced from the damaged collector directly into the Vistula River. It is one of the biggest known failures of its kind in the world so far. In this study we investigated to what extent the incident contributed to the increased discharge of anti-inflammatory drugs into the environment. The study covered the section from the point of discharge to the city of Toruń (ca. 170 km downstream). It was found that in the river waters downstream of the damaged collector, the concentrations of selected pharmaceuticals increased considerably in comparison with the waters upstream of the collector. The highest concentrations were observed for paracetamol (102.9 μg/L), ibuprofen (5.3 μg/L) and diclofenac (4.8 μg/L). We also measured to what extent and at what rate these pollutants were distributed along the river. The effects of the incident were observed in further parts of the river after 16 days. In the study we also detected elevated concentrations of ibuprofen and diclofenac in the bottom sediments collected 6 weeks after the failure. Measurements of the levels of pharmaceuticals in estuarial and marine waters in the vicinity of the mouth of the Vistula River indicate that the incident did not significantly increase the load of these pollutants in the waters of the southern Baltic Sea.
Collapse
Affiliation(s)
- Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Daniel Wolecki
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
18
|
Parolini M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140043. [PMID: 32559537 DOI: 10.1016/j.scitotenv.2020.140043] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 05/14/2023]
Abstract
Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) represent one of the main therapeutic classes of molecules contaminating aquatic ecosystems worldwide. NSAIDs are commonly and extensively used for their analgesic, antipyretic and anti-inflammatory properties to cure pain and inflammation in human and veterinary therapy. After use, NSAIDs are excreted in their native form or as metabolites, entering the aquatic ecosystems. A number of monitoring surveys has detected the presence of different NSAIDs in freshwater ecosystems in the ng/L - μg/L concentration range. Although the concentrations of NSAIDs in surface waters are low, the high biological activity of these molecules may confer them a potential toxicity towards non-target aquatic organisms. The present review aims at summarizing toxicity, in terms of both acute and chronic toxicity, induced by the main NSAIDs detected in surface waters worldwide, namely acetylsalicylic acid (ASA), paracetamol (PCM), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX), both singularly and in mixture, towards freshwater invertebrates. Invertebrates play a crucial role in ecosystem functioning so that NSAIDs-induced effects may result in hazardous consequences to the whole freshwater trophic chain. Acute toxicity of NSAIDs occurs only at high, unrealistic concentrations, while sub-lethal effects arise also at low, environmentally relevant concentrations of all these drugs. Thus, further studies represent a priority in order to improve the knowledge on NSAID toxicity and mechanism(s) of action in freshwater organisms and to shed light on their real ecological hazard towards freshwater communities.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| |
Collapse
|
19
|
Koagouw W, Ciocan C. Effects of short-term exposure of paracetamol in the gonads of blue mussels Mytilus edulis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30933-30944. [PMID: 31749003 DOI: 10.1007/s11356-019-06861-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
A growing body of literature suggests that pharmaceutical contamination poses an increasing risk to marine ecosystems. Paracetamol or acetaminophen is the most widely used medicine in the world and has recently been detected in seawater. Here, we present the results of 7 days' exposure of blue mussel adults to 40 ng/L, 250 ng/L and 100 μg/L of paracetamol. Histopathology shows that haemocytic infiltration is the most observed condition in the exposed mussels. The mRNA expression of VTG, V9, ER2, HSP70, CASP8, BCL2 and FAS in mussel gonads present different patterns of downregulation. VTG and CASP8 mRNA expression show downregulation in all exposed mussels, irrespective of sex. The V9, HSP70, BCL2 and FAS transcripts follow a concentration-dependent variation in gene expression and may therefore be considered good biomarker candidates. ER2 mRNA expression shows a downregulated trend, with a clearer dose-response relationship in males. In conclusion, this study suggests that paracetamol has the potential to alter the expression of several genes related to processes occurring in the reproductive system and may therefore impair reproduction in blue mussels.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK
- Bitung Marine Life Conservation Unit, Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Tandurusa, Aertembaga, Bitung, North Sulawesi, Indonesia
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK.
| |
Collapse
|
20
|
Millarhouse AZ, Vatovec C, Niles MT, Ivakhiv A. What's in Your Body of Water? A Pilot Study Using Metaphoric Framing to Reduce the Psychological Distance in Pharmaceutical Pollution Risk Communication. ENVIRONMENTAL MANAGEMENT 2020; 65:630-641. [PMID: 32222782 DOI: 10.1007/s00267-020-01275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Aquatic pharmaceutical pollution poses ecotoxicological risks to the environment and human health. Consumer pharmaceutical use and disposal behaviors represent a significant source of pharmaceutical compounds in surface waters, and communication strategies are needed to promote pro-environmental behaviors to reduce pharmaceutical pollution. Designing effective risk communication campaigns requires an understanding of public perceptions of aquatic pharmaceutical pollution. The purpose of this mixed-methods pilot study was to test the efficacy of using theories from cognitive linguistics and psychology (conceptual metaphor theory and construal level theory of psychological distance, respectively) in using metaphors in pharmaceutical pollution risk communication. Our methods included a randomized cross-over design in which a convenience sample of university students (n = 20) viewed visual representations of pharmaceutical pollution risks (metaphor based and non-metaphor). We used cognitive interviewing methods to assess metaphor use on participants understanding of pharmaceutical pollution risk, concern about this risk, and willingness to act. Results indicate that participants preferred the metaphorically-framed visual, and that the use of metaphor significantly reduced participants' perceived social and geographic distance of pharmaceutical pollution risk, suggesting a relationship between metaphoric framing and psychological distance warranting additional research. Theoretical and practical implications of metaphor use in risk communications are discussed.
Collapse
Affiliation(s)
- Alexandra Z Millarhouse
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr., Burlington, VT, 05405, USA
| | - Christine Vatovec
- Gund Institute for Environment, University of Vermont, 303 Aiken Center, 81 Carrigan Dr., Burlington, VT, 05405, USA.
| | - Meredith T Niles
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, 350 MLS Carrigan Wing, 81 Carrigan Dr., Burlington, VT, 05405, USA
| | - Adrian Ivakhiv
- Professor of Environmental Thought and Culture, Rubenstein School of Environment and Natural Resources, University of Vermont, 211 Bittersweet House, 153 South Prospect St., Burlington, VT, 05401, USA
| |
Collapse
|
21
|
de Oliveira Dos Santos PR, Costa MJ, Dos Santos ACA, Silva-Zacarín ECM, Nunes B. Neurotoxic and respiratory effects of human use drugs on a Neotropical fish species, Phalloceros harpagos. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108683. [PMID: 31874287 DOI: 10.1016/j.cbpc.2019.108683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023]
Abstract
Pharmaceutical drugs are usually and continuously carried to the aquatic environment in different ways. Thus, they are pseudo-persistent in the environment, and they may exert deleterious effects on aquatic organisms. The objective of the present study was to investigate the acute and chronic effects of two widely used pharmaceutical drugs, paracetamol (analgesic and antipyretic) and propranolol (β-blocker) on the activity of specific biomarkers (namely cholinesterase enzymes and lactate dehydrogenase) of the neotropical fish Phalloceros harpagos. The obtained results indicate an inhibition of the activity of the enzyme lactate dehydrogenase (LDH) after acute exposure to paracetamol, and an increase in cholinesterase activity in acutely propranolol-exposed fish. Chronic exposure to both drugs did not modify the enzymatic activities. Such short-term changes in enzymatic activities may be harmful to organisms, altering the preferential pathway of energy metabolism, and may induce behavioral changes that may compromise prey capture and predator escape, and in the longer term may induce population declines.
Collapse
Affiliation(s)
| | - Mônica Jones Costa
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil; Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - André Cordeiro Alves Dos Santos
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - Elaine C M Silva-Zacarín
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil; Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Campus Sorocaba, Rodovia João Leme dos Santos km 110, Itinga, 18052-780 Sorocaba, SP, Brazil
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Akay C, Tezel U. Biotransformation of Acetaminophen by intact cells and crude enzymes of bacteria: A comparative study and modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134990. [PMID: 31740064 DOI: 10.1016/j.scitotenv.2019.134990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Acetaminophen (APAP), which is an active ingredient of many analgesic drugs, is one of the contaminants of emerging concern in the environment. Although APAP is biodegradable, it is frequently detected in treatment plant effluents, surface water and soil suggesting that there are factors affecting the fate of APAP in the environment. In this study, four strains of bacteria that can degrade APAP were isolated from soil. Those strains belonged to Rhodococcus, Pseudomonas, Flavobacterium, and Sphingobium genera of Bacteria. A series of kinetic experiments were performed on the isolates in shake-flasks to determine biodegradation rate constant as well as the effect of temperature, APAP concentration and cell density on the biodegradation rates. APAP biodegradation follows the first order reaction kinetics which is coupled with cell growth. The specific APAP biodegradation rate constant (k) for all strains was similar and equal to 0.19 ± 0.01 h-1. The temperature, at which APAP biodegradation rate was maximum, was 35 °C. APAP biodegradation rate was linearly correlated with both the initial APAP concentration and the cell density. Initial step of the APAP biodegradation was hydrolysis of the amide bond which resulted in formation and accumulation of p-aminophenol suggesting that aryl acylamidase enzyme is responsible for the biotransformation. In addition, free and immobilized crude enzymes of the isolates transformed APAP at similar rates, comparable to the intact cells. This study showed that APAP biodegradation is achieved by a diverse group of bacteria having a similar enzyme operating at a constant kinetics which is very slow at environmentally relevant APAP concentrations. Natural removal of APAP in the environment is limited by kinetics, therefore APAP-bearing waste streams should be treated in adsorption enhanced biological systems before discharged into the environment.
Collapse
Affiliation(s)
- Caglar Akay
- Institute of Environmental Sciences, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Ulas Tezel
- Institute of Environmental Sciences, Bogazici University, Bebek 34342, Istanbul, Turkey.
| |
Collapse
|
23
|
Nunes B. Ecotoxicological Effects of the Drug Paracetamol: A Critical Review of Past Ecotoxicity Assessments and Future Perspectives. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Piedade F, Bio S, Nunes B. Effects of common pharmaceutical drugs (paracetamol and acetylsalicylic acid) short term exposure on biomarkers of the mussel Mytilus spp. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103276. [PMID: 31704586 DOI: 10.1016/j.etap.2019.103276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceutical drugs in the wild may pose significant risks to non-target exposed organisms. This situation is even more troublesome for coastal marine or estuarine environments, located in the vicinity of large human conglomerates, for which the putative number of pollutants is extremely high, and the regime by which wild organisms are exposed is continuous. In addition, the number of studies addressing this issue is still scarce, despite evidences that show the potential contamination profiles and adverse biological effects in organisms from such areas. In this study, the ecotoxicity of common pharmaceutical drugs (namely paracetamol and acetylsalicylic acid) was assessed, by studying the susceptibility of the mussel species Mytilus spp to oxidative stress after being exposed for 96 h to increasing but ecologically relevant concentrations of the two mentioned pharmaceuticals (paracetamol: 0, 0.5, 5, 50, and 500 μg/L; acetylsalicylic acid: 0, 0.1, 1, 10, and 100 μg/L). The oxidative status in exposed organisms was analyzed by measuring oxidative stress biomarkers, namely catalase (CAT), glutathione-S-transferases (GSTs), and lipoperoxidation (LPO) levels, whose alteration was indicative of chemical exposure, in both digestive gland and gills of the organisms. In addition, the food uptake and the nutritional reserve status of exposed organisms were also assessed, by measuring the consumption of ingested food, and levels of tissue reserves of glycogen in gills and digestive gland. No significant alterations were observed in the assessed oxidative stress parameters so it was possible to hypothesize that the studied drugs may have probably exerted a limited alteration of antioxidant defenses and damage, which was reverted by the activation of defensive adaptive mechanisms. This set of data evidenced that the pro-oxidative metabolism that was already described for both drugs in other animal models, was not fully established in the exposed mussels. On the contrary, glycogen reserves were substantially changed after exposure to both toxicants, being possible to observe opposite responses caused by both drugs. Food uptake was not altered following exposure to the drugs. Further evaluations are thus required to conclude about both drugs ecotoxicity and other parameters, namely seasonality, which should be considered when performing ecotoxicology tests, especially with the selected species.
Collapse
Affiliation(s)
- Francisca Piedade
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sofia Bio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM, Laboratório Associado), Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Nogueira AF, Pinto G, Correia B, Nunes B. Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of Danio rerio when exposed to environmental realistic levels of both drugs. ENVIRONMENTAL TOXICOLOGY 2019; 34:1177-1190. [PMID: 31322327 DOI: 10.1002/tox.22819] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
For several years, the scientific community has been concerned about the presence of pharmaceuticals in the wild, since these compounds may have unpredictable deleterious effects on living organisms. Two examples of widely used pharmaceuticals that are present in the environment are paracetamol and ciprofloxacin. Despite their common presence in the aquatic environment due to their poor removal by sewage treatment plants, knowledge concerning their putative toxic effects is still scarce. This work aimed to characterize the effects of paracetamol (0.005, 0.025, 0.125, 0.625, and 3.125 mg/L) and ciprofloxacin (0.005, 0.013, 0.031, 0.078, 0.195, and 0.488 μg/L) in zebrafish embryos and larvae, exposed to environmentally relevant levels, close to the real concentrations of these pharmaceuticals in surface waters and effluents. The adopted toxic end points were developmental, a behavioral parameter (total swimming time), and a biomarker-based approach (quantification of the activities of catalase, glutathione-S-transferase, cholinesterases, glutathione peroxidase, and lipid peroxidation levels) combined with epigenetic analysis (immunohistochemical detection of 5-methylcytidine). Exposure to paracetamol had effects on all of the adopted toxic end points; however, ciprofloxacin only caused effects on behavioral tests and alterations in biomarkers. It is possible to ascertain the occurrence of oxidative stress following exposure to both drugs, which was more evident regarding paracetamol, an effect that may be related to the observed epigenetic modifications.
Collapse
Affiliation(s)
- Ana F Nogueira
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Glória Pinto
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Barbara Correia
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
26
|
Vieira M, Soares AMVM, Nunes B. Biomarker-based assessment of the toxicity of the antifungal clotrimazol to the microcrustacean Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103210. [PMID: 31280003 DOI: 10.1016/j.etap.2019.103210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Among the vast list of xenobiotics that may promote harmful effects in aquatic ecosystems, pharmaceuticals are currently a prominent class due to their ability to persist in these environments and also due to the lack of information regarding their effects on the different components of the aquatic biota. Antifungals in particular, despite their massive use, are not extensively studied in environbmental terms. The main objective of this study was to characterize the toxicity of the antifungal clotrimazole to the aquatic organism Daphnia magna. To attain this purpose, the effects of this compound were measured, focusing on the determination of acute lethality, and quantification of biomarkers, such as neurotoxicity (soluble cholinesterases, ChEs); and oxidative stress and metabolism (such as catalase, CAT; and glutathione-S-transferases, GSTs). The toxicity assessment with biomarkers was based on animals exposed to concentrations similar to those already found in surface waters in order to increase the ecological relevance of the obtained data. The results showed that exposure to clotrimazole was able to induce significant increases in both CAT amd GSTs activities. ChE activity was not significantly altered after clotrimazol exposure. In view of the above, it is concluded that the drug studied caused adverse effects in terms of oxidative stress, at an ecological relevant levels, showing that the presence of clotrimazol in the wild is not innocuous.
Collapse
Affiliation(s)
- Madalena Vieira
- Departamento de Química, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM-LA), Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Laboratório Associado (CESAM-LA), Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
Giménez V, Nunes B. Effects of commonly used therapeutic drugs, paracetamol, and acetylsalicylic acid, on key physiological traits of the sea snail Gibbula umbilicalis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21858-21870. [PMID: 31134547 DOI: 10.1007/s11356-019-04653-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Over time, the consumption of pharmaceutical drugs has highly augmented, directly contributing for an increase of the discharges of these substances into sewage water due to excretion, and their direct release to the environment, with or without adequate treatment. Considering that part of the sewage water is dumped into rivers and seas, this is the major source of contamination of the aquatic environment. Paracetamol and acetylsalicylic acid are among the most worldwide consumed pharmaceutical drugs, frequently found in wastewater discharges and consequently in the aquatic environment in considerable amounts, posing ecotoxicity concerns especially towards aquatic non-target species. Thus, it is important to study the ecotoxicological implications that these drugs might pose to organisms from aquatic environments. The objective of this study was to assess the toxic effects of these two compounds on key biochemical features (antioxidant defenses and damage, metabolism, and cholinergic neurotoxicity) of the marine snail species Gibbula umbilicalis after an acute (96 h) exposure, simulating pulses of contamination. In order to understand the effects that those drugs have on this species, the biochemical biomarkers analyzed were the activities of catalase (CAT), glutathione-S-transferases (GSTs), cholinesterases (ChEs), and the levels of lipid peroxidation (TBARS). After acute exposure to paracetamol, catalase activity decreased significantly in organisms exposed to both highest concentrations; no significant alterations were observed for glutathione-S-transferases activity; TBARS concentration decreased significantly in organisms exposed to the intermediate and both highest concentrations, and cholinesterase activity increased significantly in animals exposed to the lowest concentration. However, after acute exposure to acetylsalicylic acid, catalase activity increased significantly; no significant alterations were observed for glutathione-S-transferases activity, and TBARS concentrations and cholinesterase activity increased. This set of data shows that G. umbilicalis is highly responsive to the presence of the tested drugs, and may thus be a promising species to serve as test organism in future marine ecotoxicological testing. The adoption of this species may broaden the offer of highly ecologically representative test organisms to be included in biomonitoring projects of the coastal and marine environment. Furthermore, it is possible to suggest that both drugs may pose significant deleterious effects of pro-oxidative origin to the physiology of the selected species, with potential adverse ecological consequences, even after short periods of exposure. The absence of neurotoxicity showed that despite being able to trigger antioxidant mechanisms, both drugs did not affect neurotransmission.
Collapse
Affiliation(s)
- Valéria Giménez
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Gomes A, Correia AT, Nunes B. Worms on drugs: ecotoxicological effects of acetylsalicylic acid on the Polychaeta species Hediste diversicolor in terms of biochemical and histological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13619-13629. [PMID: 30919192 DOI: 10.1007/s11356-019-04880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals are important environmental stressors since they have a worldwide use; they are usually released in the aquatic compartment without adequate treatment, and because of their intrinsic properties, they may affect several non-target organisms. Acetylsalicylic acid (ASA), the active substance of aspirin, is a non-steroidal anti-inflammatory drug, being one of the most widely prescribed analgesics in human medical care. Consequently, this compound is systematically reported to occur in the wild, where it may exert toxic effects on non-target species, which are mostly uncharacterized so far. The objective of the present work was to assess the acute and chronic effects of ASA on selected oxidative stress biomarkers [catalase (CAT), glutathione reductase (GRed), glutathione peroxidase (GPx), glutathione S-transferase (GST)], lipid peroxidation (thiobarbituric acid-reactive substance), and histological alterations in the polychaete Hediste diversicolor (Annelida: Polychaeta). The obtained data showed that ASA is not exempt of toxicity, since it was responsible for significant, albeit transient, changes in biomarkers related to the redox status of the organisms, occurring as an increase in the activity of catalase in the individuals exposed acutely to ASA. Chronic exposure to ecologically relevant concentrations of this drug showed to be mostly ineffective in promoting any significant biochemical alteration in H. diversicolor. However, histochemical observations revealed proliferation of mucous cells in the tegument of chronically exposed individuals to ASA.
Collapse
Affiliation(s)
- Ana Gomes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Universidade de Aveiro (UA), Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa (UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro (UA), Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
29
|
Almeida F, Nunes B. Effects of acetaminophen in oxidative stress and neurotoxicity biomarkers of the gastropod Phorcus lineatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9823-9831. [PMID: 30737714 DOI: 10.1007/s11356-019-04349-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The growing use of pharmaceutical drugs has become a major environmental issue considering that these substances (or their metabolites) end up inevitably in sewage waters after excretion. In the wild, these chemicals may affect non-target organisms, and their potential toxicity is not sufficiently studied, a reality that is particularly true for marine organisms. Acetaminophen (also known as paracetamol) is known to be toxic in high dosages, namely, by triggering oxidative effects. These effects may be potentiated in marine organisms subjected to contamination resulting from large human settlements along coastal areas. In order to assess how different exposure regimes (acute vs. chronic) may affect aquatic wildlife, individuals of the gastropod species Phorcus lineatus were acutely (96 h) and chronically (28 days) exposed to ecologically relevant concentrations of acetaminophen. The effects were evaluated through the quantification of selected biomarkers-catalase (CAT), glutathione-S-transferase (GST), and cholinesterase (ChE) activities. The results from acute exposure showed no significant effects in all three biomarkers, but chronically exposed organisms showed significant increases in the activities of CAT and ChEs. The data show that P. lineatus triggered a defensive biological response in the presence of acetaminophen, and also show that realistically low levels of acetaminophen can exert adaptive changes with unknown consequences.
Collapse
Affiliation(s)
- Filipa Almeida
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
30
|
Alkimin GD, Daniel D, Frankenbach S, Serôdio J, Soares AMVM, Barata C, Nunes B. Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:926-937. [PMID: 30677958 DOI: 10.1016/j.scitotenv.2018.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
In the last years the environmental presence of pharmaceuticals has gained increasing attention. Research data show that these compounds can cause toxicological effects in different species of fish, mollusks and macroinvertebrates. However, the literature is scarce in terms of ecotoxicity data especially focusing on plants as test organisms. Ecotoxicological plant-based tests following the standard OEDC guideline 221 (OECD, 2006) are strongly restricted due to the recommended end-points: growth and yield of plants. It is necessary to develop and validate alternative macrophyte-based tests (non-standard endpoints), more sensible and providing additional information about the chemical contamination effects in plants. To attain this purpose, species from the Lemna genus were selected. Thus, the aim of this study was to analyze the toxic effects of pharmaceuticals in non-standard endpoints on two macrophyte species, Lemna minor and Lemna gibba. To this purpose an acute assay (96 h) was performed with L. minor and L. gibba exposed to chlorpromazine (CPZ), paracetamol (APAP), and diclofenac (DCF), in the following concentration ranges: 0 to 20 μg/L, 0 to 125 μg/L, and 0 to 100 μg/L, respectively. The analyzed endpoints were: levels of chlorophyll a and b, total chlorophyll, carotenoids, anthocyanins; chlorophyll fluorescence; and catalase activity. In general, higher concentrations of the tested pharmaceuticals caused significant effects on both Lemna species in terms of the different endpoints analyzed. In conclusion, acute exposures to CPZ, APAP, and DCF differently affected the defensive system of the tested species; among chlorophylls, chlorophyll b content was more affected, but pharmaceutical exposure was not able to cause alterations on chlorophyll fluorescence.
Collapse
Affiliation(s)
- G D Alkimin
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - D Daniel
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - S Frankenbach
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - J Serôdio
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - B Nunes
- Department of Biology, Aveiro University, Campus de Santiago, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
31
|
Daniel D, Dionísio R, de Alkimin GD, Nunes B. Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3320-3329. [PMID: 30506442 DOI: 10.1007/s11356-018-3788-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The modern usage of pharmaceutical drugs has led to a progressive increase in their presence and environment concentrations, particularly in the aquatic compartment which is the most common final dumping location for this specific class of chemicals. These substances, due to their chemical and biological properties, can exert mostly uncharacterized toxic effects to non-target aquatic species, given the diverse pathways they activate, and the large number of putative targets in the wild. Among drugs in the environment, paracetamol assumes a leading role, considering its widespread therapeutic use and consequently, environmental presence. The present study aimed to assess the acute and chronic effects of paracetamol, in ecologically relevant levels, in the freshwater cladoceran Daphnia magna, namely focusing on biochemical and reproductive parameters. Considering the pro-oxidant effects of paracetamol, already described for a large set of aquatic organisms, specific enzymes involved in the anti-oxidant and metabolic responses were quantified, namely catalase (CAT) and glutathione S-transferases (GSTs) activities. Cholinesterases (ChEs) activity was quantified to evaluate the capacity of paracetamol to induce neurotoxicity, an indirect outcome of oxidative effects by paracetamol, that may affect feeding behavior and reproductive outcomes of this crustacean. Paracetamol in the tested levels showed no effect on reproductive traits of D. magna. Results obtained for organisms acutely exposed included significant increases in the activities of both GSTs and CAT, demonstrating a short-term pro-oxidative effect by paracetamol. On the contrary, ChEs activity was significantly decreased in organisms exposed to this drug, showing a possible interference with neurotransmission. On the contrary, no noteworthy effects were reported for organisms chronically exposed to ecologically realistic concentrations, evidencing the transient nature of the obtained biological response. These results demonstrate the responsiveness of D. magna to paracetamol, especially for high levels of exposure that, despite not being environmentally relevant, are able to trigger significant antioxidant responses. No population effects were likely to be caused by realistic levels of paracetamol, and the absence of biochemical changes after chronic exposure suggests that this specific organism may not be deleteriously affected by low levels of paracetamol, under real scenarios of contamination.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Dionísio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
32
|
Huerta-Aguilar CA, Ramírez-Alejandre AA, Thangarasu P, Arenas-Alatorre JA, Reyes-Dominguez IA, de la Luz Corea M. Crystal phase induced band gap energy enhancing the photo-catalytic properties of Zn–Fe2O4/Au NPs: experimental and theoretical studies. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00678h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Au NPs on ZnFe2O4 enhances visible absorption, employed for paracetamol oxidation, where peaks were resolved by 2D HPLC.
Collapse
Affiliation(s)
| | | | - Pandiyan Thangarasu
- Facultad de Química
- Universidad Nacional Autónoma de México (UNAM)
- Ciudad Universitaria
- México D. F
- Mexico
| | | | | | - Monica de la Luz Corea
- Escuela Superior de Ingeniería Química e Industrias Extractivas
- Instituto Politécnico Nacional (ESIQIE-IPN)
- Mexico D. F
- Mexico
| |
Collapse
|
33
|
Coppo GC, Passos LS, Lopes TOM, Pereira TM, Merçon J, Cabral DS, Barbosa BV, Caetano LS, Kampke EH, Chippari-Gomes AR. Genotoxic, biochemical and bioconcentration effects of manganese on Oreochromis niloticus (Cichlidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1150-1160. [PMID: 30120660 DOI: 10.1007/s10646-018-1970-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Manganese and iron were found at high concentrations (3.61 mg/L and 19.8 mg/L, respectively) in the water of the Rio Doce after the dams of Fundão and Santarém broke in Mariana/MG (Brazil). These same metals were found in fish and crustacean muscle (15 mg/kg and 8 mg/kg wet weight, respectively) in the specimens collected near the Rio Doce's outfall. Due to the variation in Mn concentration found in the lower Rio Doce, this study aimed to determine the effects of Mn in Oreochromis niloticus, at the concentrations allowed by CONAMA, and in concentrations found in the Rio Doce after the dams broke. The animals were exposed to the following dissolved concentrations: control group (0.0 mg/L), 0.2; 1.5 and 2.9 mg/L manganese for 96 h. In addition, a positive control was conducted, injecting intraperitoneally with cyclophosphamide (at 25 mg/kg). These exposures caused significant erythrocyte micronucleus formation in the organisms exposed to the highest concentration, as well a significant increase in the DNA damage index of erythrocytes from organisms exposed to 1.5 mg/L and 2.9 mg/L treatments. The glutathione S-transferase enzyme activity also showed a significant increase in the liver of the organisms exposed to 2.9 mg/L. However, catalase activity increased significantly in the gills of the animals exposed to all concentrations of manganese that were tested. Manganese bioconcentrated in greater quantities in the liver than the gills. Thus, manganese causes significant damage to genetic material, generates nuclear abnormalities, activates the body's detoxification system and can accumulate in animal tissue.
Collapse
Affiliation(s)
- Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Larissa Souza Passos
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Taciana Onesorge Miranda Lopes
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Julia Merçon
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Dandara Silva Cabral
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Bianca Vieira Barbosa
- Laboratory of Chemistry Sciences, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Lívia Sperandio Caetano
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Edgar Hell Kampke
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Adriana Regina Chippari-Gomes
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil.
| |
Collapse
|
34
|
Guo X, Feng C. Biological toxicity response of Asian Clam (Corbicula fluminea) to pollutants in surface water and sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:56-70. [PMID: 29524903 DOI: 10.1016/j.scitotenv.2018.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 05/27/2023]
Abstract
As a typical test species, Asian Clam (Corbicula fluminea) is widely used in the identification and evaluation of freshwater toxicity. This study provides a summary of the research published from 1979 to 2018. The focus was on the bioaccumulation, morphological and behavioral changes, and biochemical index alterations of Corbicula fluminea to target pollutants (i.e., ammonia, metal(loid)s, and organic chemicals) in surface water and sediment. The applications on the evaluation of actual aquatic pollution, determination of toxicological mechanisms, prediction of toxicity, and bioremediation are also specifically discussed. The primary purpose is to facilitate the comprehensive understanding and accurate application of Corbicula fluminea in freshwater ecotoxicological studies.
Collapse
Affiliation(s)
- Xiaoyu Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
35
|
Pereira BVR, Matus GN, Costa MJ, Santos ACAD, Silva-Zacarin ECM, do Carmo JB, Nunes B. Assessment of biochemical alterations in the neotropical fish species Phalloceros harpagos after acute and chronic exposure to the drugs paracetamol and propranolol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:14899-14910. [PMID: 29546518 DOI: 10.1007/s11356-018-1699-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Over time, many pollutants of anthropogenic origin have caused the contamination of aquatic ecosystems. Among several characteristics, these compounds can reach the trophic chain, causing deleterious interactions with the biota. Pharmaceutical substances can be included in this scenario as emerging contaminants that reach the aquatic environment because of direct human and veterinary usage, and release by industrial effluents, as well as through domestic dumping of surplus drugs. The effects of these compounds on exposed organisms have been studied since the 1990s, but ecotoxicological data for such chemicals are still scarce especially concerning aquatic organisms from tropical regions. Paracetamol and propranolol were selected for this study since they are frequently found in surface waters. Paracetamol is a drug used as analgesic and antipyretic, while propranolol, a β-blocker, is used in the treatment of hypertension. The objective of this study was to assess the toxic effects of these substances on the neotropical freshwater fish Phalloceros harpagos after acute (96 h) and chronic (28 days) exposures. In order to understand the effects of these drugs on P. harpagos, biochemical markers were selected, including the enzymes involved in oxidative stress, xenobiotic metabolism, and neurotransmission (catalase, glutathione-S-transferase, and cholinesterase activities, respectively). After acute exposure, no significant alterations were observed for catalase activity, suggesting the absence of oxidative stress. On the contrary, significant alterations in glutathione-S-transferases activity were described for the higher concentrations of both pharmaceuticals after acute exposure. In addition, acute exposure to paracetamol caused a significant increase of cholinesterase activity. None of the tested pharmaceuticals caused significant changes in catalase or cholinesterase activities after chronic exposure. Glutathione S-transferases activity was significantly increased for propranolol following chronic exposure, indicating the potential involvement of phase II detoxification pathway.
Collapse
Affiliation(s)
- Beatriz V R Pereira
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Gregorio Nolazco Matus
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Monica Jones Costa
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - André Cordeiro Alves Dos Santos
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Elaine C M Silva-Zacarin
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Janaina Braga do Carmo
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Bruno Nunes
- Departamento de Biologia/CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
36
|
Castro BB, Silva C, Macário IPE, Oliveira B, Gonçalves F, Pereira JL. Feeding inhibition in Corbicula fluminea (O.F. Muller, 1774) as an effect criterion to pollutant exposure: Perspectives for ecotoxicity screening and refinement of chemical control. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:25-34. [PMID: 29328973 DOI: 10.1016/j.aquatox.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 05/20/2023]
Abstract
Bivalves are commonly used in biomonitoring programs to track pollutants. Several features, including its filter-feeding abilities, cumulatively argue in favour of the use of the Asian clam (Corbicula fluminea) as a biosentinel and an ecotoxicological model. Filtration in bivalves is very sensitive to external stimuli and its control is dictated by regulation of the opening/closure of the valves, which may be used as an avoidance defence against contaminants. Here, we investigate the filter-feeding behaviour of the Asian clam as an endpoint for assessing exposure to pollutants, driven by two complementary goals: (i) to generate relevant and sensitive toxicological information based on the ability of C. fluminea to clear an algal suspension, using the invasive species as a surrogate for native bivalves; (ii) to gain insight on the potential of exploring this integrative response in the refinement of chemical control methods for this pest. Clearance rates and proportion of algae removed were measured using a simple and reproducible protocol. Despite some variation across individuals and size classes, 50-90% of food particles were generally removed within 60-120 min by clams larger than 20 mm. Removal of algae was sensitive to an array of model contaminants with biocide potential, including fertilizers, pesticides, metals and salts: eight out of nine tested substances were detected at the μg l-1 or mg l-1 range and triggered valve closure, decreasing filter-feeding in a concentration-dependent manner. For most toxicants, a good agreement between mortality (96 h - LC50 within the range 0.4-5500 mg l-1) and feeding (2 h - IC50 within the range 0.005-2317 mg l-1) was observed, demonstrating that a 120-min assay can be used as a protective surrogate of acute toxicity. However, copper sulphate was very strongly avoided by the clams (IC50 = 5.3 μg l-1); on the contrary, dichlorvos (an organophosphate insecticide) did not cause feeding depression, either by being undetected by the clams' chemosensors and/or by interfering with the valve closure mechanism. Such an assay has a large potential as a simple screening tool for industry, environmental agencies and managers. The ability of dichlorvos to bypass the Asian clam's avoidance strategy puts it in the spotlight as a potential agent to be used alone or combined with others in eradication programs of this biofouler in closed or semi-closed industrial settings.
Collapse
Affiliation(s)
- Bruno Branco Castro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Carlos Silva
- Department of Biology, University of Aveiro, Portugal
| | - Inês Patrunilho Efe Macário
- Department of Biology, University of Aveiro, Portugal; CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Portugal
| | | | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Portugal; CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Portugal
| | - Joana Luísa Pereira
- Department of Biology, University of Aveiro, Portugal; CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Portugal.
| |
Collapse
|
37
|
Aguirre-Martínez GV, André C, Gagné F, Martín-Díaz LM. The effects of human drugs in Corbicula fluminea. Assessment of neurotoxicity, inflammation, gametogenic activity, and energy status. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:652-663. [PMID: 29156432 DOI: 10.1016/j.ecoenv.2017.09.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
The constant release of pharmaceuticals products to aquatic environment even at low concentrations (ng L-1 to µg L-1) could lead to unknown chronic effects to non-target organisms. The aim of this study was to evaluate neurotoxic responses, inflammation, gametogenic activity and energy status on the fresh water clam C. fluminea after exposure to different concentrations of caffeine (CAF), ibuprofen (IBU), carbamazepine (CBZ), novobiocin (NOV) and tamoxifen (TMX) for 21 days under laboratory conditions. During the assay, water was spiked every two days with CAF (0; 0.1; 5; 15; 50µgL-1), IBU (0; 0.1; 5; 10; 50µgL-1), CBZ, NOV, and TMX (0.1, 1, 10, 50µgL-1). After the exposure period, dopamine levels (DOP), monoamine oxidase activity (MAO), arachidonic acid cyclooxygenase activity (COX), vitellogenin-like proteins (VTG), mitochondrial electron transport (MET), total lipids (TLP), and energy expenditure (MET/TLP) were determined in gonad tissues, and acetyl cholinesterase activity (AChE) was determined in digestive gland tissues. Results showed a concentration-dependence response on biomarkers tested, except for MAO. Environmental concentrations of pharmaceuticals induced significant changes (p < 0.05) in the neurotoxic responses analyzed (CAF, CBZ and NOV increased DOP levels and CBZ inhibited AChE activity), inflammation (CAF induced COX), and energy status (MET and TLP increased after exposure to CBZ, NOV and TMX). Responses of clams were related to the mechanism of action (MoA) of pharmaceuticals. Biomarkers applied and the model organism C. fluminea constituted a suitable tool for environmental risk assessment of pharmaceutical in aquatic environment.
Collapse
Affiliation(s)
- G V Aguirre-Martínez
- Facultad Ciencias del Mar y Ambientales. Universidad de Cádiz, Campus Excelencia Internacional del Mar (CEI-Mar), Polígono Río San Pedro s/n, P. Real, Cádiz, Spain; Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121,1110939 Iquique, Chile; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
| | - C André
- Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - F Gagné
- Emerging Methods, Aquatic Contaminants Research Division, Environment Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - L M Martín-Díaz
- Facultad Ciencias del Mar y Ambientales. Universidad de Cádiz, Campus Excelencia Internacional del Mar (CEI-Mar), Polígono Río San Pedro s/n, P. Real, Cádiz, Spain; Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
38
|
Cortes-Diaz MJA, Rodríguez-Flores J, Castañeda-Peñalvo G, Galar-Martínez M, Islas-Flores H, Dublán-García O, Gómez-Oliván LM. Sublethal effects induced by captopril on Cyprinus carpio as determined by oxidative stress biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:811-823. [PMID: 28683425 DOI: 10.1016/j.scitotenv.2017.06.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
To our knowledge, this is the first study to evaluate captopril-induced oxidative stress in fish, and specifically in the common carp Cyprinus carpio. At present, very few studies in the international literature evaluate the sublethal effects of captopril on aquatic organisms such as fish, and available ones focus on determination of median lethal concentration in crustaceans and algae. Also, studies evaluating these effects do not make reference to the mechanism of action of this pharmaceutical or its toxicokinetics. This limits our knowledge of the characterization of the sublethal effects of this medication and of its potential ecological impact. The present study aimed to evaluate the sublethal effects induced by three different concentrations of captopril, on C. carpio), by determination of activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as indicators of cellular oxidation: hydroperoxide content (HPC), lipid peroxidation (LPX) and protein carbonyl content (PCC). Specimens were exposed for 12, 24, 48, 72 and 96h to three different captopril concentrations: 1μgL-1, 1mgL-1 and 100mgL-1 (the first one has been detected environmentally, the other two have been associated with diverse toxic effects in aquatic species), and brain, gill, liver, kidney and blood samples were evaluated. Significant increases in HPC and LPX were observed mainly in kidney and gill, while PCC also increased in brain. Modifications were found in the activity of SOD (mostly in kidney, brain and blood), CAT (all organs) and GPx (kidney and gill). In conclusion, captopril induces oxidative stress in C. carpio.
Collapse
Affiliation(s)
- María Julieta Azalea Cortes-Diaz
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Juana Rodríguez-Flores
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072 Ciudad Real, España
| | - Gregorio Castañeda-Peñalvo
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072 Ciudad Real, España
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México, DF C.P.07738, México
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México.
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, México.
| |
Collapse
|
39
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E, Freitas R. Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:793-801. [PMID: 28578237 DOI: 10.1016/j.scitotenv.2017.05.149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Cetirizine (CTZ) is an antihistaminic drug present in the aquatic environment, with limited information on its toxicity to organisms inhabiting this system. This study intended to evaluate the effects of CTZ on oxidative stress and energy metabolism biomarkers in the edible clam Ruditapes philippinarum after a 28days exposure to environmentally relevant CTZ concentrations (0.0, 0.3, 3.0, 6.0 and 12.0μg/L). The results obtained showed that CTZ was accumulated by clams reaching maximum concentrations (up to ~22ng/g FW) at the highest CTZ exposure concentrations (6.0 and 12.0μg/L). The bioconcentration factor (average maximum values of ~5) decreased at 12.0μg/L reflecting a reduction in clams uptake or increase of excretion capacity at this condition. The present study revealed that, in general, clams decreased the metabolic potential after exposure to CTZ (decrease in electron transport system activity), a response that led to the maintenance of glycogen content in organisms exposed to CTZ in comparison to control values. Our findings also showed that, CTZ did not exert significant levels of oxidative injury to clams. However, comparing the control with the highest exposure concentrations (6.0 and 12.0μg/L) a significant increase of the antioxidant enzyme superoxide activity (~53 and ~44%) was observed in clams exposed to CTZ. Moreover, a tendency to increase lipid peroxidation (~14 and ~9%) and carbonyl groups on proteins (~11 and ~3%) was observed in clams exposed to CTZ (6.0 and 12.0μg/L) compared to control condition. Overall the present study suggests that toxic impacts may be induced in R. philippinarum if exposed for longer periods or higher CTZ concentrations.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
40
|
Nunes B, Nunes J, Soares AMVM, Figueira E, Freitas R. Toxicological effects of paracetamol on the clam Ruditapes philippinarum: exposure vs recovery. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:198-206. [PMID: 28982071 DOI: 10.1016/j.aquatox.2017.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/27/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Exposure of wild organisms to anthropogenic substances never follows a definite time-course and pulsed events can often determine biological responses to such chemicals, confounding the interpretation of toxicological data. This is the case of specific chemicals such as pharmaceutical drugs, which are commonly released by sewage systems into sensitive areas, including estuaries. The presence and amount of these chemicals in the wild can be modulated by events such as dilution due to heavy rain, floods, or by varying patterns of domestic water use (daily vs. seasonal). The present study aimed to obtain additional data about the toxicity of paracetamol towards the marine clam species Ruditapes philippinarum, following realistic modes of exposure. Thus, the toxicity assessment was made after an acute exposure to different concentrations of paracetamol, followed by a recovery period. The adopted toxicological endpoints included energy-related parameters (glycogen content, GLY; protein content, PROT; electron transport system activity, ETS), activity of antioxidant and biotransformation enzymes (superoxide dismutase, SOD; glutathione peroxidase, GPx; Glutathione-S-transferases, GSTs), levels of reduced glutathione (GSH), neurotoxicity (cholinesterases activity, ChEs), and indicators of oxidative damage (lipid peroxidation, LPO). The here obtained results showed an increase in SOD and GPx activities after exposure. In organisms exposed to the highest concentration tested it was also possible to observe a significant increase in GSTs activity. However, these alterations in the antioxidant defence system were not able to prevent the occurrence of oxidative stress in exposed organisms. Furthermore, exposure to paracetamol induced neurotoxicity in clams, with a concentration-dependent ChEs inhibition along the exposure concentrations. Exposure to paracetamol also led to an increase of GLY content which resulted from metabolic activity depression along the increasing exposure gradient. In recovering organisms the activities of SOD, GPx and GSTs decreased back towards control values presenting lower values than the ones observed in organisms after acute exposure to paracetamol. No LPO was registered in organisms after the recovery period. In addition, after recovery, clams showed no signs of neurotoxicity, with ChEs activities in previously exposed organisms similar to control clams. After recovery clams seemed to re-establish their metabolic capacity, especially evidenced in clams previously exposed to the highest paracetamol concentration as demonstrated by the increase of ETS activity up to control values. Furthermore, the decrease of GLY content after recovery may indicate that clams increased their metabolic activity and started to use their energetic reserves to re-establish their oxidative status. This set of data shows that an acute exposure to paracetamol can exert deleterious effects that may compromise specific biochemical pathways in sensitive aquatic species, such as R. philippinarum, but organisms can re-establish their biochemical status to control levels after a recovery period.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Nunes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
41
|
González-Alonso S, Merino LM, Esteban S, López de Alda M, Barceló D, Durán JJ, López-Martínez J, Aceña J, Pérez S, Mastroianni N, Silva A, Catalá M, Valcárcel Y. Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:241-254. [PMID: 28599208 DOI: 10.1016/j.envpol.2017.05.060] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Human presence in the Antarctic is increasing due to research activities and the rise in tourism. These activities contribute a number of potentially hazardous substances. The aim of this study is to conduct the first characterisation of the pharmaceuticals and recreational drugs present in the northern Antarctic Peninsula region, and to assess the potential environmental risk they pose to the environment. The study consisted of a single sampling of ten water samples from different sources, including streams, ponds, glacier drains, and a wastewater discharge into the sea. Twenty-five selected pharmaceuticals and 21 recreational drugs were analysed. The highest concentrations were found for the analgesics acetaminophen (48.74 μg L-1), diclofenac (15.09 μg L-1) and ibuprofen (10.05 μg L-1), and for the stimulant caffeine (71.33 μg L-1). All these substances were detected in waters that were discharged directly into the ocean without any prior purification processes. The hazard quotient (HQ) values for ibuprofen, diclofenac and acetaminophen were far in excess of 10 at several sampling points. The concentrations of each substance measured and used as measured environmental concentration values for the HQ calculations are based on a one-time sampling. The Toxic Unit values indicate that analgesics and anti-inflammatories are the therapeutic group responsible for the highest toxic burden. This study is the first to analyse a wide range of substances and to determine the presence of pharmaceuticals and psychotropic drugs in the Antarctic Peninsula region. We believe it can serve as a starting point to focus attention on the need for continued environmental monitoring of these substances in the water cycle, especially in protected regions such as the Antarctic. This will determine whether pharmaceuticals and recreational drugs are hazardous to the environment and, if so, can be used as the basis for risk-assessment studies to prioritise the exposure to risk.
Collapse
Affiliation(s)
- Silvia González-Alonso
- Research Group and Teaching in Environmental Toxicology and Risk Assessment (TAyER) of Rey Juan Carlos University, Avda. Atenas S/N, E-28922 Alcorcón, Madrid, Spain.
| | - Luis Moreno Merino
- Geological Survery of Spain, (IGME), C/Ríos Rosas 23, 28003 Madrid, Spain
| | - Sara Esteban
- Research Group and Teaching in Environmental Toxicology and Risk Assessment (TAyER) of Rey Juan Carlos University, Avda. Atenas S/N, E-28922 Alcorcón, Madrid, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H(2)O, Emili Grahit 101, 17003 Girona, Spain
| | - Juan José Durán
- Geological Survery of Spain, (IGME), C/Ríos Rosas 23, 28003 Madrid, Spain
| | - Jerónimo López-Martínez
- Department of Geology and Geochemistry, Faculty of Sciences, University Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaume Aceña
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Sandra Pérez
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Nicola Mastroianni
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Adrián Silva
- National Institute of Water, Empalme J. Newbery km 1,620, Ezeiza, Buenos Aires, Argentina
| | - Myriam Catalá
- Department of Biology & Geology, Physics and Inorganic Chemistry, Higher School of Science and Technology (ESCET), Rey Juan Carlos University, Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Yolanda Valcárcel
- Research Group and Teaching in Environmental Toxicology and Risk Assessment (TAyER) of Rey Juan Carlos University, Avda. Atenas S/N, E-28922 Alcorcón, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health and Medical Microbiology and Immunology, Rey Juan Carlos University, Avda. Atenas s/n, E-28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
42
|
Nunes B, Resende ST. Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12155-12167. [PMID: 28353098 DOI: 10.1007/s11356-017-8761-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Biomonitoring of chemical contamination requires the use of well-established and validated tools, including biochemical markers that can be potentially affected by exposure to important environmental toxicants. Cholinesterases (ChEs) are present in a large number of species and have been successfully used for decades to discriminate the environmental presence of specific groups of pollutants. The success of cholinesterase inhibition has been due to their usefulness as a biomarker to address the presence of organophosphate (OP) and carbamate (CB) pesticides. However, its use in ecotoxicology has not been limited to such chemicals, and several other putative classes of contaminants have been implicated in cholinesterasic impairment. Nevertheless, the use of cholinesterases as a monitoring tool requires its full characterization in species to be used as test organisms. This study analyzed and differentiated the various cholinesterase forms present in two autochthonous organisms from the Ria de Aveiro (Portugal) area, namely the polychaete Diopatra neapolitana and the bivalve Solen marginatus, to be used in subsequent monitoring studies. In addition, this study also validated the putative use of the now characterized cholinesterasic forms by analyzing the in vitro effects of common anthropogenic contaminants, such as detergents, pesticides, and metals. The predominant cholinesterasic form found in tissues of D. neapolitana was acetylcholinesterase, while homogenates of S. marginatus were shown to possess an atypical cholinesterasic form, with a marked preference for propionylthiocholine. Cholinesterases from D. neapolitana were generally non-responsive towards the majority of the selected chemicals. On the contrary, strong inhibitory effects were reported for ChEs of S. marginatus following exposure to the selected pesticides.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Sara Teixeira Resende
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
43
|
Novoa-Luna KA, Mendoza-Zepeda A, Natividad R, Romero R, Galar-Martínez M, Gómez-Oliván LM. Biological hazard evaluation of a pharmaceutical effluent before and after a photo-Fenton treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:830-840. [PMID: 27392336 DOI: 10.1016/j.scitotenv.2016.06.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to evaluate the biological hazard of a pharmaceutical effluent before and after treatment. For the former, the determined 96h-LC50 value was 1.2%. The photo-Fenton treatment catalyzed with an iron-pillared clay reduced this parameter by 341.7%. Statistically significant increases with respect to the control group (P<0.05) were observed at 12, 24, 48 and 72h in HPC (50.2, 30.4, 66.9 and 43.3%), LPX (22, 83.2, 62.7 and 59.5%) and PCC (14.6, 23.6, 24.4 and 25.6%) and antioxidant enzymes SOD (29.4, 38.5, 32.7 and 49.5%) and CAT (48.4, 50.3, 38.8 and 46.1%) in Hyalella azteca before treatment. Also increases in damage index were observed before treatment of 53.1, 59.9, 66.6 and 72.1% at 12, 24, 48 and 72h, respectively. After treatment the same biomarkers of oxidative stress decreased with respect to before treatment being to HPC (29.3, 22.5, 41.6 and 31.7%); LPX (14.2, 43.1, 30.7 and 35.5%); PCC (12.6, 21.3, 24.2 and 23.9%); SOD (39.2, 33.9, 49.5 and 37.9%) and CAT (28.6, 35.8, 33.7 and 31.7) at 12, 24, 48 and 72h, respectively (P<0.05). The damage index were decreased at 12, 24, 48 and 72h in 48.9, 57.8, 67.3 and 72.1%, respectively. In conclusion, the obtained results demonstrate the need of performing bioassays in order to characterize an effluent before discharge and not base such a decision only upon current normativity. In addition, it was also concluded that the heterogeneous photo-Fenton process decreases the presence of PCT, oxidative stress, genotoxic damage and LC50 in Hyalella azteca.
Collapse
Affiliation(s)
- Karen Adriana Novoa-Luna
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Arisbeht Mendoza-Zepeda
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200, Mexico
| | - Reyna Natividad
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200, Mexico
| | - Rubi Romero
- Chemical Engineering Lab., Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700 México, D.F., Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
44
|
Nunes B, Vidal D, Barbosa I, Soares AMVM, Freitas R. Pollution effects on biochemical pathways determined in the polychaete Hediste diversicolor collected in three Portuguese estuaries. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1208-1219. [PMID: 27499386 DOI: 10.1039/c6em00297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biomonitoring is an important tool for the assessment of the quality and functions of ecosystems, providing information about the pollutants present and the direct effects that they exert on organisms. Biomonitoring relies upon the quantification of variables that can be biochemical, genetic, morphological and physiological changes. Such variables are designated as biomarkers, and multiple biomarkers are usually determined simultaneously in order to have a more integrated analysis and information about sublethal early effects of contaminants. In this work, we quantified biomarkers, associated with oxidative stress (glutathione-S-transferases GSTs, and catalase CAT, activities; levels of peroxidative alterations, by the thiobarbituric acid reactive substances assay, TBARS) and neurotoxicity (acetylcholinesterase activity, AChE) in the polychaete Hediste diversicolor. Organisms were collected at three distinct estuaries, Ria de Aveiro (Laranjo and São Jacinto), Douro River (São Paio, Afurada, and Ribeira da Granja), both impacted by human activities, and Minho River (Seixas), which has been used as a reference site. Obtained data showed the occurrence of anti-oxidant responses, in most samples from contaminated sites, which was not followed however by the occurrence of oxidative damage in organisms from Ria de Aveiro. None of the analyzed organisms had significant impairment of cholinesterasic activity, suggesting the absence of a prior exposure to neurotoxic compounds. In fact, organisms collected at Ria de Aveiro had largely increased AChE activity, suggesting an uncommon paradoxical biological response that is further discussed.
Collapse
Affiliation(s)
- B Nunes
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
45
|
Pires A, Almeida Â, Calisto V, Schneider RJ, Esteves VI, Wrona FJ, Soares AMVM, Figueira E, Freitas R. Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:456-463. [PMID: 27112728 DOI: 10.1016/j.envpol.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
In the last decade studies have reported the presence of several pharmaceutical drugs in aquatic environments worldwide and an increasing effort has been done to understand the impacts induced on wildlife. Among the most abundant drugs in the environment is caffeine, which has been reported as an effective chemical anthropogenic marker. However, as for the majority of pharmaceuticals, scarce information is available on the adverse effects of caffeine on marine benthic organisms, namely polychaetes which are the most abundant group of organisms in several aquatic ecossystems. Thus, the present study aimed to evaluate the biochemical alterations induced by environmentally relevant concentrations of caffeine on the polychaete species Diopatra neapolitana and Arenicola marina. The results obtained demonstrated that after 28 days exposure oxidative stress was induced in both species, especially noticed in A. marina, resulting from the incapacity of antioxidant and biotransformation enzymes to prevent cells from lipid peroxidation. The present study further revealed that D. neapolitana used glycogen and proteins as energy to develop defense mechanisms while in A. marina these reserves were maintained independently on the exposure concentration, reinforcing the low capacity of this species to fight against oxidative stress.
Collapse
Affiliation(s)
- Adília Pires
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter Str. 11, Berlin, Germany
| | | | - Frederick J Wrona
- Department of Geography, University of Victoria, National Water Research Institute, STN CSC, Victoria, BC, Canada
| | | | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
46
|
Trevisan R, Mello DF, Delapedra G, Silva DGH, Arl M, Danielli NM, Metian M, Almeida EA, Dafre AL. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: Absorption, metabolism and excretion of a model electrophile. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:105-119. [PMID: 26859778 DOI: 10.1016/j.aquatox.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The mercapturic acid pathway (MAP) is a major phase II detoxification route, comprising the conjugation of electrophilic substances to glutathione (GSH) in a reaction catalyzed by glutathione S-transferase (GST) enzymes. In mammals, GSH-conjugates are exported from cells, and the GSH-constituent amino acids (Glu/Gly) are subsequently removed by ectopeptidases. The resulting Cys-conjugates are reabsorbed and, finally, a mercapturic acid is generated through N-acetylation. This pathway, though very well characterized in mammals, is poorly studied in non-mammalian biological models, such as bivalve mollusks, which are key organisms in aquatic ecosystems, aquaculture activities and environmental studies. In the present work, the compound 1-chloro-2,4-dinitrobenzene (CDNB) was used as a model electrophile to study the MAP in Pacific oysters Crassostrea gigas. Animals were exposed to 10μM CDNB and MAP metabolites were followed over 24h in the seawater and in oyster tissues (gills, digestive gland and hemolymph). A rapid decay was detected for CDNB in the seawater (half-life 1.7h), and MAP metabolites peaked in oyster tissues as soon as 15min for the GSH-conjugate, 1h for the Cys-conjugate, and 4h for the final metabolite (mercapturic acid). Biokinetic modeling of the MAP supports the fast CDNB uptake and metabolism, and indicated that while gills are a key organ for absorption, initial biotransformation, and likely metabolite excretion, hemolymph is a possible milieu for metabolite transport along different tissues. CDNB-induced GSH depletion (4h) was followed by increased GST activity (24h) in the gills, but not in the digestive gland. Furthermore, the transcript levels of glutamate-cysteine ligase, coding for the rate limiting enzyme in GSH synthesis, and two phase II biotransformation genes (GSTpi and GSTo), presented a fast (4h) and robust (∼6-70 fold) increase in the gills. Waterborne exposure to electrophilic compounds affected gills, but not digestive gland, while intramuscular exposure was able to modulate biochemical parameters in both tissues. This study is the first evidence of a fully functional and interorgan MAP pathway in bivalves. Hemolymph was shown to be responsible for the metabolic interplay among tissues, and gills, acting as a powerful GSH-dependent metabolic barrier against waterborne electrophilic substances, possibly also participating in metabolite excretion into the sea water. Altogether, experimental and modeled data fully agree with the existence of a classical mechanism for phase II xenobiotic metabolism and excretion in bivalves.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Department of Aquaculture, Federal University of Santa Catarina, 88034-001 Florianópolis, Brazil.
| | - Danielle F Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Gabriel Delapedra
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Danilo G H Silva
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Miriam Arl
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Naissa M Danielli
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Marc Metian
- International Atomic Energy Agency-Environment Laboratories (IAEA-EL), 4a Quai Antoine 1er, MC-98000 Principality of Monaco, Monaco
| | - Eduardo A Almeida
- Department of Chemistry and Environmental Sciences, São Paulo State University, 15054-000 São José do Rio Preto, Brazil
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| |
Collapse
|
47
|
Evaluation of Functionality and Biological Responses of Mytilus galloprovincialis after Exposure to Quaternium-15 (Methenamine 3-Chloroallylochloride). Molecules 2016; 21:144. [PMID: 26821003 PMCID: PMC6273939 DOI: 10.3390/molecules21020144] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Although the irritant effects of quaternium-15 have been established, little is known about the toxicological consequences induced by this xenobiotic on aquatic invertebrates. The present article reports toxicological, histological and physiological effects of quaternium-15 following the exposure of Mytilus galloprovincialis for 18 days at three different concentrations (0.1, 1.0 and 2.0 mg/L). The results demonstrate that at higher concentrations histological damages to M. galloprovincialis gills occur, like melanosis, light exfoliations, increase of mucus production and infiltrative inflammation. In addition digestive gland cells of M. galloprovincialis, were not able to perform the regulation volume decrease (RVD) owing to osmotic stress following the exposure to the preservative. Overall, this first study on quaternium-15 highlights that it can jeopardize both the morphology and vital physiological processes in marine invertebrates, depending on the duration of exposure and the concentration of the preservative, indicating that further studies are necessary to increase our knowledge about the effects of this substance, commonly added to our products of daily use.
Collapse
|
48
|
Kummerová M, Zezulka Š, Babula P, Tříska J. Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:351-361. [PMID: 26476323 DOI: 10.1016/j.jhazmat.2015.09.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Lemna minor is often used in environmental risk assessment and it can be supposed that usually evaluated parameters will be reliable even for assessing the risk of pharmaceuticals. Subtle changes in duckweed plant number, biomass production, and leaf area size induced by 10-day-exposure to diclofenac (DCF) and paracetamol (PCT) (0.1, 10, and 100 μg/L), excepting 100 μg/L DCF, are in contrast with considerable changes on biochemical and histochemical level. Both drugs caused a decrease in content of photosynthetic pigments (by up to 50%), an increase in non-photochemical quenching (by 65%) and decrease in relative chlorophyll fluorescence decay values (by up to 90% with DCF). Both DCF and especially PCT increased amount of reactive nitrogen and oxygen species in roots. DCF-induced effects included mainly increased lipid peroxidation (by 78%), disturbation in membrane integrity and lowering both oxidoreductase and dehydrogenase activities (by 30%). PCT increased the content of soluble proteins and phenolics. Higher concentrations of both DCF and PCT increased the levels of oxidised ascorbate (by 30%) and oxidised thiols (by up to 84% with DCF). Glutathion-reductase activity was elevated by both pharmaceuticals (nearly by 90%), glutathion-S-transferase activity increased mainly with PCT (by 22%). The early and sensitive indicators of DCF and PCT phytotoxicity stress in duckweed are mainly the changes in biochemical processes, connected with activation of defense mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Marie Kummerová
- Institute of Experimental Biology-Department of Plant Physiology and Anatomy, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Štěpán Zezulka
- Institute of Experimental Biology-Department of Plant Physiology and Anatomy, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Jan Tříska
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Center, Academy of Sciences of the Czech Republic v.v.i., Bělidla 986/4a, 603 00 Brno, Czech Republic.
| |
Collapse
|
49
|
Correia B, Freitas R, Figueira E, Soares AMVM, Nunes B. Oxidative effects of the pharmaceutical drug paracetamol on the edible clam Ruditapes philippinarum under different salinities. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:116-24. [PMID: 26409706 DOI: 10.1016/j.cbpc.2015.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023]
Abstract
Paracetamol, a drug with analgesic and antipyretic properties, is one of the most used substances in human therapeutics, being also frequently detected in aquatic environments. Recent studies report its toxicity towards aquatic species, but the overall amount of data concerning its effects is still scarce. Global changes, likely alterations in abiotic conditions, including salinity, can modulate the interactions of contaminants with biota, conditioning the toxicological responses elicited also by pharmaceuticals. The present article describes the oxidative toxic effects posed by paracetamol on the clam species Ruditapes philippinarum under different salinity conditions. The results demonstrated the establishment of an oxidative-based effect, with significant alteration of several parameters, such as superoxide dismutase (SOD) and the ratio of reduced/oxidized glutathione (GSH/GSSG). Water salinity influenced the response of clams exposed to different paracetamol concentrations, showing the importance of studying physiological traits under realistic test conditions, which are likely to vary in great extent as a result of climate change.
Collapse
Affiliation(s)
- Bárbara Correia
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal
| | - Bruno Nunes
- Department of Biology, Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Portugal.
| |
Collapse
|
50
|
Aguirre-Martínez GV, DelValls AT, Laura Martín-Díaz M. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:142-54. [PMID: 26072195 DOI: 10.1016/j.ecoenv.2015.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 05/15/2023]
Abstract
Reports indicating the presence of pharmaceutical in fresh water environment in the ngL(-1) to µgL(-1) range are occurring with increasing frequency. It is also a fact that pharmaceuticals may produce adverse effects on aquatic organisms. Nevertheless, there is still a lack of knowledge regarding how these emergent contaminants may affect aquatic biota. The goal of this research was to evaluate the sublethal responses in Corbicula fluminea such as, general stress (lysosomal membrane stability [LMS]), biomarkers of phase I and II (etoxyresorufin O-deethylase [EROD], dibenzylfluorescein dealkylase [DBF], gluthathione-S-transferase [GST]), oxidative stress (gluthathione reductase [GR], gluthathione peroxidase [GPX], lipid peroxidation [LPO]), and biomarkers of effect (DNA damage) after 21 days of exposure to caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen at 0.1, 1, 5, 10, 15, 50µgL(-1). Environmental concentrations tested in this study caused general stress and produced changes on biomarkers tested. LMS, responses from phase I and II enzymatic activity, oxidative stress, and biomarker of effect represent important ecotoxicological information, and will provide a useful reference for the assessment of selected drugs and the effects which these compounds may have on aquatic invertebrates, using C. fluminea as a bioindicator species.
Collapse
Affiliation(s)
- Gabriela V Aguirre-Martínez
- Physical Chemistry Department, University of Cádiz, Faculty of Marine and Environmental Sciences. Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.; Andalusian Center for Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain..
| | - Angel T DelValls
- Physical Chemistry Department, University of Cádiz, Faculty of Marine and Environmental Sciences. Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | - M Laura Martín-Díaz
- Physical Chemistry Department, University of Cádiz, Faculty of Marine and Environmental Sciences. Campus de Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.; Andalusian Center for Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|