1
|
Medina R, Derias AM, Lakdawala M, Speakman S, Lucke-Wold B. Overview of emerging therapies for demyelinating diseases. World J Clin Cases 2024; 12:6361-6373. [PMID: 39464332 PMCID: PMC11438674 DOI: 10.12998/wjcc.v12.i30.6361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
This paper provides an overview of autoimmune disorders of the central nervous system, specifically those caused by demyelination. We explore new research regarding potential therapeutic interventions, particularly those aimed at inducing remyelination. Remyelination is a detailed process, involving many cell types-oligodendrocyte precursor cells (OPCs), astrocytes, and microglia-and both the innate and adaptive immune systems. Our discussion of this process includes the differentiation potential of neural stem cells, the function of adult OPCs, and the impact of molecular mediators on myelin repair. Emerging therapies are also explored, with mechanisms of action including the induction of OPC differentiation, the transplantation of mesenchymal stem cells, and the use of molecular mediators. Further, we discuss current medical advancements in relation to many myelin-related disorders, including multiple sclerosis, optic neuritis, neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, transverse myelitis, and acute disseminated encephalomyelitis. Beyond these emerging systemic therapies, we also introduce the dimethyl fumarate/silk fibroin nerve conduit and its potential role in the treatment of peripheral nerve injuries. Despite these aforementioned scientific advancements, this paper maintains the need for ongoing research to deepen our understanding of demyelinating diseases and advance therapeutic strategies that enhance affected patients' quality of life.
Collapse
Affiliation(s)
- Robert Medina
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Ann-Marie Derias
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Maria Lakdawala
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Skye Speakman
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
2
|
Gingele S, Möllenkamp TM, Henkel F, Schröder L, Hümmert MW, Skripuletz T, Stangel M, Gudi V. Automated analysis of gray matter damage in aged mice reveals impaired remyelination in the cuprizone model. Brain Pathol 2024; 34:e13218. [PMID: 37927164 PMCID: PMC10901622 DOI: 10.1111/bpa.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system characterized by myelin loss, axonal damage, and glial scar formation. Still, the underlying processes remain unclear, as numerous pathways and factors have been found to be involved in the development and progression of the disease. Therefore, it is of great importance to find suitable animal models as well as reliable methods for their precise and reproducible analysis. Here, we describe the impact of demyelination on clinically relevant gray matter regions of the hippocampus and cerebral cortex, using the previously established cuprizone model for aged mice. We could show that bioinformatic image analysis methods are not only suitable for quantification of cell populations, but also for the assessment of de- and remyelination processes, as numerous objective parameters can be considered for reproducible measurements. After cuprizone-induced demyelination, subsequent remyelination proceeded slowly and remained incomplete in all gray matter areas studied. There were regional differences in the number of mature oligodendrocytes during remyelination suggesting region-specific differences in the factors accounting for remyelination failure, as, even in the presence of oligodendrocytes, remyelination in the cortex was found to be impaired. Upon cuprizone administration, synaptic density and dendritic volume in the gray matter of aged mice decreased. The intensity of synaptophysin staining gradually restored during the subsequent remyelination phase, however the expression of MAP2 did not fully recover. Microgliosis persisted in the gray matter of aged animals throughout the remyelination period, whereas extensive astrogliosis was of short duration as compared to white matter structures. In conclusion, we demonstrate that the application of the cuprizone model in aged mice mimics the impaired regeneration ability seen in human pathogenesis more accurately than commonly used protocols with young mice and therefore provides an urgently needed animal model for the investigation of remyelination failure and remyelination-enhancing therapies.
Collapse
Affiliation(s)
- Stefan Gingele
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | | | - Florian Henkel
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | | | | | | | - Martin Stangel
- Department of NeurologyHannover Medical SchoolHannoverGermany
- Department of Translational Medicine NeuroscienceNovartis Institute for BioMedical ResearchBaselSwitzerland
| | - Viktoria Gudi
- Department of NeurologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Dimovasili C, Fair AE, Garza IR, Batterman KV, Mortazavi F, Moore TL, Rosene DL. Aging compromises oligodendrocyte precursor cell maturation and efficient remyelination in the monkey brain. GeroScience 2023; 45:249-264. [PMID: 35930094 PMCID: PMC9886778 DOI: 10.1007/s11357-022-00621-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 02/03/2023] Open
Abstract
Age-associated cognitive decline is common among otherwise healthy elderly people, even in the absence of Alzheimer's disease and neuron loss. Instead, white matter loss and myelin damage are strongly associated with cognitive decline. Myelin is subject to lifelong oxidative stress that damages the myelin sheath, which is repaired by cells of the oligodendrocyte lineage. This process is mediated by oligodendrocyte precursor cells (OPCs) that sense the damage and respond by proliferating locally and migrating to the region, where they differentiate into mature myelinating oligodendrocytes. In aging, extensive myelin damage, in combination with inefficient remyelination, leads to chronically damaged myelin and loss of efficient neuronal conduction. This study used the rhesus monkey model of normal aging to examine how myelin regeneration capacity is affected by age. Results show that older subjects have reduced numbers of new BCAS1 + myelinating oligodendrocytes, which are newly formed cells, and that this reduction is associated with poorer cognitive performance. Interestingly, this does not result from limited proliferation of progenitor OPCs. Instead, the transcription factor NKX2.2, which regulates OPCs differentiation, is significantly decreased in aged OPCs. This suggests that these OPCs have a diminished potential for differentiation into mature oligodendrocytes. In addition, mature oligodendrocytes have reduced RNA expression of two essential myelin protein markers, MBP and PLP. These data collectively suggest that in the normal aging brain, there is a reduction in regenerative OPCs as well as myelin production that impairs the capacity for remyelination.
Collapse
Affiliation(s)
- Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| | - Ashley E Fair
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Isabella R Garza
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Katelyn V Batterman
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
5
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
6
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 2022; 70:1215-1250. [PMID: 35107839 PMCID: PMC9302634 DOI: 10.1002/glia.24148] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear. Recent studies using cuprizone (CPZ) as an animal model of central nervous system demyelination revealed that the up‐regulation of signaling proteins in microglia facilitates effective phagocytosis of myelin debris. Moreover, during demyelination, protective mediators are released from activated microglia, resulting in the acceleration of remyelination in the CPZ model. In contrast, inadequate microglial activation or recruitment to the site of demyelination, and the production of toxic mediators, impairs remyelination resulting in progressive demyelination. In addition to the microglia‐mediated phagocytosis, astrocytes play an important role in the phagocytic process by recruiting microglia to the site of demyelination and producing regenerative mediators. The current review is an update of these emerging findings from the CPZ animal model, discussing the roles of microglia and astrocytes in phagocytosis and myelination.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, Australia
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics & Science, Brock University, St. Cathari, Canada
| | | |
Collapse
|
7
|
Correale J, Ysrraelit MC. Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination. ASN Neuro 2022; 14:17590914221118502. [PMID: 35938615 PMCID: PMC9364177 DOI: 10.1177/17590914221118502] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system
(CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in
MS patients have been rising over the last decades, and previous studies have shown that
age affects disease progression. Therefore, age appears as one of the most important
factors in accumulating disability in MS patients. Indeed, the degeneration of
oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with
increased inflammatory activity of astrocytes and microglia. Similarly, age-related
neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and
disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is
complete, the long-term integrity of axons depends on OGD supply of energy. These
alterations determine pathological myelin changes consisting of myelin outfolding,
splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate
that old mature OGDs lose their ability to produce and maintain healthy myelin over time,
to induce de novo myelination, and to remodel pre-existing myelinated
axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other
tissues, aging induces a general decline in regenerative processes and, not surprisingly,
progressively hinders remyelination in MS. In this context, this review will provide an
overview of the current knowledge of age-related changes occurring in cells of the
oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and
remyelination efficiency.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, 58782Fleni, Buenos Aires, Argentina
| | | |
Collapse
|
8
|
De Somma E, O'Mahony J, Brown RA, Brooks BL, Yeh EA, Cardenas de La Parra A, Arnold D, Collins DL, Maranzano J, Narayanan S, Marrie RA, Bar-Or A, Banwell B, Till C. Disrupted cognitive development following pediatric acquired demyelinating syndromes: a longitudinal study. Child Neuropsychol 2021; 28:649-670. [PMID: 34872458 DOI: 10.1080/09297049.2021.2002289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Long-term cognitive deficits have been observed in some children who experience an acquired demyelinating syndrome (ADS). We examined changes in cognitive functioning over the first two years following incident ADS andtested whether normalized brain and thalamic volume accounted for decline over time. Twenty-five youth (mean age 12.8 years) with ADS, 9 of whom were diagnosed with multiple sclerosis (MS) and 16 of whom experienced monophasic ADS (monoADS), underwent two neuropsychological evaluationsand MRI scans at approximately6- and 24-months post ADS-onset. We examined changes in cognitive outcomes over time and between patient groups. Generalized linear mixed-effect regression models were used to examine the association of normalized brain and thalamic volumesbetween the two timepointswith cognitive z-scores. Cognitive performance was within the age-expected range for both groups and remained stable over time on 15 measures. In the combined sample of monoADS and MS patients, declines (p < .05) were noted on the Symbol Digit Modalities Test (SDMT), the Auditory Working Memory (AWM), and the WJ-III Visual Matching (VisMat)tests, but did not survive FDR correction. Clinically significant declines, as measured by the Reliable Change Index, were observed on the SDMT,AWM, and VisMattests by 19, 42, and 32%, respectively. Lower normalized brain volume at 6-months predicted a negative change in SDMT (B = 0.45, 95%CI: 0.07,0.83) and AWM (B = 0.30, 95%CI: 0.13, 0.47). Chronicity of demyelination is not required for cognitive decline nor for reduced brain volume, suggesting that even a single demyelinating event may negatively impact cognitive potential in children.
Collapse
Affiliation(s)
| | - Julia O'Mahony
- Neurosciences and Mental Health, Hospital for Sick Children, Canada Hospital for Sick Children, Toronto, Canada
| | | | - Brian L Brooks
- Neurosciences Program, Alberta Children's Hospital, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Departments of Pediatrics, Clinical Neurosciences, and Psychology, University of Calgary, Calgary, Canada
| | - E Ann Yeh
- Neurosciences and Mental Health, Hospital for Sick Children, Canada Hospital for Sick Children, Toronto, Canada.,Department of Neurology, Hospital for Sick Children, Toronto, Canada
| | | | - Douglas Arnold
- McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| | | | - Sridar Narayanan
- McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| | - Ruth Ann Marrie
- Departments of Internal Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brenda Banwell
- Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christine Till
- Department of Psychology, York University, Toronto, Canada.,Neurosciences and Mental Health, Hospital for Sick Children, Canada Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
9
|
A proposal: How to study pro-myelinating proteins in MS. Autoimmun Rev 2021; 21:102924. [PMID: 34416371 DOI: 10.1016/j.autrev.2021.102924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and degenerative disease of the CNS. An unmet need in MS is repair i.e.,promoting endogenous regeneration and remyelination after demyelinating inflammatory injury. Remyelination is critical in neuronal preservation and the prevention of clinical progression. There is a good deal of evidence for histological repair and remyelination in MS patients. Repair is driven by several prominent endogenous pro-myelinating proteinsincluding neural cellular adhesion molecule (N-CAM) and brain derived neurotrophic factor (BDNF) among others. To follow changes during acute re-myelination in vivo in MS subjects, non conventional MRI techniques are necessary such as quantitative susceptibility mapping (QSM) that detects the release of Fe from dying oligodendroglial cells and myelin water imaging (MWI) that detects water captured within newly formed myelin. The best time to monitor changes in pro-myelinating proteins and link those changes to imaging evolution is immediately after the acute inflammatory response in MS lesions (gadolinium enhancement [Gd+]) during an intense period of remyelination. We can monitor MS subjects with new Gd + lesions with periodic imaging along with sampling of blood and CSF and determine if myelin formation is linked with increases in pro-myelinating proteins. This would lead to potential therapeutic manipulation with directly administered proteins to promote CNS re-myelination in animal models and in early clinical trials.
Collapse
|
10
|
Dansu DK, Sauma S, Casaccia P. Oligodendrocyte progenitors as environmental biosensors. Semin Cell Dev Biol 2021; 116:38-44. [PMID: 33092959 PMCID: PMC8053729 DOI: 10.1016/j.semcdb.2020.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 01/10/2023]
Abstract
The past decade has seen an important revision of the traditional concept of the role and function of glial cells. From "passive support" for neurons, oligodendrocyte lineage cells are now recognized as metabolic exchangers with neurons, a cellular interface with blood vessels and responders to gut-derived metabolites or changes in the social environment. In the developing brain, the differentiation of neonatal oligodendrocyte progenitors (nOPCs) is required for normal brain function. In adulthood, the differentiation of adult OPCs (aOPCs) serves an important role in learning, behavioral adaptation and response to myelin injury. Here, we propose the concept of OPCs as environmental biosensors, which "sense" chemical and physical stimuli over time and adjust to the new challenges by modifying their epigenome and consequent transcriptome. Because epigenetics defines the ability of the cell to "adapt" gene expression to changes in the environment, we propose a model of OPC differentiation resulting from time-dependent changes of the epigenomic landscape in response to declining mitogens, raising hormone levels, neuronal activity, changes in space constraints or stiffness of the extracellular matrix. We propose that the intrinsically different functional properties of aOPCs compared to nOPCs result from the accrual of "epigenetic memories" of distinct events, which are "recorded" in the nuclei of OPCs as histone and DNA marks, defining a "unique epigenomic landscape" over time.
Collapse
Affiliation(s)
- David K Dansu
- Graduate Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA
| | - Sami Sauma
- Graduate Program in Biology, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA; Graduate Program in Biology, Graduate Center of the City University of New York, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
11
|
Morris AD, Kucenas S. A Novel Lysolecithin Model for Visualizing Damage in vivo in the Larval Zebrafish Spinal Cord. Front Cell Dev Biol 2021; 9:654583. [PMID: 34095120 PMCID: PMC8173112 DOI: 10.3389/fcell.2021.654583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/15/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Lysolecithin is commonly used to induce demyelinating lesions in the spinal cord and corpus callosum of mammalian models. Although these models and clinical patient samples are used to study neurodegenerative diseases, such as multiple sclerosis (MS), they do not allow for direct visualization of disease-related damage in vivo. To overcome this limitation, we created and characterized a focal lysolecithin injection model in zebrafish that allows us to investigate the temporal dynamics underlying lysolecithin-induced damage in vivo. Results: We injected lysolecithin into 4-6 days post-fertilization (dpf) zebrafish larval spinal cords and, coupled with in vivo, time-lapse imaging, observed hallmarks consistent with mammalian models of lysolecithin-induced demyelination, including myelinating glial cell loss, myelin perturbations, axonal sparing, and debris clearance. Conclusion: We have developed and characterized a lysolecithin injection model in zebrafish that allows us to investigate myelin damage in a living, vertebrate organism. This model may be a useful pre-clinical screening tool for investigating the safety and efficacy of novel therapeutic compounds that reduce damage and/or promote repair in neurodegenerative disorders, such as MS.
Collapse
Affiliation(s)
- Angela D. Morris
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Ma Y, Liu Y, Han F, Qiu H, Shi J, Huang N, Hou N, Sun X. Growth differentiation factor 11: a "rejuvenation factor" involved in regulation of age-related diseases? Aging (Albany NY) 2021; 13:12258-12272. [PMID: 33886503 PMCID: PMC8109099 DOI: 10.18632/aging.202881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β superfamily of cytokines, is a critical rejuvenation factor in aging cells. GDF11 improves neurodegenerative and neurovascular disease outcomes, increases skeletal muscle volume, and enhances muscle strength. Its wide-ranging biological effects may include the reversal of senescence in clinical applications, as well as the ability to reverse age-related pathological changes and regulate organ regeneration after injury. Nevertheless, recent data have led to controversy regarding the functional roles of GDF11, because the underlying mechanisms were not clearly established in previous studies. In this review, we examine the literature regarding GDF11 in age-related diseases and discuss potential mechanisms underlying the effects of GDF11 in regulation of age-related diseases.
Collapse
Affiliation(s)
- Yuting Ma
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
13
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
14
|
Chitnis T, Aaen G, Belman A, Benson L, Gorman M, Goyal MS, Graves JS, Harris Y, Krupp L, Lotze T, Mar S, Ness J, Rensel M, Schreiner T, Tillema JM, Waubant E, Weinstock-Guttman B, Roalstad S, Rose J, Weiner HL, Casper TC, Rodriguez M. Improved relapse recovery in paediatric compared to adult multiple sclerosis. Brain 2021; 143:2733-2741. [PMID: 32810215 DOI: 10.1093/brain/awaa199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 11/14/2022] Open
Abstract
Incomplete relapse recovery contributes to disability accrual and earlier onset of secondary progressive multiple sclerosis. We sought to investigate the effect of age on relapse recovery. We identified patients with multiple sclerosis from two longitudinal prospective studies, with an Expanded Disability Status Scale (EDSS) score within 30 days after onset of an attack, and follow-up EDSS 6 months after attack. Adult patients with multiple sclerosis (n = 632) were identified from the Comprehensive Longitudinal Investigations in Multiple Sclerosis at Brigham study (CLIMB), and paediatric patients (n = 132) from the US Network of Paediatric Multiple Sclerosis Centers (NPMSC) registry. Change in EDSS was defined as the difference in EDSS between attack and follow-up. Change in EDSS at follow-up compared to baseline was significantly lower in children compared to adults (P = 0.001), as were several functional system scores. Stratification by decade at onset for change in EDSS versus age found for every 10 years of age, EDSS recovery is reduced by 0.15 points (P < 0.0001). A larger proportion of children versus adults demonstrated improvement in EDSS following an attack (P = 0.006). For every 10 years of age, odds of EDSS not improving increase by 1.33 times (P < 0.0001). Younger age is associated with improved recovery from relapses. Age-related mechanisms may provide novel therapeutic targets for disability accrual in multiple sclerosis.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Partners Paediatric Multiple Sclerosis Center, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Greg Aaen
- Paediatric Multiple Sclerosis Center, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Anita Belman
- Paediatric MS Center at NYU Langone Health, New York, NY, USA
| | - Leslie Benson
- Paediatric Multiple Sclerosis and Related Disorders Program at Boston Children's Hospital, MA, USA
| | - Mark Gorman
- Paediatric Multiple Sclerosis and Related Disorders Program at Boston Children's Hospital, MA, USA
| | | | - Jennifer S Graves
- Paediatric Multiple Sclerosis Center, University of California San Diego, San Diego, CA, USA
| | - Yolanda Harris
- UAB Center for Paediatric-Onset Demyelinating Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren Krupp
- Paediatric MS Center at NYU Langone Health, New York, NY, USA
| | - Timothy Lotze
- The Blue Bird Circle Clinic for Multiple Sclerosis, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Soe Mar
- Washington University, St. Louis, MO, USA
| | - Jayne Ness
- UAB Center for Paediatric-Onset Demyelinating Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Rensel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - Teri Schreiner
- Rocky Mountain Multiple Sclerosis Center, Children's Hospital Colorado, University of Colorado at Denver, Aurora, CO, USA
| | - Jan-Mendelt Tillema
- Mayo Clinic Paediatric Multiple Sclerosis Center, Mayo Clinic, Rochester, MN, USA
| | - Emmanuelle Waubant
- Paediatric Multiple Sclerosis Center, University of California San Francisco, San Francisco, CA, USA
| | - Bianca Weinstock-Guttman
- Jacobs Paediatric Multiple Sclerosis Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - Shelly Roalstad
- Data Coordinating and Analysis Center, University of Utah, Salt Lake City, UT, USA
| | - John Rose
- Data Coordinating and Analysis Center, University of Utah, Salt Lake City, UT, USA
| | - Howard L Weiner
- Harvard Medical School, Boston, MA, USA.,Partners MS Center, Brigham and Women's Hospital, Boston, MA, USA
| | - T Charles Casper
- Data Coordinating and Analysis Center, University of Utah, Salt Lake City, UT, USA
| | - Moses Rodriguez
- Mayo Clinic Paediatric Multiple Sclerosis Center, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
15
|
Zia S, Rawji KS, Michaels NJ, Burr M, Kerr BJ, Healy LM, Plemel JR. Microglia Diversity in Health and Multiple Sclerosis. Front Immunol 2020; 11:588021. [PMID: 33240276 PMCID: PMC7677361 DOI: 10.3389/fimmu.2020.588021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative disease characterized by multiple focal lesions, ongoing demyelination and, for most people, a lack of remyelination. MS lesions are enriched with monocyte-derived macrophages and brain-resident microglia that, together, are likely responsible for much of the immune-mediated neurotoxicity. However, microglia and macrophage also have documented neuroprotective and regenerative roles, suggesting a potential diversity in their functions. Linked with microglial functional diversity, they take on diverse phenotypes developmentally, regionally and across disease conditions. Advances in technologies such as single-cell RNA sequencing and mass cytometry of immune cells has led to dramatic developments in understanding the phenotypic changes of microglia and macrophages. This review highlights the origins of microglia, their heterogeneity throughout normal ageing and their contribution to pathology and repair, with a specific focus on autoimmunity and MS. As phenotype dictates function, the emerging heterogeneity of microglia and macrophage populations in MS offers new insights into the potential immune mechanisms that result in inflammation and regeneration.
Collapse
Affiliation(s)
- Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Khalil S Rawji
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Campus, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Nathan J Michaels
- Ministry of Health, British Columbia Government, Victoria, BC, Canada
| | - Mena Burr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes. BRAIN MULTIPHYSICS 2020. [DOI: 10.1016/j.brain.2020.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Vanhunsel S, Beckers A, Moons L. Designing neuroreparative strategies using aged regenerating animal models. Ageing Res Rev 2020; 62:101086. [PMID: 32492480 DOI: 10.1016/j.arr.2020.101086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
In our ever-aging world population, the risk of age-related neuropathies has been increasing, representing both a social and economic burden to society. Since the ability to regenerate in the adult mammalian central nervous system is very limited, brain trauma and neurodegeneration are often permanent. As a consequence, novel scientific challenges have emerged and many research efforts currently focus on triggering repair in the damaged or diseased brain. Nevertheless, stimulating neuroregeneration remains ambitious. Even though important discoveries have been made over the past decades, they did not translate into a therapy yet. Actually, this is not surprising; while these disorders mainly manifest in aged individuals, most of the research is being performed in young animal models. Aging of neurons and their environment, however, greatly affects the central nervous system and its capacity to repair. This review provides a detailed overview of the impact of aging on central nervous system functioning and regeneration potential, both in non-regenerating and spontaneously regenerating animal models. Additionally, we highlight the need for aging animal models with regenerative capacities in the search for neuroreparative strategies.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Rawji KS, Gonzalez Martinez GA, Sharma A, Franklin RJ. The Role of Astrocytes in Remyelination. Trends Neurosci 2020; 43:596-607. [DOI: 10.1016/j.tins.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
|
19
|
|
20
|
Delayed Demyelination and Impaired Remyelination in Aged Mice in the Cuprizone Model. Cells 2020; 9:cells9040945. [PMID: 32290524 PMCID: PMC7226973 DOI: 10.3390/cells9040945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
To unravel the failure of remyelination in multiple sclerosis (MS) and to test promising remyelinating treatments, suitable animal models like the well-established cuprizone model are required. However, this model is only standardized in young mice. This does not represent the typical age of MS patients. Furthermore, remyelination is very fast in young mice, hindering the examination of effects of remyelination-promoting agents. Thus, there is the need for a better animal model to study remyelination. We therefore aimed to establish the cuprizone model in aged mice. 6-month-old C57BL6 mice were fed with different concentrations of cuprizone (0.2–0.6%) for 5–6.5 weeks. De- and remyelination in the medial and lateral parts of the corpus callosum were analyzed by immunohistochemistry. Feeding aged mice 0.4% cuprizone for 6.5 weeks resulted in the best and most reliable administration scheme with virtually complete demyelination of the corpus callosum. This was accompanied by a strong accumulation of microglia and near absolute loss of mature oligodendrocytes. Subsequent remyelination was initially robust but remained incomplete. The remyelination process in mature adult mice better represents the age of MS patients and offers a better model for the examination of regenerative therapies.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article describes the dynamic evolution of multiple sclerosis (MS) through its phases and the impact of this understanding on treatment decisions. RECENT FINDINGS MS consists of three phases: (1) the high-risk phase, (2) the relapsing-remitting phase, and (3) the progressive phase. Increasingly, subclinical disease activity is becoming an integral part of our definition of disease course in MS. In many patients, the relapsing-remitting phase starts as subclinical activity, likely long before they present with a clinically isolated syndrome. Differentiating progressive MS subgroups is also becoming less relevant. This is illustrated by comparing progressive MS that evolves from an asymptomatic state in individuals with radiologically isolated syndrome (primary progressive MS) and symptomatic individuals with relapsing-remitting MS (secondary progressive MS). In each case, the background disease activity and pathology can be indistinguishable. These phases evolve on a continuum and largely follow the aging process with little influence by the preceding clinical activity level. Recently, it also became evident that one or a few poorly recovered relapses at the beginning of clinical manifestations of MS predict much earlier progressive MS onset. SUMMARY These findings suggest that interventions to prevent progressive MS, when they become available for clinical practice, may need to be considered as early as when the asymptomatic radiologically isolated syndrome is detected. This early treatment approach is being evaluated with ongoing trials with available disease-modifying therapies. In contrast, continuing the use of disease-modifying therapy beyond a certain age may have little benefit. However, being in the progressive phase of MS is not, in itself, an argument against disease-modifying therapy use in active disease in younger patients.
Collapse
|
22
|
Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol 2019; 138:987-1012. [PMID: 31363836 PMCID: PMC6851224 DOI: 10.1007/s00401-019-02049-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Microglia are highly plastic immune cells which exist in a continuum of activation states. By shaping the function of oligodendrocyte precursor cells (OPCs), the brain cells which differentiate to myelin-forming cells, microglia participate in both myelin injury and remyelination during multiple sclerosis. However, the mode(s) of action of microglia in supporting or inhibiting myelin repair is still largely unclear. Here, we analysed the effects of extracellular vesicles (EVs) produced in vitro by either pro-inflammatory or pro-regenerative microglia on OPCs at demyelinated lesions caused by lysolecithin injection in the mouse corpus callosum. Immunolabelling for myelin proteins and electron microscopy showed that EVs released by pro-inflammatory microglia blocked remyelination, whereas EVs produced by microglia co-cultured with immunosuppressive mesenchymal stem cells promoted OPC recruitment and myelin repair. The molecular mechanisms responsible for the harmful and beneficial EV actions were dissected in primary OPC cultures. By exposing OPCs, cultured either alone or with astrocytes, to inflammatory EVs, we observed a blockade of OPC maturation only in the presence of astrocytes, implicating these cells in remyelination failure. Biochemical fractionation revealed that astrocytes may be converted into harmful cells by the inflammatory EV cargo, as indicated by immunohistochemical and qPCR analyses, whereas surface lipid components of EVs promote OPC migration and/or differentiation, linking EV lipids to myelin repair. Although the mechanisms through which the lipid species enhance OPC maturation still remain to be fully defined, we provide the first demonstration that vesicular sphingosine 1 phosphate stimulates OPC migration, the first fundamental step in myelin repair. From this study, microglial EVs emerge as multimodal and multitarget signalling mediators able to influence both OPCs and astrocytes around myelin lesions, which may be exploited to develop novel approaches for myelin repair not only in multiple sclerosis, but also in neurological and neuropsychiatric diseases characterized by demyelination.
Collapse
|
23
|
Posporis C, Beltran E, Dunning M, Espadas I, Gillespie S, Barry AT, Wessmann A. Prognostic Factors for Recovery of Vision in Canine Optic Neuritis of Unknown Etiology: 26 Dogs (2003-2018). Front Vet Sci 2019; 6:415. [PMID: 31824972 PMCID: PMC6882734 DOI: 10.3389/fvets.2019.00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/07/2019] [Indexed: 12/03/2022] Open
Abstract
Optic neuritis (ON) is a recognized condition, yet factors influencing recovery of vision are currently unknown. The purpose of this study was to identify prognostic factors for recovery of vision in canine ON of unknown etiology. Clinical databases of three referral hospitals were searched for dogs with presumptive ON based on clinicopathologic, MRI/CT, and fundoscopic findings. Twenty-six dogs diagnosed with presumptive ON of unknown etiology, isolated (I-ON) and MUE-associated (MUE-ON), were included in the study. Their medical records were reviewed retrospectively, and the association of complete recovery of vision with signalment, clinicopathologic findings, and treatment was investigated. Datasets were tested for normality using the D'Agostino and Shapiro-Wilk tests. Individual datasets were compared using the Chi-squared test, Fisher's exact test, and the Mann-Whitney U-test. For multiple comparisons with parametric datasets, the one-way analysis of variance (ANOVA) was performed, and for non-parametric datasets, the Kruskal-Wallis test was performed to test for independence. For all data, averages are expressed as median with interquartile range and significance set at p < 0.05. Twenty-six dogs met the inclusion criteria. Median follow-up was 230 days (range 21–1901 days, mean 496 days). Six dogs (23%) achieved complete recovery and 20 dogs (77%) incomplete or no recovery of vision. The presence of a reactive pupillary light reflex (p = 0.013), the absence of fundoscopic lesions (p = 0.0006), a younger age (p = 0.038), and a lower cerebrospinal fluid (CSF) total nucleated cell count (TNCC) (p = 0.022) were statistically associated with complete recovery of vision. Dogs with I-ON were significantly younger (p = 0.046) and had lower CSF TNCC (p = 0.030) compared to the MUE-ON group. This study identified prognostic factors that may influence complete recovery of vision in dogs with ON. A larger cohort of dogs is required to determine whether these findings are robust and whether additional parameters aid accurate prognosis for recovery of vision in canine ON.
Collapse
Affiliation(s)
| | - Elsa Beltran
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, United Kingdom
| | - Mark Dunning
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Willows Veterinary Centre and Referral Service, Shirley, United Kingdom
| | - Irene Espadas
- Neurology/Neurosurgery Service, Pride Veterinary Centre, Derby, United Kingdom.,Small Animal Teaching Hospital, School of Veterinary Sciences, University of Liverpool, Neston, United Kingdom
| | - Sabrina Gillespie
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, United Kingdom
| | - Amy Teresa Barry
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, United Kingdom
| | - Annette Wessmann
- Neurology/Neurosurgery Service, Pride Veterinary Centre, Derby, United Kingdom
| |
Collapse
|
24
|
Melchor GS, Khan T, Reger JF, Huang JK. Remyelination Pharmacotherapy Investigations Highlight Diverse Mechanisms Underlying Multiple Sclerosis Progression. ACS Pharmacol Transl Sci 2019; 2:372-386. [PMID: 32259071 DOI: 10.1021/acsptsci.9b00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by a complex lesion microenvironment. Although much progress has been made in developing immunomodulatory treatments to reduce myelin damage and delay the progression of MS, there is a paucity in treatment options that address the multiple pathophysiological aspects of the disease. Currently available immune-centered therapies are able to reduce the immune-mediated damage exhibited in MS patients, however, they cannot rescue the eventual failure of remyelination or permanent neuronal damage that occurs as MS progresses. Recent advances have provided a better understanding of remyelination processes, specifically oligodendrocyte lineage cell progression following demyelination. Further there have been new findings highlighting various components of the lesion microenvironment that contribute to myelin repair and restored axonal health. In this review we discuss the complexities of myelin repair following immune-mediated damage in the CNS, the contribution of animal models of MS in providing insight on OL progression and myelin repair, and current and potential remyelination-centered therapeutic targets. As remyelination therapies continue to progress into clinical trials, we consider a dual approach targeting the inflammatory microenvironment and intrinsic remyelination mechanisms to be optimal in aiding MS patients.
Collapse
Affiliation(s)
- George S Melchor
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Tahiyana Khan
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Joan F Reger
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
25
|
Harrington EP, Bergles DE, Calabresi PA. Immune cell modulation of oligodendrocyte lineage cells. Neurosci Lett 2019; 715:134601. [PMID: 31693930 DOI: 10.1016/j.neulet.2019.134601] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023]
Abstract
Chronic demyelination and the concomitant loss of trophic support and increased energy demands in axons are thought to contribute to neurodegeneration in a number of neurological diseases such as multiple sclerosis (MS). Adult oligodendrocyte precursor cells (OPCs) play an important role in these demyelinating diseases by generating new myelinating oligodendrocytes that may help limit axonal degeneration. Thus, promoting the differentiation of OPCs and functional integration of newly generated oligodendrocytes is a crucial avenue for the next generation of therapies. Evidence to date suggests that the immune system may both positively and negatively impact OPC differentiation and endogenous remyelination in disease. Inflammatory cytokines not only suppress OPC differentiation but may also directly affect other functions of OPCs. Recent studies have demonstrated that OPCs and oligodendrocytes in both human multiple sclerosis lesions and mouse models of demyelination can express an immunogenic transcriptional signature and upregulate antigen presenting genes. In inflammatory demyelinating mouse models OPCs are capable of presenting antigen and activating CD8 + T cells. Here we review the evidence for this new role of oligodendroglia as antigen presenting cells and how these inflammatory OPCs (iOPCs) and inflammatory oligodendrocytes (iOLs) may influence myelin repair and other disease processes.
Collapse
Affiliation(s)
- Emily P Harrington
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Pathology 509, Baltimore, MD, 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., WBSB 1001, Baltimore, MD, 21205, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., WBSB 1001, Baltimore, MD, 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Pathology 509, Baltimore, MD, 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe St., WBSB 1001, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, Foerster S, McClain CR, Chalut K, van Wijngaarden P, Franklin RJM. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell 2019; 25:473-485.e8. [PMID: 31585093 PMCID: PMC6863391 DOI: 10.1016/j.stem.2019.08.015] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023]
Abstract
The age-related failure to produce oligodendrocytes from oligodendrocyte progenitor cells (OPCs) is associated with irreversible neurodegeneration in multiple sclerosis (MS). Consequently, regenerative approaches have significant potential for treating chronic demyelinating diseases. Here, we show that the differentiation potential of adult rodent OPCs decreases with age. Aged OPCs become unresponsive to pro-differentiation signals, suggesting intrinsic constraints on therapeutic approaches aimed at enhancing OPC differentiation. This decline in functional capacity is associated with hallmarks of cellular aging, including decreased metabolic function and increased DNA damage. Fasting or treatment with metformin can reverse these changes and restore the regenerative capacity of aged OPCs, improving remyelination in aged animals following focal demyelination. Aged OPCs treated with metformin regain responsiveness to pro-differentiation signals, suggesting synergistic effects of rejuvenation and pro-differentiation therapies. These findings provide insight into aging-associated remyelination failure and suggest therapeutic interventions for reversing such declines in chronic disease.
Collapse
Affiliation(s)
- Björn Neumann
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Roey Baror
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Chao Zhao
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Michael Segel
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Sabine Dietmann
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Khalil S Rawji
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Sarah Foerster
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Crystal R McClain
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Kevin Chalut
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK; Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Peter van Wijngaarden
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.
| | - Robin J M Franklin
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
27
|
Segel M, Neumann B, Hill MFE, Weber IP, Viscomi C, Zhao C, Young A, Agley CC, Thompson AJ, Gonzalez GA, Sharma A, Holmqvist S, Rowitch DH, Franze K, Franklin RJM, Chalut KJ. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 2019; 573:130-134. [PMID: 31413369 PMCID: PMC7025879 DOI: 10.1038/s41586-019-1484-9] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/15/2019] [Indexed: 11/09/2022]
Abstract
Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.
Collapse
Affiliation(s)
- Michael Segel
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Björn Neumann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Myfanwy F E Hill
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Isabell P Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adam Young
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Chibeza C Agley
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Amelia J Thompson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ginez A Gonzalez
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Amar Sharma
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Staffan Holmqvist
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David H Rowitch
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Nguyen H, Zarriello S, Coats A, Nelson C, Kingsbury C, Gorsky A, Rajani M, Neal EG, Borlongan CV. Stem cell therapy for neurological disorders: A focus on aging. Neurobiol Dis 2019; 126:85-104. [PMID: 30219376 PMCID: PMC6650276 DOI: 10.1016/j.nbd.2018.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Age-related neurological disorders continue to pose a significant societal and economic burden. Aging is a complex phenomenon that affects many aspects of the human body. Specifically, aging can have detrimental effects on the progression of brain diseases and endogenous stem cells. Stem cell therapies possess promising potential to mitigate the neurological symptoms of such diseases. However, aging presents a major obstacle for maximum efficacy of these treatments. In this review, we discuss current preclinical and clinical literature to highlight the interactions between aging, stem cell therapy, and the progression of major neurological disease states such as Parkinson's disease, Huntington's disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and multiple system atrophy. We raise important questions to guide future research and advance novel treatment options.
Collapse
Affiliation(s)
- Hung Nguyen
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sydney Zarriello
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Alexandreya Coats
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Cannon Nelson
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Anna Gorsky
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mira Rajani
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Elliot G Neal
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
29
|
Zeydan B, Kantarci OH. Progressive Forms of Multiple Sclerosis: Distinct Entity or Age-Dependent Phenomena. Neurol Clin 2018; 36:163-171. [PMID: 29157397 DOI: 10.1016/j.ncl.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In multiple sclerosis (MS), disease course is defined by a subclinical or clinical relapsing remitting phase, a progressive phase, and the overlapping phase in-between. Each phase can have intermittently active or inactive periods. Subclinical activity in radiologically isolated syndrome evolving to primary-progressive MS is mostly indistinguishable from relapsing-remitting MS evolving to secondary-progressive MS. The onset of progressive-phase MS is age-dependent but time and pre-progressive phase agnostic. Pathologic hallmarks of progressive MS onset also appear to be age-dependent but pre-progressive phase agnostic. Onset of progressive MS is characterized by a peak in smoldering plaques.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of Neurology, Mayo Clinic and Foundation, 200 First Street, Southwest, Rochester, MN 55905, USA; Department of Radiology, Mayo Clinic and Foundation, 200 First Street, Southwest, Rochester, MN 55905, USA
| | - Orhun H Kantarci
- Department of Neurology, Mayo Clinic and Foundation, 200 First Street, Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
31
|
McMurran CE, Kodali S, Young A, Franklin RJ. Clinical implications of myelin regeneration in the central nervous system. Expert Rev Neurother 2018; 18:111-123. [PMID: 29285954 DOI: 10.1080/14737175.2018.1421458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Amongst strategies to repair the brain, myelin repair offers genuine cause for optimism. Myelin, which sheaths most axons in the central nervous system (CNS), is vital for normal neurological function, as demonstrated by the functional deficits that accrue when it is absent in a range of debilitating myelin diseases. Following demyelination, post-mortem and imaging studies have shown that extensive regeneration of myelin is possible in the human brain. Over recent decades preclinical research has given us a strong understanding of the biology of myelin regeneration, opening up several exciting therapeutic opportunities that are on the cusp of clinical translation. Areas covered: This review discusses diseases that compromise the function of myelin, the endogenous capacity of the CNS to regenerate myelin, and why this sometimes fails. We then outline the extensive progress that has been made towards therapies that promote the regeneration of myelin. Expert commentary: Finally, a commentary on the first examples of these therapies to reach human patients and the evidence base that supports them, giving our opinion on where attention should be focused going forward is provided.
Collapse
Affiliation(s)
- Christopher E McMurran
- a Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute , University of Cambridge , Cambridge , UK
| | - Srikirti Kodali
- a Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute , University of Cambridge , Cambridge , UK
| | - Adam Young
- a Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute , University of Cambridge , Cambridge , UK
| | - Robin Jm Franklin
- a Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute , University of Cambridge , Cambridge , UK
| |
Collapse
|
32
|
Tan GA, Furber KL, Thangaraj MP, Sobchishin L, Doucette JR, Nazarali AJ. Organotypic Cultures from the Adult CNS: A Novel Model to Study Demyelination and Remyelination Ex Vivo. Cell Mol Neurobiol 2018; 38:317-328. [PMID: 28795301 DOI: 10.1007/s10571-017-0529-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Experimental models of multiple sclerosis (MS) have significantly advanced our understanding of pathophysiology and therapeutic interventions. Although in vivo rodent models are considered to most closely represent the complex cellular and molecular disease states of the human central nervous system (CNS), these can be costly to maintain and require long timelines. Organotypic slice cultures maintain the cytotypic organization observed in the intact CNS, yet provide many of the experimental advantages of in vitro cell culture models. Cerebellar organotypic cultures have proven useful for studying myelination and remyelination, but this model has only been established using early postnatal tissue. This young brain tissue allows for neuro development ex vivo to mimic the 'mature' CNS; however, there are many differences between postnatal and adult organotypic cultures. This may be particularly relevant to MS, as a major barrier to myelin regeneration is age. This paper describes a modified protocol to study demyelination and remyelination in adult cerebellar tissue, which has been used to demonstrate neuroprotection with omega-3 fatty acids. Thus, adult cerebellar organotypic cultures provide a novel ex vivo platform for screening potential therapies in myelin degeneration and repair.
Collapse
Affiliation(s)
- Glaiza A Tan
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kendra L Furber
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Merlin P Thangaraj
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - LaRhonda Sobchishin
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - J Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| |
Collapse
|
33
|
Abstract
We have witnessed major successes in the development of effective immunomodulatory therapies capable of reducing adaptive immune-mediated myelin damage in MS over the last 30 years. However, until it is possible to prevent MS or initiate treatment before it has already caused lesions there is a need to repair myelin damage to prevent further axonal loss. The past decade has brought remarkable advances in our understanding of oligodendrocyte biology and the related search for remyelinating therapies in humans. In this review, we first outline the basic biology of central nervous system myelin and remyelination, including a discussion of the major identified pathways and targets that might help yield CNS remyelinating drugs. In conjunction, we provide an overview of techniques that have helped identify compounds capable of promoting oligodendrocyte precursor cell differentiation and myelination. This includes the methods for both initial in vitro screening and subsequent in vivo confirmation of the target. We then review methods proposed to quantify human remyelination in vivo, including visual evoked potentials and putative imaging modalities. As the remyelination era approaches, with the announcement of the first positive trial in remyelination, we are now tasked with answering new questions regarding patient-specific factors (e.g., age) that may influence the extent and optimal therapeutic window for remyelination.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology Weill Institute for the Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Ari J Green
- Department of Neurology Weill Institute for the Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Timing of Future Remyelination Therapies and Their Potential to Stop Multiple Sclerosis Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:161-170. [PMID: 28093713 DOI: 10.1007/978-3-319-47861-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Prior to the onset of demyelination in multiple sclerosis (MS), early oligodendrocyte injury, axonal degeneration and astroglial scarring occur. The irreversible progressive phase of MS begins when the axonal loss threshold is reached. Progressive disease onset has the highest impact on a poor prognosis in MS. Conversion to progressive disease is essentially an age-dependent process independent of disease duration and initial disease course. Although prevention of relapses has been the primary approach in the disease management, incomplete recovery from even the first relapse correlates with the long-term neurodegenerative phenotype of progressive MS onset. Therefore, the provider should review each patient's potential for relapse-related disability and start DMDs with the goal of preventing relapses. Existing immunomodulatory medications used to prevent MS relapses do not prevent long-term disability, which requires agents focused on remyelination and axonal repair. If applied immediately after a relapse rather than during the progressive phase of MS, remyelination-stimulating strategies may result in full recovery and prevention of long-term neurodegeneration and progressive disease course.
Collapse
|
35
|
Plemel JR, Liu WQ, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 2017; 16:617-634. [PMID: 28685761 DOI: 10.1038/nrd.2017.115] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is characterized by inflammatory activity that results in destruction of the myelin sheaths that enwrap axons. The currently available medications for multiple sclerosis are predominantly immune-modulating and do not directly promote repair. White matter regeneration, or remyelination, is a new and exciting potential approach to treating multiple sclerosis, as remyelination repairs the damaged regions of the central nervous system. A wealth of new strategies in animal models that promote remyelination, including the repopulation of oligodendrocytes that produce myelin, has led to several clinical trials to test new reparative therapies. In this Review, we highlight the biology of, and obstacles to, remyelination. We address new strategies to improve remyelination in preclinical models, highlight the therapies that are currently undergoing clinical trials and discuss the challenges of objectively measuring remyelination in trials of repair in multiple sclerosis.
Collapse
Affiliation(s)
- Jason R Plemel
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - Wei-Qiao Liu
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Departments of Clinical Neurosciences and Oncology, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
36
|
Hlavica M, Delparente A, Good A, Good N, Plattner PS, Seyedsadr MS, Schwab ME, Figlewicz DP, Ineichen BV. Intrathecal insulin-like growth factor 1 but not insulin enhances myelin repair in young and aged rats. Neurosci Lett 2017; 648:41-46. [PMID: 28363754 DOI: 10.1016/j.neulet.2017.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/29/2022]
Abstract
One main pathological hallmark of multiple sclerosis (MS) is demyelination. Novel therapies which enhance myelin repair are urgently needed. Insulin and insulin-like growth factor 1 (IGF-1) have strong functional relationships. Here, we addressed the potential capacity of IGF-1 and insulin to enhance remyelination in an animal demyelination model in vivo. We found that chronic intrathecal infusion of IGF-1 enhanced remyelination after lysolecithin-induced demyelination in the spinal cord of young and aged rats. Aged rats showed a weaker innate remyelination capacity and are therefore a good model for progressive MS which is defined by chronic demyelination. In contrast to IGF-1, Insulin had no effect on remyelination in either age group. Our findings highlight the potential use of IGF-1 as remyelinating therapy for MS, particularly the progressive stage in which chronic demyelination is the hallmark.
Collapse
Affiliation(s)
- Martin Hlavica
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland; Cantonal Hospital St.Gallen, Department of Neurosurgery, Switzerland
| | - Aro Delparente
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Andrin Good
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Nicolas Good
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Patricia S Plattner
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Maryam S Seyedsadr
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Dianne P Figlewicz
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Benjamin V Ineichen
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland; University Hospital Zurich, Department of Neurology, 8091 Zurich, Switzerland.
| |
Collapse
|
37
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
38
|
McMurran CE, Jones CA, Fitzgerald DC, Franklin RJM. CNS Remyelination and the Innate Immune System. Front Cell Dev Biol 2016; 4:38. [PMID: 27200350 PMCID: PMC4853384 DOI: 10.3389/fcell.2016.00038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
A misguided inflammatory response is frequently implicated in myelin damage. Particularly prominent among myelin diseases, multiple sclerosis (MS) is an autoimmune condition, with immune–mediated damage central to its etiology. Nevertheless, a robust inflammatory response is also essential for the efficient regeneration of myelin sheaths after such injury. Here, we discuss the functions of inflammation that promote remyelination, and how these have been experimentally disentangled from the pathological facets of the immune response. We focus on the contributions that resident microglia and monocyte-derived macrophages make to remyelination and compare the roles of these two populations of innate immune cells. Finally, the current literature is framed in the context of developing therapies that manipulate the innate immune response to promote remyelination in clinical myelin disease.
Collapse
Affiliation(s)
- Christopher E McMurran
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge Cambridge, UK
| | | | - Denise C Fitzgerald
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast Belfast, UK
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge Cambridge, UK
| |
Collapse
|
39
|
Goldstein EZ, Church JS, Hesp ZC, Popovich PG, McTigue DM. A silver lining of neuroinflammation: Beneficial effects on myelination. Exp Neurol 2016; 283:550-9. [PMID: 27151600 DOI: 10.1016/j.expneurol.2016.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 12/19/2022]
Abstract
Myelin accelerates action potential conduction velocity and provides essential energy support for axons. Unfortunately, myelin and myelinating cells are often vulnerable to injury or disease, resulting in myelin damage, which in turn can lead to axon dysfunction, overt pathology and neurological impairment. Inflammation is a common component of trauma and disease in both the CNS and PNS and therefore an active inflammatory response is often considered deleterious to myelin health. While inflammation can certainly damage myelin, inflammatory processes also can positively affect oligodendrocyte lineage progression, myelin debris clearance, oligodendrocyte metabolism and myelin repair. In the periphery, inflammatory cascades can also augment myelin repair, including processes initiated by infiltrating immune cells as well as by local Schwann cells. In this review, various aspects of inflammation beneficial to myelin repair are discussed and should be considered when designing or implementing anti-inflammatory therapies for CNS and PNS injury involving myelinating cells.
Collapse
Affiliation(s)
- Evan Z Goldstein
- Neuroscience Graduate Program, Wexner Medical Center, The Ohio State University, United States; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, United States
| | - Jamie S Church
- Neuroscience Graduate Program, Wexner Medical Center, The Ohio State University, United States; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, United States
| | - Zoe C Hesp
- Neuroscience Graduate Program, Wexner Medical Center, The Ohio State University, United States; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, United States
| | - Phillip G Popovich
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, United States; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, United States
| | - Dana M McTigue
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, United States; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, United States.
| |
Collapse
|
40
|
An Extract of Chinpi, the Dried Peel of the Citrus Fruit Unshiu, Enhances Axonal Remyelination via Promoting the Proliferation of Oligodendrocyte Progenitor Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8692698. [PMID: 27022404 PMCID: PMC4789069 DOI: 10.1155/2016/8692698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
The aging-induced decrease in axonal myelination/remyelination is due to impaired recruitment and differentiation of oligodendrocyte progenitor cells (OPCs). Our previous studies have shown that a monoclonal antibody to DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (Ddx54), a member of the DEAD box family of RNA helicases, (1) specifically labels oligodendrocyte lineages, (2) binds to mRNA and protein isoforms of myelin basic proteins (MBP), and (3) regulates migration of OPCs from ventricular zone to corpus callosum in mice. It has also been demonstrated that specific loss of a 21.5 kDa MBP isoform (MBP21.5) reflects demyelination status, and oral administration of an extract of Chinpi, citrus unshiu peel, reversed the aging-induced demyelination. Here, we report that Chinpi treatment induced a specific increase in the MBP21.5, led to the reappearance of Ddx54-expressing cells in ventricular-subventricular zone and corpus callosum of aged mice, and promoted remyelination. Treatment of in vitro OPC cultures with Chinpi constituents, hesperidin plus narirutin, led to an increase in 5-bromo-2′-deoxyuridine incorporation in Ddx54-expressing OPCs, but not in NG2- or Olig2-expressing cell populations. The present study suggests that Ddx54 plays crucial role in remyelination. Furthermore, Chinpi and Chinpi-containing herbal medicines may be a therapeutic option for the aging-induced demyelination diseases.
Collapse
|
41
|
von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2015; 9:426. [PMID: 26578886 PMCID: PMC4623426 DOI: 10.3389/fncel.2015.00426] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Aging is the main risk factor for Alzheimer’s disease (AD); being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of β-amyloid (Aβ). Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although transforming growth factor β (TGFβ) is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor scavenger receptor (SR)-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Guillermo E Parada
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jaime Eugenín
- Laboratory of Neural Systems, Faculty of Chemistry and Biology, Department of Biology, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
42
|
Itoh K, Maki T, Lok J, Arai K. Mechanisms of cell-cell interaction in oligodendrogenesis and remyelination after stroke. Brain Res 2015; 1623:135-49. [PMID: 25960351 PMCID: PMC4569526 DOI: 10.1016/j.brainres.2015.04.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
White matter damage is a clinically important aspect of several central nervous system diseases, including stroke. Cerebral white matter primarily consists of axonal bundles ensheathed with myelin secreted by mature oligodendrocytes, which play an important role in neurotransmission between different areas of gray matter. During the acute phase of stroke, damage to oligodendrocytes leads to white matter dysfunction through the loss of myelin. On the contrary, during the chronic phase, white matter components promote an environment, which is favorable for neural repair, vascular remodeling, and remyelination. For effective remyelination to take place, oligodendrocyte precursor cells (OPCs) play critical roles by proliferating and differentiating into mature oligodendrocytes, which help to decrease the burden of axonal injury. Notably, other types of cells contribute to these OPC responses under the ischemic conditions. This mini-review summarizes the non-cell autonomous mechanisms in oligodendrogenesis and remyelination after white matter damage, focusing on how OPCs receive support from their neighboring cells. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Kanako Itoh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
43
|
Remyelination After Cuprizone-Induced Demyelination Is Accelerated in Juvenile Mice. J Neuropathol Exp Neurol 2015; 74:756-66. [DOI: 10.1097/nen.0000000000000214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, although this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granular neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet, remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this review, we will review the biology of remyelination, including the cells and signals involved; describe when remyelination occurs and when and why it fails and the consequences of its failure; and discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642 University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
45
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
46
|
The systemic milieu as a mediator of dietary influence on stem cell function during ageing. Ageing Res Rev 2015; 19:53-64. [PMID: 25481406 DOI: 10.1016/j.arr.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023]
Abstract
The regenerative decline of organisms during ageing is linked to the reduced proliferative activity, impaired function and exhaustion of tissue-specific stem and progenitor cells. Studies using heterochronic parabiosis, involving the surgical attachment of young and old organisms so that they share a common vascular system, have revealed that the systemic environment has a profound effect on stem cell function. In particular, specific youthful rejuvenating circulatory factors reverse age-related declines in stem cell function, whereas the old milieu contains inhibitory factors that impede stem cell function in young animals. Similarly, the effects of certain dietary interventions, namely calorie restriction, also induce a more youthful cellular and molecular phenotype in ageing stem cells throughout the body. Further to this, there are key molecular pathways involved in translating the availability of nutrients into altered stem cell function, including signalling in the insulin and insulin-like growth factor and mechanistic target of rapamycin (mTOR) pathways. In this review, we discuss the potential role of dietary interventions to promote a more rejuvenating systemic milieu in order to enhance stem cell function and promote healthy ageing.
Collapse
|
47
|
Luessi F, Kuhlmann T, Zipp F. Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 2014; 14:1315-34. [DOI: 10.1586/14737175.2014.969241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Brown RA, Narayanan S, Banwell B, Arnold DL. Magnetization transfer ratio recovery in new lesions decreases during adolescence in pediatric-onset multiple sclerosis patients. NEUROIMAGE-CLINICAL 2014; 6:237-42. [PMID: 25379436 PMCID: PMC4215523 DOI: 10.1016/j.nicl.2014.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 11/25/2022]
Abstract
Children and adolescents diagnosed with multiple sclerosis rarely accrue physical disability early in their disease. This could be explained by greater remyelination in children, a capacity that may be lost in adolescence or early adulthood. Magnetization transfer ratio (MTR) MRI can be used to quantify changes in myelin in MS. We used serial MTR imaging and longitudinal random effects analysis to quantify recovery of MTR in acute lesions and to evaluate MTR changes in normal-appearing tissue in 19 adolescent MS patients. Our objective was to determine whether younger adolescents have a greater capacity for remyelination and whether this decreases as patients approach adulthood. We detected a significant decrease in MTR recovery between ages 16 and 20 years (p = 0.023), with older subjects approaching typical recovery levels for adult-onset MS. MTR recovery in acute MS lesions decreases with age in adolescents, suggesting loss of remyelination capacity. This may be related to the conclusion of primary myelination or other developmental factors.
Collapse
Affiliation(s)
- Robert A Brown
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital 3801 Rue University, Montreal H3A 2B4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital 3801 Rue University, Montreal H3A 2B4, Canada
| | - Brenda Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital 3801 Rue University, Montreal H3A 2B4, Canada
| | | |
Collapse
|
49
|
Oligodendroglia in cortical multiple sclerosis lesions decrease with disease progression, but regenerate after repeated experimental demyelination. Acta Neuropathol 2014; 128:231-46. [PMID: 24563023 PMCID: PMC4102825 DOI: 10.1007/s00401-014-1260-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 01/15/2023]
Abstract
Cerebral cortex shows a high endogenous propensity for remyelination. Yet, widespread subpial cortical demyelination (SCD) is a common feature in progressive multiple sclerosis (MS) and can already be found in early MS. In the present study, we compared oligodendroglial loss in SCD in early and chronic MS. Furthermore, we addressed in an experimental model whether repeated episodes of inflammatory SCD could alter oligodendroglial repopulation and subsequently lead to persistently demyelinated cortical lesions. NogoA(+) mature oligodendrocytes and Olig2(+) oligodendrocyte precursor cells were examined in SCD in patients with early and chronic MS, normal-appearing MS cortex, and control cortex as well as in the rat model of repeated targeted cortical experimental autoimmune encephalomyelitis (EAE). NogoA(+) and Olig2(+) cells were significantly reduced in SCD in patients with chronic, but not early MS. Repeated induction of SCD in rats resulted only in a transient loss of NogoA(+), but not Olig2(+) cells during the demyelination phase. This phase was followed by complete oligodendroglial repopulation and remyelination, even after four episodes of demyelination. Our data indicate efficient oligodendroglial repopulation in subpial cortical lesions in rats after repeated SCD that was similar to early, but not chronic MS cases. Accordingly, four cycles of experimental de- and remyelination were not sufficient to induce sustained remyelination failure as found in chronic cortical MS lesions. This suggests that alternative mechanisms contribute to oligodendrocyte depletion in chronic cortical demyelination in MS.
Collapse
|
50
|
Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W. Remyelination after spinal cord injury: Is it a target for repair? Prog Neurobiol 2014; 117:54-72. [DOI: 10.1016/j.pneurobio.2014.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022]
|