1
|
Tian Z, Wei M, Xue R, Song L, Li H, Ji H, Xiao P, Sun J. Comparative study on the transcriptional activities of grass carp (Ctenopharyngodon idellus) peroxisome proliferator-activated receptors induced by different fatty acids. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111021. [PMID: 39151662 DOI: 10.1016/j.cbpb.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are part of the nuclear hormone receptor family, playing a crucial role in gene expression regulation. They serve as a connection between lipid metabolism disorders and innate immunity by being activated by fatty acids and their derivatives, facilitating signal transduction between the cell surface and nucleus. However, the specific transcriptional effects of different fatty acids (FAs) in fish are not yet fully understood. In our research, we identified and characterized PPARs in grass carp (Ctenopharyngodon idellus). The complete coding sequences of pparαa, pparαb, pparγ, pparδa, and pparδb were 1443 bp, 1404 bp, 1569 bp, 1551 bp, and 1560 bp in length, respectively. Pparα showed the highest expression in the liver, pparγ was mainly expressed in abdominal adipose tissue, and pparδ exhibited increased expression in the heart compared to other tissues. Gene localization analysis revealed that only pparδa was present in both the nucleus and cytoplasm, while the other four genes were exclusively located in the nucleus. Furthermore, our study explored the influence of various fatty acids (docosahexaenoic acid, palmitic acid, lauric acid and oleic acid at concentrations of 0, 50, 100, and 200 μM) on the transcriptional activities of different PPARs, demonstrating the diverse effects of fatty acid ligands on PPAR transcriptional activity. These results have significant implications for understanding the regulation of PPARs transcriptional activity.
Collapse
Affiliation(s)
- Zhiqi Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingkui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Handong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Peizhen Xiao
- Beijing Sunpu Biochemical and Technology Co., Ltd., Beijing 100126, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Attema B, Kummu O, Pitkänen S, Weisell J, Vuorio T, Pennanen E, Vorimo M, Rysä J, Kersten S, Levonen AL, Hakkola J. Metabolic effects of nuclear receptor activation in vivo after 28-day oral exposure to three endocrine-disrupting chemicals. Arch Toxicol 2024; 98:911-928. [PMID: 38182912 PMCID: PMC10861694 DOI: 10.1007/s00204-023-03658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Environmental exposure to endocrine-disrupting chemicals (EDCs) can lead to metabolic disruption, resulting in metabolic complications including adiposity, dyslipidemia, hepatic lipid accumulation, and glucose intolerance. Hepatic nuclear receptor activation is one of the mechanisms mediating metabolic effects of EDCs. Here, we investigated the potential to use a repeated dose 28-day oral toxicity test for identification of EDCs with metabolic endpoints. Bisphenol A (BPA), pregnenolone-16α-carbonitrile (PCN), and perfluorooctanoic acid (PFOA) were used as reference compounds. Male and female wild-type C57BL/6 mice were orally exposed to 5, 50, and 500 μg/kg of BPA, 1000, 10 000, and 100 000 µg/kg of PCN and 50 and 300 μg/kg of PFOA for 28 days next to normal chow diet. Primary endpoints were glucose tolerance, hepatic lipid accumulation, and plasma lipids. After 28-day exposure, no changes in body weight and glucose tolerance were observed in BPA-, PCN-, or PFOA-treated males or females. PCN and PFOA at the highest dose in both sexes and BPA at the middle and high dose in males increased relative liver weight. PFOA reduced plasma triglycerides in males and females, and increased hepatic triglyceride content in males. PCN and PFOA induced hepatic expression of typical pregnane X receptor (PXR) and peroxisome proliferator-activated receptor (PPAR)α target genes, respectively. Exposure to BPA resulted in limited gene expression changes. In conclusion, the observed changes on metabolic health parameters were modest, suggesting that a standard repeated dose 28-day oral toxicity test is not a sensitive method for the detection of the metabolic effect of EDCs.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Sini Pitkänen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Weisell
- Finnish Institute of Occupational Health, Kuopio, Finland
| | - Taina Vuorio
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Pennanen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Vorimo
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Anna-Liisa Levonen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
3
|
Lanas A, Tacconelli S, Contursi A, Piazuelo E, Bruno A, Ronci M, Marcone S, Dovizio M, Sopeña F, Falcone L, Milillo C, Mucci M, Ballerini P, Patrignani P. Biomarkers of Response to Low-Dose Aspirin in Familial Adenomatous Polyposis Patients. Cancers (Basel) 2023; 15:cancers15092457. [PMID: 37173923 PMCID: PMC10177499 DOI: 10.3390/cancers15092457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The results of Aspirin prevention of colorectal adenomas in patients with familial adenomatous polyposis (FAP) are controversial. METHODS We conducted a biomarker-based clinical study in eight FAP patients treated with enteric-coated low-dose Aspirin (100 mg daily for three months) to explore whether the drug targets mainly platelet cyclooxygenase (COX)-1 or affects extraplatelet cellular sources expressing COX-isozymes and/or off-target effects in colorectal adenomas. RESULTS In FAP patients, low-dose Aspirin-acetylated platelet COX-1 at Serine529 (>70%) was associated with an almost complete inhibition of platelet thromboxane (TX) B2 generation ex vivo (serum TXB2). However, enhanced residual urinary 11-dehydro-TXB2 and urinary PGEM, primary metabolites of TXA2 and prostaglandin (PG)E2, respectively, were detected in association with incomplete acetylation of COX-1 in normal colorectal biopsies and adenomas. Proteomics of adenomas showed that Aspirin significantly modulated only eight proteins. The upregulation of vimentin and downregulation of HBB (hemoglobin subunit beta) distinguished two groups with high vs. low residual 11-dehydro-TXB2 levels, possibly identifying the nonresponders and responders to Aspirin. CONCLUSIONS Although low-dose Aspirin appropriately inhibited the platelet, persistently high systemic TXA2 and PGE2 biosynthesis were found, plausibly for a marginal inhibitory effect on prostanoid biosynthesis in the colorectum. Novel chemotherapeutic strategies in FAP can involve blocking the effects of TXA2 and PGE2 signaling with receptor antagonists.
Collapse
Affiliation(s)
- Angel Lanas
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, 50009 Zaragoza, Spain
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Elena Piazuelo
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Simone Marcone
- Trinity Translational Medicine Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Federico Sopeña
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, 50009 Zaragoza, Spain
| | - Lorenza Falcone
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Matteo Mucci
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
4
|
Bharanidharan R, Thirugnanasambantham K, Ibidhi R, Bang G, Jang SS, Baek YC, Kim KH, Moon YH. Effects of Dietary Protein Concentration on Lipid Metabolism Gene Expression and Fatty Acid Composition in 18-23-Month-Old Hanwoo Steers. Animals (Basel) 2021; 11:ani11123378. [PMID: 34944155 PMCID: PMC8697893 DOI: 10.3390/ani11123378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
The present study evaluated the influence of dietary protein level on growth performance, fatty acid composition, and the expression of lipid metabolic genes in intramuscular adipose tissues from 18- to 23-month-old Hanwoo steers, representing the switching point of the lean-to-fat ratio. Forty steers with an initial live weight of 486 ± 37 kg were assigned to one of two treatment groups fed either a concentrate diet with 14.5% CP and or with 17% CP for 6 months. Biopsy samples of intramuscular tissue were collected to analyze the fatty acid composition and gene expression at 23 months of age. Throughout the entire experimental period, all steers were restrained twice daily to allow individual feeding. Growth performance, blood metabolites, and carcass traits, according to ultrasonic measurements, were not affected by the experimental diets. The high-protein diet significantly increased the expression of intramuscular PPARα (p < 0.1) and LPL (p < 0.05) but did not affect genes involved in fatty acid uptake (CD36 and FABP4) nor lipogenesis (ACACA, FASN, and SCD). In addition, it downregulated intramuscular VLCAD (p < 0.01) related to lipogenesis but also GPAT1 (p = 0.001), DGAT2 (p = 0.016), and SNAP23 (p = 0.057), which are involved in fatty acid esterification and adipocyte size. Hanwoo steers fed a high-protein diet at 18-23 months of age resulted in a relatively lower lipid turnover rate than steers fed a low-protein diet, which could be responsible for shortening the feeding period.
Collapse
Affiliation(s)
- Rajaraman Bharanidharan
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Krishnaraj Thirugnanasambantham
- Department of Eco-Friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (K.T.); (R.I.); (K.H.K.)
- Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam 605104, Tamil Nadu, India
| | - Ridha Ibidhi
- Department of Eco-Friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (K.T.); (R.I.); (K.H.K.)
| | - Geumhwi Bang
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea;
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang 25342, Korea;
| | - Youl Chang Baek
- Division of Animal Nutritional and Physiology, National Institute of Animal Sciences, Wanju 55365, Korea;
| | - Kyoung Hoon Kim
- Department of Eco-Friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (K.T.); (R.I.); (K.H.K.)
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Yea Hwang Moon
- Division of Animal Bioscience and Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-3265
| |
Collapse
|
5
|
Xu X, Lin D, Tu S, Gao S, Shao A, Sheng J. Is Ferroptosis a Future Direction in Exploring Cryptococcal Meningitis? Front Immunol 2021; 12:598601. [PMID: 33815361 PMCID: PMC8017140 DOI: 10.3389/fimmu.2021.598601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptococcal meningitis (CM) is the leading cause of mortality among patients infected with human immunodeficiency virus (HIV). Although treatment strategies for CM are continually being developed, the mortality rate is still high. Therefore, we need to explore more therapeutic strategies that are aimed at hindering its pathogenic mechanism. In the field of CM, several studies have observed rapid iron accumulation and lipid peroxidation within the brain, all of which are hallmarks of ferroptosis, which is a type of programmed cell death that is characterized by iron dependence and lipid peroxidation. In recent years, many studies have confirmed the involvement of ferroptosis in many diseases, including infectious diseases such as Mycobacterium tuberculosis infection and coronavirus disease-2019 (COVID-19). Furthermore, ferroptosis is considered as immunogenic and pro-inflammatory as the ferroptotic cells release damage-associated molecular pattern molecules (DAMPs) and alarmin, both of which regulate immunity and pro-inflammatory activity. Hence, we hypothesize that there might be a relationship between this unique cell death modality and CM. Herein, we review the evidence of ferroptosis in CM and consider the hypothesis that ferroptotic cell death may be involved in the cell death of CM.
Collapse
Affiliation(s)
- Xianbin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139:126-140. [DOI: 10.1016/j.phrs.2018.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
7
|
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res 2018; 11:23-32. [PMID: 30034873 PMCID: PMC6052663 DOI: 10.1016/j.jare.2018.03.005] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022] Open
Abstract
Arachidonic acid (AA), a 20 carbon chain polyunsaturated fatty acid with 4 double bonds, is an integral constituent of biological cell membrane, conferring it with fluidity and flexibility. The four double bonds of AA predispose it to oxygenation that leads to a plethora of metabolites of considerable importance for the proper function of the immune system, promotion of allergies and inflammation, resolving of inflammation, mood, and appetite. The present review presents an illustrated synopsis of AA metabolism, corroborating the instrumental importance of AA derivatives for health and well-being. It provides a comprehensive outline on AA metabolic pathways, enzymes and signaling cascades, in order to develop new perspectives in disease treatment and diagnosis.
Collapse
Affiliation(s)
- Violette Said Hanna
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
8
|
Kodama S, Nakajima S, Ozaki H, Takemoto R, Itabashi Y, Kuksis A. Enantioseparation of hydroxyeicosatetraenoic acids by hydroxypropyl-γ-cyclodextrin-modified micellar electrokinetic chromatography. Electrophoresis 2016; 37:3196-3205. [DOI: 10.1002/elps.201600213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Shuji Kodama
- School of Science; Tokai University; Hiratsuka Kanagawa Japan
| | - Shota Nakajima
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Hiromichi Ozaki
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Ryota Takemoto
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Yutaka Itabashi
- Faculty of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Arnis Kuksis
- Banting and Best Department of Medical Research; University of Toronto; Toronto ON Canada
| |
Collapse
|
9
|
Diane A, Pierce WD, Kelly SE, Sokolik S, Borthwick F, Jacome-Sosa M, Mangat R, Pradillo JM, Allan SM, Ruth MR, Field CJ, Hutcheson R, Rocic P, Russell JC, Vine DF, Proctor SD. Mechanisms of Comorbidities Associated With the Metabolic Syndrome: Insights from the JCR:LA-cp Corpulent Rat Strain. Front Nutr 2016; 3:44. [PMID: 27777929 PMCID: PMC5056323 DOI: 10.3389/fnut.2016.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023] Open
Abstract
Obesity and its metabolic complications have emerged as the epidemic of the new millennia. The use of obese rodent models continues to be a productive component of efforts to understand the concomitant metabolic complications of this disease. In 1978, the JCR:LA-cp rat model was developed with an autosomal recessive corpulent (cp) trait resulting from a premature stop codon in the extracellular domain of the leptin receptor. Rats that are heterozygous for the cp trait are lean-prone, while those that are homozygous (cp/cp) spontaneously display the pathophysiology of obesity as well as a metabolic syndrome (MetS)-like phenotype. Over the years, there have been formidable scientific contributions that have originated from this rat model, much of which has been reviewed extensively up to 2008. The premise of these earlier studies focused on characterizing the pathophysiology of MetS-like phenotype that was spontaneously apparent in this model. The purpose of this review is to highlight areas of recent advancement made possible by this model including; emerging appreciation of the "thrifty gene" hypothesis in the context of obesity, the concept of how chronic inflammation may drive obesogenesis, the impact of acute forms of inflammation to the brain and periphery during chronic obesity, the role of dysfunctional insulin metabolism on lipid metabolism and vascular damage, and the mechanistic basis for altered vascular function as well as novel parallels between the human condition and the female JCR:LA-cp rat as a model for polycystic ovary disease (PCOS).
Collapse
Affiliation(s)
- Abdoulaye Diane
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - W. David Pierce
- Department of Sociology, University of Alberta, Edmonton, AB, Canada
| | - Sandra E. Kelly
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Sharon Sokolik
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Faye Borthwick
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Miriam Jacome-Sosa
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | | | - Stuart McRae Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Megan R. Ruth
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Catherine J. Field
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - James C. Russell
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Donna F. Vine
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Abstract
Controlled immune responses to infection and injury involve complex molecular signalling networks with coordinated and often opposing actions. Eicosanoids and related bioactive lipid mediators derived from polyunsaturated fatty acids constitute a major bioactive lipid network that is among the most complex and challenging pathways to map in a physiological context. Eicosanoid signalling, similar to cytokine signalling and inflammasome formation, has primarily been viewed as a pro-inflammatory component of the innate immune response; however, recent advances in lipidomics have helped to elucidate unique eicosanoids and related docosanoids with anti-inflammatory and pro-resolution functions. This has advanced our overall understanding of the inflammatory response and its therapeutic implications. The induction of a pro-inflammatory and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed here.
Collapse
Affiliation(s)
- Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Paul C Norris
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Two butenolides with PPARα agonistic activity from a marine-derived Streptomyces. J Antibiot (Tokyo) 2014; 68:345-7. [PMID: 25388602 DOI: 10.1038/ja.2014.151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/23/2014] [Accepted: 10/04/2014] [Indexed: 11/08/2022]
|
12
|
Takeda S, Ikeda E, Su S, Harada M, Okazaki H, Yoshioka Y, Nishimura H, Ishii H, Kakizoe K, Taniguchi A, Tokuyasu M, Himeno T, Watanabe K, Omiecinski CJ, Aramaki H. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells. Toxicology 2014; 326:18-24. [PMID: 25291031 DOI: 10.1016/j.tox.2014.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022]
Abstract
We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Shuso Takeda
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan; Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | - Eriko Ikeda
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Shengzhong Su
- Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, United States
| | - Mari Harada
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hiroyuki Okazaki
- Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yasushi Yoshioka
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hajime Nishimura
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hiroyuki Ishii
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Kazuhiro Kakizoe
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Aya Taniguchi
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Miki Tokuyasu
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Taichi Himeno
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Kazuhito Watanabe
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Curtis J Omiecinski
- Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, United States
| | - Hironori Aramaki
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan; Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
13
|
Guriec N, Le Jossic-Corcos C, Simon B, Ianotto JC, Tempescul A, Dréano Y, Salaün JP, Berthou C, Corcos L. The arachidonic acid-LTB4-BLT2 pathway enhances human B-CLL aggressiveness. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2096-105. [PMID: 25072959 DOI: 10.1016/j.bbadis.2014.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/15/2014] [Accepted: 07/15/2014] [Indexed: 01/16/2023]
Abstract
Deregulation of the oxidative cascade of poly-unsaturated fatty acids (PUFAs) has been associated with several cancers, including chronic lymphocytic leukemia (B-CLL). Leukotriene B4 (LTB4), a metabolite of arachidonic acid (AA), is produced by B-CLL and contributes to their survival. The aim of the present study was to analyze the activity of the oxidative cascade of PUFAs in B-CLL. Purified B cells from patients and normal B CD5 positive cells were subjected to flow cytometry, Western-blot and RT-qPCR analyses. LTB4 plasma and intracellular concentrations were determined by ELISA. Our results showed that aggressive B-CLL tumor cells, i.e. cells with an annual proliferation index above 2, over-expressed calcium-dependent and calcium-independent phospholipases A2 (cPLA2-alpha and iPLA2-beta, respectively), 5-lipoxygenase (5LOX) and leukotriene A4 hydroxylase (LTA4H). Intracellular LTB4 levels were lower in the most aggressive cells than in cells with a smaller proliferation index, despite equivalent plasma levels, and lower expression of cytochrome P450 4F3A (CYP4F3A), one major enzyme involved in LTB4 inactivation. Since BLT2, a LTB4 membrane receptor was also more often expressed on aggressive tumor cells, and since a BLT2 inhibitor significantly impaired B-CLL viability in vitro, we propose that LTB4 was efficiently trapped onto BLT2 present on aggressive tumors, thereby eliciting an autocrine response. Taken together our results demonstrate a major deregulation of the pathway leading to LTB4 synthesis and degradation in B-CLL cells, and provide a framework for understanding how these modifications promote cell survival and proliferation, especially in the most aggressive BCLL.
Collapse
Affiliation(s)
- Nathalie Guriec
- Laboratoire de thérapie cellulaire et d'immunobiologie des cancers, CHU, Hôpital Morvan, 5, avenue Foch, 29200 Brest, France.
| | | | - Brigitte Simon
- UMR INSERM 1078, SFR ScInBioS, CHU, Faculté de médecine, 22 avenue C. Desmoulins, 29200 Brest, France
| | | | - Adrian Tempescul
- Service d'hématologie clinique, CHU, Hôpital Morvan, 5, avenue Foch, 29200 Brest, France
| | - Yvonne Dréano
- UMR INSERM 1078, SFR ScInBioS, CHU, Faculté de médecine, 22 avenue C. Desmoulins, 29200 Brest, France
| | - Jean-Pierre Salaün
- UMR INSERM 1078, SFR ScInBioS, CHU, Faculté de médecine, 22 avenue C. Desmoulins, 29200 Brest, France
| | - Christian Berthou
- Laboratoire de thérapie cellulaire et d'immunobiologie des cancers, CHU, Hôpital Morvan, 5, avenue Foch, 29200 Brest, France; Service d'hématologie clinique, CHU, Hôpital Morvan, 5, avenue Foch, 29200 Brest, France
| | - Laurent Corcos
- UMR INSERM 1078, SFR ScInBioS, CHU, Faculté de médecine, 22 avenue C. Desmoulins, 29200 Brest, France
| |
Collapse
|
14
|
Integrated physiology and systems biology of PPARα. Mol Metab 2014; 3:354-71. [PMID: 24944896 PMCID: PMC4060217 DOI: 10.1016/j.molmet.2014.02.002] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/23/2022] Open
Abstract
The Peroxisome Proliferator Activated Receptor alpha (PPARα) is a transcription factor that plays a major role in metabolic regulation. This review addresses the functional role of PPARα in intermediary metabolism and provides a detailed overview of metabolic genes targeted by PPARα, with a focus on liver. A distinction is made between the impact of PPARα on metabolism upon physiological, pharmacological, and nutritional activation. Low and high throughput gene expression analyses have allowed the creation of a comprehensive map illustrating the role of PPARα as master regulator of lipid metabolism via regulation of numerous genes. The map puts PPARα at the center of a regulatory hub impacting fatty acid uptake, fatty acid activation, intracellular fatty acid binding, mitochondrial and peroxisomal fatty acid oxidation, ketogenesis, triglyceride turnover, lipid droplet biology, gluconeogenesis, and bile synthesis/secretion. In addition, PPARα governs the expression of several secreted proteins that exert local and endocrine functions.
Collapse
|
15
|
Bakshi MV, Barjaktarovic Z, Azimzadeh O, Kempf SJ, Merl J, Hauck SM, Eriksson P, Buratovic S, Atkinson MJ, Tapio S. Long-term effects of acute low-dose ionizing radiation on the neonatal mouse heart: a proteomic study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:451-461. [PMID: 23880982 DOI: 10.1007/s00411-013-0483-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Epidemiological studies establish that children and young adults are especially susceptible to radiation-induced cardiovascular disease (CVD). The biological mechanisms behind the elevated CVD risk following exposure at young age remain unknown. The present study aims to elucidate the long-term effects of ionizing radiation by studying the murine cardiac proteome after exposure to low and moderate radiation doses. NMRI mice received single doses of total body (60)Co gamma-irradiation on postnatal day 10 and were sacrificed 7 months later. Changes in cardiac protein expression were quantified using isotope-coded protein label and tandem mass spectrometry. We identified 32, 31, 66, and 34 significantly deregulated proteins after doses of 0.02, 0.1, 0.5, and 1.0 Gy, respectively. The four doses shared 9 deregulated proteins. Bioinformatics analysis showed that most of the deregulated proteins belonged to a limited set of biological categories, including metabolic processes, inflammatory response, and cytoskeletal structure. The transcription factor peroxisome proliferator-activated receptor alpha was predicted as a common upstream regulator of several deregulated proteins. This study indicates that both adaptive and maladaptive responses to the initial radiation damage persist well into adulthood. It will contribute to the understanding of the long-term consequences of radiation-induced injury and developmental alterations in the neonatal heart.
Collapse
Affiliation(s)
- Mayur V Bakshi
- Institute of Radiation Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The role of ruminant trans fat as a potential nutraceutical in the prevention of cardiovascular disease. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.08.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Abstract
Consumption of specific dietary fatty acids has been shown to influence risk and progression of several chronic diseases, such as cardiovascular disease, obesity, cancer, and arthritis. In recent years, insights into the mechanisms underlying the biological effects of fatty acids have improved considerably and have provided the foundation for the emerging concept of fatty acid sensing, which can be interpreted as the property of fatty acids to influence biological processes by serving as signaling molecules. An important mechanism of fatty acid sensing is via stimulation or inhibition of DNA transcription. Here, we focus on fatty acid sensing via regulation of gene transcription and address the role of peroxisome proliferator-activated receptors, sterol regulatory element binding protein 1, Toll-like receptor 4, G protein-coupled receptors, and other putative mediators.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
18
|
Houten SM, Wanders RJA. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis 2010; 33:469-77. [PMID: 20195903 PMCID: PMC2950079 DOI: 10.1007/s10545-010-9061-2] [Citation(s) in RCA: 620] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 10/14/2009] [Accepted: 01/28/2010] [Indexed: 12/30/2022]
Abstract
Over the years, the mitochondrial fatty acid β-oxidation (FAO) pathway has been characterised at the biochemical level as well as the molecular biological level. FAO plays a pivotal role in energy homoeostasis, but it competes with glucose as the primary oxidative substrate. The mechanisms behind this so-called glucose-fatty acid cycle operate at the hormonal, transcriptional and biochemical levels. Inherited defects for most of the FAO enzymes have been identified and characterised and are currently included in neonatal screening programmes. Symptoms range from hypoketotic hypoglycaemia to skeletal and cardiac myopathies. The pathophysiology of these diseases is still not completely understood, hampering optimal treatment. Studies of patients and mouse models will contribute to our understanding of the pathogenesis and will ultimately lead to better treatment.
Collapse
Affiliation(s)
- Sander Michel Houten
- Department of Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
19
|
Wouters K, van Bilsen M, van Gorp PJ, Bieghs V, Lütjohann D, Kerksiek A, Staels B, Hofker MH, Shiri-Sverdlov R. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett 2010; 584:1001-5. [PMID: 20114046 DOI: 10.1016/j.febslet.2010.01.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
Hepatic inflammation is the key factor in non-alcoholic steatohepatitis (NASH) and promotes progression to liver damage. We recently identified dietary cholesterol as the cause of hepatic inflammation in hyperlipidemic mice. We now show that hepatic transcriptome responses are strongly dependent on cholesterol metabolism during diet-induced NASH and its inhibition by fenofibrate. Furthermore, we show that, despite doubling hepatic steatosis, pharmacological LXR activation reverses hepatic inflammation, in parallel with reversing hepatic cholesterol levels. Together, the results indicate a prominent role of cholesterol during the development, inhibition and reversal of hepatic inflammation in NASH and reveal potential new therapeutic strategies against NASH.
Collapse
Affiliation(s)
- Kristiaan Wouters
- Department of Molecular Genetics, Institutes of Maastricht University Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pettinelli P, Del Pozo T, Araya J, Rodrigo R, Araya AV, Smok G, Csendes A, Gutierrez L, Rojas J, Korn O, Maluenda F, Diaz JC, Rencoret G, Braghetto I, Castillo J, Poniachik J, Videla LA. Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1080-6. [PMID: 19733654 DOI: 10.1016/j.bbadis.2009.08.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/26/2009] [Accepted: 08/31/2009] [Indexed: 12/13/2022]
Abstract
Sterol receptor element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor-alpha (PPAR-alpha) mRNA expression was assessed in liver as signaling mechanisms associated with steatosis in obese patients. Liver SREBP-1c and PPAR-alpha mRNA (RT-PCR), fatty acid synthase (FAS) and carnitine palmitoyltransferase-1a (CPT-1a) mRNA (real-time RT-PCR), and n-3 long-chain polyunsaturated fatty acid (LCPUFA)(GLC) contents, plasma adiponectin levels (RIA), and insulin resistance (IR) evolution (HOMA) were evaluated in 11 obese patients who underwent subtotal gastrectomy with gastro-jejunal anastomosis in Roux-en-Y and 8 non-obese subjects who underwent laparoscopic cholecystectomy (controls). Liver SREBP-1c and FAS mRNA levels were 33% and 70% higher than control values (P<0.05), respectively, whereas those of PPAR-alpha and CPT-1a were 16% and 65% lower (P<0.05), respectively, with a significant 62% enhancement in the SREBP-1c/PPAR-alpha ratio. Liver n-3 LCPUFA levels were 53% lower in obese patients who also showed IR and hipoadiponectinemia over controls (P<0.05). IR negatively correlated with both the hepatic content of n-3 LCPUFA (r=-0.55; P<0.01) and the plasma levels of adiponectin (r=-0.62; P<0.005). Liver SREBP-1c/PPAR-alpha ratio and n-3 LCPUFA showed a negative correlation (r=-0.48; P<0.02) and positive associations with either HOMA (r=0.75; P<0.0001) or serum insulin levels (r=0.69; P<0.001). In conclusion, liver up-regulation of SREBP-1c and down-regulation of PPAR-alpha occur in obese patients, with enhancement in the SREBP-1c/PPAR-alpha ratio associated with n-3 LCPUFA depletion and IR, a condition that may favor lipogenesis over FA oxidation thereby leading to steatosis.
Collapse
Affiliation(s)
- Paulina Pettinelli
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Buczynski MW, Dumlao DS, Dennis EA. Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 2009; 50:1015-38. [PMID: 19244215 PMCID: PMC2681385 DOI: 10.1194/jlr.r900004-jlr200] [Citation(s) in RCA: 400] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/23/2009] [Indexed: 11/20/2022] Open
Abstract
Eicosanoids have been implicated in a vast number of devastating inflammatory conditions, including arthritis, atherosclerosis, pain, and cancer. Currently, over a hundred different eicosanoids have been identified, with many having potent bioactive signaling capacity. These lipid metabolites are synthesized de novo by at least 50 unique enzymes, many of which have been cloned and characterized. Due to the extensive characterization of eicosanoid biosynthetic pathways, this field provides a unique framework for integrating genomics, proteomics, and metabolomics toward the investigation of disease pathology. To facilitate a concerted systems biology approach, this review outlines the proteins implicated in eicosanoid biosynthesis and signaling in human, mouse, and rat. Applications of the extensive genomic and lipidomic research to date illustrate the questions in eicosanoid signaling that could be uniquely addressed by a thorough analysis of the entire eicosanoid proteome.
Collapse
Affiliation(s)
| | | | - Edward A. Dennis
- Department of Chemistry and Biochemistry, Department of Pharmacology, and School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
22
|
Guillou H, Martin PGP, Pineau T. Transcriptional regulation of hepatic fatty acid metabolism. Subcell Biochem 2008; 49:3-47. [PMID: 18751906 DOI: 10.1007/978-1-4020-8831-5_1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The liver is a major site of fatty acid synthesis and degradation. Transcriptional regulation is one of several mechanisms controlling hepatic metabolism of fatty acids. Two transcription factors, namely SREBP1-c and PPARalpha, appear to be the main players controlling synthesis and degradation of fatty acids respectively. This chapter briefly presents fatty acid metabolism. The first part focuses on SREBP1-c contribution to the control of gene expression relevant to fatty acid synthesis and the main mechanisms of activation for this transcriptional program. The second part reviews the evidence for the involvement of PPARalpha in the control of fatty acid degradation and the key features of this nuclear receptor. Finally, the third part aims at summarizing recent advances in our current understanding of how these two transcription factors fit in the regulatory networks that sense hormones or nutrients, including cellular fatty acids, and govern the transcription of genes implicated in hepatic fatty acid metabolism.
Collapse
Affiliation(s)
- Hervé Guillou
- Laboratoire de Pharmacologie et Toxicologie UR66, INRA, F-3100 Toulouse, France
| | | | | |
Collapse
|
23
|
Choudhary D, Jansson I, Sarfarazi M, Schenkman JB. Physiological Significance and Expression of P450s in the Developing Eye. Drug Metab Rev 2008; 38:337-52. [PMID: 16684663 DOI: 10.1080/03602530600570149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Expression of 10 CYP orthologs (Families 1-3) in developing mouse conceptus is constitutive. These forms have specific temporal and spatial expression. Studies on CYP1B1 indicate its requirement for normal eye development, both in human and mouse. The distribution of the enzyme in the mouse eye is in three regions, which may reflect three different, perhaps equally important, functions in this organ. Its presence in the inner ciliary and lens epithelia appears to be necessary for normal development of the trabecular meshwork and its function in regulating intraocular pressure. Its expression in the retinal ganglion and inner nuclear layers may reflect a role in maintenance of the visual cycle. Its expression in the corneal epithelium may indicate a function in metabolism of environmental xenobiotics.
Collapse
Affiliation(s)
- D Choudhary
- Department of Pharmacology and Molecular Ophthalmic Genetics Laboratory, University of Connecticut Health Center, Farmington, 06030, USA
| | | | | | | |
Collapse
|
24
|
Shi Y, Pestka JJ. Mechanisms for suppression of interleukin-6 expression in peritoneal macrophages from docosahexaenoic acid-fed mice. J Nutr Biochem 2008; 20:358-68. [PMID: 18602807 DOI: 10.1016/j.jnutbio.2008.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 04/02/2008] [Accepted: 04/14/2008] [Indexed: 10/21/2022]
Abstract
Consumption of the trichothecene mycotoxin deoxynivalenol (DON) induces interleukin-6 (IL-6)-dependent IgA nephropathy (IgAN) in mice. This effect can be prevented by feeding long-chain n-3 polyunsaturated fatty acids (PUFAs) found in fish oil. The purpose of this study was to identify the signal transduction pathways by which DON up-regulates IL-6 in the peritoneal macrophage and how consumption of fish oil enriched with the n-3 PUFA docosahexaenoic acid (DHA) suppresses these processes. Incubation with DON induced IL-6 expression in naïve macrophages maximally at 3 h. Knockdown of the transcription factor cAMP response element-binding protein (CREB) or pharmacologic inhibition of the CREB kinases Akt1/2, MSK1 and RSK1 down-regulated this expression. Inhibition of double-stranded RNA-activated protein kinase (PKR) suppressed not only IL-6 expression but also phosphorylation of CREB and its upstream kinases, Akt1, MSK1 and RSK1. Phosphorylations of PKR, CREB kinases and CREB were markedly impaired in peritoneal macrophages isolated from mice that consumed DHA-enriched fish oil for 6 to 8 weeks. DHA's effects were not explainable by increased activity of protein phosphatase 1 and 2A since both were suppressed in mice consuming the DHA diet. Although cells cultured directly with DHA expressed less IL-6 compared to cells cultured with arachidonic acid (AA), neither fatty acid treatment affected DON-induced protein phosphorylation. Furthermore, DHA and AA similarly inhibited cell-free protein kinase activity. These data suggest that DON-induced IL-6 expression is CREB mediated and PKR dependent, and that requisite kinase activities for these pathways were suppressed in macrophages from mice fed DHA for an extended period.
Collapse
Affiliation(s)
- Yuhui Shi
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
25
|
Biondo PD, Brindley DN, Sawyer MB, Field CJ. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 2008; 19:787-96. [PMID: 18602809 DOI: 10.1016/j.jnutbio.2008.02.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 12/19/2022]
Abstract
Dietary intake of long-chain omega-3 (or n-3) polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) can affect numerous processes in the body, including cardiovascular, neurological and immune functions, as well as cancer. Studies on human cancer cell lines, animal models and preliminary trials with human subjects suggest that administration of EPA and DHA, found naturally in our diet in fatty fish, can alter toxicities and/or activity of many drugs used to treat cancer. Multiple mechanisms are proposed to explain how n-3 PUFA modulate the tumor cell response to chemotherapeutic drugs. n-3 PUFA are readily incorporated into cell membranes and lipid rafts, and their incorporation may affect membrane-associated signaling proteins such as Ras, Akt and Her-2/neu. Due to their high susceptibility to oxidation, it has also been proposed that n-3 PUFA may cause irreversible tumor cell damage through increased lipid peroxidation. n-3 PUFA may increase tumor cell susceptibility to apoptosis by altering expression or function of apoptotic proteins, or by modulating activity of survival-related transcription factors such as nuclear factor-kappaB. Some studies suggest n-3 PUFA may increase drug uptake or even enhance drug activation (e.g., in the case of some nucleoside analogue drugs). Further research is warranted to identify specific mechanisms by which n-3 PUFA increase chemotherapy efficacy and to determine the optimal cellular/membrane levels of n-3 PUFA required to promote these mechanisms, such that these fatty acids may be prescribed as adjuvants to chemotherapy.
Collapse
Affiliation(s)
- Patricia D Biondo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | | | |
Collapse
|
26
|
Nagasawa M, Akasaka Y, Ide T, Hara T, Kobayashi N, Utsumi M, Murakami K. Highly sensitive upregulation of apolipoprotein A-IV by peroxisome proliferator-activated receptor alpha (PPARalpha) agonist in human hepatoma cells. Biochem Pharmacol 2007; 74:1738-46. [PMID: 17904533 DOI: 10.1016/j.bcp.2007.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/15/2007] [Accepted: 08/15/2007] [Indexed: 11/24/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator in hepatic lipid metabolism and a potential therapeutic target for dyslipidemia. However, in humans hepatic PPARalpha-regulated genes remain unclear. To investigate the effect of PPARalpha agonism on mRNA expressions of lipid metabolism-related genes in human livers, a potent PPARalpha agonist, KRP-101 (KRP), was used to treat the human hepatoma cell line, HepaRG cells. KRP did not affect AOX or L-PBE, which are involved in peroxisomal beta-oxidation. KRP increased L-FABP, CPT1A, VLCAD, and PDK4, which are involved in lipid transport or oxidation. However, the EC(50) values (114-2500 nM) were >10-fold weaker than the EC(50) value (10.9 nM) for human PPARalpha in a transactivation assay. To search for more sensitive genes, we determined the mRNA levels of apolipoproteins, apoA-I, apoA-II, apoA-IV, apoA-V, and apoC-III. KRP had no or little effect on apoA-I, apoC-III, and apoA-II. Interestingly, KRP increased apoA-IV (EC(50), 0.99 nM) and apoA-V (EC(50), 0.29 nM) with high sensitivity. We identified apoA-IV as a PPARalpha-upregulated gene in a study using PPARalpha siRNA. Moreover, when administered orally to dogs, KRP decreased the serum triglyceride level and increased the serum apoA-IV level in a dose-dependent manner. These findings suggest that apoA-IV, newly identified as a highly sensitive PPARalpha-regulated gene in human livers, may be one of the mechanisms underlying PPARalpha agonist-induced triglyceride decrease and HDL elevation.
Collapse
Affiliation(s)
- Michiaki Nagasawa
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1 Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Zahradka P. Cardiovascular Actions of the Peroxisome Proliferator-Activated Receptor-Alpha (PPAR?) Agonist Wy14,643. ACTA ACUST UNITED AC 2007; 25:99-122. [PMID: 17614934 DOI: 10.1111/j.1527-3466.2007.00008.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review examines the various effects of Wy14,643, a hypolipidemic agent that activates peroxisome proliferator-activated receptor-alpha (PPARalpha), on the cardiovascular system. An emphasis has been placed on the specific cellular processes affected by Wy14,643 as they relate to vascular and cardiac function. Although the topic of this discussion is limited to vascular and cardiac tissues, the importance of circulating lipids on cardiovascular disease requires that a description of the indirect actions of this compound on liver metabolism also be included. Finally, the pharmacology of Wy14,643 is discussed within the context of PPARalpha-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Peter Zahradka
- Institute of Cardiovascular Sciences, Department of Physiology, University of Manitoba and Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, MB, Canada.
| |
Collapse
|
28
|
Abstract
Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca(2+)-activated K(+) channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs.
Collapse
Affiliation(s)
- Arthur A Spector
- Dept. of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
29
|
Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CNA, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2007; 58:726-41. [PMID: 17132851 DOI: 10.1124/pr.58.4.5] [Citation(s) in RCA: 726] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The three peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear hormone receptor superfamily. They share a high degree of structural homology with all members of the superfamily, particularly in the DNA-binding domain and ligand- and cofactor-binding domain. Many cellular and systemic roles have been attributed to these receptors, reaching far beyond the stimulation of peroxisome proliferation in rodents after which they were initially named. PPARs exhibit broad, isotype-specific tissue expression patterns. PPARalpha is expressed at high levels in organs with significant catabolism of fatty acids. PPARbeta/delta has the broadest expression pattern, and the levels of expression in certain tissues depend on the extent of cell proliferation and differentiation. PPARgamma is expressed as two isoforms, of which PPARgamma2 is found at high levels in the adipose tissues, whereas PPARgamma1 has a broader expression pattern. Transcriptional regulation by PPARs requires heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a specific DNA sequence element called a peroxisome proliferator response element (PPRE) in the promoter region of target genes. A wide variety of natural or synthetic compounds was identified as PPAR ligands. Among the synthetic ligands, the lipid-lowering drugs, fibrates, and the insulin sensitizers, thiazolidinediones, are PPARalpha and PPARgamma agonists, respectively, which underscores the important role of PPARs as therapeutic targets. Transcriptional control by PPAR/RXR heterodimers also requires interaction with coregulator complexes. Thus, selective action of PPARs in vivo results from the interplay at a given time point between expression levels of each of the three PPAR and RXR isotypes, affinity for a specific promoter PPRE, and ligand and cofactor availabilities.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre "Frontiers in Genetics," University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsu SC, Huang CJ. Changes in liver PPARα mRNA expression in response to two levels of high-safflower-oil diets correlate with changes in adiposity and serum leptin in rats and mice. J Nutr Biochem 2007; 18:86-96. [PMID: 16713235 DOI: 10.1016/j.jnutbio.2006.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/18/2006] [Accepted: 03/02/2006] [Indexed: 11/23/2022]
Abstract
The ligand-dependent transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha) is known to be activated by common fatty acids and to regulate the expression of genes of various lipid oxidation pathways and transport. High-fat diets provide more fatty acids, which presumably could enhance lipid catabolism through up-regulation of PPARalpha signaling. However, high intake of fat could also lead to obesity. To examine PPARalpha signaling in high-fat feeding and obesity, this study examined the hepatic mRNA expression of PPARalpha and some of its target genes in Wistar rats and C57BL/6J mice fed two levels (20% or 30% wt/wt) of high-safflower-oil (SFO; oleic-acid-rich) diets until animals showed significantly higher body weight (13 weeks for rats and 22 weeks for mice) than those of control groups fed a 5% SFO diet. At the end of these respective feeding periods, only the rats fed 30% SFO and the mice fed 20% SFO among the two groups fed high-fat diets showed significantly higher body weight, white adipose tissue weight, serum leptin and mRNA expression of PPARalpha (P<.05) compared to the respective control groups. Despite elevated acyl-CoA (a PPARalpha target gene) protein and activity in both groups fed high-fat diets, the mRNA expression level of most PPARalpha target genes examined correlated mainly to PPARalpha mRNA levels and not to fat intake or liver lipid levels. The observation that the liver PPARalpha mRNA expression in groups fed high-fat diets was significantly higher only in obese animals with elevated serum leptin implied that obesity and associated hyperleptinemia might have a stronger impact than dietary SFO intake per se on PPARalpha-regulated mRNA expression in the liver.
Collapse
Affiliation(s)
- Shan-Ching Hsu
- Division of Nutritional Science, Institute of Microbiology and Biochemistry, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | |
Collapse
|
31
|
Fang X, Dillon JS, Hu S, Harmon SD, Yao J, Anjaiah S, Falck JR, Spector AA. 20-Carboxy-arachidonic acid is a dual activator of peroxisome proliferator-activated receptors α and γ. Prostaglandins Other Lipid Mediat 2007; 82:175-84. [PMID: 17164145 DOI: 10.1016/j.prostaglandins.2006.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 05/11/2006] [Indexed: 02/09/2023]
Abstract
20-carboxy-arachidonic acid (20-COOH-AA) is a metabolite of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid produced from arachidonic acid by cytochrome P450 (CYP) omega-oxidases. Alcohol dehydrogenases convert 20-HETE to 20-COOH-AA, and we now find that a microsomal preparation containing recombinant human CYP4F3B converts arachidonic acid to 20-HETE and 20-COOH-AA. Studies with transfected COS-7 cell expression systems indicate that 20-COOH-AA activates peroxisome proliferators-activated receptor (PPAR) alpha and PPARgamma. 20-COOH-AA was twice as potent as either 20-HETE or ciglitazone in stimulating PPARgamma-mediated luciferase expression. While 20-COOH-AA also was more potent than 20-HETE in increasing PPARalpha-mediated luciferase expression, the increase was only half as much as that produced by Wy-14643. 20-COOH-AA did not increase PPARalpha or PPARgamma expression in the transfected cells. Radiolabeled 20-COOH-AA was detected intracellularly when the COS-7 cells were incubated with either [3H]20-COOH-AA or [3H]20-HETE, and binding studies indicated that [3H]20-COOH-AA bound to the isolated ligand binding domains of PPARalpha (Kd=0.87+/-0.12 microM) and PPARgamma (Kd=1.7+/-0.5 microM). These findings suggest that 20-COOH-AA, a relatively stable metabolite of 20-HETE, might function as an endogenous dual activator of PPARalpha and PPARgamma.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Biochemistry, 4-403 BSB, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Panchaud A, Kernen Y, Roulet M. Place des apports oraux en acides gras oméga-3 dans la mucoviscidose. NUTR CLIN METAB 2006. [DOI: 10.1016/j.nupar.2005.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Fang X, Hu S, Xu B, Snyder GD, Harmon S, Yao J, Liu Y, Sangras B, Falck JR, Weintraub NL, Spector AA. 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha. Am J Physiol Heart Circ Physiol 2005; 290:H55-63. [PMID: 16113065 DOI: 10.1152/ajpheart.00427.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), lipid mediators synthesized from arachidonic acid by cytochrome P-450 epoxygenases, are converted by soluble epoxide hydrolase (SEH) to the corresponding dihydroxyeicosatrienoic acids (DHETs). Originally considered as inactive degradation products of EETs, DHETs have biological activity in some systems. Here we examined the capacity of EETs and DHETs to activate peroxisome proliferator-activated receptor-alpha (PPARalpha). We find that among the EET and DHET regioisomers, 14,15-DHET is the most potent PPARalpha activator in a COS-7 cell expression system. Incubation with 10 microM 14,15-DHET produced a 12-fold increase in PPARalpha-mediated luciferase activity, an increase similar to that produced by the PPARalpha agonist Wy-14643 (20 microM). Although 10 microM 14,15-EET produced a threefold increase in luciferase activity, this was abrogated by the SEH inhibitor dicyclohexylurea. 14-Hexyloxytetradec-5(Z)-enoic acid, a 14,15-EET analog that cannot be converted to a DHET, did not activate PPARalpha. However, PPARalpha was activated by 2-(14,15-epoxyeicosatrienoyl)glycerol, which was hydrolyzed and the released 14,15-EET converted to 14,15-DHET. COS-7 cells incorporated 14,15-[3H]DHET from the medium, and the cells also retained a small amount of the DHET formed during incubation with 14,15-[3H]EET. Binding studies indicated that 14,15-[3H]DHET binds to the ligand binding domain of PPARalpha with a Kd of 1.4 microM. Furthermore, 14,15-DHET increased the expression of carnitine palmitoyltransferase 1A, a PPARalpha-responsive gene, in transfected HepG2 cells. These findings suggest that 14,15-DHET, produced from 14,15-EET by the action of SEH, may function as an endogenous activator of PPARalpha.
Collapse
Affiliation(s)
- Xiang Fang
- Dept. of Biochemistry, Univ. of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Corazzari M, Lovat PE, Oliverio S, Di Sano F, Donnorso RP, Redfern CPF, Piacentini M. Fenretinide: A p53-independent way to kill cancer cells. Biochem Biophys Res Commun 2005; 331:810-5. [PMID: 15865936 DOI: 10.1016/j.bbrc.2005.03.184] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Indexed: 11/19/2022]
Abstract
The synthetic retinoid fenretinide [N-(4 hydroxyphenyl)retinamide] induces apoptosis of cancer cells and acts synergistically with chemotherapeutic drugs, thus providing opportunities for novel approaches to cancer therapy. The upstream signaling events induced by fenretinide include an increase in intracellular levels of ceramide, which is subsequently metabolized to GD3. This ganglioside triggers the activation of 12-Lox (12-lipoxygenase) leading to oxidative stress and apoptosis via the induction of the transcription factor Gadd153 and the Bcl-2-family member protein Bak. Increased evidence suggests that the apoptotic pathway activated by fenretinide is p53-independent and this may represent a novel way to treat tumors resistant to DNA-damaging chemotherapeutic agents. Therefore, fenretinide offers increased clinical benefit as a novel agent for cancer therapy, able to complement the action of existing chemotherapeutic treatment regimes. Furthermore, synergy between fenretinide and chemotherapeutic drugs may facilitate the use of chemotherapeutic drugs at lower concentrations, with possible reduction in treatment-associated morbidity.
Collapse
|
35
|
Fang X, Hu S, Watanabe T, Weintraub NL, Snyder GD, Yao J, Liu Y, Shyy JYJ, Hammock BD, Spector AA. Activation of peroxisome proliferator-activated receptor alpha by substituted urea-derived soluble epoxide hydrolase inhibitors. J Pharmacol Exp Ther 2005; 314:260-70. [PMID: 15798002 DOI: 10.1124/jpet.105.085605] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) plays a major role in regulating vascular epoxyeicosatrienoic acid metabolism and function, and substituted urea derivatives that inhibit sEH activity reduce blood pressure in hypertensive rats. We found that substituted urea derivatives containing a dodecanoic acid group, besides effectively inhibiting sEH, increased peroxisome proliferator-activated receptor (PPAR) alpha activity. In PPARalpha transfected COS-7 cells, treatment with 10 microM N-cyclohexyl-N'-dodecanoic acid urea (CUDA) or N-adamantanyl-N'-dodecanoic acid urea (AUDA) produced 6- and 3-fold increases, respectively, in PPARalpha activation. Neither CUDA nor AUDA activated PPARdelta or PPARgamma directly, indicating selectivity for PPARalpha. CUDA did not alter PPARalpha protein expression, and it competitively inhibited the binding of Wy-14643 (pirinixic acid) to the ligand binding domain of PPARalpha, suggesting that it functions as a PPARalpha ligand. CUDA and AUDA were metabolized to chain-shortened beta-oxidation products, a process that reduced their potency as sEH inhibitors and their ability to bind and activate PPARalpha. N,N'-Dicylclohexylurea and N-cyclohexyl-N'-dodecylurea, sEH inhibitors that do not contain a carboxylic acid group, did not activate PPARalpha. In HepG2 cells, CUDA increased the expression of the PPARalpha-responsive gene carnitine palmitoyltransferase 1A. We conclude that CUDA and AUDA, by virtue of their carboxylic acid substitution, activate PPARalpha in addition to potently inhibiting sEH. Further development of these compounds could lead to a class of agents with hypotensive and lipid-lowering properties that may be valuable for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Biochemistry, 4-403 BSB, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as alpha-linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, are associated with decreased incidence and severity of coronary heart disease. Similarly, conjugated linoleic acids (CLAs), which are found in meat and dairy products, have beneficial effects against atherosclerosis, diabetes, and obesity. The effects of n3-PUFAs and CLAs are in contrast to fatty acids with virtually identical structures, such as linoleic acid and arachidonic acid (ie, n-6 PUFAs). This article discusses the possibility that cognate receptors exist for fatty acids or their metabolites that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with coronary heart disease. Three nuclear receptors are emphasized as fatty acid receptors that respond to dietary and endogenous ligands: peroxisome proliferator activated receptors, retinoid X receptors, and liver X receptors.
Collapse
Affiliation(s)
- John P Vanden Heuvel
- Department of Veterinary Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
37
|
Choudhary D, Jansson I, Sarfarazi M, Schenkman JB. Xenobiotic‐metabolizing Cytochromes P450 in Ontogeny: Evolving Perspective. Drug Metab Rev 2004; 36:549-68. [PMID: 15554235 DOI: 10.1081/dmr-200033447] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While much is known about inducibility of the xenobiotic-metabolizing forms of cytochrome P450, the Family 1-3 enzymes, less well understood is the purpose for the presence of some of these forms in the developing conceptus. Many cytochrome P450 forms are present in the embryo and fetus, like the anabolic forms in Families 5 and higher, and are known to produce molecules with specific functions, e.g., cholesterol, steroids, and their metabolites necessary for normal physiological functions. As we gain greater understanding of the cell cycle and its regulation, and the roles of nuclear receptors in modulating transcriptional activities, a picture begins to emerge in which cytochrome P450 forms appear as molecule-altering enzymes producing and eliminating ligands associated with nuclear receptor activities. For these CYP enzymes to exert a developmental action, a controlled spatial and temporal expression pattern would be essential. Studies now indicate the existence of such temporal control on the appearance of a number of these enzymes and the necessary coenzyme, NADPH-cytochrome P450 reductase.
Collapse
Affiliation(s)
- Dharamainder Choudhary
- Department of Pharmacology and Molecular Ophthalmic Genetics Laboratory, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
38
|
Nagasawa M, Ide T, Suzuki M, Tsunoda M, Akasaka Y, Okazaki T, Mochizuki T, Murakami K. Pharmacological characterization of a human-specific peroxisome proliferater-activated receptor α (PPARα) agonist in dogs. Biochem Pharmacol 2004; 67:2057-69. [PMID: 15135303 DOI: 10.1016/j.bcp.2004.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator in lipid metabolism and a potential therapeutic target for lipid-related metabolic diseases. It has been shown that there are species differences between human and mouse in response to several PPARalpha agonists in a transactivation assay. In the present study, we cloned a full length of dog PPARalpha and investigated the effects of a novel and potent agonist (KCL) for human PPARalpha. In a transactivation assay using the full length of PPARalpha, agonistic activity of KCL for dog PPARalpha (EC(50): 0.007 microM) was comparable to that for human PPARalpha (EC(50): 0.003 microM), but not that for rat PPARalpha (EC(50): 11.49 microM). Similar results were obtained from a transactivation assay using a GAL4/PPARalpha ligand-binding domain (LBD) chimera. A point-mutation study showed that I272 on PPARalphaLBD is a major contributor to species differences in response to KCL between human, dog, and rat PPARalpha. KCL also induced mRNA levels of HMG-CoA synthase in dog hepatocytes. When administered orally to dogs and rats, KCL significantly decreased plasma triglyceride levels in a dose-dependent manner. The triglyceride-lowering effects of KCL in dogs were >100-fold more potent than those in rats. These results suggest that KCL may induce activation of highly potent PPARalpha in humans as well as dogs, and that dog is a suitable animal model for studying and predicting the biological actions of potent agonists for human PPARalpha.
Collapse
Affiliation(s)
- Michiaki Nagasawa
- Discovery Research Laboratories, Kyorin Pharmaceutical Co Ltd, 2399-1 Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yokoyama M, Origasa H. Effects of eicosapentaenoic acid on cardiovascular events in Japanese patients with hypercholesterolemia: rationale, design, and baseline characteristics of the Japan EPA Lipid Intervention Study (JELIS). Am Heart J 2003; 146:613-20. [PMID: 14564313 DOI: 10.1016/s0002-8703(03)00367-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HYPOTHESIS The principle aim of the current study is to test the hypothesis that the long-term use of highly purified EPA (eicosapentaenoic acid: 1800 mg/day), in addition to HMG-CoA reductase inhibitor, is effective in preventing cardiovascular events in Japanese patients with hypercholesterolemia. BACKGROUND Epidemiological and clinical evidence suggest that intake of long-chain polyunsaturated n-3 fatty acids (PUFAs), which are abundant in fish, might have a significant role in the prevention of coronary artery disease, as marine PUFAs have multiple biological functions through lipid-dependent and lipid-independent mechanisms. METHODS The Japan EPA Lipid Intervention Study (JELIS) is a prospective, randomized, open-label, blinded end point trial including both primary and secondary prevention strata, with a maximum follow-up of 5 years. Its main purpose is to examine the clinical effectiveness of EPA oil given as an additional treatment to patients taking HMG-CoA reductase inhibitors for hypercholesterolemia. A primary end point is major coronary events: sudden cardiac death, fatal and nonfatal myocardial infarction, and unstable angina pectoris including hospitalization for documented ischemic episodes, and events of angioplasty/stenting or coronary artery bypass grafting. Secondary end points include all-cause mortality, stroke, peripheral artery disease, and cancer. Baseline study composition comprises 15,000 participants (4204 men and 10,796 women) in the primary prevention stratum and 3645 (1656 men and 1989 women) in the secondary stratum. The minimum age is 40 years for men, women are required to be postmenopausal, and all patients must be < or =75 years of age. The mean age of participants is 61 years, and 69% are female. The schedule for plasma fatty acid composition measurement is as follows: at baseline, at 6 month, and yearly thereafter. The mean baseline total and low-density lipoprotein cholesterol levels were 275 mg/dL (7.1 mmol/L) and 180 mg/dL (4.6 mmol/L). RESULTS Results are expected in 2005. CONCLUSION JELIS is a large clinical trial that will evaluate whether EPA can make an additional improvement in mortality and morbidity of coronary artery disease beyond that of HMG-CoA reductase inhibitor treatment.
Collapse
Affiliation(s)
- Mitsuhiro Yokoyama
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | |
Collapse
|
40
|
Gilde AJ, Van Bilsen M. Peroxisome proliferator-activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:425-34. [PMID: 12864748 DOI: 10.1046/j.1365-201x.2003.01161.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. The three isoforms (PPARalpha, beta/delta and gamma) have been implicated in the regulation of the expression of genes involved in lipid metabolism. Although their prominent role in lipid homeostasis is well established, the way in which the activity of each of the PPAR isoforms is regulated under physiological and pathological conditions is still subject of intensive research. In skeletal as well as cardiac muscle cells it has been demonstrated that the expression of a large panel of proteins involved in the transport and metabolic conversion of fatty acids is under control of PPARs. The pivotal role of the PPARalpha isoform in cardiac fatty acid metabolism has been confirmed in PPARalpha-null mice. The exact role of PPARbeta/delta in the regulation of muscle metabolism is still a matter of debate. Whereas several studies provided evidence to support the notion that PPARalpha and PPARbeta/delta have redundant roles, other studies suggest that PPARalpha activity is counteracted by PPARbeta/delta. Marked effects of bona fide PPARgamma ligands (the anti-diabetic thiazolidinediones) on skeletal and cardiac muscle function and phenotype, have also been reported. However, next to activating PPARgamma, the thiazolidinediones do affect other cellular processes as well. To date it is being realized that the control of the trans-activating capacity of each of the PPAR isoforms is multi-factorial and, in addition to ligand availability, depends on such factors as isoform-specific phosphorylation and selective interaction with various proteins acting either as co-activator or co-repressor.
Collapse
Affiliation(s)
- A J Gilde
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
41
|
Lovat PE, Ranalli M, Corazzari M, Raffaghello L, Pearson ADJ, Ponzoni M, Piacentini M, Melino G, Redfern CPF. Mechanisms of free-radical induction in relation to fenretinide-induced apoptosis of neuroblastoma. J Cell Biochem 2003; 89:698-708. [PMID: 12858336 DOI: 10.1002/jcb.10551] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanisms of fenretinide-induced cell death of neuroblastoma cells are complex, involving signaling pathways mediated by free radicals or reactive oxygen species (ROS). The aim of this study was to identify mechanisms generating ROS and apoptosis of neuroblastoma cells in response to fenretinide. Fenretinide-induced ROS or apoptosis of SH-SY5Y or HTLA 230 neuroblastoma cells were not blocked by Nitro l-argenine methyl ester (l-NAME), an inhibitor of nitric oxide synthase. Flavoprotein-dependent superoxide-producing enzymes such as NADPH oxidase were also not involved in fenretinide-induced apoptosis or ROS generation. Similarly, ketoconazole, a cytochrome P450 inhibitor, and inhibitors of cyclooxygenase (COX) were also ineffective. In contrast, inhibition of phospholipase A(2) or lipoxygenases (LOX) blocked the induction of ROS and apoptosis in response to fenretinide. Using specific inhibitors of LOX, blocking 12-LOX but not 5- or 15-LOX inhibited both fenretinide-induced ROS and apoptosis. The effects of eicosatriynoic acid, a specific 12-LOX inhibitor, were reversed by the addition of the 12-LOX products, 12 (S)-hydroperoxyeicosatetraenoic acid and 12 (S)-hydroxyeicosatetraenoic acid. The targeting of 12-LOX in neuroblastoma cells may thus be a novel pathway for the development of drugs inducing apoptosis of neuroblastoma with improved tumor specificity.
Collapse
Affiliation(s)
- Penny E Lovat
- Northern Institute for Cancer Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vanden Heuvel JP, Kreder D, Belda B, Hannon DB, Nugent CA, Burns KA, Taylor MJ. Comprehensive analysis of gene expression in rat and human hepatoma cells exposed to the peroxisome proliferator WY14,643. Toxicol Appl Pharmacol 2003; 188:185-98. [PMID: 12729718 DOI: 10.1016/s0041-008x(03)00015-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferators (PPs) are an important class of chemicals that act as hepatic tumor promoters in laboratory rodents. The key target for PPs is the nuclear receptor peroxisome proliferator-activated receptor-alpha (PPARalpha) and these chemicals cause cancer by altering the expression of a subset of genes involved in cell growth regulation. The purpose of the present study was to utilize high-density gene expression arrays to examine the genes regulated by the potent PP Wy14,643 (50 microM, 6 h) in both rat (FaO) and human (HepG2) hepatoma cells. Treatment of FaO cells, but not HepG2, revealed the expected fatty acid catabolism genes. However, a larger than expected number of protein kinases, phosphatases, and signaling molecules were also affected exclusively in the FaO cells, including MAPK-phosphatase 1 (MKP-1), Janus-activated kinases 1 and 2 (JAK1 and 2), and glycogen synthetase kinase alpha and beta (GSKalpha and beta). The mRNA accumulation of these genes as well as the protein level for GSK3alpha, JAK1, and JAK2 and MKP-1 activity was corroborated. Due to the importance of MKP-1 in cell signaling, this induction was examined further and was found to be controlled, at least in part, at the level of the gene's promoter. Interestingly, overexpression of MKP-1 in turn affected the constitutive activity of PPARalpha. Taken together, the gene expression arrays revealed an important subset of PP-regulated genes to be kinases and phosphatases. These enzymes not only would affect growth factor signaling and cell cycle control but also could represent feedback control mechanisms and modulate the activity of PPARalpha.
Collapse
Affiliation(s)
- John P Vanden Heuvel
- Department of Veterinary Science and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This review critically evaluates recent studies investigating the effects of fatty acids on immune and inflammatory responses in both healthy individuals and in patients with inflammatory diseases, with some reference to animal studies where relevant. It examines recent findings describing the cellular and molecular basis for the modulation of immune function by fatty acids. The newly emerging area of diet-genotype interactions will also be discussed, with specific reference to the anti-inflammatory effects of fish oil. RECENT FINDINGS Fatty acids are participants in many intracellular signalling pathways. They act as ligands for nuclear receptors regulating a host of cell responses, they influence the stability of lipid rafts, and modulate eicosanoid metabolism in cells of the immune system. Recent findings suggest that some or all of these mechanisms may be involved in the modulation of immune function by fatty acids. SUMMARY Human studies investigating the relationship between dietary fatty acids and some aspects of the immune response have been disappointingly inconsistent. This review presents the argument that most studies have not been adequately powered to take into account the influence of variation (genotypic or otherwise) on parameters of immune function. There is well-documented evidence that fatty acids modulate T lymphocyte activation, and recent findings describe a range of potential cellular and molecular mechanisms. However, there are still many questions remaining, particularly with respect to the roles of nuclear receptors, for which fatty acids act as ligands, and the modulation of eicosanoid synthesis, for which fatty acids act as precursors.
Collapse
Affiliation(s)
- Parveen Yaqoob
- Hung Sinclair Unit of Human Nutrition, School of Fodd Biosciences, The University of Reading, Reading, UK.
| |
Collapse
|
44
|
Farnier M. [New antilipemics: prospects]. Therapie 2003; 58:97-105. [PMID: 12822207 DOI: 10.2515/therapie:2003014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The field of new lipid-lowering drug research is very active, with researchers, looking to make the currently available drugs more powerful and safer, and to develop new classes of drugs. Among the statins, development has gone the farthest for rosuvastatin and pitavastatin. Colesevelam is a new bile acid sequestrant with a better digestive tolerance. Among the new classes of drugs, the most promising molecules are the cholesterol absorption inhibitors--with ezetimibe as the first in line--and the PPAR-alpha and PPAR-gamma activators. Among the other classes, the acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors, microsomal triglyceride transfer protein (MTP) inhibitors, cholesteryl ester transfer protein (CETP) inhibitors, and ileal bile acid transporter inhibitors, have to be mentioned. In most of the cases, those new compounds are being developed mainly as a combined treatment with statins. However, these combination therapies differ depending on the lipid abnormalities of the patient. The statin-ezitimibe and the statin-bile acid sequestrant combinations have been the most studied treatments in pure hypercholesterolaemia. On another hand, the statin-PPAR-alpha and -gamma activator combination were the first to be developed for patients with combined hyperlipidaemia or type 2 diabetes mellitus. However, the clinical benefit of ACAT or CETP inhibitors remains to be determined and the development of MTP inhibitors has been restricted so far, because of problems of digestive intolerance and hepatic steatosis. Finally, the discovery of new specific lipoprotein receptors, such as the ABCA1 and SRB1 receptors, means that we can work towards developing new potential targets for pharmacological intervention.
Collapse
|
45
|
Iwakiri Y, Sampson DA, Allen KGD. Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by conjugated linoleic acid in murine macrophages. Prostaglandins Leukot Essent Fatty Acids 2002; 67:435-43. [PMID: 12468265 DOI: 10.1054/plef.2002.0454] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Activated macrophages express inducible isoforms of cyclooxygenase (COX-2) and nitric oxide synthase (iNOS), and produce excessive amounts of prostaglandin E(2) (PGE(2)) and nitric oxide (NO) which play key roles in cancer pathogenesis. Conjugated linoleic acid (CLA) is an anticarcinogen while arachidonic acid (AA) may be a procarcinogen by increased PGE(2) production. This study examined the effects of CLA and AA on PGE(2) and NO synthesis in endotoxin-activated macrophages. RAW264.7 macrophages were incubated in medium containing no added lipid (control), 30 microM AA (AA medium), or 30 microM CLA (CLA medium) for 24 h followed by activation with bacterial endotoxin lipopolysaccharide (LPS; 100 ng/ml) for 9 h. CLA significantly depressed PGE(2) and NO production by 78% (P=0.003) and 57% (P=0.0001) respectively. Northern blot analysis of COX-2 and iNOS showed significant 33% (P=0.01) and 51% (P=0.04) decreases, respectively, paralleling those seen for PGE(2) and NO production. In contrast, AA significantly increased PGE(2) synthesis by 62% (P=0.02) and also suppressed NO production and iNOS expression in the same manner as observed for CLA. These results suggest that the anticarcinogenic effect of CLA in endotoxin-activated macrophages may be related to its ability to decrease both PGE(2) and NO synthesis by suppressing transcription of COX-2 and iNOS.
Collapse
Affiliation(s)
- Y Iwakiri
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
46
|
Cowart LA, Wei S, Hsu MH, Johnson EF, Krishna MU, Falck JR, Capdevila JH. The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J Biol Chem 2002; 277:35105-12. [PMID: 12124379 DOI: 10.1074/jbc.m201575200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytochromes P450 of the CYP2C and CYP4A gene subfamilies metabolize arachidonic acid to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) and to 19- and 20-hydroxyeicosatetraenoic acids (HETEs), respectively. Abundant functional studies indicate that EETs and HETEs display powerful and often opposing biological activities as mediators of ion channel activity and regulators of vascular tone and systemic blood pressures. Incubation of 8,9-, 11,12-, and 14,15-EETs with microsomal and purified forms of rat CYP4A isoforms led to rapid NADPH-dependent metabolism to the corresponding 19- and 20-hydroxylated EETs. Comparisons of reaction rates and catalytic efficiency with those of arachidonic and lauric acids showed that EETs are one of the best endogenous substrates so far described for rat CYP4A isoforms. CYP4A1 exhibited a preference for 8,9-EET, whereas CYP4A2, CYP4A3, and CYP4A8 preferred 11,12-EET. In general, the closer the oxido ring is to the carboxylic acid functionality, the higher the rate of EET metabolism and the lower the regiospecificity for the EET omega-carbon. Analysis of cis-parinaric acid displacement from the ligand-binding domain of the human peroxisome proliferator-activated receptor-alpha showed that omega-hydroxylated 14,15-EET bound to this receptor with high affinity (K(i) = 3 +/- 1 nm). Moreover, at 1 microm, the omega-alcohol of 14,15-EET or a 1:4 mixture of the omega-alcohols of 8,9- and 11,12-EETs activated human and mouse peroxisome proliferator-activated receptor-alpha in transient transfection assays, suggesting a role for them as endogenous ligands for these orphan nuclear receptors.
Collapse
Affiliation(s)
- L Ashley Cowart
- Department of Biochemistry, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Jamshidi Y, Flavell DM, Hawe E, MacCallum PK, Meade TW, Humphries SE. Genetic determinants of the response to bezafibrate treatment in the lower extremity arterial disease event reduction (LEADER) trial. Atherosclerosis 2002; 163:183-92. [PMID: 12048138 DOI: 10.1016/s0021-9150(02)00002-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genetic determinants of baseline levels and the fall in plasma triglyceride and fibrinogen levels in response to bezafibrate treatment were examined in 853 men taking part in the lower extremity arterial disease event reduction (LEADER) trial. Three polymorphisms in the peroxisome proliferator activated receptor alpha (PPARalpha) gene were investigated (L162V, G>A in intron 2 and G>C in intron 7), two in the apolipoprotein CIII (APOC3) gene (-482C>T and -455T>C) and one in the beta-fibrinogen (FIBB) gene (-455G>A). The presence of diabetes (n=158) was associated with 15% higher triglyceride levels at baseline compared to non-diabetics (n=654) (P<0.05). Among the diabetic group, carriers of the PPARalpha intron 7 C allele had 20% lower triglyceride levels compared to homozygotes for the common G allele (P<0.05), with a similar (non-significant) trend for the L162V polymorphism, which is in linkage disequilibrium with the intron 7 polymorphism. For the APOC3 gene, carriers of the -482T allele had 13% lower baseline triglyceride levels compared to -482C homozygotes (P<0.02), but no effect was observed with the -455T>C substitution. In the non-diabetic patients, the PPARalpha V162 allele was significantly associated with 9% higher baseline triglyceride levels (P<0.03) and a similar, but non-significant trend was seen for the intron 7 polymorphism. Overall, triglyceride levels fell by 26% with 3 months of bezafibrate treatment, and current smokers showed a poorer response compared to ex/non-smokers (23% fall compared to 28% P=0.03), but none of the genotypes examined had a significant influence on the magnitude of response. Carriers of the -455A polymorphism of the FIBB gene had, as expected, marginally higher baseline fibrinogen levels, 3.43 versus 3.36 g/l (P=0.055), but this polymorphism did not affect response to treatment. Overall, fibrinogen levels fell by 12%, with patients with the highest baseline fibrinogen levels showing the greatest decrease in response to bezafibrate. For both the intron 2 and the L162V polymorphisms of the PPARalpha gene there was a significant interaction (both P<0.01) between genotype and baseline levels of fibrinogen on the response of fibrinogen levels to bezafibrate, such that individuals carrying the rare alleles in the lowest tertile showed essentially no overall decrease compared to a 0.18 g/l fall in homozygotes for the common allele. Thus while these genotypes are a minor determinant of baseline triglyceride and fibrinogen levels, there is little evidence from this study that the magnitude of response to bezafibrate treatment in men with peripheral vascular disease is determined by variation at these loci.
Collapse
Affiliation(s)
- Y Jamshidi
- Centre for Cardiovascular Genetics, Department of Medicine, Royal Free and University College London Medical School, The Rayne Institute, London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Hayes MM, Lane BR, King SR, Markovitz DM, Coffey MJ. Peroxisome proliferator-activated receptor gamma agonists inhibit HIV-1 replication in macrophages by transcriptional and post-transcriptional effects. J Biol Chem 2002; 277:16913-9. [PMID: 11847231 DOI: 10.1074/jbc.m200875200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that cyclopentenone prostaglandins (cyPG) inhibit human immunodeficiency virus type 1 (HIV-1) replication in various cell types. We investigated the role of PG in the replication of HIV-1 in primary macrophages. The cyPG, PGA(1) and PGA(2), inhibited HIV-1 replication in acutely infected human monocyte-derived macrophages (MDM). Because PGA(1) and PGA(2) have previously been shown to be peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, we examined the effect of synthetic PPARgamma agonists on HIV replication. The PPARgamma agonist ciglitazone inhibited HIV-1 replication in a dose-dependent manner in acutely infected human MDM. In addition, cyPG and ciglitazone reduced HIV replication in latently infected and viral entry-independent U1 cells, suggesting an effect at the level of HIV gene expression. Ciglitazone also suppressed HIV-1 mRNA levels as measured by reverse transcriptase PCR, in parallel with the decrease in reverse transcriptase activity. Co-transfection of PPARgamma wild type vectors and treatment with PPARgamma agonists inhibited HIV-1 promoter activity in U937 cells. Activation of PPARgamma also decreased HIV-1 mRNA stability following actinomycin D treatment. In summary, our experimental findings implicate PPARgamma as an important factor in the suppression of HIV-1 gene expression in MDM by cyPG. Thus natural and synthetic PPARgamma agonists may play a role in controlling HIV-1 infection in macrophages.
Collapse
Affiliation(s)
- Michael M Hayes
- Divisions of Pulmonary and Critical Care Medicine, Rheumatology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
49
|
Jamshidi Y, Montgomery HE, Hense HW, Myerson SG, Torra IP, Staels B, World MJ, Doering A, Erdmann J, Hengstenberg C, Humphries SE, Schunkert H, Flavell DM. Peroxisome proliferator--activated receptor alpha gene regulates left ventricular growth in response to exercise and hypertension. Circulation 2002; 105:950-5. [PMID: 11864924 DOI: 10.1161/hc0802.104535] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) occurs as an adaptive response to a physiological (such as exercise) or pathological (valvular disease, hypertension, or obesity) increase in cardiac work. The molecular mechanisms regulating the LVH response are poorly understood. However, inherited defects in fatty acid oxidation are known to cause severe early-onset cardiac hypertrophy. Peroxisome proliferator--activated receptor alpha (PPARalpha) regulates genes responsible for myocardial fatty acid oxidation and is downregulated during cardiac hypertrophy, concomitant with the switch from fatty acid to glucose utilization. METHODS AND RESULTS The role of PPARalpha in left ventricular growth was investigated in 144 young male British Army recruits undergoing a 10-week physical training program and in 1148 men and women participating in the echocardiographic substudy of the Third Monitoring Trends and Determinants in Cardiovascular Disease (MONICA) Augsburg study. A G/C polymorphism in intron 7 of the PPARalpha gene significantly influenced left ventricular (LV) growth in response to exercise (P=0.009). LV mass increased by 6.7 +/- 1.5 g in G allele homozygotes but was significantly greater in heterozygotes for the C allele (11.8 +/- 1.9 g) and in CC homozygotes (19.4 +/- 4.2 g). Likewise, C allele homozygotes had significantly higher LV mass, which was greater still in hypertensive subjects, and a higher prevalence of LVH in the Third MONICA Augsburg study. CONCLUSIONS We demonstrate that variation in the PPARalpha gene influences human left ventricular growth in response to exercise and hypertension, indicating that maladaptive cardiac substrate utilization can play a causative role in the pathogenesis of LVH.
Collapse
Affiliation(s)
- Yalda Jamshidi
- Centre for Cardiovascular Genetics, Department of Medicine, University College London Medical School, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Ian R. Johnson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Patricia D. Schley
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|