1
|
Rahman MA, Bissa M, Scinto H, Howe SE, Sarkis S, Ma ZM, Gutowska A, Jiang X, Luo CC, Schifanella L, Moles R, Silva de Castro I, Basu S, N'guessan KF, Williams LD, Becerra-Flores M, Doster MN, Hoang T, Choo-Wosoba H, Woode E, Sui Y, Tomaras GD, Paquin-Proulx D, Rao M, Talton JD, Kong XP, Zolla-Pazner S, Cardozo T, Franchini G, Berzofsky JA. Loss of HIV candidate vaccine efficacy in male macaques by mucosal nanoparticle immunization rescued by V2-specific response. Nat Commun 2024; 15:9102. [PMID: 39438480 PMCID: PMC11496677 DOI: 10.1038/s41467-024-53359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Systemic vaccination of macaques with V1-deleted (ΔV1) envelope immunogens reduce the risk of SIVmac251 acquisition by approximately 60%, with protective roles played by V2-specific ADCC and envelope-specific mucosal IL-17+NKp44+ innate lymphoid cells (ILCs). We investigated whether increased mucosal responses to V2 benefit vaccine efficacy by delivering oral nanoparticles (NPs) that release V2-scaffolded on Typhoid Toxin B (TTB) to the large intestine. Strikingly, mucosal immunization of male macaques abrogated vaccine efficacy with control TTB or empty NPs, but vaccine efficacy of up to 47.6% was preserved with V2-TTB NPs. The deleterious effects of NPs were linked to preferential recruitment of mucosal plasmacytoid dendritic cells (pDCs), reduction of protective mucosal NKp44+ ILCs, increased non-protective mucosal PMA/Ionomycin-induced IFN-γ+NKG2A-NKp44-ILCs, and increased levels of mucosal activated Ki67+CD4+ T cells, a potential target for virus infection. V2-TTB NP mucosal boosting rescued vaccine efficacy, likely via high avidity V2-specific antibodies mediating ADCC, and higher frequencies of mucosal NKp44+ ILCs and of ∆V1gp120 binding antibody-secreting B cells in the rectal mucosa. These findings emphasize the central role of systemic immunization and mucosal V2-specific antibodies in the protection afforded by ΔV1 envelope immunogens and encourage careful evaluation of vaccine delivery platforms to avoid inducing immune responses favorable to HIV transmission.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Scinto
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Savannah E Howe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shraddha Basu
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kombo F N'guessan
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - LaTonya D Williams
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emmanuel Woode
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mangala Rao
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Timothy Cardozo
- New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Zaongo SD, Zongo AW, Chen Y. Mechanisms underlying the development of type 1 diabetes in ART-treated people living with HIV: an enigmatic puzzle. Front Immunol 2024; 15:1470308. [PMID: 39257582 PMCID: PMC11383789 DOI: 10.3389/fimmu.2024.1470308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The immunopathogenesis of HIV infection remains poorly understood. Despite the widespread use of effective modern antiretroviral therapy (ART), people living with HIV (PLWH) are known to develop several comorbidities, including type 1 diabetes (T1DM). However, the etiology and critical mechanisms accounting for the onset of T1DM in the preceding context remain unknown. This article proposes to address this topic in order to provide further understanding and future research directions.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Abel W Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
3
|
Guney MH, Nagalekshmi K, McCauley SM, Carbone C, Aydemir O, Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. Proc Natl Acad Sci U S A 2024; 121:e2404349121. [PMID: 38985764 PMCID: PMC11260138 DOI: 10.1073/pnas.2404349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Intron-containing RNA expressed from the HIV-1 provirus activates type 1 interferon in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with short hairpin RNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte-derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the interferon-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with nontargetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant 2-CARD domain-deletion or phosphomimetic point mutations, indicates that IFIH1 (MDA5) filament formation, dephosphorylation, and association with MAVS are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 (MDA5) and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1 knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes by HIV-1. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 (MDA5), over two orders of magnitude, was revealed by formaldehyde cross-linking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is the innate immune receptor for intron-containing RNA from the HIV-1 provirus and that IFIH1 potentially contributes to chronic inflammation in people living with HIV-1, even in the presence of effective antiretroviral therapy.
Collapse
Affiliation(s)
- Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01605
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
- Massachusetts Consortium on Pathogen Readiness, Boston, MA02115
| |
Collapse
|
4
|
Guney MH, Nagalekshmi K, McCauley SM, Carbone C, Aydemir O, Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567619. [PMID: 38014177 PMCID: PMC10680824 DOI: 10.1101/2023.11.17.567619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 viremia and prevents progression to AIDS. Nonetheless, chronic inflammation is a common problem for people living with HIV-1 on ART. One possible cause of inflammation is ongoing transcription from HIV-1 proviruses, whether or not the sequences are competent for replication. Previous work has shown that intron-containing RNA expressed from the HIV-1 provirus in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells, activates type 1 interferon. This activation required HIV-1 rev and was blocked by the XPO1 (CRM1)-inhibitor leptomycin. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with shRNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the IFN-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with non-targetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant inhibitory CARD-deletion or phosphomimetic point mutations, indicates that IFIH1 filament formation, dephosphorylation, and association with MAVS, are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1-knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 was revealed by formaldehyde crosslinking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is required for innate immune activation by intron-containing RNA from the HIV-1 provirus, and potentially contributes to chronic inflammation in people living with HIV-1.
Collapse
Affiliation(s)
- Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
5
|
Cham LB, Gunst JD, Schleimann MH, Frattari GS, Rosas-Umbert M, Vibholm LK, van der Sluis RM, Jakobsen MR, Olesen R, Lin L, Tolstrup M, Søgaard OS. Single cell analysis reveals a subset of cytotoxic-like plasmacytoid dendritic cells in people with HIV-1. iScience 2023; 26:107628. [PMID: 37664600 PMCID: PMC10470411 DOI: 10.1016/j.isci.2023.107628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Human plasmacytoid dendritic cells (pDCs) play a central role in initiating and activating host immune responses during infection. To understand how the transcriptome of pDCs is impacted by HIV-1 infection and exogenous stimulation, we isolated pDCs from healthy controls, people with HIV-1 (PWH) before and during toll-like receptor 9 (TLR9) agonist treatment and performed single-cell (sc)-RNA sequencing. Our cluster analysis revealed four pDC clusters: pDC1, pDC2, cytotoxic-like pDC and an exhausted pDC cluster. The inducible cytotoxic-like pDC cluster is characterized by high expression of both antiviral and cytotoxic genes. Further analyses confirmed that cytotoxic-like pDCs are distinct from NK and T cells. Cell-cell communication analysis also demonstrated that cytotoxic-like pDCs exhibit similar incoming and outgoing cellular communicating signals as other pDCs. Thus, our study presents a detailed transcriptomic atlas of pDCs and provides new perspectives on the mechanisms of regulation and function of cytotoxic-like pDCs.
Collapse
Affiliation(s)
- Lamin B. Cham
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jesper D. Gunst
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Mariane H. Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Giacomo S. Frattari
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Miriam Rosas-Umbert
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Line K. Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
6
|
HIV-1 Nef Protein Affects Cytokine and Extracellular Vesicles Production in the GEN2.2 Plasmacytoid Dendritic Cell Line. Viruses 2021; 14:v14010074. [PMID: 35062278 PMCID: PMC8780779 DOI: 10.3390/v14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset specialized in type I interferon production, whose role in Human Immunodeficiency Virus (HIV) infection and pathogenesis is complex and not yet well defined. Considering the crucial role of the accessory protein Nef in HIV pathogenicity, possible alterations in intracellular signalling and extracellular vesicle (EV) release induced by exogenous Nef on uninfected pDCs have been investigated. As an experimental model system, a human plasmacytoid dendritic cell line, GEN2.2, stimulated with a myristoylated recombinant NefSF2 protein was employed. In GEN2.2 cells, Nef treatment induced the tyrosine phosphorylation of STAT-1 and STAT-2 and the production of a set of cytokines, chemokines and growth factors including IP-10, MIP-1β, MCP-1, IL-8, TNF-α and G-CSF. The released factors differed both in type and amount from those released by macrophages treated with the same viral protein. Moreover, Nef treatment slightly reduces the production of small EVs, and the protein was found associated with the small (size < 200 nm) but not the medium/large vesicles (size > 200 nm) collected from GEN2.2 cells. These results add new information on the interactions between this virulence factor and uninfected pDCs, and may provide the basis for further studies on the interactions of Nef protein with primary pDCs.
Collapse
|
7
|
Kim H, Zhang W, Hwang J, An EK, Choi YK, Moon E, Loznik M, Huh YH, Herrmann A, Kwak M, Jin JO. Carrier-free micellar CpG interacting with cell membrane for enhanced immunological treatment of HIV-1. Biomaterials 2021; 277:121081. [PMID: 34481291 DOI: 10.1016/j.biomaterials.2021.121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Unmethylated CpG motifs activate toll-like receptor 9 (TLR9), leading to sequence- and species-specific immune stimulation. Here, we engineered a CpG oligodeoxyribonucleotide (ODN) with multiple hydrophobic moieties, so-called lipid-modified uracil, which resulted in a facile micelle formation of the stimulant. The self-assembled CpG nanostructure (U4CpG) containing the ODN 2216 sequence was characterized by various spectroscopic and microscopic methods together with molecular dynamics simulations. Next, we evaluated the nano-immunostimulant for enhancement of anti-HIV immunity. U4CpG treatment induced activation of plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells in healthy human peripheral blood, which produced type I interferons (IFNs) and IFN-γ in human peripheral blood mononuclear cells (PBMCs). Moreover, we validated the activation and promotion efficacy of U4CpG in patient-derived blood cells, and HIV-1 spread was significantly suppressed by a low dosage of the immunostimulant. Furthermore, U4CpG-treated PBMC cultured medium elicited transcription of latent HIV-1 in U1 cells indicating that U4CpG reversed HIV-1 latency. Thus, the functions of U4CpG in eradicating HIV-1 by enhancing immunity and reversing latency make the material a potential candidate for clinical studies dealing with viral infection.
Collapse
Affiliation(s)
- Haejoo Kim
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yeol Kyo Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eunyoung Moon
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Mark Loznik
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
8
|
Kazer SW, Walker BD, Shalek AK. Evolution and Diversity of Immune Responses during Acute HIV Infection. Immunity 2021; 53:908-924. [PMID: 33207216 DOI: 10.1016/j.immuni.2020.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Understanding the earliest immune responses following HIV infection is critical to inform future vaccines and therapeutics. Here, we review recent prospective human studies in at-risk populations that have provided insight into immune responses during acute infection, including additional relevant data from non-human primate (NHP) studies. We discuss the timing, nature, and function of the diverse immune responses induced, the onset of immune dysfunction, and the effects of early anti-retroviral therapy administration. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits seroconversion, and enhances cellular antiviral immunity despite persistence of infection in lymphoid tissues. We highlight pertinent areas for future investigation, and how application of high-throughput technologies, alongside targeted NHP studies, may elucidate immune response features to target in novel preventions and cures.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
10
|
Wolf G, Singh NJ. Modular Approaches to Understand the Immunobiology of Human Immunodeficiency Virus Latency. Viral Immunol 2021; 34:365-375. [PMID: 33600238 DOI: 10.1089/vim.2020.0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite advances in slowing the progression of acquired immunodeficiency syndrome (AIDS), there is no viable cure for human immunodeficiency virus (HIV). The challenge toward a cure is mainly the formation and maintenance of a latent reservoir of cells that harbor the virus in both replication-competent and replication-defective states. This small niche of quiescent cells has been identified to reside primarily in quiescent and memory CD4+ T cells, but parameters that could reliably distinguish an infected T cell from an uninfected one, if any, are not clear. In addition, the migratory properties and specific anatomical reservoirs of latent T cells are difficult to measure at a high resolution in humans. A functional cure of HIV would require targeting this population using innovative new clinical strategies. One constraint toward the empirical development of such approaches is the absence of a native small animal model for AIDS. Since HIV does not efficiently infect murine cells, probing molecular-genetic questions involving latently infected T cells homing to deep tissue sites, interacting with stroma and persisting through different treatment regimens, is challenging. The goal of this article is to discuss how examining the dynamics of T cells in mouse models can provide a framework for effectively studying these questions, even without infecting mice with HIV. The inflammatory and cytokine milieu found in early human HIV infections are being increasingly understood as a result of clinical measurements. Mouse studies that recreate this milieu can potentially be used to subsequently map the fate of T cells activated in this context as well as their migratory routes. In essence, such a framework could allow complementary studies in mice to enhance our understanding of aspects of the biology of HIV latency. This can be the basis of a modular approach to small animal HIV modeling, amenable to preclinical curative strategy development.
Collapse
Affiliation(s)
- Gideon Wolf
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Cohn LB, Deeks SG. The immune response fails to control HIV early in initial virus spread. J Clin Invest 2021; 130:2803-2805. [PMID: 32338639 DOI: 10.1172/jci136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Discontinued antiretroviral therapy (ART) results in uncontrolled HIV replication in most cases. How the virus population that persists during ART escapes immune control remains unknown. In this issue of the JCI, Mitchell and authors investigated plasmacytoid dendritic cells (pDCs) from the blood of individuals living with HIV. After ART was discontinued and as the virus began to spread, an apparently functional pDC response emerged. Notably, these pDCs were initially capable of producing high levels of type I IFN, but rapidly lost this capacity, even before the virus became readily detectable in blood. This study suggests that dysfunctional pDCs are a key initial mechanism associated with poor HIV control. These innate immune responses might be targeted in the emerging efforts to cure HIV disease.
Collapse
Affiliation(s)
- Lillian B Cohn
- Chan Zuckerberg Biohub, San Francisco, California, USA.,Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
12
|
Rizzo MD, Henriquez JE, Blevins LK, Bach A, Crawford RB, Kaminski NE. Targeting Cannabinoid Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Associated Neurocognitive Disorder. J Neuroimmune Pharmacol 2020; 15:780-793. [PMID: 32409991 PMCID: PMC7666101 DOI: 10.1007/s11481-020-09918-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
HIV infection affects an estimated 38 million people. Approximately 50% of HIV patients exhibit neurocognitive dysfunction termed HIV-Associated Neurocognitive Disorder (HAND). HAND is a consequence of chronic low-level neuroinflammation due to HIV entry into the brain. Initially, monocytes become activated in circulation and traffic to the brain. Monocytes, when activated, become susceptible to infection by HIV and can then carry the virus across the blood brain barrier. Once in the brain, activated monocytes secrete chemokines, which recruit virus-specific CD8+ T cells into the brain to further promote neuroinflammation. HAND is closely linked to systemic inflammation driven, in part, by HIV but is also due to persistent translocation of microorganisms across the GI tract. Persistent anti-viral responses in the GI tract compromise microbial barrier integrity. Indeed, HIV patients can exhibit remarkably high levels of activated (CD16+) monocytes in circulation. Recent studies, including our own, show that HIV patients using medical marijuana exhibit lower levels of circulating CD16+ monocytes than non-cannabis using HIV patients. Cannabis is a known immune modulator, including anti-inflammatory properties, mediated, in part, by ∆9-tetrahydrocannabinol (THC), as well as less characterized minor cannabinoids, such as cannabidiol (CBD), terpenes and presumably other cannabis constituents. The immune modulating activity of THC is largely mediated through cannabinoid receptors (CB) 1 and 2, with CB1 also responsible for the psychotropic properties of cannabis. Here we discuss the anti-inflammatory properties of cannabinoids in the context of HIV and propose CB2 as a putative therapeutic target for the treatment of neuroinflammation. Graphical Abstract HIV-associated neurocognitive disorder is a systemic inflammatory disease leading to activation of plasmacytoid dendritic cells, monocytes and T cells. Monocyte and CD8 T cell migration across the BBB and interaction with astrocytes promotes neurotoxic inflammatory mediators release. CB2 ligands are proposed as therapeutics capable of suppressing systemic and localized inflammation.
Collapse
Affiliation(s)
- Michael D Rizzo
- Michigan State University, East Lansing, MI, USA
- Cell & Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Joseph E Henriquez
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Lance K Blevins
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anthony Bach
- Michigan State University, East Lansing, MI, USA
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA
| | - Robert B Crawford
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Norbert E Kaminski
- Michigan State University, East Lansing, MI, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA.
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
The importance of advanced cytometry in defining new immune cell types and functions relevant for the immunopathogenesis of HIV infection. AIDS 2020; 34:2169-2185. [PMID: 32910071 DOI: 10.1097/qad.0000000000002675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
: In the last years, novel, exciting immunological findings of interest for HIV research and treatment were identified thanks to different cytometric approaches. The analysis of the phenotypes and functionality of cells belonging to the immune system could clarify their role in the immunopathogenesis of HIV infection, and to elaborate key concepts, relevant in the treatment of this disease. Important discoveries have been made concerning cells that are important for protective immunity like lymphocytes that display polyfunctionality, resident memory T cells, innate lymphoid cells, to mention a few. The complex phenotype of myeloid-derived suppressor cells has been investigated, and relevant changes have been reported during chronic and primary HIV infection, in correlation with changes in CD4 T-cell number, T-cell activation, and with advanced disease stage. The search for markers of HIV persistence present in latently infected cells, namely those molecules that are important for a functional or sterilizing cure, evidenced the role of follicular helper T cells, and opened a discussion on the meaning and use of different surface molecules not only in identifying such cells, but also in designing new strategies. Finally, advanced technologies based upon the simultaneous detection of HIV-RNA and proteins at the single cell level, as well as those based upon spectral cytometry or mass cytometry are now finding new actors and depicting a new scenario in the immunopathogenesis of the infection, that will allow to better design innovative therapies based upon novel drugs and vaccines.
Collapse
|
14
|
Pham TNQ, Meziane O, Miah MA, Volodina O, Colas C, Béland K, Li Y, Dallaire F, Keler T, Guimond JV, Lesage S, Cheong C, Haddad É, Cohen ÉA. Flt3L-Mediated Expansion of Plasmacytoid Dendritic Cells Suppresses HIV Infection in Humanized Mice. Cell Rep 2020; 29:2770-2782.e5. [PMID: 31775044 DOI: 10.1016/j.celrep.2019.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Plasmacytoid dendritic cells (plasmacytoid DC, pDC) are major IFN-I producers and have been shown to be affected by HIV through ill-defined mechanisms. In this study, we directly assess the role of pDC in early infection, evaluating whether modulating their abundance can alter viral replication. First, HIV infection of humanized mice induces systemic depletion of pDC, and in the presence of soluble FMS-like tyrosine kinase 3 ligand (Flt3L), pDC levels remain elevated. Flt3L significantly delays the onset of viremia and reduces viral replication via a process that is dependent on pDC and mediated through an enhanced early IFN-I response. pDC from Flt3L-treated mice are more prone to express IFN-α following TLR7 stimulation, but this propensity is gradually decreased during infection. In conclusion, maintaining pDC levels and function is key to effective early viral control, and in this context, these findings provide practical insights for anti-HIV strategies and vaccine design.
Collapse
Affiliation(s)
- Tram N Q Pham
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada.
| | - Oussama Meziane
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - Mohammad Alam Miah
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Olga Volodina
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada
| | - Chloé Colas
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Kathie Béland
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Yuanyi Li
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | | | - Tibor Keler
- Celldex Therapeutics, Hampton, NJ 08827, USA
| | - Jean V Guimond
- Centre de Santé et de Services Sociaux Jeanne-Mance, Montreal, QC H2T 1H4, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Cheolho Cheong
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Élie Haddad
- Research Center of CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Éric A Cohen
- Montréal Clinical Research Institute, Montréal, QC H2W 1R7, Canada; Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
15
|
Soltani S, Mahmoudi M, Farhadi E. Dendritic Cells Currently under the Spotlight; Classification and Subset Based upon New Markers. Immunol Invest 2020; 50:646-661. [PMID: 32597286 DOI: 10.1080/08820139.2020.1783289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are considered as a subset of mononuclear phagocytes that composed of multiple subsets with distinct phenotypic features. DCs play crucial roles in the initiation and modulation of immune responses to both allo- and auto-antigens during pathogenic settings, encompassing infectious diseases, cancer, autoimmunity, transplantation, as well as vaccination. DCs play a role in preventing autoimmunity via inducing tolerance to self-antigens. This review focus on the most common subsets of DCs in human. Owing to the low frequencies of DC cells in blood and tissues and also the lack of specific DC markers, studies of DCs have been greatly hindered. Human DCs arise by a dedicated pathway of lympho-myeloid hematopoiesis and give rise into specialized subtypes under the influence of transcription factors that are specific for each linage. In humans, the classification of DCs has been generally separated into the blood and cutaneous subsets, mainly because these parts are more comfortable to examine in humans.
Collapse
Affiliation(s)
- Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kazer SW, Aicher TP, Muema DM, Carroll SL, Ordovas-Montanes J, Miao VN, Tu AA, Ziegler CGK, Nyquist SK, Wong EB, Ismail N, Dong M, Moodley A, Berger B, Love JC, Dong KL, Leslie A, Ndhlovu ZM, Ndung'u T, Walker BD, Shalek AK. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat Med 2020; 26:511-518. [PMID: 32251406 PMCID: PMC7237067 DOI: 10.1038/s41591-020-0799-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Cellular immunity is critical for controlling intracellular pathogens, but individual cellular dynamics and cell-cell cooperativity in evolving human immune responses remain poorly understood. Single-cell RNA-sequencing (scRNA-seq) represents a powerful tool for dissecting complex multicellular behaviors in health and disease1,2 and nominating testable therapeutic targets3. Its application to longitudinal samples could afford an opportunity to uncover cellular factors associated with the evolution of disease progression without potentially confounding inter-individual variability4. Here, we present an experimental and computational methodology that uses scRNA-seq to characterize dynamic cellular programs and their molecular drivers, and apply it to HIV infection. By performing scRNA-seq on peripheral blood mononuclear cells from four untreated individuals before and longitudinally during acute infection5, we were powered within each to discover gene response modules that vary by time and cell subset. Beyond previously unappreciated individual- and cell-type-specific interferon-stimulated gene upregulation, we describe temporally aligned gene expression responses obscured in bulk analyses, including those involved in proinflammatory T cell differentiation, prolonged monocyte major histocompatibility complex II upregulation and persistent natural killer (NK) cell cytolytic killing. We further identify response features arising in the first weeks of infection, for example proliferating natural killer cells, which potentially may associate with future viral control. Overall, our approach provides a unified framework for characterizing multiple dynamic cellular responses and their coordination.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toby P Aicher
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel M Muema
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Shaina L Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Vincent N Miao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Ang A Tu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carly G K Ziegler
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Sarah K Nyquist
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily B Wong
- African Health Research Institute, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
- Harvard Medical School, Boston, MA, USA
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mary Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Amber Moodley
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Christopher Love
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krista L Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alasdair Leslie
- African Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
17
|
Dewald HK, Hurley HJ, Fitzgerald-Bocarsly P. Regulation of Transcription Factor E2-2 in Human Plasmacytoid Dendritic Cells by Monocyte-Derived TNFα. Viruses 2020; 12:v12020162. [PMID: 32023836 PMCID: PMC7077321 DOI: 10.3390/v12020162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells and potent producers of interferon alpha (IFNα). Regulation of pDCs is crucial for prevention of aberrant IFN production. Transcription factor E2-2 (TCF4) regulates pDC development and function, but mechanisms of E2-2 control have not been investigated. We used freshly-isolated human peripheral blood mononuclear cells stimulated with toll-like receptor 7, 9, and 4 agonists to determine which factors regulate E2-2. After activation, pDCs decreased E2-2 expression. E2-2 downregulation occurred during the upregulation of costimulatory markers, after maximal IFN production. In congruence with previous reports in mice, we found that primary human pDCs that maintained high E2-2 levels produced more IFN, and had less expression of costimulatory markers. Stimulation of purified pDCs did not lead to E2-2 downregulation; therefore, we investigated if cytokine signaling regulates E2-2 expression. We found that tumor necrosis factor alpha (TNFα) produced by monocytes caused decreased E2-2 expression. All together, we established that primary human pDCs decrease E2-2 in response to TNFα and E2-2 low pDCs produce less IFN but exhibit more costimulatory molecules. Altered expression of E2-2 may represent a mechanism to attenuate IFN production and increase activation of the adaptive immune compartment.
Collapse
Affiliation(s)
- Hannah K. Dewald
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
| | - Harry J. Hurley
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA; (H.K.D.); (H.J.H.)
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Correspondence: ; Tel.: +1-973-972-5233
| |
Collapse
|
18
|
Martín-Moreno A, Muñoz-Fernández MA. Dendritic Cells, the Double Agent in the War Against HIV-1. Front Immunol 2019; 10:2485. [PMID: 31708924 PMCID: PMC6820366 DOI: 10.3389/fimmu.2019.02485] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) infects cells from the immune system and has thus developed tools to circumvent the host immunity and use it in its advance. Dendritic cells (DCs) are the first immune cells to encounter the HIV, and being the main antigen (Ag) presenting cells, they link the innate and the adaptive immune responses. While DCs work to promote an efficient immune response and halt the infection, HIV-1 has ways to take advantage of their role and uses DCs to gain faster and more efficient access to CD4+ T cells. Due to their ability to activate a specific immune response, DCs are promising candidates to achieve the functional cure of HIV-1 infection, but knowing the molecular partakers that determine the relationship between virus and cell is the key for the rational and successful design of a DC-based therapy. In this review, we summarize the current state of knowledge on how both DC subsets (myeloid and plasmacytoid DCs) act in presence of HIV-1, and focus on different pathways that the virus can take after binding to DC. First, we explore the consequences of HIV-1 recognition by each receptor on DCs, including CD4 and DC-SIGN. Second, we look at cellular mechanisms that prevent productive infection and weapons that turn cellular defense into a Trojan horse that hides the virus all the way to T cell. Finally, we discuss the possible outcomes of DC-T cell contact.
Collapse
Affiliation(s)
- Alba Martín-Moreno
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mª Angeles Muñoz-Fernández
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| |
Collapse
|
19
|
Barrat FJ, Su L. A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. J Exp Med 2019; 216:1974-1985. [PMID: 31420375 DOI: 10.1084/jem.20181359] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Following the discovery of plasmacytoid dendritic cells (pDCs) and of their extraordinary ability to produce type I IFNs (IFN-I) in response to TLR7 and TLR9 stimulation, it is assumed that their main function is to participate in the antiviral response. There is increasing evidence suggesting that pDCs and/or IFN-I can also have a detrimental role in a number of inflammatory and autoimmune diseases, in the context of chronic viral infections and in cancers. Whether these cells should be targeted in patients and how much of their biology is connected to IFN-I production remains unclear and is discussed here.
Collapse
Affiliation(s)
- Franck J Barrat
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery, New York, NY .,Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Lishan Su
- The Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, School of Medicine, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
20
|
Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory diseases. Lupus Sci Med 2019; 6:e000336. [PMID: 31205729 PMCID: PMC6541752 DOI: 10.1136/lupus-2019-000336] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Type I interferons (IFN) can have dual and opposing roles in immunity, with effects that are beneficial or detrimental to the individual depending on whether IFN pathway activation is transient or sustained. Determinants of IFN production and its functional consequences include the nature of the microbial or nucleic acid stimulus, the type of nucleic acid sensor involved in inducing IFN, the predominant subtype of type I IFN produced and the immune ecology of the tissue at the time of IFN expression. When dysregulated, the type I IFN system drives many autoimmune and non-autoimmune inflammatory diseases, including SLE and the tissue inflammation associated with chronic infection. The type I IFN system may also contribute to outcomes for patients affected by solid cancers or myocardial infarction. Significantly more research is needed to discern the mechanisms of induction and response to type I IFNs across these diseases, and patient endophenotyping may help determine whether the cytokine is acting as 'friend' or 'foe', within a particular patient, and at the time of treatment. This review summarises key concepts and discussions from the second International Summit on Interferons in Inflammatory Diseases, during which expert clinicians and scientists evaluated the evidence for the role of type I IFNs in autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Lars Ronnblom
- Section of Rheumatology, Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Sugawara S, Thomas DL, Balagopal A. HIV-1 Infection and Type 1 Interferon: Navigating Through Uncertain Waters. AIDS Res Hum Retroviruses 2019; 35:25-32. [PMID: 29999412 DOI: 10.1089/aid.2018.0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIV-1 remains a chronic viral infection of global health importance. Although HIV-1 replication can be controlled by antiretroviral therapy (ART), there is no cure due to persistence of a long-lived latent reservoir. In addition, people living with HIV-1 who are taking ART still bear signatures of persistent immune activation that include continued type 1 interferon (IFN) signaling. Paradoxically, type 1 IFN exerts a limited role on the control of chronic HIV-1. Indeed, recent reports from humanized mice suggest that type 1 IFN may partly maintain the latent reservoir. In this review, we discuss the molecular interactions between HIV-1 and the type 1 IFN signaling pathway, and examine the efficacy of type 1 IFNs in vivo. We also explore whether limited type 1 IFN manipulation may have a therapeutic role.
Collapse
Affiliation(s)
- Sho Sugawara
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David L. Thomas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashwin Balagopal
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
McCauley SM, Kim K, Nowosielska A, Dauphin A, Yurkovetskiy L, Diehl WE, Luban J. Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines. Nat Commun 2018; 9:5305. [PMID: 30546110 PMCID: PMC6294009 DOI: 10.1038/s41467-018-07753-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
HIV-1-infected people who take drugs that suppress viremia to undetectable levels are protected from developing AIDS. Nonetheless, HIV-1 establishes proviruses in long-lived CD4+ memory T cells, and perhaps other cell types, that preclude elimination of the virus even after years of continuous antiviral therapy. Here we show that the HIV-1 provirus activates innate immune signaling in isolated dendritic cells, macrophages, and CD4+ T cells. Immune activation requires transcription from the HIV-1 provirus and expression of CRM1-dependent, Rev-dependent, RRE-containing, unspliced HIV-1 RNA. If rev is provided in trans, all HIV-1 coding sequences are dispensable for activation except those cis-acting sequences required for replication or splicing. Our results indicate that the complex, post-transcriptional regulation intrinsic to HIV-1 RNA is detected by the innate immune system as a danger signal, and that drugs which disrupt HIV-1 transcription or HIV-1 RNA metabolism would add qualitative benefit to current antiviral drug regimens. During HIV infection, antiviral therapy can suppress viraemia to undetectable levels and hinder the progression towards AIDS; however the HIV-1 provirus can remain in long-lived CD4+ memory T cells. Here the authors show that intronic RNA from the HIV-1 provirus can induce type I interferon and inflammatory cytokine production.
Collapse
Affiliation(s)
- Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anetta Nowosielska
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - William Edward Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
24
|
Nguyen NV, Tran JT, Sanchez DJ. HIV blocks Type I IFN signaling through disruption of STAT1 phosphorylation. Innate Immun 2018; 24:490-500. [PMID: 30282499 PMCID: PMC6513668 DOI: 10.1177/1753425918803674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022] Open
Abstract
This study investigates the modulation of Type I IFN induction of an antiviral state by HIV. IFNs, including IFN-α, are key innate immune cytokines that activate the JAK/STAT pathway leading to the expression of IFN-stimulated genes. IFN-stimulated gene expression establishes the antiviral state, limiting viral infection in IFN-α-stimulated microenvironments. Our previous studies have shown that HIV proteins disrupt the induction of IFN-α by degradation of IFN-β promoter stimulator-1, an adaptor protein for the up-regulation and release of IFN-α into the local microenvironment via the retinoic acid-inducible gene 1-like receptor signaling pathway. However, IFN-α is still released from other sources such as plasmacytoid dendritic cells via TLR-dependent recognition of HIV. Here we report that the activation of the JAK/STAT pathway by IFN-α stimulation is disrupted by HIV proteins Vpu and Nef, which both reduce IFN-α induction of STAT1 phosphorylation. Thus, HIV would still be able to avoid antiviral protection induced by IFN-α in the local microenvironment. These findings show that HIV blocks multiple signaling points that would lead to the up-regulation of IFN-stimulated genes, allowing more effective replication in IFN-α-rich environments.
Collapse
Affiliation(s)
- Nam V Nguyen
- Department of Pharmaceutical Sciences, Western
University of Health Sciences, United States
| | - James T Tran
- Department of Pharmaceutical Sciences, Western
University of Health Sciences, United States
| | - David Jesse Sanchez
- Department of Pharmaceutical Sciences, Western
University of Health Sciences, United States
| |
Collapse
|
25
|
Aiello A, Giannessi F, Percario ZA, Affabris E. The involvement of plasmacytoid cells in HIV infection and pathogenesis. Cytokine Growth Factor Rev 2018; 40:77-89. [PMID: 29588163 DOI: 10.1016/j.cytogfr.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset.
Collapse
|
26
|
Chitre AS, Kattah MG, Rosli YY, Pao M, Deswal M, Deeks SG, Hunt PW, Abdel-Mohsen M, Montaner LJ, Kim CC, Ma A, Somsouk M, McCune JM. A20 upregulation during treated HIV disease is associated with intestinal epithelial cell recovery and function. PLoS Pathog 2018; 14:e1006806. [PMID: 29505600 PMCID: PMC5854440 DOI: 10.1371/journal.ppat.1006806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/15/2018] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
TRIAL REGISTRATION ClinicalTrials.gov Clinical Trial NCT00594880.
Collapse
Affiliation(s)
- Avantika S. Chitre
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Michael G. Kattah
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Yenny Y. Rosli
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Montha Pao
- Division of HIV/AIDS, University of California, San Francisco, San Francisco, CA, United States of America
| | - Monika Deswal
- Division of HIV/AIDS, University of California, San Francisco, San Francisco, CA, United States of America
| | - Steven G. Deeks
- Division of HIV/AIDS, University of California, San Francisco, San Francisco, CA, United States of America
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | | | - Luis J. Montaner
- The Wistar Institute, Philadelphia, PA, United States of America
| | - Charles C. Kim
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Averil Ma
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
27
|
Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 2018; 8:1823. [PMID: 29379496 PMCID: PMC5775519 DOI: 10.3389/fimmu.2017.01823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4+ T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
28
|
Echebli N, Tchitchek N, Dupuy S, Bruel T, Peireira Bittencourt Passaes C, Bosquet N, Le Grand R, Bourgeois C, Favier B, Cheynier R, Lambotte O, Vaslin B. Stage-specific IFN-induced and IFN gene expression reveal convergence of type I and type II IFN and highlight their role in both acute and chronic stage of pathogenic SIV infection. PLoS One 2018; 13:e0190334. [PMID: 29324751 PMCID: PMC5764266 DOI: 10.1371/journal.pone.0190334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) play a major role in controlling viral infections including HIV/SIV infections. Persistent up-regulation of interferon stimulated genes (ISGs) is associated with chronic immune activation and progression in SIV/HIV infections, but the respective contribution of different IFNs is unclear. We analyzed the expression of IFN genes and ISGs in tissues of SIV infected macaques to understand the respective roles of type I and type II IFNs. Both IFN types were induced in lymph nodes during early stage of primary infection and to some extent in rectal biopsies but not in PBMCs. Induction of Type II IFN expression persisted during the chronic phase, in contrast to undetectable induction of type I IFN expression. Global gene expression analysis with a major focus on ISGs revealed that at both acute and chronic infection phases most differentially expressed ISGs were inducible by both type I and type II IFNs and displayed the highest increases, indicating strong convergence and synergy between type I and type II IFNs. The analysis of functional signatures of ISG expression revealed temporal changes in IFN expression patterns identifying phase-specific ISGs. These results suggest that IFN-γ strongly contribute to shape ISG upregulation in addition to type I IFN.
Collapse
Affiliation(s)
- Nadia Echebli
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Stéphanie Dupuy
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Timothée Bruel
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Caroline Peireira Bittencourt Passaes
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Bosquet
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Benoit Favier
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM U1016, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Olivier Lambotte
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
- APHP, Service de Médecine Interne–Immunologie Clinique, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
29
|
Maldonado S, Fitzgerald-Bocarsly P. Antifungal Activity of Plasmacytoid Dendritic Cells and the Impact of Chronic HIV Infection. Front Immunol 2017; 8:1705. [PMID: 29255464 PMCID: PMC5723005 DOI: 10.3389/fimmu.2017.01705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Due to the effectiveness of combined antiretroviral therapy, people living with HIV can control viral replication and live longer lifespans than ever. However, HIV-positive individuals still face challenges to their health and well-being, including dysregulation of the immune system resulting from years of chronic immune activation, as well as opportunistic infections from pathogenic fungi. This review focuses on one of the key players in HIV immunology, the plasmacytoid dendritic cell (pDC), which links the innate and adaptive immune response and is notable for being the body’s most potent producer of type-I interferons (IFNs). During chronic HIV infection, the pDC compartment is greatly dysregulated, experiencing a substantial depletion in number and compromise in function. This immune dysregulation may leave patients further susceptible to opportunistic infections. This is especially important when considering a new role for pDCs currently emerging in the literature: in addition to their role in antiviral immunity, recent studies suggest that pDCs also play an important role in antifungal immunity. Supporting this new role, pDCs express C-type lectin receptors including dectin-1, dectin-2, dectin-3, and mannose receptor, and toll-like receptors-4 and -9 that are involved in recognition, signaling, and response to a wide variety of fungal pathogens, including Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, and Pneumocystis jirovecii. Accordingly, pDCs have been demonstrated to recognize and respond to certain pathogenic fungi, measured via activation, cytokine production, and fungistatic activity in vitro, while in vivo mouse models indicated a strikingly vital role for pDCs in survival against pulmonary Aspergillus challenge. Here, we discuss the role of the pDC compartment and the dysregulation it undergoes during chronic HIV infection, as well as what is known so far about the role and mechanisms of pDC antifungal activity.
Collapse
Affiliation(s)
- Samuel Maldonado
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ, United States.,Department of Pathology and Laboratory Medicine, New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
30
|
Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon. J Virol 2017; 91:JVI.00972-17. [PMID: 28794041 DOI: 10.1128/jvi.00972-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
A hallmark of human immunodeficiency virus type 1 (HIV-1) infection in vivo is chronic immune activation concomitant with type I interferon (IFN) production. Although type I IFN induces an antiviral state in many cell types, HIV-1 can replicate in vivo via mechanisms that have remained unclear. We have recently identified a type I IFN-inducible protein, CD169, as the HIV-1 attachment factor on dendritic cells (DCs) that can mediate robust infection of CD4+ T cells in trans Since CD169 expression on macrophages is also induced by type I IFN, we hypothesized that type I IFN-inducible CD169 could facilitate productive HIV-1 infection in myeloid cells in cis and CD4+ T cells in trans and thus offset antiviral effects of type I IFN. In support of this hypothesis, infection of HIV-1 or murine leukemia virus Env (MLV-Env)-pseudotyped HIV-1 particles was enhanced in IFN-α-treated THP-1 monocytoid cells, and this enhancement was primarily dependent on CD169-mediated enhancement at the virus entry step, a phenomenon phenocopied in HIV-1 infections of IFN-α-treated primary monocyte-derived macrophages (MDMs). Furthermore, expression of CD169, a marker of type I IFN-induced immune activation in vivo, was enhanced in lymph nodes from pigtailed macaques infected with simian immunodeficiency virus (SIV) carrying HIV-1 reverse transcriptase (RT-SHIV), compared to uninfected macaques, and interestingly, there was extensive colocalization of p27gag and CD169, suggesting productive infection of CD169+ myeloid cells in vivo While cell-free HIV-1 infection of IFN-α-treated CD4+ T cells was robustly decreased, initiation of infection in trans via coculture with CD169+ IFN-α-treated DCs restored infection, suggesting that HIV-1 exploits CD169 in cis and in trans to attenuate a type I IFN-induced antiviral state.IMPORTANCE HIV-1 infection in humans causes immune activation characterized by elevated levels of proinflammatory cytokines, including type I interferons (IFN). Although type I IFN induces an antiviral state in many cell types in vitro, HIV-1 can replicate in vivo via mechanisms that have remained unclear. In this study, we tested the hypothesis that CD169, a type I IFN-inducible HIV-1 attachment factor, offsets antiviral effects of type I IFN. Infection of HIV-1 was rescued in IFN-α-treated myeloid cells via upregulation of CD169 and a subsequent increase in CD169-dependent virus entry. Furthermore, extensive colocalization of viral Gag and CD169 was observed in lymph nodes of infected pigtailed macaques, suggesting productive infection of CD169+ cells in vivo Treatment of dendritic cell (DC)-T cell cocultures with IFN-α upregulated CD169 expression on DCs and rescued HIV-1 infection of CD4+ T cells in trans, suggesting that HIV-1 exploits CD169 to attenuate type I IFN-induced restrictions.
Collapse
|
31
|
Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle. Viruses 2017; 9:v9100270. [PMID: 28946621 PMCID: PMC5691622 DOI: 10.3390/v9100270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a lysosomal-dependent degradative process essential for maintaining cellular homeostasis, and is a key player in innate and adaptive immune responses to intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). In HIV-1 target cells, autophagy mechanisms can (i) selectively direct viral proteins and viruses for degradation; (ii) participate in the processing and presentation of viral-derived antigens through major histocompatibility complexes; and (iii) contribute to interferon production in response to HIV-1 infection. As a consequence, HIV-1 has evolved different strategies to finely regulate the autophagy pathway to favor its replication and dissemination. HIV-1 notably encodes accessory genes encoding Tat, Nef and Vpu proteins, which are able to perturb and hijack canonical and non-canonical autophagy mechanisms. This review outlines the current knowledge on the complex interplay between autophagy and HIV-1 replication cycle, providing an overview of the autophagy-mediated molecular processes deployed both by infected cells to combat the virus and by HIV-1 to evade antiviral response.
Collapse
|
32
|
Smith N, Pietrancosta N, Herbeuval JP. [CXCR4, master regulator of innate immune responses?]. Med Sci (Paris) 2017; 33:711-713. [PMID: 28945553 DOI: 10.1051/medsci/20173308008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nikaïa Smith
- Équipe chimie et biologie, modélisation et immunologie pour la thérapie (CBMIT), CNRS UMR-8601, université Paris Descartes, Centre interdisciplinaire chimie biologie-Paris (CICB), 45, rue des Saints-Pères, 75006 Paris, France
| | - Nicolas Pietrancosta
- Équipe chimie et biologie, modélisation et immunologie pour la thérapie (CBMIT), CNRS UMR-8601, université Paris Descartes, Centre interdisciplinaire chimie biologie-Paris (CICB), 45, rue des Saints-Pères, 75006 Paris, France
| | - Jean-Philippe Herbeuval
- Équipe chimie et biologie, modélisation et immunologie pour la thérapie (CBMIT), CNRS UMR-8601, université Paris Descartes, Centre interdisciplinaire chimie biologie-Paris (CICB), 45, rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
33
|
Zhang LL, Zhang ZN, Wu X, Jiang YJ, Fu YJ, Shang H. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease. J Transl Med 2017; 15:191. [PMID: 28899396 PMCID: PMC5596944 DOI: 10.1186/s12967-017-1294-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4+ T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. METHODS Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4+ and CD8+ T cells, were collected for meta-analysis. RESULTS We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4+ and CD8+ T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4+ T cells and the MAPK signaling pathway in CD8+ T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. CONCLUSIONS Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.
Collapse
Affiliation(s)
- Le-Le Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zi-Ning Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xian Wu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yong-Jun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ya-Jing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, No 155, Nanjingbei Street, Heping District, Shenyang, 110001, Liaoning Province, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
34
|
Hepatitis C virus drives increased type I interferon-associated impairments associated with fibrosis severity in antiretroviral treatment-treated HIV-1-hepatitis C virus-coinfected individuals. AIDS 2017; 31:1223-1234. [PMID: 28492391 DOI: 10.1097/qad.0000000000001455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Viral coinfections might contribute to the increased immune activation and inflammation that persist in antiretroviral treatment (ART)-treated HIV-1 patients. We investigated whether the hepatitis C virus (HCV) coinfection contributes to such alterations by impairing the plasmacytoid dendritic cell (pDC) IFNα/TLR7 pathway in a highly homogeneous group of ART-treated HIV-1-HCV-coinfected patients. METHODS Twenty-nine HIV-1-infected patients with fully suppressive ART were included, 15 of whom being HCV-coinfected with mild-to-moderate fibrosis and matched for their HIV-1 disease, and 13 control healthy donors. Cellular activation, plasma levels of inflammatory cytokines and pDC transcriptome associated with IFNα/TLR7 pathway were characterized. RESULTS Higher plasma levels of type-I interferon (IFN)-associated cytokines [interferon gamma-induced protein 10 (IP-10), MIP-1β, IL-8 and IFN-inducible T-cell alpha chemoattractant) were observed in HIV-1-HCV-coinfected than in HIV-1-monoinfected patients (P = 0.0007, 0.028, 0.028 and 0.035, respectively). The pDCs and T cells displayed a more exhausted (LAG-3+ and CD57+, respectively) phenotype. The pDC IFNα pathway (defined by phosphorylated STAT1 expression) was constitutively activated in all patients, irrespective of HCV coinfection. Expression of interferon-stimulated genes (ISGs) EI2AK2, ISG15, Mx1 and IFI44 was increased in pDCs from HIV-1-HCV-coinfected individuals and was correlated with fibrosis score (Fibroscan, www.echosens.com, Paris, France and aspartate-aminotransferase/platelet-ratio index score, P = 0.026 and 0.019, respectively). Plasma levels of IP-10, STAT1 expression in pDCs and Mx1 mRNA levels in pDCs decreased after interferon-free anti-HCV treatment. CONCLUSION HCV replication appears to drive increases in type-I IFN-associated inflammation and ISGs expression in pDCs, in association with fibrosis severity in ART-treated HIV-1-infected patients with mild-to-moderate fibrosis. Preliminary results indicate reduction of these alterations with earlier interferon-free anti-HCV treatment in those patients.
Collapse
|
35
|
Vidya Vijayan KK, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol 2017; 8:580. [PMID: 28588579 PMCID: PMC5440548 DOI: 10.3389/fimmu.2017.00580] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022] Open
Abstract
The hall mark of human immunodeficiency virus (HIV) infection is a gradual loss of CD4+ T-cells and imbalance in CD4+ T-cell homeostasis, with progressive impairment of immunity that leads ultimately to death. HIV infection in humans is caused by two related yet distinct viruses: HIV-1 and HIV-2. HIV-2 is typically less virulent than HIV-1 and permits the host to mount a more effective and sustained T-cell immunity. Although both infections manifest the same clinical spectrum, the much lower rate of CD4+ T-cell decline and slower progression of disease in HIV-2 infected individuals have grabbed the attention of several researchers. Here, we review the most recent findings on the differential rate of decline of CD4+ T-cell in HIV-1 and HIV-2 infections and provide plausible reasons for the observed differences between the two groups.
Collapse
Affiliation(s)
- K K Vidya Vijayan
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | | | - Srikanth P Tripathi
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Luke Elizabeth Hanna
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
36
|
Ambada GN, Ntsama CE, Nji NN, Ngu LN, Sake CN, Lissom A, Tchouangeu FT, Tchadji J, Sosso M, Etoa FX, Nchinda GW. Phenotypic characterization of regulatory T cells from antiretroviral-naive HIV-1-infected people. Immunology 2017; 151:405-416. [PMID: 28375551 DOI: 10.1111/imm.12738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/02/2017] [Accepted: 03/27/2017] [Indexed: 01/14/2023] Open
Abstract
Regulatory T (Treg) cells play a key role in dampening excessive immune activation. However, antiretroviral therapy (ART) -naive HIV-1 infection maintains the immune system in a sustained state of activation that could alter both Treg cell surface markers and functions. As Treg cell surface markers are directly linked to their functions the overall objective of this study was to determine how ART-naive HIV infection affects the phenotypic properties of Treg cells. Our data showed that in ART-naive HIV-1 infection, Treg cells are dominated by effector (CD45RA+ CD27- CCR7- CD62L- ) and effector memory (CD45RA- CD27- CCR7- CD62L- ) cells. In contrast Treg cells from HIV-negative individuals were mainly naive (CD45RA+ CD27+ CCR7+ CD62L+ ) and central memory (CD45RA- CD27+ CCR7+ CD62L+ ) cells. Whereas effector and effector memory Treg cells showed enhanced expression of CD39 (P < 0·05), CD73 (P < 0·001), HLA-DR and CD38 (P < 0·001); naive and central memory Treg cells showed a significant reduction in the expression of these markers. Overall Treg cell frequencies within total CD4+ T cells correlated positively with plasmatic HIV-1 viral load. As increased viral load is associated with augmented CD4+ T-cell destruction; this could suggest a resistance of peripheral Treg cells to HIV-1 destruction. Hence the modulation of Treg cell phenotype and frequencies could be considered in designing immunotherapeutic strategies targeting immune system restoration during HIV-1 infection.
Collapse
Affiliation(s)
- Georgia N Ambada
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde one, Yaounde, Cameroon
| | - Claudine E Ntsama
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde one, Yaounde, Cameroon
| | - Nadesh N Nji
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
| | - Loveline N Ngu
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Department of Biochemistry, Faculty of Sciences, University of Yaounde one, Yaounde, Cameroon
| | - Carole N Sake
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Department of Biochemistry, Faculty of Sciences, University of Yaounde one, Yaounde, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde one, Yaounde, Cameroon
| | - Flaurent T Tchouangeu
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Jules Tchadji
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon.,Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde one, Yaounde, Cameroon
| | - Martin Sosso
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
| | | | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking, the Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
| |
Collapse
|
37
|
Panda SK, Kolbeck R, Sanjuan MA. Plasmacytoid dendritic cells in autoimmunity. Curr Opin Immunol 2016; 44:20-25. [PMID: 27855321 DOI: 10.1016/j.coi.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Plasmacytoid dendritic cells (pDC) is a unique cell population that produces large amounts of type I interferon upon recognition of nucleic acids placing them at the crossroad of both innate and adaptive immunity. Their ability to produce interferon makes them central to anti-viral responses. They are also responsive to circulating autoantibodies bound to nuclear antigens and in that scenario the release of interferons initiate self-directed immune responses. There are now a growing number of autoimmune disorders where unabated activation of pDC is suspected to be pathogenic. Here, we discuss the different mechanisms responsible for breaking tolerance to self-nucleic acids by pDC, including the novel role of IgE autoantibodies in systemic lupus erythematosus. We also summarized the recent progress on therapies undergoing clinical testing that target either pDC or type I interferons.
Collapse
Affiliation(s)
- Santosh K Panda
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Roland Kolbeck
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Miguel A Sanjuan
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA.
| |
Collapse
|
38
|
Bosinger SE, Utay NS. Type I interferon: understanding its role in HIV pathogenesis and therapy. Curr HIV/AIDS Rep 2016; 12:41-53. [PMID: 25662992 DOI: 10.1007/s11904-014-0244-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of research, the contribution of type I interferons (IFN-Is) to both the control of HIV replication and initiation of immunologic damage remains debated. In acute infection, IFN-Is, likely from plasmacytoid dendritic cells (pDCs), activate NK cells and upregulate restriction factors targeting virtually the entire HIV life cycle. In chronic infection, IFN-Is may also contribute to CD4 T cell loss and immune exhaustion. pDCs subsequently infiltrate lymphoid and mucosal tissues, and their circulating populations wane in chronic infection; IFN-I may be produced by other cells. Data from nonhuman primates indicate prompt IFN-I signaling is critical in acute infection. Whereas some studies showed IFN-I administration without combination antiretroviral therapy (cART) is beneficial, others suggest that stimulating or blocking IFN-I signaling in chronic ART-suppressed HIV infection has had positive results. Here, we describe the history of HIV and IFN-I, IFN-I's sources, IFN-I's effects on HIV control and host defense, and recent interventional studies in SIV and HIV infection.
Collapse
Affiliation(s)
- Steven E Bosinger
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory Vaccine Center Bldg. 3028, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
39
|
Konadu KA, Huang MB, Roth W, Armstrong W, Powell M, Villinger F, Bond V. Isolation of Exosomes from the Plasma of HIV-1 Positive Individuals. J Vis Exp 2016. [PMID: 26780239 DOI: 10.3791/53495] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Exosomes are small vesicles ranging in size from 30 nm to 100 nm that are released both constitutively and upon stimulation from a variety of cell types. They are found in a number of biological fluids and are known to carry a variety of proteins, lipids, and nucleic acid molecules. Originally thought to be little more than reservoirs for cellular debris, the roles of exosomes regulating biological processes and in diseases are increasingly appreciated. Several methods have been described for isolating exosomes from cellular culture media and biological fluids. Due to their small size and low density, differential ultracentrifugation and/or ultrafiltration are the most commonly used techniques for exosome isolation. However, plasma of HIV-1 infected individuals contains both exosomes and HIV viral particles, which are similar in size and density. Thus, efficient separation of exosomes from HIV viral particles in human plasma has been a challenge. To address this limitation, we developed a procedure modified from Cantin et. al., 2008 for purification of exosomes from HIV particles in human plasma. Iodixanol velocity gradients were used to separate exosomes from HIV-1 particles in the plasma of HIV-1 positive individuals. Virus particles were identified by p24 ELISA. Exosomes were identified on the basis of exosome markers acetylcholinesterase (AChE), and the CD9, CD63, and CD45 antigens. Our gradient procedure yielded exosome preparations free of virus particles. The efficient purification of exosomes from human plasma enabled us to examine the content of plasma-derived exosomes and to investigate their immune modulatory potential and other biological functions.
Collapse
Affiliation(s)
- Kateena Addae Konadu
- Department of Microbiology, Biochemistry, Immunology, Morehouse School of Medicine
| | - Ming Bo Huang
- Department of Microbiology, Biochemistry, Immunology, Morehouse School of Medicine
| | - William Roth
- Department of Microbiology, Biochemistry, Immunology, Morehouse School of Medicine
| | | | - Michael Powell
- Department of Microbiology, Biochemistry, Immunology, Morehouse School of Medicine
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Yerkes National Primate Research Center
| | - Vincent Bond
- Department of Microbiology, Biochemistry, Immunology, Morehouse School of Medicine;
| |
Collapse
|
40
|
HIV-1 strategies to overcome the immune system by evading and invading innate immune system. HIV & AIDS REVIEW 2016. [DOI: 10.1016/j.hivar.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, Smith DM, Landay AL, McManus MC, Robertson CE, Frank DN, McCarter MD, Wilson CC. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 2016; 9:24-37. [PMID: 25921339 PMCID: PMC4626441 DOI: 10.1038/mi.2015.33] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/03/2015] [Indexed: 02/04/2023]
Abstract
HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c(+) and CD1c(neg)) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c(+) mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percentage of CD83(+)CD1c(+) mDCs negatively correlated with frequencies of interferon-γ-producing colon CD4(+) and CD8(+) T cells. CD40 expression on CD1c(+) mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and Prevotella stercorea but negatively associated with a number of low prevalence mucosal species, including Rumminococcus bromii. CD1c(+) mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that, during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation.
Collapse
Affiliation(s)
- S M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - E J Lee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C V Kotter
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - G L Austin
- Department of Gastroenterology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - S Gianella
- Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - B Siewe
- Department of Immunology-Microbiology, Rush University Medical Center, Chicago, Illinois, USA
| | - D M Smith
- Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - A L Landay
- Department of Immunology-Microbiology, Rush University Medical Center, Chicago, Illinois, USA
| | - M C McManus
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C E Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Microbiome Research Consortium, Aurora, Colorado, USA
| | - D N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Microbiome Research Consortium, Aurora, Colorado, USA
| | - M D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
42
|
Wilhelm TR, Taddeo A, Winter O, Schulz AR, Mälzer JN, Domingo C, Biesen R, Alexander T, Thiel A, Radbruch A, Hiepe F, Gerl V. Siglec-1-positive plasmacytoid dendritic cells (pDCs) in human peripheral blood: A semi-mature and myeloid-like subset imbalanced during protective and autoimmune responses. Clin Immunol 2015; 163:42-51. [PMID: 26674280 DOI: 10.1016/j.clim.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) play a central role in the pathogenesis of systemic lupus erythematosus (SLE) as IFN-α producers and promoters of T-cell activation or tolerance. Here, we demonstrated by flow-cytometry and confocal microscopy that Siglec-1, a molecule involved in the regulation of adaptive immunoresponses, is expressed in a subset of semi-mature, myeloid-like pDCs in human blood. These pDCs express lower BDCA-2 and CD123 and higher HLA-DR and CD11c than Siglec-1-negative pDCs and do not produce IFN-α via TLR7/TLR9 engagement. In vitro, Siglec-1 expression was induced in Siglec-1-negative pDCs by influenza virus. Proportions of Siglec-1-positive/Siglec-1-negative pDCs were higher in SLE than in healthy controls and correlated with disease activity. Healthy donors immunized with yellow fever vaccine YFV-17D displayed different kinetics of the two pDC subsets during protective immune response. PDCs can be subdivided into two subsets according to Siglec-1 expression. These subsets may play specific roles in (auto)immune responses.
Collapse
Affiliation(s)
| | - Adriano Taddeo
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Centre (DRFZ) - a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Oliver Winter
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Centre (DRFZ) - a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Axel Ronald Schulz
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine CVK, Augustenburger Platz 1, 13353, Berlin, Germany; German Rheumatism Research Centre (DRFZ) - a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia-Nora Mälzer
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Cristina Domingo
- Center for Biological Threats and Special Pathogens 1, Robert Koch-Institute, Nordufer 20, 13353, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Centre (DRFZ) - a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Centre (DRFZ) - a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Velia Gerl
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Centre (DRFZ) - a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
43
|
O'Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell Mol Life Sci 2015; 72:4309-25. [PMID: 26243730 PMCID: PMC11113503 DOI: 10.1007/s00018-015-2005-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
The method of choice for the development of new vaccines is to target distinct dendritic cell subsets with antigen in vivo and to harness their function in situ to enhance cell-mediated immunity or induce tolerance to specific antigens. The innate functions of dendritic cells themselves may also be targeted by inhibitors or activators that would target a specific function such as interferon production, potentially important in autoimmune disease and chronic viral infections. Importantly targeting dendritic cells requires detailed knowledge of both the surface phenotype and function of each dendritic cell subset, including how they may respond to different types of vaccine adjuvants, their ability to produce soluble mediators and to process and present antigens and induce priming of naïve T cells. This review summarizes our knowledge of the functional attributes of the human dendritic cell subsets in the steady state and upon activation and their roles in human disease.
Collapse
Affiliation(s)
- Meredith O'Keeffe
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Clayton, VIC, 3800, Australia
| | - Wai Hong Mok
- Mater Research Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD, 4012, Australia
| | - Kristen J Radford
- Mater Research Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD, 4012, Australia.
| |
Collapse
|
44
|
Geginat J, Nizzoli G, Paroni M, Maglie S, Larghi P, Pascolo S, Abrignani S. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets. Front Immunol 2015; 6:527. [PMID: 26528289 PMCID: PMC4603245 DOI: 10.3389/fimmu.2015.00527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against persistent infections or cancer.
Collapse
Affiliation(s)
- Jens Geginat
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Giulia Nizzoli
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Stefano Maglie
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich , Zurich , Switzerland
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy ; DISCCO, Department of Clinical Sciences and Community Health, University of Milano , Milan , Italy
| |
Collapse
|
45
|
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique DC subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases that are characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. In this Review, we summarize recent progress in the field of pDC biology, focusing on the molecular mechanisms that regulate the development and functions of pDCs, the pathways involved in their sensing of pathogens and endogenous nucleic acids, their functions at mucosal sites, and their roles in infection, autoimmunity and cancer.
Collapse
|
46
|
Konadu KA, Anderson JS, Huang MB, Ali SA, Powell MD, Villinger F, Bond VC. Hallmarks of HIV-1 pathogenesis are modulated by Nef's Secretion Modification Region. ACTA ACUST UNITED AC 2015; 6. [PMID: 26523240 DOI: 10.4172/2155-6113.1000476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD4+ T cell depletion and immune activation are hallmarks of HIV infection. Despite extensive studies, the mechanisms underlying immune modulation remain elusive. HIV-1 Nef protein is secreted in exosomes from infected cells and is abundant in the plasma of HIV+ individuals. Exosomal Nef (exNef) was also shown to induce apoptosis in bystander CD4+ T cells. We hypothesized that exNef contributes to HIV pathogenesis. A HIV-1 NL4-3 virus containing alanine substitutions in the secretion modification region (SMR; amino acids 66 to 70; HIVNefsmr5a) was developed. Nef protein containing this modified SMR was shown to be deficient in exNef secretion in nef-transfected cells. Using both HIV-1 NL4-3 wild type (HIVwt) and HIVNefsmr5a, correlates of pathogenesis were evaluated in cell-lines, human peripheral blood mononuclear cells, and humanized NOD-RAG1-/- IL2r-/- double mutant (NRG) mice. Disruption of the SMR did not affect viral replication or exNef secretion from infected cell cultures as compared with nef-transfected cells. However, T cell apoptosis was reduced in HIVNefsmr5a infected cell cultures and CD4+ T cell depletion was reduced in the spleen and peripheral blood of similarly infected NRG mice. Inflammatory cytokine release was also decreased in the sera of HIVNefsmr5a infected mice relative to HIVwt infected controls. These findings demonstrate the importance of Nef and the SMR motif in HIV pathogenesis and suggest a potential role for exNef in HIV-driven immune modulation.
Collapse
Affiliation(s)
- Kateena Addae Konadu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Joseph S Anderson
- Department of Internal Medicine, University of California-Davis Medical Center, Sacramento, California, USA
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Syed A Ali
- Advanced Medical and Dental Institute, University Sain Malaysia, Pulau Pinang, Malaysia
| | - Michael D Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 2015; 35:252-64. [PMID: 25714109 PMCID: PMC4389918 DOI: 10.1089/jir.2014.0227] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While type I interferons (IFNs) are universally acknowledged for their antiviral and immunostimulatory functions, there is increasing appreciation of the detrimental effects of inappropriate, excessive, or mistimed type I IFN responses in viral and bacterial infections. The underlying mechanisms by which type I IFNs promote susceptibility or severity include direct tissue damage by apoptosis induction or suppression of proliferation in tissue cells, immunopathology due to excessive inflammation, and cell death induced by TRAIL- and Fas-expressing immune cells, as well as immunosuppression through IL-10, IL-27, PD-L1, IL-1Ra, and other regulatory molecules that antagonize the induction or action of IL-1, IL-12, IL-17, IFN-γ, KC, and other effectors of the immune response. Bacterial superinfections following influenza infection are a prominent example of a situation where type I IFNs can misdirect the immune response. This review discusses current understanding of the parameters of signal strength, duration, timing, location, and cellular recipients that determine whether type I IFNs have beneficial or detrimental effects in infection.
Collapse
Affiliation(s)
- Sophia Davidson
- 1 Division of Immunoregulation, MRC National Institute for Medical Research , Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
48
|
Camacho-Sandoval R, Del Río Estrada PM, Rivero-Arrieta A, Reyes-Terán G, Bonifaz LC. Differential partial activation phenotype and production of tumour necrosis factor-α by conventional dendritic cells in response to lipopolysaccharide in HIV+ viraemic subjects and HIV+ controllers. Clin Exp Immunol 2015; 178:489-503. [PMID: 25130456 DOI: 10.1111/cei.12430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2014] [Indexed: 12/22/2022] Open
Abstract
HIV(+) subjects are reported to have increased soluble CD14 (sCD14) in plasma, an indicator of microbial translocation. We evaluated if microbial translocation has a differential impact on the activation and function of conventional dendritic cells (cDC) from viraemic HIV(+) subjects and HIV(+) controllers (CTs). The HIV(+) subjects were classified into two groups according to their plasma viral load (pVL): CT and viraemic. Subjects without HIV were included as controls (HIV(-) ). The frequencies and phenotypes of cDC from these subjects were evaluated by multi-parameter flow cytometry. In addition, peripheral blood mononuclear cells (PBMCs) were stimulated with lipopolysaccharide (LPS) or single-stranded RNA40 (ssRNA40), the phenotype of the cDC and the intracellular production of tumour necrosis factor (TNF)-α by the cDC were evaluated by flow cytometry. We observed a partial activation phenotype for the cDC in the viraemic subjects and CTs ex vivo and after LPS activation, which showed differences in the expression of CD40 and CD86. Furthermore, in response to LPS the cDC from the viraemic subjects produced more TNF-α compared to the cDC from CTs. Interestingly, the percentage of TNF-α(+) cDC was found to be correlated positively with the pVL. The partial activation of cDC and the over-production of TNF-α in response to LPS in viraemic HIV(+) subjects might be related to the increased chronic activation observed in these subjects. In contrast, cDC from CTs seem to have a regulated response to LPS, indicating that they respond differently to chronic immune activation. These results may have implications in the development of HIV therapies and vaccines using DC.
Collapse
Affiliation(s)
- R Camacho-Sandoval
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, 'Ismael Cosio Villegas', México, DF, México; Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional 'Siglo XXI', México, DF, México
| | | | | | | | | |
Collapse
|
49
|
Acchioni C, Marsili G, Perrotti E, Remoli AL, Sgarbanti M, Battistini A. Type I IFN--a blunt spear in fighting HIV-1 infection. Cytokine Growth Factor Rev 2014; 26:143-58. [PMID: 25466629 DOI: 10.1016/j.cytogfr.2014.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
For more than 50 years, Type I Interferon (IFN) has been recognized as critical in controlling viral infections. IFN is produced downstream germ-line encoded pattern recognition receptors (PRRs) upon engagement by pathogen-associated molecular patterns (PAMPs). As a result, hundreds of different interferon-stimulated genes (ISGs) are rapidly induced, acting in both autocrine and paracrine manner to build a barrier against viral replication and spread. ISGs encode proteins with direct antiviral and immunomodulatory activities affecting both innate and adaptive immune responses. During infection with viruses, as HIV-1, that can establish a persistent infection, IFN although produced, is not able to block the initial infection and a chronic IFN-mediated immune activation/inflammation becomes a pathogenic mechanism of disease progression. This review will briefly summarize when and how IFN is produced during HIV-1 infection and the way this innate immune response is manipulated by the virus to its own advantage to drive chronic immune activation and progression to AIDS.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Giulia Marsili
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Edvige Perrotti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Anna Lisa Remoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Marco Sgarbanti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|
50
|
Lederle A, Su B, Holl V, Penichon J, Schmidt S, Decoville T, Laumond G, Moog C. Neutralizing antibodies inhibit HIV-1 infection of plasmacytoid dendritic cells by an FcγRIIa independent mechanism and do not diminish cytokines production. Sci Rep 2014; 4:5845. [PMID: 25132382 PMCID: PMC4135332 DOI: 10.1038/srep05845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) expressing FcγRIIa are antigen-presenting cells able to link innate and adaptive immunity and producing various cytokines and chemokines. Although highly restricted, they are able to replicate HIV-1. We determined the activity of anti-HIV-1 neutralizing antibodies (NAb) and non-neutralizing inhibitory antibodies (NNIAb) on the infection of primary pDC by HIV-1 primary isolates and analyzed cytokines and chemokines production. Neutralization assay was performed with primary pDC in the presence of serial antibodies (Ab) concentrations. In parallel, we measured the release of cytokines and chemokines by ELISA and CBA Flex assay. We found that NAb, but not NNIAb, inhibit HIV-1 replication in pDC. This inhibitory activity was lower than that detected for myeloid dendritic cells (mDC) infection and independent of FcγRIIa expressed on pDC. Despite the complete protection, IFN-α production was detected in the supernatant of pDC treated with NAb VRC01, 4E10, PGT121, 10-1074, 10E8, or polyclonal IgG44 but not with NAb b12. Production of MIP-1α, MIP-1β, IL-6, and TNF-α by pDC was also maintained in the presence of 4E10, b12 and VRC01. These findings suggest that pDC can be protected from HIV-1 infection by both NAb and IFN-α release triggered by the innate immune response during infection.
Collapse
Affiliation(s)
- Alexandre Lederle
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Vincent Holl
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Julien Penichon
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Sylvie Schmidt
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|