1
|
Gao D, Lv X, Shen Z, Wang H, Zhao W, Wang H, Jin X, Tan L, Yin L, Wang J, Yue W, Wang H. Early Diagnosis of CNS Virus Infections from Neurological Autoimmune Diseases: A Cross-Sectional Study from China in ER Setting. Brain Sci 2024; 14:888. [PMID: 39335384 PMCID: PMC11430841 DOI: 10.3390/brainsci14090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
It is challenging to differentiate between central nervous system (CNS) virus infections and neurological autoimmune diseases in the emergency department. Considering their different pathogenesis, we assume they differ in neuropsychiatric symptoms and laboratory results. A total of 80 patients were included in this study, 50 with CNS virus infections and 30 with CNS autoimmune diseases, confirmed by a polymerase chain reaction (PCR) of cerebrospinal fluid (CSF). A binary logistic regression model and receiver operating characteristic (ROC) curve were employed to examine the discrimination between the two types of diseases based on neuropsychiatric symptoms and laboratory results. Compared to patients with neurological autoimmune diseases, patients with CNS virus infections had a higher incidence of abnormal behavior (p = 0.026) and abnormal sensation/thought (p = 0.029); higher total (p = 0.005), direct (p = 0.004), and indirect bilirubin (p = 0.004); and increased CSF cell (p = 0.01) and CSF white cell counts (p = 0.01). Patients with disturbance of consciousness and abnormal sensation/thought were 7.79-fold and 5.07-fold more likely to be diagnosed with CNS virus infections (OR = 7.79, p = 0.008; OR = 5.07, p = 0.032). Each unit increase in blood indirect bilirubin concentration and CSF white cell counts increased the risk of developing CNS virus infections by 1.25-fold and 1.01-fold (OR = 1.25, p = 0.016; OR = 1.01, p = 0.011). ROC analysis showed that the area under the curve was 88.0% (p < 0.001). Our study found that patients with CNS viral infections tend to have higher blood indirect bilirubin concentration, CSF leukocyte count, frequency of disorders of consciousness, and abnormal sensation and thought, which may help differentiate them from those with neurological autoimmune diseases.
Collapse
Affiliation(s)
- Daiquan Gao
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Psychosomatic Disease Consultation Center, Capital Medical University, Beijing 100053, China
| | - Xue Lv
- The First Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zuoyao Shen
- The First Affiliated Hospital of Xinxiang Medical College, Xinxiang 453100, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Huicong Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Psychosomatic Disease Consultation Center, Capital Medical University, Beijing 100053, China
| | - Wenfeng Zhao
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Psychosomatic Disease Consultation Center, Capital Medical University, Beijing 100053, China
| | - Huang Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Psychosomatic Disease Consultation Center, Capital Medical University, Beijing 100053, China
| | - Xiukun Jin
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Psychosomatic Disease Consultation Center, Capital Medical University, Beijing 100053, China
| | - Liuchen Tan
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Psychosomatic Disease Consultation Center, Capital Medical University, Beijing 100053, China
| | - Lu Yin
- Medical Research & Biometrics Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102300, China
| | - Junhui Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Sunsimiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727000, China
| | - Weihua Yue
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hongxing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Psychosomatic Disease Consultation Center, Capital Medical University, Beijing 100053, China
- Beijing Institute of Brain Disorders, Beijing 100069, China
| |
Collapse
|
2
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
3
|
Prichett LM, Severance EG, Yolken RH, Carmichael D, Lu Y, Zeng Y, Young AS, Kumra T. Recent anti-infective exposure as a risk factor for first episode of suicidal thoughts and/or behaviors in pediatric patients. Brain Behav Immun Health 2024; 36:100738. [PMID: 38435723 PMCID: PMC10906143 DOI: 10.1016/j.bbih.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives We conducted a retrospective cohort study of medical records from a large, Maryland, U.S.-based cohort of pediatric primary care patients for potential associations between antibacterial, antifungal and antiviral prescriptions and subsequent suicidal thoughts and/or behaviors. Methods Using first suicide-related diagnosis as the outcome and prior prescription of antibacterial, antifungal, and/or antiviral use as the exposure, we employed a series of multivariate Cox proportional hazards models. These models examined the hazard of developing newly recognized suicidal thoughts and/or behaviors, controlling for age, sex, race, insurance, number of encounters during the study period, prior mood disorder diagnosis and number of chronic health conditions. We constructed the same series of models stratified by the groups with and without a prior recorded mental or behavioral health diagnosis (MBHD). Results Suicidal thoughts and/or behaviors were associated with the previous prescription of an antibacterial, antifungal and/or antiviral medication (HR 1.31, 95 %-CI 1.05-1.64) as well as the total number of such medications prescribed (HR 1.04, 95 %-CI 1.01-1.08), with the strongest relationship among patients with three or more medications (HR 1.44, 95 %-CI 1.06-1.96). Among individual medications, the strongest association was with antibacterial medication (HR 1.28, 95 %-CI 1.03-1.60). Correlations were strongest among the subgroup of patients with no previous (MBHD). Interpretation Infections treated with antimicrobial medications were associated with increased risks of a suicide-related diagnosis among patients who had not had a previous mental or behavioral health diagnosis. This group should be considered for increased levels of vigilance as well as interventions directed at suicide screening and prevention. Funding National Institutes of Health, Stanley Medical Research Institute.
Collapse
Affiliation(s)
- Laura M. Prichett
- Department of Pediatrics, Division of General Pediatrics, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Emily G. Severance
- Department of Pediatrics, Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, 600 N. Wolfe, Baltimore, MD, 21287, USA
| | - Robert H. Yolken
- Department of Pediatrics, Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, 600 N. Wolfe, Baltimore, MD, 21287, USA
| | - Destini Carmichael
- Department of Pediatrics, Division of General Pediatrics, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Yongyi Lu
- Department of Pediatrics, Division of General Pediatrics, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Yong Zeng
- Department of Pediatrics, Division of General Pediatrics, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Andrea S. Young
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins School of Medicine, 600 N Wolfe, Baltimore, MD, 21287, USA
| | - Tina Kumra
- Department of Pediatrics, Division of General Pediatrics, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
4
|
Chaves C, Dursun SM, Tusconi M, Hallak JEC. Neuroinflammation and schizophrenia - is there a link? Front Psychiatry 2024; 15:1356975. [PMID: 38389990 PMCID: PMC10881867 DOI: 10.3389/fpsyt.2024.1356975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Center (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
6
|
Griffiths K, Mellado MR, Chung R, Lally J, McQueen G, Sendt KV, Gillespie A, Ibrahim M, Richter A, Shields A, Ponsford M, Jolles S, Hodsoll J, Pollak TA, Upthegrove R, Egerton A, MacCabe JH. Changes in immunoglobulin levels during clozapine treatment in schizophrenia. Brain Behav Immun 2024; 115:223-228. [PMID: 37832895 DOI: 10.1016/j.bbi.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND AND HYPOTHESIS Use of clozapine in treatment-resistant schizophrenia is often limited due to risk of adverse effects. Cross-sectional associations between clozapine treatment and low immunoglobulin levels have been reported, however prospective studies are required to establish temporal relationships. We tested the hypothesis that reductions in immunoglobulin levels would occur over the first 6 months following initiation of clozapine treatment. Relationships between immunoglobulin levels and symptom severity over the course of clozapine treatment were also explored. DESIGN This prospective observational study measured immunoglobulin (Ig) levels (A, M and G) in 56 patients with treatment-resistant schizophrenia at 6-, 12- and 24-weeks following initiation with clozapine. Clinical symptoms were also measured at 12 weeks using the positive and negative syndrome scale (PANSS). RESULTS IgA, IgG and IgM all decreased during clozapine treatment. For IgA and IgG the reduction was significant at 24 weeks (IgA: β = -32.66, 95% CI = -62.38, -2.93, p = 0.03; IgG: β = -63.96, 95% CI = -118.00, -9.31, p = 0.02). For IgM the reduction was significant at 12 and 24 weeks (12 weeks: β = -23.48, 95% CI = -39.56, -7.42, p = 0.004; 24 weeks: β = -33.12, 95 %CI = -50.30, -15.94, p = <0.001). Reductions in IgA and IgG during clozapine treatment were correlated with reductions in PANSS-total over 12 weeks (n = 32, IgA r = 0.59, p = 0.005; IgG r = 0.48, p = 0.03). CONCLUSIONS The observed reductions in immunoglobulin levels over six months of clozapine treatment add further evidence linking clozapine to secondary antibody deficiency. Associations between Ig reduction and symptom improvement may however indicate that immune mechanisms contribute to both desirable and undesirable effects of clozapine.
Collapse
Affiliation(s)
- Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - Maria Ruiz Mellado
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - Raymond Chung
- Department of Social Genetic and Developmental Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK; Department of Psychiatry, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Psychiatry, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Grant McQueen
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | | | - Muhammad Ibrahim
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Adrian Shields
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Mark Ponsford
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK; Henry Wellcome Building, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - John Hodsoll
- Department of Biostatistics and Health Informatics, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, UK; Early Intervention Service, Birmingham Womens and Childrens NHS Foundation Trust, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, UK.
| |
Collapse
|
7
|
Vollmond CV, Tetens MM, Paulsen FW, Gerstoft J, Kronborg G, Johansen IS, Larsen CS, Wiese L, Dalager-Pedersen M, Leth S, Mortensen PB, Lebech AM, Obel N, Omland LH. Risk of Depression in People With Human Immunodeficiency Virus: A Nationwide Population-based Matched Cohort Study. Clin Infect Dis 2023; 77:1569-1577. [PMID: 37467149 DOI: 10.1093/cid/ciad415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection is associated with depression. However, previous studies have not addressed familial factors. METHODS Nationwide, population-based, matched cohort study of people with HIV (PWH) in Denmark between 1995 and 2021 who were matched on sex and date of birth with a comparison cohort randomly selected from the Danish population. Family-related factors were examined by inclusion of siblings of those in the cohorts. We calculated hazard ratios (HRs) for depression, receipt of antidepressants, electroconvulsive therapy (ECT), and suicide, as well as the yearly proportions of study cohorts with psychiatric hospital contact due to depression and receipt of antidepressants from 10 years before to 10 years after study inclusion. RESULTS We included 5943 PWH and 59 430 comparison cohort members. Median age was 38 years, and 25% were women. We observed an increased risk of depression, receipt of antidepressants, ECT, and suicide among PWH in the 2 first years of observation (HR, 3.3; 95% confidence interval [CI]: 2.5-4.4), HR, 3.0 (95% CI: 2.7-3.4), HR, 2.8 (95% CI: .9-8.6), and HR, 10.7 (95% CI: 5.2-22.2), thereafter the risk subsided but remained increased. The proportions of PWH with psychiatric hospital contact due to depression and receipt of antidepressants were increased prior to and especially after HIV diagnosis. Risk of all outcomes was substantially lower among siblings of PWH than among PWH (HR for receipt of antidepressants, 1.1; 95% CI: 1.0-1.2). CONCLUSIONS PWH have an increased risk of depression. Family-related factors are unlikely to explain this risk.
Collapse
Affiliation(s)
- Cecilie V Vollmond
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Malte M Tetens
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Fie W Paulsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jan Gerstoft
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Kronborg
- Department of Infectious Diseases, Copenhagen University Hospital, Amager-Hvidovre Hospital, Hvidovre, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lothar Wiese
- Department of Infectious Diseases, Zealand University Hospital, Roskilde, Denmark
| | - Michael Dalager-Pedersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Steffen Leth
- Department of Infectious Diseases & Internal Medicine, Gødstrup Hospital, Herning, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Preben B Mortensen
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Omland
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Steen NE, Rahman Z, Szabo A, Hindley GFL, Parker N, Cheng W, Lin A, O’Connell KS, Sheikh MA, Shadrin A, Bahrami S, Karthikeyan S, Hoseth EZ, Dale AM, Aukrust P, Smeland OB, Ueland T, Frei O, Djurovic S, Andreassen OA. Shared Genetic Loci Between Schizophrenia and White Blood Cell Counts Suggest Genetically Determined Systemic Immune Abnormalities. Schizophr Bull 2023; 49:1345-1354. [PMID: 37319439 PMCID: PMC10483470 DOI: 10.1093/schbul/sbad082] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Zillur Rahman
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandeep Karthikeyan
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eva Z Hoseth
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen—Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Cao Y, Ji S, Chen Y, Zhang X, Ding G, Tang F. Association between autoimmune diseases of the nervous system and schizophrenia: A systematic review and meta-analysis of cohort studies. Compr Psychiatry 2023; 122:152370. [PMID: 36709559 DOI: 10.1016/j.comppsych.2023.152370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Numerous studies have found an association between autoimmune diseases of the nervous system (ADNS) and schizophrenia (SCZ), but the findings remain controversial. We conducted the first meta-analysis to summarize the current evidence from cohort studies that evaluated the association between ADNS and SCZ. METHODS PubMed, Web of Science, and Embase were comprehensively searched until May 30, 2022 for articles on the association between ADNS and SCZ. Every included study was reported effect size with 95% CIs for the association between ADNS and SCZ. Meta-regression and subgroup analysis were used to assess the heterogeneity. RESULTS A total of 8 cohort studies with 12 cohorts were included in the meta-analysis. We observed a significant association between ADNS and SCZ (RR = 1.42; 95%CI, 1.18-1.72). Subgroup analysis showed that the risk of SCZ was significantly increased when ADNS were used as exposure factors (RR = 1.48; 95%CI, 1.15-1.89), whereas with SCZ did not observe an increased risk of subsequent ADNS (RR = 1.33; 95%CI, 0.92-1.92); multiple sclerosis (MS) was positively associated with SCZ (RR = 1.36; 95%CI, 1.12-1.66), but no significant association was found between Guillain-Barre syndrome (GBS) and SCZ (RR = 1.90; 95%CI, 0.87-4.17). Meanwhile, we found location was the source of heterogeneity. LIMITATIONS High heterogeneity was observed (I2 = 92.0%), and only English literature was included in the meta-analysis. CONCLUSIONS We found a positive association between ADNS and SCZ, and the association was different across the different types of ADNS. The results of the study are helpful for clinicians to carry out targeted preventive measures for ADNS and SCZ.
Collapse
Affiliation(s)
- Yiting Cao
- School of Public Health, Weifang Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, China
| | - Shuang Ji
- School of Public Health, Weifang Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, China
| | - Yujiao Chen
- School of Public Health, Weifang Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, China
| | - Xiaoshuai Zhang
- School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan, China
| | - Guoyong Ding
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fang Tang
- School of Public Health, Weifang Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, China; Center for Big Data Research in Health and Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China; Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Omland LH, Bodilsen J, Tetens MM, Helweg-Larsen J, Jarløv JO, Ziebell M, Ellermann-Eriksen S, Justesen US, Frimodt-Møller N, Mortensen PB, Obel N. Risk of Psychiatric Disorders, Use of Psychiatric Hospitals, and Receipt of Psychiatric Medication in Patients With Brain Abscess in Denmark. Clin Infect Dis 2023; 76:315-322. [PMID: 36124707 DOI: 10.1093/cid/ciac773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is unknown whether patients diagnosed with brain abscess have an increased risk of psychiatric disorders. METHODS In this nationwide, population-based matched cohort study from Denmark, we compared the incidence of psychiatric disorders, use of psychiatric hospitals, and receipt of psychiatric medications between patients diagnosed with brain abscess and individuals from the general population, matched on date of birth, sex, and residential area. RESULTS We included 435 patients diagnosed with brain abscess and 3909 individuals in the comparison cohort: 61% were male and median age was 54 years. Patients diagnosed with brain abscess were more likely to suffer from comorbidity. The risk of a hospital diagnosis of psychiatric disorders was increased the first 5 years of observation. In the subpopulation, who had never been in contact with psychiatric hospitals or received psychiatric medication before study inclusion, the risk of developing psychiatric disorders was close to that of the background population, especially when we excluded dementia from this outcome. There was a substantial increase in the receipt of anxiolytics and antidepressants. The difference in the proportion of individuals who received anxiolytics and antidepressants increased from 4% (95% confidence interval [CI], 0%-7%) and 2% (95% CI, -1% to 5%) 2 years before study inclusion to 17% (95% CI, 12%-21%) and 11% (95% CI, 7%-16%) in the year after study inclusion. CONCLUSIONS Patients with brain abscess without prior psychiatric disorders or receipt of psychiatric medicine are not at increased risk psychiatric disorders diagnosed in psychiatric hospitals, but they have an increased receipt of psychiatric medication.
Collapse
Affiliation(s)
- Lars Haukali Omland
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jacob Bodilsen
- Department of Clinical Microbiology, Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Malte Mose Tetens
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jannik Helweg-Larsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Otto Jarløv
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Ulrik Stenz Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Preben Bo Mortensen
- Centre for Integrated Register-Based Research at Aarhus University (CIRRAU), Aarhus, Denmark
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Increased blood neutrophil extracellular traps (NETs) associated with early life stress: translational findings in recent-onset schizophrenia and rodent model. Transl Psychiatry 2022; 12:526. [PMID: 36572669 PMCID: PMC9792518 DOI: 10.1038/s41398-022-02291-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Higher levels of interleukin (IL)-6 and elevated neutrophil counts are consistently reported in the blood of patients with schizophrenia. Stressors during childhood and/or adolescence are major socioenvironmental risk factors for schizophrenia and may contribute to immune dysregulation. Previous studies using blood cytokines to stratify patients with schizophrenia suggest that only a subset presents a low-grade inflammatory state. However, these studies have not addressed whether environmental factors such as childhood maltreatment contributed to identifying inflammatory clusters. Moreover, a neutrophil-related mechanism (Neutrophil Extracellular Traps; NETs) central to both the initiation and chronicity of autoimmune and inflammatory diseases has never been investigated in psychiatry. Elevated NETs in schizophrenia may predispose patients to inflammatory and autoimmune diseases resulting in reduced life expectancy. We, therefore, investigated NETs as a novel mechanism and biological target in early schizophrenia and their role together with IL-6 and childhood maltreatment in identifying cluster subgroups. We found increased NETs in the plasma of patients with early schizophrenia (n = 78) compared to both their unaffected siblings (n = 25) and community controls (n = 78), irrespective of sex, body mass index, psychoactive drug use, or tobacco smoking. Increased NETs in patients were unrelated to antipsychotic treatment, which was further tested in vitro using fresh neutrophils. By applying unsupervised two-step clustering analysis, we integrated values of NETs, IL-6, and childhood maltreatment scores. We identified two main clusters; childhood maltreatment scores and NETs were the most important variables contributing to cluster separation (high-CL1 and low-CL2), while IL-6 was the least contributor. Patients allocated in the high-CL1 (61.5%) had significantly higher childhood maltreatment scores, NETs, and IL-6 levels than the remaining groups (patients low-CL2, siblings, and controls high-CL1 and low-CL2). We complemented these findings with a rat model based on stress exposure during adolescence that results in several schizophrenia-like changes in adulthood. We found that adolescent stressed rats had higher NETs and IL-6 levels in serum compared to non-stressed rats with a tendency to produce more NETs from the bone marrow. Altogether, this study brings a novel cellular-based mechanism in schizophrenia that, combined with early-stress, could be useful to identify subgroups for more personalised treatments.
Collapse
|
12
|
Shnayder NA, Khasanova AK, Strelnik AI, Al-Zamil M, Otmakhov AP, Neznanov NG, Shipulin GA, Petrova MM, Garganeeva NP, Nasyrova RF. Cytokine Imbalance as a Biomarker of Treatment-Resistant Schizophrenia. Int J Mol Sci 2022; 23:ijms231911324. [PMID: 36232626 PMCID: PMC9570417 DOI: 10.3390/ijms231911324] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is an important and unresolved problem in biological and clinical psychiatry. Approximately 30% of cases of schizophrenia (Sch) are TRS, which may be due to the fact that some patients with TRS may suffer from pathogenetically “non-dopamine” Sch, in the development of which neuroinflammation is supposed to play an important role. The purpose of this narrative review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines during the development of therapeutic resistance to APs and their pathogenetic and prognostic significance of cytokine imbalance as TRS biomarkers. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to maintaining or changing the cytokine balance can become a new key in unlocking the mystery of “non-dopamine” Sch and developing new therapeutic strategies for the treatment of TRS and psychosis in the setting of acute and chronic neuroinflammation. In addition, the inconsistency of the results of previous studies on the role of pro-inflammatory and anti-inflammatory cytokines indicates that the TRS biomarker, most likely, is not the serum level of one or more cytokines, but the cytokine balance. We have confirmed the hypothesis that cytokine imbalance is one of the most important TRS biomarkers. This hypothesis is partially supported by the variable response to immunomodulators in patients with TRS, which were prescribed without taking into account the cytokine balance of the relation between serum levels of the most important pro-inflammatory and anti-inflammatory cytokines for TRS.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| | - Aiperi K. Khasanova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Anna I. Strelnik
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Department of Psychiatry, Narcology and Psychotherapy, Samara State Medical University, 443016 Samara, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey P. Otmakhov
- Basic Department of Psychological and Social Support, St. Petersburg State Institute of Psychology and Social Work, 199178 Saint Petersburg, Russia
- St. Nikolay Psychiatric Hospital, 190121 Saint Petersburg, Russia
| | - Nikolay G. Neznanov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-02-20-78-13 (N.A.S. & R.F.N.)
| |
Collapse
|
13
|
de Bartolomeis A, Barone A, Vellucci L, Mazza B, Austin MC, Iasevoli F, Ciccarelli M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review. Mol Neurobiol 2022; 59:6460-6501. [PMID: 35963926 PMCID: PMC9463235 DOI: 10.1007/s12035-022-02976-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022]
Abstract
Evidence from clinical, preclinical, and post-mortem studies supports the inflammatory/immune hypothesis of schizophrenia pathogenesis. Less evident is the link between the inflammatory background and two well-recognized functional and structural findings of schizophrenia pathophysiology: the dopamine-glutamate aberrant interaction and the alteration of dendritic spines architecture, both believed to be the “quantal” elements of cortical-subcortical dysfunctional network. In this systematic review, we tried to capture the major findings linking inflammation, aberrant glutamate-dopamine interaction, and post-synaptic changes under a direct and inverse translational perspective, a paramount picture that at present is lacking. The inflammatory effects on dopaminergic function appear to be bidirectional: the inflammation influences dopamine release, and dopamine acts as a regulator of discrete inflammatory processes involved in schizophrenia such as dysregulated interleukin and kynurenine pathways. Furthermore, the link between inflammation and glutamate is strongly supported by clinical studies aimed at exploring overactive microglia in schizophrenia patients and maternal immune activation models, indicating impaired glutamate regulation and reduced N-methyl-D-aspartate receptor (NMDAR) function. In addition, an inflammatory/immune-induced alteration of post-synaptic density scaffold proteins, crucial for downstream NMDAR signaling and synaptic efficacy, has been demonstrated. According to these findings, a significant increase in plasma inflammatory markers has been found in schizophrenia patients compared to healthy controls, associated with reduced cortical integrity and functional connectivity, relevant to the cognitive deficit of schizophrenia. Finally, the link between altered inflammatory/immune responses raises relevant questions regarding potential new therapeutic strategies specifically for those forms of schizophrenia that are resistant to canonical antipsychotics or unresponsive to clozapine.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy. .,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy.
| | - Annarita Barone
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Benedetta Mazza
- Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mark C Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University (ISU), Pocatello, ID, USA
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Laboratory of Molecular and Translational Psychiatry, University School of Medicine of Naples Federico II, Naples, Italy.,Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Runge K, Balla A, Fiebich BL, Maier SJ, Pankratz B, Schlump A, Nickel K, Dersch R, Domschke K, Tebartz van Elst L, Endres D. Antibody indices of infectious pathogens from serum and cerebrospinal fluid in patients with schizophrenia spectrum disorders. Fluids Barriers CNS 2022; 19:61. [PMID: 35906648 PMCID: PMC9338642 DOI: 10.1186/s12987-022-00355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Infectious and immunological theories of schizophrenia have been discussed for over a century. Contradictory results for infectious agents in association with schizophrenia spectrum disorders (SSDs) were reported. The rationale of this study was to investigate intrathecal antibody synthesis of the most frequently discussed neurotropic pathogens using a pathogen-specific antibody index (AI) in patients with SSD in comparison to controls. Methods In 100 patients with SSD and 39 mentally healthy controls with idiopathic intracranial hypertension (IIH), antibodies against the herpesviruses EBV, CMV, and HSV 1/2 as well as the protozoan Toxoplasma gondii, were measured in paired cerebrospinal fluid (CSF) and serum samples with ELISA-kits. From these antibody concentrations the pathogen-specific AIs were determined with the assumption of intrathecal antibody synthesis at values > 1.5. Results No significant difference was detected in the number of SSD patients with elevated pathogen-specific AI compared to the control group. In a subgroup analysis, a significantly higher EBV AI was observed in the group of patients with chronic SSD compared to patients with first-time SSD diagnosis (p = 0.003). In addition, two identified outlier EBV patients showed evidence for polyspecific immune reactions (with more than one increased AI). Conclusions Evidence for the role of intrathecal EBV antibody synthesis was found in patients with chronic SSD compared to those first diagnosed. Apart from a possible infectious factor in SSD pathophysiology, the evidence for polyspecific immune response in outlier patients may also suggest the involvement of further immunological processes in a small subgroup of SSD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00355-7.
Collapse
Affiliation(s)
- Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Agnes Balla
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Pankratz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Schlump
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Meng X, Zheng JL, Sun ML, Lai HY, Wang BJ, Yao J, Wang H. Association between MTHFR (677C>T and 1298A>C) polymorphisms and psychiatric disorder: A meta-analysis. PLoS One 2022; 17:e0271170. [PMID: 35834596 PMCID: PMC9282595 DOI: 10.1371/journal.pone.0271170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies showed that genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) is related to attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD) and schizophrenia (SCZ). However, no consistent conclusion has been determined. This meta-analysis aims to interrogate the relationship between MTHFR gene polymorphisms (677C>T and 1298A>C) and the occurrence of ADHD, BD and SCZ. We retrieved case-control studies that met the inclusion criteria from the PubMed database. Associations between MTHFR polymorphisms (677C>T and 1298A>C) and ADHD, BD and SCZ were measured by means of odds ratios (ORs) using a random effects model and 95% confidence intervals (CIs). Additionally, sensitivity analysis and publication bias were performed. After inclusion criteria were met, a total of five studies with ADHD including 434 cases and 670 controls, 18 studies with BD including 4167 cases and 5901 controls and 44 studies with SCZ including 16,098 cases and 19913 controls were finally included in our meta-analysis. Overall, our meta-analytical results provided evidence that the MTHFR 677C>T was associated with occurrence of BD and SCZ, while the 1298A>C polymorphism was related to ADHD and BD, and additionally the sensitivity analysis indicated these results were stable and reliable. This may provide useful information for relevant studies on the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Xinyao Meng
- School of Basic Medicine, Shenyang Medical College, Shenyang, P.R. China
| | - Ji-long Zheng
- Department of Forensic Medicine, China Criminal Police College, Shenyang, P.R. China
| | - Mao-ling Sun
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Hai-yun Lai
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Bao-jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, P.R. China
| | - Hongbo Wang
- School of Basic Medicine, Shenyang Medical College, Shenyang, P.R. China
| |
Collapse
|
16
|
Werner MCF, Wirgenes KV, Shadrin AA, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Limited association between infections, autoimmune disease and genetic risk and immune activation in severe mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110511. [PMID: 35063598 DOI: 10.1016/j.pnpbp.2022.110511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Low-grade inflammation may be part of the underlying mechanism of schizophrenia and bipolar disorder. We investigated if genetic susceptibility, infections or autoimmunity could explain the immune activation. METHODS Seven immune markers were selected based on indicated associations to severe mental disorders (IL-1Ra, sIL-2R, IL-18, sgp130, sTNFR-1, APRIL, ICAM-1) and measured in plasma of patients with schizophrenia (SCZ, N = 732) and bipolar spectrum disorders (BD, N = 460) and healthy controls (HC, N = 938). Information on rate of infections and autoimmune diseases were obtained from Norwegian national health registries for a twelve-year period. Polygenic risk scores (PRS) of SCZ and BD were calculated from genome-wide association studies. Analysis of covariance were used to test effects of infection rate, autoimmune disease and PRS on differences in immune markers between patients and HC. RESULTS Infection rate differed between all groups (BD > HC > SCZ, all p < 0.001) whereas autoimmune disease was more frequent in BD compared to SCZ (p = 0.004) and HC (p = 0.003). sIL-2R was positively associated with autoimmune disease (p = 0.001) and negatively associated with PRS of SCZ (p = 0.006) across SCZ and HC; however, associations represented only small changes in the difference of sIL-2R levels between SCZ and HC. CONCLUSION There were few significant associations between rate of infections, autoimmune disease or PRS and altered immune markers in SCZ and BD, and the detected associations represented only small changes in the immune aberrations. The findings suggest that most of the low-grade inflammation in SCZ and BD is explained by other factors than the underlying PRS, autoimmunity and infection rates.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Werner MCF, Wirgenes KV, Shadrin A, Lunding SH, Rødevand L, Hjell G, Ormerod MBEG, Haram M, Agartz I, Djurovic S, Melle I, Aukrust P, Ueland T, Andreassen OA, Steen NE. Immune marker levels in severe mental disorders: associations with polygenic risk scores of related mental phenotypes and psoriasis. Transl Psychiatry 2022; 12:38. [PMID: 35082268 PMCID: PMC8792001 DOI: 10.1038/s41398-022-01811-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence implicate immune abnormalities in the pathophysiology of severe mental disorders (SMD) and comorbid mental disorders. Here, we use the data from genome-wide association studies (GWAS) of autoimmune diseases and mental phenotypes associated with SMD to disentangle genetic susceptibilities of immune abnormalities in SMD. We included 1004 patients with SMD and 947 healthy controls (HC) and measured plasma levels of IL-1Ra, sIL-2R, gp130, sTNFR-1, IL-18, APRIL, and ICAM-1. Polygenic risk scores (PRS) of six autoimmune disorders, CRP, and 10 SMD-related mental phenotypes were calculated from GWAS. General linear models were applied to assess the association of PRS with immune marker abnormalities. We found negative associations between PRS of educational attainment and IL-1Ra (P = 0.01) and IL-18 (P = 0.01). There were nominal positive associations between PRS of psoriasis and sgp130 (P = 0.02) and PRS of anxiety and IL-18 (P = 0.03), and nominal negative associations between PRS of anxiety and sIL-2R (P = 0.02) and PRS of educational attainment and sIL-2R (P = 0.03). Associations explained minor amounts of the immune marker plasma-level difference between SMD and HC. Different PRS and immune marker associations in the SMD group compared to HC were shown for PRS of extraversion and IL-1Ra ([interaction effect (IE), P = 0.002), and nominally for PRS of openness and IL-1Ra (IE, P = 0.02) and sTNFR-1 (IE, P = 0.04). Our findings indicate polygenic susceptibilities to immune abnormalities in SMD involving genetic overlap with SMD-related mental phenotypes and psoriasis. Associations might suggest immune genetic factors of SMD subgroups characterized by autoimmune or specific mental features.
Collapse
Affiliation(s)
- Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Katrine Verena Wirgenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | | | - Marit Haram
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Postolache TT, Medoff DR, Brown CH, Fang LJ, Upadhyaya SK, Lowry CA, Miller M, Kreyenbuhl JA. Lipophilic vs. hydrophilic statins and psychiatric hospitalizations and emergency room visits in US Veterans with schizophrenia and bipolar disorder. Pteridines 2021; 32:48-69. [PMID: 34887622 PMCID: PMC8654264 DOI: 10.1515/pteridines-2020-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective – Psychiatric hospitalizations and emergency department (ED) visits are costly, stigmatizing, and often ineffective. Given the immune and kynurenine activation in bipolar disorder (BD) and schizophrenia, as well as the immune-modulatory effects of statins, we aimed to compare the relative risk (RRs) of psychiatric hospitalizations and ED visits between individuals prescribed lipophilic vs. hydrophilic statins vs. no statins. We hypothesized (a) reduced rates of hospitalization and ER utilization with statins versus no statins and (b) differences in outcomes between statins, as lipophilia increases the capability to penetrate the blood–brain barrier with potentially beneficial neuroimmune, antioxidant, neuroprotective, neurotrophic, and endothelial stabilizing effects, and, in contrast, potentially detrimental decreases in brain cholesterol concentrations leading to serotoninergic dysfunction, changes in membrane lipid composition, thus affecting ion channels and receptors. Methods – We used VA service utilization data from October 1, 2010 to September 30, 2015. The RRs for psychiatric hospitalization and ED visits, were estimated using robust Poisson regression analyses. The number of individuals analyzed was 683,129. Results – Individuals with schizophrenia and BD who received prescriptions for either lipophilic or hydrophilic statins had a lower RR of psychiatric hospitalization or ED visits relative to nonstatin controls. Hydrophilic statins were significantly associated with lower RRs of psychiatric hospitalization but not of ED visits, compared to lipophilic statins. Conclusion – The reduction in psychiatric hospitalizations in statin users (vs. nonusers) should be interpreted cautiously, as it carries a high risk of confounding by indication. While the lower RR of psychiatric hospitalizations in hydrophilic statins relative to the lipophilic statins is relatively bias free, the finding bears replication in a specifically designed study. If replicated, important clinical implications for personalizing statin treatment in patients with mental illness, investigating add-on statins for improved therapeutic control, and mechanistic exploration for identifying new treatment targets are natural next steps.
Collapse
Affiliation(s)
- Teodor T Postolache
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Baltimore, MD 21201, United States of America; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Aurora, CO 80045, United States of America; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), U.S. Department of Veterans Affairs, Denver, CO 80045, United States of America
| | - Deborah R Medoff
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Clayton H Brown
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Li Juan Fang
- Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Sanjaya K Upadhyaya
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Christopher A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Aurora, CO 80045, United States of America; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), U.S. Department of Veterans Affairs, Denver, CO 80045, United States of America; Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, United States of America; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Michael Miller
- Department of Medicine, VAMC Baltimore and University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Julie A Kreyenbuhl
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
19
|
Early life Adversity, functional connectivity and cognitive performance in Schizophrenia: The mediating role of IL-6. Brain Behav Immun 2021; 98:388-396. [PMID: 34242739 DOI: 10.1016/j.bbi.2021.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Exposure to childhood trauma (CT) is associated with cognitive impairment in schizophrenia, and deficits in social cognition in particular. Here, we sought to test whether IL-6 mediated the association between CT and social cognition both directly, and sequentially via altered default mode network (DMN) connectivity. METHODS Three-hundred-and-eleven participants (104 patients and 207 healthy participants) were included, with MRI data acquired in a subset of n = 147. CT was measured using the childhood trauma questionnaire (CTQ). IL-6 was measured in both plasma and in toll like receptor (TLR) stimulated whole blood. The CANTAB emotion recognition task (ERT) was administered to assess social cognition, and cortical connectivity was assessed based on resting DMN connectivity. RESULTS Higher IL-6 levels, measured both in plasma and in toll-like receptor (TLR-2) stimulated blood, were significantly correlated with higher CTQ scores and lower cognitive and social cognitive function. Plasma IL-6 was further observed to partly mediate the association between higher CT scores and lower emotion recognition performance (CTQ total: βindirect -0.0234, 95% CI: -0.0573 to -0.0074; CTQ physical neglect: βindirect = -0.0316, 95% CI: -0.0741 to -0.0049). Finally, sequential mediation was observed between plasma IL-6 levels and DMN connectivity in mediating the effects of higher CTQ on lower social cognitive function (βindirect = -0.0618, 95% CI: -0.1523 to -0.285). CONCLUSION This work suggests that previous associations between CT and social cognition may be partly mediated via an increased inflammatory response. IL-6's association with changes in DMN activity further suggest at least one cortical network via which CT related effects on cognition may be transmitted.
Collapse
|
20
|
Robinson N, Bergen SE. Environmental Risk Factors for Schizophrenia and Bipolar Disorder and Their Relationship to Genetic Risk: Current Knowledge and Future Directions. Front Genet 2021; 12:686666. [PMID: 34262598 PMCID: PMC8273311 DOI: 10.3389/fgene.2021.686666] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric disorders which result from complex interplay between genetic and environmental factors. It is well-established that they are highly heritable disorders, and considerable progress has been made identifying their shared and distinct genetic risk factors. However, the 15-40% of risk that is derived from environmental sources is less definitively known. Environmental factors that have been repeatedly investigated and often associated with SZ include: obstetric complications, infections, winter or spring birth, migration, urban living, childhood adversity, and cannabis use. There is evidence that childhood adversity and some types of infections are also associated with BD. Evidence for other risk factors in BD is weaker due to fewer studies and often smaller sample sizes. Relatively few environmental exposures have ever been examined for SZ or BD, and additional ones likely remain to be discovered. A complete picture of how genetic and environmental risk factors confer risk for these disorders requires an understanding of how they interact. Early gene-by-environment interaction studies for both SZ and BD often involved candidate genes and were underpowered. Larger samples with genome-wide data and polygenic risk scores now offer enhanced prospects to reveal genetic interactions with environmental exposures that contribute to risk for these disorders. Overall, although some environmental risk factors have been identified for SZ, few have been for BD, and the extent to which these account for the total risk from environmental sources remains unknown. For both disorders, interactions between genetic and environmental risk factors are also not well understood and merit further investigation. Questions remain regarding the mechanisms by which risk factors exert their effects, and the ways in which environmental factors differ by sex. Concurrent investigations of environmental and genetic risk factors in SZ and BD are needed as we work toward a more comprehensive understanding of the ways in which these disorders arise.
Collapse
Affiliation(s)
| | - Sarah E. Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Gatta E, Saudagar V, Drnevich J, Forrest MP, Auta J, Clark LV, Sershen H, Smith RC, Grayson DR, Davis JM, Guidotti A. Concordance of Immune-Related Markers in Lymphocytes and Prefrontal Cortex in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab002. [PMID: 33585819 PMCID: PMC7865130 DOI: 10.1093/schizbullopen/sgab002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder associated with a wide array of transcriptomic and neurobiochemical changes. Genome-wide transcriptomic profiling conducted in postmortem brain have provided novel insights into the pathophysiology of this disorder, and identified biological processes including immune/inflammatory-related responses, metabolic, endocrine, and synaptic function. However, few studies have investigated whether similar changes are present in peripheral tissue. Here, we used RNA-sequencing to characterize transcriptomic profiles of lymphocytes in 18 nonpsychotic controls and 19 individuals with schizophrenia. We identified 2819 differentially expressed transcripts (P nominal < .05) in the schizophrenia group when compared to controls. Bioinformatic analyses conducted on a subset of 293 genes (P nominal < .01 and |log2 FC| > 0.5) highlighted immune/inflammatory responses as key biological processes in our dataset. Differentially expressed genes in lymphocytes were highly enriched in gene expression profiles associated with cortex layer 5a and immune cells. Thus, we investigated whether the changes in transcripts levels observed in lymphocytes could also be detected in the prefrontal cortex (PFC, BA10) in a second replication cohort of schizophrenia subjects. Remarkably, mRNA levels detected in the PFC and lymphocytes were in strong agreement, and measurements obtained using RNA-sequencing positively correlated with data obtained by reverse transcriptase-quantitative polymerase chain reaction analysis. Collectively, our work supports a role for immune dysfunction in the pathogenesis of schizophrenia and suggests that peripheral markers can be used as accessible surrogates to investigate putative central nervous system disruptions.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James Auta
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Lindsay V Clark
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL
| | - Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, NYU Langone Medical Center, New York, NY
| | - Robert C Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, NYU Langone Medical Center, New York, NY
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - John M Davis
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
22
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
23
|
Fahey L, Donohoe G, Broin PÓ, Morris DW. Genes regulated by BCL11B during T-cell development are enriched for de novo mutations found in schizophrenia patients. Am J Med Genet B Neuropsychiatr Genet 2020; 183:370-379. [PMID: 32729240 DOI: 10.1002/ajmg.b.32811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 11/06/2022]
Abstract
While abnormal neurodevelopment contributes to schizophrenia (SCZ) risk, there is also evidence to support a role for immune dysfunction in SCZ. BCL11B, associated with SCZ in genome-wide association study (GWAS), is a transcription factor that regulates the differentiation and development of cells in the central nervous and immune systems. Here, we use functional genomics data from studies of BCL11B to investigate the contribution of neuronal and immune processes to SCZ pathophysiology. We identified the gene targets of BCL11B in brain striatal cells (n = 223 genes), double negative 4 (DN4) developing T cells (n = 114 genes) and double positive (DP) developing T cells (n = 518 genes) using an integrated analysis of RNA-seq and ChIP-seq data. No gene-set was enriched for genes containing common variants associated with SCZ but the DP gene-set was enriched for genes containing missense de novo mutations (DNMs; p = .001) using data from 3,447 SCZ trios. Post hoc analysis revealed the enrichment to be stronger for DP genes negatively regulated by BCL11B. Biological processes enriched for genes negatively regulated by BCL11B in DP gene-set included immune system development and cytokine signaling. These analyses, leveraging a GWAS-identified SCZ risk gene and data on gene expression and transcription factor binding, indicate that DNMs in immune pathways contribute to SCZ risk.
Collapse
Affiliation(s)
- Laura Fahey
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
24
|
Expression and Functionality Study of 9 Toll-Like Receptors in 33 Drug-Naïve Non-Affective First Episode Psychosis Individuals: A 3-Month Study. Int J Mol Sci 2020; 21:ijms21176106. [PMID: 32854231 PMCID: PMC7504008 DOI: 10.3390/ijms21176106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLRs) are a pivotal component of the innate immune system that seem to have a role in the pathogenesis of psychosis. The purpose of this work was to compare the expression and functionality of 9 TLRs in three peripheral blood mononuclear cells (PBMCs) (monocytes, B cells, and T cells) between 33 drug-naïve first-episode psychosis (FEP) individuals and 26 healthy volunteers, at baseline and after 3-month of antipsychotic treatment. The expression of TLRs 1–9 were assessed by flow cytometry. For the assessment of the TLR functionality, cells collected in sodium heparin tubes were polyclonally stimulated for 18 h, with different agonists for human TLR1–9. The results of our study highlight the role that TLR5 and TLR8 might play in the pathophysiology of psychosis. We found a lower expression of these receptors in FEP individuals, regarding healthy volunteers at baseline and after 3-month of treatment on the three PBMCs subsets. Most TLRs showed a lower functionality (especially reduced intracellular levels of TNF-α) in patients than in healthy volunteers. These results, together with previous evidence, suggest that individuals with psychosis might show a pattern of TLR expression that differs from that of healthy volunteers, which could vary according to the intensity of immune/inflammatory response.
Collapse
|
25
|
Increased densities of T and B lymphocytes indicate neuroinflammation in subgroups of schizophrenia and mood disorder patients. Brain Behav Immun 2020; 88:497-506. [PMID: 32283292 DOI: 10.1016/j.bbi.2020.04.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
An increasing number of clinical, epidemiological and genetic studies as well as investigations of CSF and blood suggests that neuroinflammation plays an essential role in the etiology of schizophrenia and mood disorders. However, direct neuropathological evidence of inflammation within the brain tissue remains sparse and the regional distribution of lymphocytes as surrogate markers of blood-brain barrier (BBB) impairment has not yet been investigated in this context. Densities of T and B lymphocytes were assessed in coronal whole brain sections of 22 patients with schizophrenia and 20 patients suffering from major depression or bipolar disorder, compared to 20 individuals without neuropsychiatric disorders from the Magdeburg Brain Collection. Cell densities were determined by immunohistochemical staining (anti-CD3 for T cells, anti-CD20 for B cells), followed by automated microscopic image acquisition and analysis. Hierarchical clustering and detailed cluster analysis were performed to detect possible subgroups of patients. Regional distribution was assessed by analysis of color coded mappings based on microsopic scans. Elevated lymphocyte density was found in 7 out of 20 mood disorder patients (adj. p = 0.022; Fisher's exact test, FET), 9 out of 22 schizophrenic patients (adj. p = 0.014; FET) and in 1 of 20 controls (p < 0.005; FET). Several cases showed different patterns of infiltration affecting cortical regions or subcortical white matter, while some presented diffuse infiltration. In two thirds of patients, no increased lymphocyte density could be found. The current findings indicate that lymphocyte infiltration occurs in a greater proportion of schizophrenia and mood disorder patients as compared to healthy controls. Under healthy conditions lymphocytes rarely cross the BBB. Thus, higher densities are considered indicators of neuroinflammation associated with an impairment of the BBB.
Collapse
|
26
|
ATP-Nlrp3 Inflammasome-Complement Cascade Axis in Sterile Brain Inflammation in Psychiatric Patients and its Impact on Stem Cell Trafficking. Stem Cell Rev Rep 2020; 15:497-505. [PMID: 31020518 PMCID: PMC6647482 DOI: 10.1007/s12015-019-09888-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the occurrence of psychiatric disorders in patients is linked to a local “sterile” inflammation of brain or due to a systemic inflammation process that affects the central nervous system. This is supported by the observation that in peripheral blood of psychotic patients are detectable several mediators and markers of inflammation as well as clinical data on correlations between systemic chronic inflammatory processes and psychiatric disorders. This may explain why some reported anti-inflammatory treatment strategies have beneficial effects on ameliorating psychotic events. In this review we will present a concept that aberrant purinergic signaling and increases in extracellular level of adenosine triphosphate (ATP) in the brain parenchyma may lead to activation of Nlrp3 inflammasome in microglia cells and as a consequence microglia released danger associated molecular pattern (DAMP) proteins activate complement cascade (ComC) in mannan binding lectin (MBL) – dependent manner. Activation of ATP-Nlrp3 inflammasome-ComC axis may also orchestrate trafficking of stem cells released from bone marrow into peripheral blood observed in psychotic patients. Based on this, the ATP-Nlrp3 inflammasome-ComC axis may become a target for new therapeutic approaches, which justifies the development and clinical application of efficient anti-inflammatory treatment strategies targeting this axis in psychiatry.
Collapse
|
27
|
Taylor MR, Roby CR, Elziny S, Duricy E, Taylor TM, Bowers JM. Age, but Not Sex, Modulates Foxp3 Expression in the Rat Brain across Development. Neuroscience 2020; 442:87-99. [PMID: 32599120 DOI: 10.1016/j.neuroscience.2020.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
The interconnectivity between brain development and the immune system has become an area of interest for many neuroscientists. However, to date, a limited number of known immune mediators of the peripheral nervous system (PNS) have been found to influence the development of the central nervous system (CNS). FOXP3 is a well-established mediator of regulatory T-cells in the PNS. However, the expression pattern of FOXP3 in the CNS and the PNS throughout development is unknown. To fill this void, we have characterized, in several brain regions, the developmental profile of Foxp3 for both sexes using rats. We found different patterns of Foxp3 in the CNS and PNS. In the CNS, we found Foxp3 was ubiquitously expressed, with the levels of Foxp3 varying by brain region. We also found both Foxp3 mRNA and protein levels peak during embryonic development and then steadily decrease with a peak increase during adulthood. In adulthood, the protein but not mRNA increases to the equivalent levels found at the embryonic stage of life. In the PNS, Foxp3 protein levels were low embryonically and increased steadily over the life of the animal with maximal levels reached in adulthood. Patterns observed for both the PNS and CNS were similar in males and females across all developmental timepoints. Our novel findings have implications for understanding how the neural immune system impacts neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Makenzlie R Taylor
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Clinton R Roby
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Soad Elziny
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Erin Duricy
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - Tina M Taylor
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA
| | - J Michael Bowers
- School of Neuroscience, 1981 Kraft Drive, ILSB, Virginia Tech, Blacksburg, VA 24061-0913, USA.
| |
Collapse
|
28
|
Hjorthøj C, Starzer MSK, Benros ME, Nordentoft M. Infections as a Risk Factor for and Prognostic Factor After Substance-Induced Psychoses. Am J Psychiatry 2020; 177:335-341. [PMID: 32046532 DOI: 10.1176/appi.ajp.2019.19101047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Previous studies have suggested that infections increase the risk of schizophrenia. In this study, the authors aimed to investigate 1) whether infections increase the risk of substance-induced psychosis, and 2) whether infections increase the risk of converting from substance-induced psychosis to schizophrenia. METHODS The study data were drawn from the combined nationwide Danish registers and included all people born in Denmark since 1981. The authors used Cox proportional hazards regression with infections as time-varying covariates, estimating hazard ratios and 95% confidence intervals. Infections were operationalized both as any infection and by the site of infection. RESULTS The study included 2,256,779 individuals, for whom 3,618 cases of incident substance-induced psychosis were recorded. Any infection increased the risk of substance-induced psychosis (hazard ratio=1.30, 95% CI=1.22-1.39). For the first 2 years, the risk was doubled. Hepatitis was the infection most strongly associated with substance-induced psychosis (hazard ratio=3.42, 95% CI=2.47-4.74). Different types of infections were linked with different types of substance-induced psychosis. Most associations remained significant after controlling for potential confounders, such as substance use disorders. Only hepatitis predicted conversion to schizophrenia after substance-induced psychosis (hazard ratio=1.87, 95% CI=1.07- 3.26). CONCLUSIONS The study results support the hypothesis of an immunological component to psychosis.
Collapse
Affiliation(s)
- Carsten Hjorthøj
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| | - Marie Stefanie Kejser Starzer
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| | - Michael Eriksen Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health-CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen (Hjorthøj, Starzer, Benros, Nordentoft); Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) (Hjorthøj, Benros, Nordentoft); and Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen (Hjorthøj)
| |
Collapse
|
29
|
Henderson TA, van Lierop MJ, McLean M, Uszler JM, Thornton JF, Siow YH, Pavel DG, Cardaci J, Cohen P. Functional Neuroimaging in Psychiatry-Aiding in Diagnosis and Guiding Treatment. What the American Psychiatric Association Does Not Know. Front Psychiatry 2020; 11:276. [PMID: 32351416 PMCID: PMC7176045 DOI: 10.3389/fpsyt.2020.00276] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
While early efforts in psychiatry were focused on uncovering the neurobiological basis of psychiatric symptoms, they made little progress due to limited ability to observe the living brain. Today, we know a great deal about the workings of the brain; yet, none of this neurobiological awareness has translated into the practice of psychiatry. The categorical system which dominates psychiatric diagnosis and thinking fails to match up to the real world of genetics, sophisticated psychological testing, and neuroimaging. Nevertheless, the American Psychiatric Association (APA) recently published a position paper stating that neuroimaging provided no benefit to the diagnosis and treatment of psychiatric disorders. Using the diagnosis of depression as a model, we illustrate how setting aside the unrealistic expectation of a pathognomonic "fingerprint" for categorical diagnoses, we can avoid missing the biological and, therefore, treatable contributors to psychopathology which can and are visualized using functional neuroimaging. Infection, toxicity, inflammation, gut-brain dysregulation, and traumatic brain injury can all induce psychiatric manifestations which masquerade as depression and other psychiatric disorders. We review these and provide illustrative clinical examples. We further describe situations for which single photon emission computed tomography (SPECT) and positron emission tomography (PET) functional neuroimaging already meet or exceed the criteria set forth by the APA to define a neuroimaging biomarker, including the differential diagnosis of Alzheimer's disease and other dementias, the differential diagnosis of ADHD, and the evaluation of traumatic brain injury. The limitations, both real and perceived, of SPECT and PET functional neuroimaging in the field of psychiatry are also elaborated. An important overarching concept for diagnostic imaging in all its forms, including functional neuroimaging, is that imaging allows a clinician to eliminate possibilities, narrow the differential diagnosis, and tailor the treatment plan. This progression is central to any medical diagnostic process.
Collapse
Affiliation(s)
- Theodore A Henderson
- The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,International Society of Applied Neuroimaging, Denver, CO, United States
| | - Muriel J van Lierop
- International Society of Applied Neuroimaging, Denver, CO, United States.,Private Practice, Toronto, ON, Canada
| | - Mary McLean
- International Society of Applied Neuroimaging, Denver, CO, United States.,Private Practice, Toronto, ON, Canada
| | - John Michael Uszler
- International Society of Applied Neuroimaging, Denver, CO, United States.,Nuclear Medicine, Providence St. John's Health Center, Santa Monica, CA, United States.,Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - John F Thornton
- International Society of Applied Neuroimaging, Denver, CO, United States.,Rossiter-Thornton Associates, Toronto, ON, Canada
| | - Yin-Hui Siow
- International Society of Applied Neuroimaging, Denver, CO, United States.,Nuclear Medicine, Southlake Regional Health Centre, Newmarket, ON, Canada
| | - Dan G Pavel
- International Society of Applied Neuroimaging, Denver, CO, United States.,PathFinder Brain SPECT, Deerfield, IL, United States
| | - Joe Cardaci
- International Society of Applied Neuroimaging, Denver, CO, United States.,Fremantle-School of Medicine, University of Notre Dame, Fremantle, WA, Australia.,Diagnostic Nuclear Medicine, Hollywood Private Hospital, Nedlands, WA, Australia.,Consultant Physician, Perth, WA, Australia
| | - Phil Cohen
- International Society of Applied Neuroimaging, Denver, CO, United States.,Nuclear Medicine, Lions Gate Hospital, Vancouver, BC, Canada.,Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Meyer U. Neurodevelopmental Resilience and Susceptibility to Maternal Immune Activation. Trends Neurosci 2019; 42:793-806. [DOI: 10.1016/j.tins.2019.08.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
|
31
|
Lluch E, Miller BJ. Rates of hepatitis B and C in patients with schizophrenia: A meta-analysis. Gen Hosp Psychiatry 2019; 61:41-46. [PMID: 31710857 DOI: 10.1016/j.genhosppsych.2019.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Schizophrenia is associated with increased infectious disease comorbidity and mortality. Individuals with schizophrenia have increased risk of infectious hepatitis, potentially due to substance use comorbidity, sexual behaviors, and immunologic factors. We performed a systematic review and meta-analysis of the association between schizophrenia and hepatitis B and C. METHOD We searched major electronic databases from inception until January 2019 for prevalence and case-control studies of infectious hepatitis in patients with schizophrenia. Random effects meta-analyses calculating odds ratios (ORs) and 95% confidence intervals (CIs) for case-controls studies, prevalence and 95% CIs, and meta-regression analyses were performed. RESULTS Twenty-one studies met the inclusion criteria. In case-control studies, there was an over 3-fold increased odds of hepatitis C in patients with schizophrenia (OR = 3.29, 95% CI 1.50-7.23, p = 0.003), and a prevalence of 6% (ES = 0.06, 95% CI 0.04-0.08). In case-control studies, there was an over 2-fold increased odds of hepatitis B in patients with schizophrenia (OR = 2.36, 95% CI 1.61-3.47, p < 0.001) and a prevalence of 7% (ES = 0.07, 95% CI 0.03-0.11). CONCLUSION We found an approximately 3-fold increased odds of hepatitis B and C in patients with schizophrenia. This association may be due to an increased prevalence of environmental risk factors, increased susceptibility to infections, or both. Findings suggest that screening for infectious hepatitis may be germane to the clinical care of patients with schizophrenia and relevant risk factors.
Collapse
Affiliation(s)
- Emily Lluch
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA, United States.
| |
Collapse
|
32
|
Abstract
Until recently, advances in understanding the genetic architecture of psychiatric disorders have been impeded by a historic, and often mandated, commitment to the use of traditional, and unvalidated, categorical diagnoses in isolation as the relevant phenotype. Such studies typically required lengthy structured interviews to delineate differences in the character and duration of behavioral symptomatology amongst disorders that were thought to be etiologic, and they were often underpowered as a result. Increasing acceptance of the fact that co-morbidity in psychiatric disorders is the rule rather than the exception has led to alternative designs in which shared dimensional symptomatology is analyzed as a quantitative trait and to association analyses in which combined polygenic risk scores are computationally compared across multiple traditional categorical diagnoses to identify both distinct and unique genetic and environmental elements. Increasing evidence that most mental disorders share many common genetic risk variants and environmental risk modifiers suggests that the broad spectrum of psychiatric pathology represents the pleiotropic display of a more limited series of pathologic events in neuronal development than was originally believed, regulated by many common risk variants and a smaller number of rare ones.
Collapse
Affiliation(s)
- Tova Fuller
- Deptartment of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Victor Reus
- Deptartment of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| |
Collapse
|