1
|
You X, Niu L, Fu J, Ge S, Shi J, Zhang Y, Zhuang P. Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. Neural Regen Res 2025; 20:2153-2168. [PMID: 39359076 PMCID: PMC11759007 DOI: 10.4103/nrr.nrr-d-24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2024] [Accepted: 05/11/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional "brain-gut axis" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the "brain-gut-microbiota axis."
Collapse
Affiliation(s)
- Xinyu You
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shining Ge
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Ghannadzadeh Kermani Pour R, Kamali Zounouzi S, Farshbafnadi M, Rezaei N. The interplay between gut microbiota composition and dementia. Rev Neurosci 2025:revneuro-2024-0113. [PMID: 39829047 DOI: 10.1515/revneuro-2024-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as Bifidobacterium breve, Akkermansia muciniphila, Streptococcus thermophilus, Escherichia coli, Blautia hydrogenotrophica, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.
Collapse
Affiliation(s)
| | - Sara Kamali Zounouzi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| | - Melina Farshbafnadi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| |
Collapse
|
3
|
Gandhi DN, Pande DN, Harikrishna A, Advilkar A, Basavan I, Ansari R. Beyond the Brain: Attention Deficit/Hyperactivity Disorder and the Gut-Brain Axis. Cureus 2024; 16:e76291. [PMID: 39850178 PMCID: PMC11754923 DOI: 10.7759/cureus.76291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a complex neurodevelopmental condition, predominantly affecting children, characterized by inattention, hyperactivity, and impulsivity. A growing body of evidence has highlighted the potential influence of the gut microbiota on the onset and presentation of ADHD symptoms. The gut microbiota, a diverse microbial ecosystem residing within the gastrointestinal tract, exerts multiple effects on systemic physiology, including immune modulation, metabolic regulation, and neuronal signalling. The bidirectional gut-brain axis serves as a conduit for communication between gut microbes and the central nervous system, implicating its disruption in neurodevelopmental disorders such as ADHD. This comprehensive literature review aims to shed light on how alterations in the gut microbiota influence the development and manifestation of ADHD symptoms. Examining potential mechanisms involving gut microbial metabolites and their impact on neurotransmitter modulation, neuro-endocrine signalling and neuroinflammation, we dissect the intricate interplay shaping ADHD pathology. Insights into these complex interactions hold promise for personalized therapeutic interventions aimed at modulating the gut microbiota to ameliorate ADHD symptoms. Discussions encompass dietary interventions, faecal microbiota-targeted therapies, and emerging probiotic approaches, underscoring their potential as adjunctive or alternative strategies in managing ADHD. Further research elucidating the precise mechanisms driving these interactions may pave the way for targeted and personalized interventions for individuals grappling with ADHD.
Collapse
Affiliation(s)
- Dhruv N Gandhi
- Internal Medicine, KJ Somaiya Medical College and Research Centre, Mumbai, IND
| | - Devina N Pande
- Pediatrics, KJ Somaiya Medical College and Research Centre, Mumbai, IND
| | - Arya Harikrishna
- Neurology, European University Cyprus - School of Medicine, Nicosia, CYP
| | - Aditi Advilkar
- Internal Medicine, KJ Somaiya Medical College and Research Centre, Mumbai, IND
| | - Ishwar Basavan
- Internal Medicine, Jawaharlal Nehru Medical College, Belagavi, IND
| | - Ramsha Ansari
- Internal Medicine, School of Medicine, Xiamen University, Xiamen, CHN
| |
Collapse
|
4
|
Ingram K, Gregg C, Tegge A, Elison JT, Lin W, Howell BR. Metagenomic assessment of the bacterial breastfeeding microbiome in mature milk across lactation. Front Pediatr 2024; 11:1275436. [PMID: 39092171 PMCID: PMC11292495 DOI: 10.3389/fped.2023.1275436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 08/04/2024] Open
Abstract
Introduction Research has illustrated the presence of a diverse range of microbiota in human milk. The composition of the milk microbiome varies across different stages of lactation, emphasizing the need to consider the lactation stage when studying its composition. Additionally, the transfer of both milk and skin microbiota during breastfeeding is crucial for understanding their collective impact on infant health and development. Further exploration of the complete breastfeeding microbiome is necessary to unravel the role these organisms play in infant development. We aim to longitudinally assess the bacterial breastfeeding microbiome across stages of lactation. This includes all the bacteria that infants are exposed to during breastfeeding, such as bacteria found within human milk and any bacteria found on the breast and nipple. Methods Forty-six human milk samples were collected from 15 women at 1, 4, 7, and 10 months postpartum. Metagenomic analysis of the bacterial microbiome for these samples was performed by CosmosID (Rockville, MD) via deep sequencing. Results Staphylococcus epidermidis and Propionibacteriaceae species are the most abundant bacterial species from these samples. Samples collected at 10 months showed higher abundances of Proteobacteria, Streptococcaceae, Lactobacillales, Streptococcus, and Neisseria mucosa compared to other timepoints. Alpha diversity varied greatly between participants but did not change significantly over time. Discussion As the bacterial breastfeeding microbiome continues to be studied, bacterial contributions could be used to predict and reduce health risks, optimize infant outcomes, and design effective management strategies, such as altering the maternal flora, to mitigate adverse health concerns.
Collapse
Affiliation(s)
- Kelly Ingram
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Collin Gregg
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Allison Tegge
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Jed T. Elison
- Institute for Child Development, University of Minnesota, Minneapolis, MN, United States
- Masonic Institute for the Developing Brain, University of Minnesota, St. Paul, MN, United States
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittany R. Howell
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Yu J, Chen Y, Wang J, Wu H. Research progress on the relationship between traumatic brain injury and brain-gut-microbial axis. IBRAIN 2024; 10:477-487. [PMID: 39691426 PMCID: PMC11649388 DOI: 10.1002/ibra.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 12/19/2024]
Abstract
Traumatic brain injury (TBI) is a common disease with a high rate of death and disability, which poses a serious threat to human health; thus, the effective treatment of TBI has been a high priority. The brain-gut-microbial (BGM) axis, as a bidirectional communication network for information exchange between the brain and gut, plays a crucial role in neurological diseases. This article comprehensively explores the interrelationship between the BGM axis and TBI, including its physiological effects, basic pathophysiology, and potential therapeutic strategies. It highlights how the bidirectional regulatory pathways of the BGM axis could provide new insights into clinical TBI treatment and underscores the necessity for advanced research and development of innovative clinical treatments for TBI.
Collapse
Affiliation(s)
- Jie Yu
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yun‐Xin Chen
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jin‐Wei Wang
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Hai‐Tao Wu
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
6
|
Doğan D, Çelik T. Research trends on the gut microbiota in endocrine metabolism: a thematic and bibliometric analysis. Front Cell Infect Microbiol 2024; 14:1371727. [PMID: 38585653 PMCID: PMC10995354 DOI: 10.3389/fcimb.2024.1371727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Gut microbiota studies in the field of endocrinology metabolism have attracted increasing attention in recent years. To comprehensively assess the evolving landscape of this research field, we conducted a thorough bibliometric analysis of gut microbiota studies in endocrinology metabolism indexed in the Web of Science database. Methods We collected and analyzed 3,339 original research articles and reviews published from 1972 to 2023. Using various bibliometric indicators, we investigated publication trends, country contributions, international collaborations, prolific authors, top journals, and influential articles. Results Our analysis revealed a significant upsurge in publications after 2010, indicating a growing scientific interest in microbiota and endocrinology metabolism. Keyword and thematic analyses have identified gut microbiota, obesity, diabetes, and inflammation as core research themes. Additionally, the roles of probiotics and prebiotics are increasingly researched for their therapeutic effects in shaping the microbiota. Conclusion This study reveals that research in endocrinology metabolism is increasingly decoding the connection between gut microbiota and diseases. There's also a growing focus on microbiota manipulation, which points to a shift towards personalized medicine. Future research should focus on integrating these findings into clinical practice, moving from lab-based studies to real-world patient care.
Collapse
Affiliation(s)
- Durmus Doğan
- Department of Pediatric Medicine, Division of Pediatric Endocrinology, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Taylan Çelik
- Department of Pediatric Medicine, Division of Pediatric Infectious Diseases, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
7
|
Shi Y, Yu C. Effect of dietary living microbe intake on depression symptom in American adult: An opinion from NHANES study. J Affect Disord 2024; 347:108-114. [PMID: 37981039 DOI: 10.1016/j.jad.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Daily diet represents a potentially modifiable factor in the development of depression. However, to date, no studies have investigated the impact of dietary active microorganisms on depressive symptoms. The aim of this study is to explore the relationship between these two factors. METHODS Population data from NHANES 2005-2018 indicated that the exposure variable was dietary intake of active microbes, while the outcome variable was depression as defined by a 9-item Patient Health Questionnaire (PHQ-9) score. A multivariate logistic regression model was employed to assess the impact of dietary living microbe intake on depression symptoms. RESULTS A total of 19,169 American adults with a mean age of 46.89 years (SD = 16.97) were included in this cross-sectional analysis; among them, 53.84 % were male and 8.11 % (n = 1555) met the criteria for depression symptoms. In the fully adjusted model, patients with medium and high dietary living microbe intake exhibited a significant reduction in depression symptoms prevalence by 28 % (OR, 0.72; 95 % CI: 0.64-0.81) and 26 % (OR, 0.74; 95 % CI: 0.63-0.85), respectively, compared to those with low dietary living microbe intake. Subgroup analyse indicate that no significant interaction was observed between dietary living microbe intake group and subgroups. CONCLUSION Higher intake of active microbes in the diet was found to have a negative correlation with depression.
Collapse
Affiliation(s)
- Yumeng Shi
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, China; Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang of Jiangxi, China; Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases
| | - Chao Yu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, China; Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University; Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang of Jiangxi, China; Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases.
| |
Collapse
|
8
|
Celorrio M, Shumilov K, Friess SH. Gut microbial regulation of innate and adaptive immunity after traumatic brain injury. Neural Regen Res 2024; 19:272-276. [PMID: 37488877 PMCID: PMC10503601 DOI: 10.4103/1673-5374.379014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension, hypoxia, intracranial hypertension, and detrimental inflammation. However, the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems. Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease. A critical component of this axis is the microorganisms of the gut known as the gut microbiome. Changes in gut microbial populations in the setting of central nervous system disease, including traumatic brain injury, have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care. In this review article, we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury. We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury.
Collapse
Affiliation(s)
- Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kirill Shumilov
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stuart H. Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Wigren MA, Johnson TA, Griffitt RJ, Hay AG, Knott JA, Sepúlveda MS. Limited impact of weathered residues from the Deepwater Horizon oil spill on the gut-microbiome and foraging behavior of sheepshead minnows ( Cyprinodon variegatus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:1-21. [PMID: 37830742 DOI: 10.1080/15287394.2023.2265413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.
Collapse
Affiliation(s)
- Maggie A Wigren
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Jonathan A Knott
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
10
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Cullen AE, Labad J, Oliver D, Al-Diwani A, Minichino A, Fusar-Poli P. The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence. Curr Neuropharmacol 2024; 22:350-377. [PMID: 36946486 PMCID: PMC10845079 DOI: 10.2174/1570159x21666230322145049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 03/23/2023] Open
Abstract
Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise highrisk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, largescale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Solna, Sweden
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Javier Labad
- CIBERSAM, Sabadell, Barcelona, Spain
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Amedeo Minichino
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Landini L, Dadson P, Gallo F, Honka MJ, Cena H. Microbiota in anorexia nervosa: potential for treatment. Nutr Res Rev 2023; 36:372-391. [PMID: 35875979 DOI: 10.1017/s0954422422000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Anorexia nervosa (AN) is characterised by the restriction of energy intake in relation to energy needs and a significantly lowered body weight than normally expected, coupled with an intense fear of gaining weight. Treatment of AN is currently based on psychological and refeeding approaches, but their efficacy remains limited since 40% of patients after 10 years of medical care still present symptoms of AN. The intestine hosts a large community of microorganisms, called the "microbiota", which live in symbiosis with the human host. The gut microbiota of a healthy human is dominated by bacteria from two phyla: Firmicutes and, majorly, Bacteroidetes. However, the proportion in their representation differs on an individual basis and depends on many external factors including medical treatment, geographical location and hereditary, immunological and lifestyle factors. Drastic changes in dietary intake may profoundly impact the composition of the gut microbiota, and the resulting dysbiosis may play a part in the onset and/or maintenance of comorbidities associated with AN, such as gastrointestinal disorders, anxiety and depression, as well as appetite dysregulation. Furthermore, studies have reported the presence of atypical intestinal microbial composition in patients with AN compared with healthy normal-weight controls. This review addresses the current knowledge about the role of the gut microbiota in the pathogenesis and treatment of AN. The review also focuses on the bidirectional interaction between the gastrointestinal tract and the central nervous system (microbiota-gut-brain axis), considering the potential use of the gut microbiota manipulation in the prevention and treatment of AN.
Collapse
Affiliation(s)
- Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
| | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | - Fabrizio Gallo
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
| | | | - Hellas Cena
- Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
13
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
15
|
Castellini G, Cassioli E, Vitali F, Rossi E, Dani C, Melani G, Flaccomio D, D'Andria M, Mejia Monroy M, Galli A, Cavalieri D, Ricca V, Bartolucci GL, De Filippo C. Gut microbiota metabolites mediate the interplay between childhood maltreatment and psychopathology in patients with eating disorders. Sci Rep 2023; 13:11753. [PMID: 37474544 PMCID: PMC10359458 DOI: 10.1038/s41598-023-38665-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Eating disorders (EDs) are syndromes with a multifactorial etiopathogenesis, involving childhood traumatic experiences, as well as biological factors. Human microbiome has been hypothesised to play a fundamental role, impacting on emotion regulation, as well as with eating behaviours through its metabolites such as short chain fatty acids (SCFAs). The present study investigated the interactions between psychopathology of EDs, the gut microbiome and SCFAs resulting from bacterial community metabolic activities in a population of 47 patients with Anorexia Nervosa, Bulimia Nervosa, and Binge Eating Disorder and in healthy controls (HCs). Bacterial gut microbiota composition differences were found between subjects with EDs and HCs, especially in association with different pathological behaviours (binge-purge vs restricting). A mediation model of early trauma and ED-specific psychopathology linked reduction of microbial diversity to a typical microbiota-derived metabolite such as butyric acid. A possible interpretation for this model might be that childhood trauma represents a risk factor for gut dysbiosis and for a stable modification of mechanisms responsible for SCFAs production, and that this dysfunctional community is inherited in the passage from childhood to adulthood. These findings might open the way to novel interventions of butyric acid-like compounds as well as faecal transplant.
Collapse
Affiliation(s)
| | - Emanuele Cassioli
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | - Eleonora Rossi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Cristiano Dani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Melani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Dario Flaccomio
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Martina D'Andria
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Valdo Ricca
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy.
| |
Collapse
|
16
|
Gancz NN, Levinson JA, Callaghan BL. Sex and gender as critical and distinct contributors to the human brain-gut-microbiome axis. Brain Res Bull 2023; 199:110665. [PMID: 37192716 PMCID: PMC11149430 DOI: 10.1016/j.brainresbull.2023.110665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/25/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
The brain-gut-microbiome axis (BGMA) is a pivotal contributor to human health. A large body of research, especially from animal models, has revealed bidirectional, causal relationships between the BGMA and sex. In particular, sex steroids appear to be affected by the BGMA, to influence the BGMA, and to moderate environmental effects on the BGMA. However, animal research on the relationship between sex and the BGMA has not translated well to human models. We contend that this is due in part to an oversimplified approach to sex: although BGMA researchers have traditionally approached sex as a unidimensional, dichotomous variable, it is in fact multidimensional and is comprised of both multi-categorical and continuous dimensions. We also contend that research on the BGMA in humans should approach gender as a variable that is distinct from sex and that gender may influence the BGMA through pathways that are independent from the effects of sex alone. Research practices that consider the complexity and distinctiveness of sex and gender in relation to the human BGMA will not only yield improved understanding of this consequential system, but will also enhance the development of treatments for adverse health outcomes with BGMA-related etiologies. We conclude with recommendations for the implementation of such practices.
Collapse
Affiliation(s)
- N N Gancz
- University of California, Los Angeles, Department of Psychology, 502 Portola Plaza, Los Angeles, CA 90095, USA.
| | - J A Levinson
- University of California, Los Angeles, Department of Psychology, 502 Portola Plaza, Los Angeles, CA 90095, USA
| | - B L Callaghan
- University of California, Los Angeles, Department of Psychology, 502 Portola Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Refisch A, Sen ZD, Klassert TE, Busch A, Besteher B, Danyeli LV, Helbing D, Schulze-Späte U, Stallmach A, Bauer M, Panagiotou G, Jacobsen ID, Slevogt H, Opel N, Walter M. Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology 2023; 235:109568. [PMID: 37182790 DOI: 10.1016/j.neuropharm.2023.109568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tilman E Klassert
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Dario Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany, and Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany; Department of Pulmonary Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
18
|
Yao J, Chen C, Guo Y, Yang Y, Liu X, Chu S, Ai Q, Zhang Z, Lin M, Yang S, Chen N. A Review of Research on the Association between Neuron-Astrocyte Signaling Processes and Depressive Symptoms. Int J Mol Sci 2023; 24:ijms24086985. [PMID: 37108148 PMCID: PMC10139177 DOI: 10.3390/ijms24086985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Depression is a mental illness that has a serious negative impact on physical and mental health. The pathophysiology of depression is still unknown, and therapeutic medications have drawbacks, such as poor effectiveness, strong dependence, adverse drug withdrawal symptoms, and harmful side effects. Therefore, the primary purpose of contemporary research is to understand the exact pathophysiology of depression. The connection between astrocytes, neurons, and their interactions with depression has recently become the focus of great research interest. This review summarizes the pathological changes of neurons and astrocytes, and their interactions in depression, including the alterations of mid-spiny neurons and pyramidal neurons, the alterations of astrocyte-related biomarkers, and the alterations of gliotransmitters between astrocytes and neurons. In addition to providing the subjects of this research and suggestions for the pathogenesis and treatment techniques of depression, the intention of this article is to more clearly identify links between neuronal-astrocyte signaling processes and depressive symptoms.
Collapse
Affiliation(s)
- Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Cong Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi Guo
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xinya Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
19
|
Martin SE, Kraft CS, Ziegler TR, Millson EC, Rishishwar L, Martin GS. The Role of Diet on the Gut Microbiome, Mood and Happiness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.18.23287442. [PMID: 36993403 PMCID: PMC10055576 DOI: 10.1101/2023.03.18.23287442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The gut microbiome may be both helpful and harmful, and not only is it affected by diet, it has also been shown to affect mental health including personality, mood, anxiety and depression. In this clinical study we assessed dietary nutrient composition, mood, happiness, and the gut microbiome in order to understand the role of diet in the gut microbiome and how that affects mood and happiness. For this pilot study, we enrolled 20 adults to follow this protocol: recording a 2-day food log, sampling their gut microbiome, and completing five validated surveys of mental health, mood, happiness and well-being, followed by a minimum 1 week diet change and repeating the food log, microbiome sampling and the 5 surveys. The change from a predominantly Western diet to vegetarian, Mediterranean and ketogenic diets led to changes in calorie and fiber intake. After the diet change, we observed significant changes in measures of anxiety, well-being and happiness, and without changes in gut microbiome diversity. We found strong correlations between greater consumption of fat and protein to lower anxiety and depression, while consuming higher percentages of carbohydrates was associated with increased stress, anxiety, and depression. We also found strong negative correlations between total calories and total fiber intake with gut microbiome diversity without correlations to measures of mental health, mood or happiness. We have shown that changing diet affects mood and happiness, that greater fat and carbohydrate intake is directly associated with anxiety and depression and inversely correlated with gut microbiome diversity. This study is an important step towards understanding how our diet affects the gut microbiome and in turn our mood, happiness and mental health.
Collapse
Affiliation(s)
| | | | | | - Erin C Millson
- Georgia Clinical and Translational Science Alliance (CTSA)
| | | | | |
Collapse
|
20
|
Turco F, Brugnatelli V, Abalo R. Neuro-Gastro-Cannabinology: A Novel Paradigm for Regulating Mood and Digestive Health. Med Cannabis Cannabinoids 2023; 6:130-137. [PMID: 37920559 PMCID: PMC10618907 DOI: 10.1159/000534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 11/04/2023] Open
Abstract
The maintenance of homeostasis in the gastrointestinal (GI) tract is ensured by the presence of the endocannabinoid system (ECS), which regulates important physiological activities, such as motility, permeability, fluid secretion, immunity, and visceral pain sensation. Beside its direct effects on the GI system, the ECS in the central nervous system indirectly regulates GI functions, such as food intake and energy balance. Mounting evidence suggests that the ECS may play an important role in modulating central neurotransmission which affects GI functioning. It has also been found that the interaction between the ECS and microbiota affects brain and gut activity in a bidirectional manner, and a number of studies demonstrate that there is a strong relationship between GI dysfunctions and mood disorders. Thus, microbiota can regulate the tone of the ECS. Conversely, changes in intestinal ECS tone may influence microbiota composition. In this mini-review, we propose the concept of neuro-gastro-cannabinology as a novel and alternative paradigm for studying and treating GI disorders that affect mood, as well as mood disorders that imbalance GI physiology. This concept suggests the use of prebiotics or probiotics for improving the tone of the ECS, as well as the use of phytocannabinoids or endocannabinoid-like molecules, such as palmitoylethanolamide, to restore the normal intestinal microbiota. This approach may be effective in ameliorating the negative effects of GI dysfunctions on mood and/or the effects of mood disorders on digestive health.
Collapse
Affiliation(s)
| | | | - Raquel Abalo
- Depar High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
- R & D & I Unit Associated with the Institute of Medicinal Chemistry (IQM), Spanish National Research-Council (CSIC), Madrid, Spain
- Spanish Pain Society Working Groups on Basic Sciences in Pain and Analgesia and on Cannabinoids, Madrid, Spain
| |
Collapse
|
21
|
Kossewska J, Bierlit K, Trajkovski V. Personality, Anxiety, and Stress in Patients with Small Intestine Bacterial Overgrowth Syndrome. The Polish Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:93. [PMID: 36612414 PMCID: PMC9819554 DOI: 10.3390/ijerph20010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Small intestinal bacterial overgrowth (SIBO) syndrome is associated with depression and anxiety. This study aimed to examine for the first time the correlation between personality traits, situational anxiety, and stress in Polish patients with SIBO. METHODOLOGY This study included 26 patients with SIBO aged 20-35 years and 24 non-SIBO patients aged 20-35 years. The following instruments were used: NEO-FFI Personality Inventory, KPS Sense of Stress Questionnaire, and the anxiety-state subscale from the State-Trait Anxiety Inventory (STAI). RESULTS Compared to the non-SIBO subgroup, SIBO patients expressed specific patterns of personality traits: higher neuroticism, lower extroversion, and a higher state of anxiety and stress. Unlike the non-SIBO subgroup, stress (total emotional tension, external, and intrapsychic) correlated negatively only with extroversion. CONCLUSIONS Personality is the primary regulator of experience and behavior. The specificity captured in the research is a premise for an in-depth study considering various psychological variables to determine cause-effect relationships.
Collapse
Affiliation(s)
- Joanna Kossewska
- Institute of Special Education, School Education and Teachers Education, Pedagogical University of Krakow, 30-084 Kraków, Poland
| | - Karolina Bierlit
- Student Scientific Club of Supporting People with Autism, Pedagogical University of Krakow, 30-084 Kraków, Poland
| | - Vladimir Trajkovski
- Macedonian Scientific Society for Autism, Institute of Special Education and Rehabilitation, Faculty of Philosophy, Ss. Cyril & Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
22
|
Consonni A, Miglietti M, De Luca CMG, Cazzaniga FA, Ciullini A, Dellarole IL, Bufano G, Di Fonzo A, Giaccone G, Baggi F, Moda F. Approaching the Gut and Nasal Microbiota in Parkinson's Disease in the Era of the Seed Amplification Assays. Brain Sci 2022; 12:1579. [PMID: 36421902 PMCID: PMC9688507 DOI: 10.3390/brainsci12111579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 10/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder often associated with pre-motor symptoms involving both gastrointestinal and olfactory tissues. PD patients frequently suffer from hyposmia, hyposalivation, dysphagia and gastrointestinal dysfunctions. During the last few years it has been speculated that microbial agents could play a crucial role in PD. In particular, alterations of the microbiota composition (dysbiosis) might contribute to the formation of misfolded α-synuclein, which is believed to be the leading cause of PD. However, while several findings confirmed that there might be an important link between intestinal microbiota alterations and PD onset, little is known about the potential contribution of the nasal microbiota. Here, we describe the latest findings on this topic by considering that more than 80% of patients with PD develop remarkable olfactory deficits in their prodromal disease stage. Therefore, the nasal microbiota might contribute to PD, eventually boosting the gut microbiota in promoting disease onset. Finally, we present the applications of the seed amplification assays to the study of the gut and olfactory mucosa of PD patients, and how they could be exploited to investigate whether pathogenic bacteria present in the gut and the nose might promote α-synuclein misfolding and aggregation.
Collapse
Affiliation(s)
- Alessandra Consonni
- Division of Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Martina Miglietti
- Division of Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Maria Giulia De Luca
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Arianna Ciullini
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria Linda Dellarole
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giuseppe Bufano
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alessio Di Fonzo
- Division of Neurology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Fulvio Baggi
- Division of Neurology 4-Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Fabio Moda
- Division of Neurology 5-Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
23
|
Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) 2022; 9:968453. [PMID: 36111108 PMCID: PMC9468749 DOI: 10.3389/fmed.2022.968453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022] Open
Abstract
When a traumatic injury exceeds the body's internal tolerances, the innate immune and inflammatory systems are rapidly activated, and if not contained early, increase morbidity and mortality. Early deaths after hospital admission are mostly from central nervous system (CNS) trauma, hemorrhage and circulatory collapse (30%), and later deaths from hyperinflammation, immunosuppression, infection, sepsis, acute respiratory distress, and multiple organ failure (20%). The molecular drivers of secondary injury include damage associated molecular patterns (DAMPs), pathogen associated molecular patterns (PAMPs) and other immune-modifying agents that activate the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic stress response. Despite a number of drugs targeting specific anti-inflammatory and immune pathways showing promise in animal models, the majority have failed to translate. Reasons for failure include difficulty to replicate the heterogeneity of humans, poorly designed trials, inappropriate use of specific pathogen-free (SPF) animals, ignoring sex-specific differences, and the flawed practice of single-nodal targeting. Systems interconnectedness is a major overlooked factor. We argue that if the CNS is protected early after major trauma and control of cardiovascular function is maintained, the endothelial-glycocalyx will be protected, sufficient oxygen will be delivered, mitochondrial energetics will be maintained, inflammation will be resolved and immune dysfunction will be minimized. The current challenge is to develop new systems-based drugs that target the CNS coupling of whole-body function.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
24
|
The Potential Role of m6A in the Regulation of TBI-Induced BGA Dysfunction. Antioxidants (Basel) 2022; 11:antiox11081521. [PMID: 36009239 PMCID: PMC9405408 DOI: 10.3390/antiox11081521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The brain–gut axis (BGA) is an important bidirectional communication pathway for the development, progress and interaction of many diseases between the brain and gut, but the mechanisms remain unclear, especially the post-transcriptional regulation of BGA after traumatic brain injury (TBI). RNA methylation is one of the most important modifications in post-transcriptional regulation. N6-methyladenosine (m6A), as the most abundant post-transcriptional modification of mRNA in eukaryotes, has recently been identified and characterized in both the brain and gut. The purpose of this review is to describe the pathophysiological changes in BGA after TBI, and then investigate the post-transcriptional bidirectional regulation mechanisms of TBI-induced BGA dysfunction. Here, we mainly focus on the characteristics of m6A RNA methylation in the post-TBI BGA, highlight the possible regulatory mechanisms of m6A modification in TBI-induced BGA dysfunction, and finally discuss the outcome of considering m6A as a therapeutic target to improve the recovery of the brain and gut dysfunction caused by TBI.
Collapse
|
25
|
Sun Y, Koyama Y, Shimada S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front Aging Neurosci 2022; 14:903455. [PMID: 35783147 PMCID: PMC9244793 DOI: 10.3389/fnagi.2022.903455] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As inflammation in the brain contributes to several neurological and psychiatric diseases, the cause of neuroinflammation is being widely studied. The causes of neuroinflammation can be roughly divided into the following domains: viral infection, autoimmune disease, inflammation from peripheral organs, mental stress, metabolic disorders, and lifestyle. In particular, the effects of neuroinflammation caused by inflammation of peripheral organs have yet unclear mechanisms. Many diseases, such as gastrointestinal inflammation, chronic obstructive pulmonary disease, rheumatoid arthritis, dermatitis, chronic fatigue syndrome, or myalgic encephalomyelitis (CFS/ME), trigger neuroinflammation through several pathways. The mechanisms of action for peripheral inflammation-induced neuroinflammation include disruption of the blood-brain barrier, activation of glial cells associated with systemic immune activation, and effects on autonomic nerves via the organ-brain axis. In this review, we consider previous studies on the relationship between systemic inflammation and neuroinflammation, focusing on the brain regions susceptible to inflammation.
Collapse
Affiliation(s)
- Yuanjie Sun
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- *Correspondence: Yoshihisa Koyama, ; orcid.org/0000-0003-3965-0716
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
26
|
Qiu H, Gao H, Yu F, Xiao B, Li X, Cai B, Ge L, Lu Y, Wan Z, Wang Y, Xia T, Wang A, Zhang S. Perinatal exposure to low-level PBDE-47 programs gut microbiota, host metabolism and neurobehavior in adult rats: An integrated analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154150. [PMID: 35218822 DOI: 10.1016/j.scitotenv.2022.154150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants, have been extensively applied in plastics, electrical equipment, textile fabrics, and so on. Early-life exposure to PBDEs is correlated to neurobehavioral deficits in adulthood, yet the underlying mechanism has not been fully understood. Increasing evidence has demonstrated that gut microbiota dysbiosis and serum metabolites alterations play a role in behavioral abnormalities. However, whether their perturbation is implicated in PBDEs-induced neurotoxicity remains unclear. Here, we sought to explore the effects of developmental exposure to environmentally relevant levels of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47), a major congener in human samples, on gut microbiota and serum metabolic profile as well as their link to neurobehavioral parameters in adult rats. The open field test showed that gestational and lactational exposure to PBDE-47 caused hyperactivity and anxiety-like behavior. Moreover, 16S rRNA sequencing of fecal samples identified a distinct community composition in gut microbiota following PBDE-47 exposure, manifested as decreased genera Ruminococcaceae and Moraxella, increased families Streptococcaceae and Deferribacteraceae as well as genera Escherichia-Shigella, Pseudomonas and Peptococcus. Additionally, the metabolomics of the blood samples based on liquid chromatography-mass spectrometry revealed a significant shift after PBDE-47 treatment. Notably, these differential serum metabolites were mainly involved in amino acid, carbohydrate, nucleotide, xenobiotics, and lipid metabolisms, which were further validated by pathway analysis. Importantly, the disturbed gut microbiota and the altered serum metabolites were associated with each other and with neurobehavioral disorders, respectively. Collectively, these results suggest that gut microbiota dysbiosis and serum metabolites alterations potentially mediated early-life low-dose PBDE-47 exposure-induced neurobehavioral impairments, which provides a novel perspective on understanding the mechanisms of PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Haixia Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangjin Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boya Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Cai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Ge
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Lee JE, Walton D, O’Connor CP, Wammes M, Burton JP, Osuch EA. Drugs, Guts, Brains, but Not Rock and Roll: The Need to Consider the Role of Gut Microbiota in Contemporary Mental Health and Wellness of Emerging Adults. Int J Mol Sci 2022; 23:6643. [PMID: 35743087 PMCID: PMC9223871 DOI: 10.3390/ijms23126643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging adulthood (ages 18-25) is a critical period for neurobiological development and the maturation of the hypothalamic-pituitary-adrenal axis. Recent findings also suggest that a natural perturbation of the gut microbiota (GM), combined with other factors, may create a unique vulnerability during this period of life. The GM of emerging adults is thought to be simpler, less diverse, and more unstable than either younger or older people. We postulate that this plasticity in the GM suggests a role in the rising mental health issues seen in westernized societies today via the gut-brain-microbiota axis. Studies have paid particular attention to the diversity of the microbiota, the specific function and abundance of bacteria, and the production of metabolites. In this narrative review, we focus specifically on diet, physical activity/exercise, substance use, and sleep in the context of the emerging adult. We propose that this is a crucial period for establishing a stable and more resilient microbiome for optimal health into adulthood. Recommendations will be made about future research into possible behavioral adjustments that may be beneficial to endorse during this critical period to reduce the probability of a "dysbiotic" GM and the emergence and severity of mental health concerns.
Collapse
Affiliation(s)
- Ju Eun Lee
- London Health Science Centre—Victoria Hospital, Department of Psychiatry, B8-102, London, ON N6A 5W9, Canada;
| | - David Walton
- Rm. EC1443 School of Physical Therapy, 1201 Western Rd., London, ON N6G 1H1, Canada;
| | - Colleen P. O’Connor
- School of Food and Nutritional Sciences, Brescia University College, London, ON N6G 1H2, Canada;
| | - Michael Wammes
- London Health Sciences Centre, Department of Psychiatry, Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, 860 Richmond Street, FEMAP, London, ON N6A 3H8, Canada;
| | - Jeremy P. Burton
- Departments of Surgery, Microbiology and Immunology, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada;
| | - Elizabeth A. Osuch
- London Health Sciences Centre, Department of Psychiatry, Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, 860 Richmond Street, FEMAP, London, ON N6A 3H8, Canada;
| |
Collapse
|
28
|
Vellano CP, White MG, Andrews MC, Chelvanambi M, Witt RG, Daniele JR, Titus M, McQuade JL, Conforti F, Burton EM, Lastrapes MJ, Ologun G, Cogdill AP, Morad G, Prieto P, Lazar AJ, Chu Y, Han G, Khan MAW, Helmink B, Davies MA, Amaria RN, Kovacs JJ, Woodman SE, Patel S, Hwu P, Peoples M, Lee JE, Cooper ZA, Zhu H, Gao G, Banerjee H, Lau M, Gershenwald JE, Lucci A, Keung EZ, Ross MI, Pala L, Pagan E, Segura RL, Liu Q, Borthwick MS, Lau E, Yates MS, Westin SN, Wani K, Tetzlaff MT, Haydu LE, Mahendra M, Ma X, Logothetis C, Kulstad Z, Johnson S, Hudgens CW, Feng N, Federico L, Long GV, Futreal PA, Arur S, Tawbi HA, Moran AE, Wang L, Heffernan TP, Marszalek JR, Wargo JA. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 2022; 606:797-803. [PMID: 35705814 PMCID: PMC10071594 DOI: 10.1038/s41586-022-04833-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 05/05/2022] [Indexed: 01/27/2023]
Abstract
Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed1,2. Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy ( NCT02231775 , n = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in female versus male patients (MPR, 66% versus 14%, P = 0.001; RFS, 64% versus 32% at 2 years, P = 0.021). The findings were validated in several additional cohorts2-4 of patients with unresectable metastatic melanoma who were treated with BRAF- and/or MEK-targeted therapy (n = 664 patients in total), demonstrating improved progression-free survival and overall survival in female versus male patients in several of these studies. Studies in preclinical models demonstrated significantly impaired anti-tumour activity in male versus female mice after BRAF/MEK-targeted therapy (P = 0.006), with significantly higher expression of the androgen receptor in tumours of male and female BRAF/MEK-treated mice versus the control (P = 0.0006 and P = 0.0025). Pharmacological inhibition of androgen receptor signalling improved responses to BRAF/MEK-targeted therapy in male and female mice (P = 0.018 and P = 0.003), whereas induction of androgen receptor signalling (through testosterone administration) was associated with a significantly impaired response to BRAF/MEK-targeted therapy in male and female patients (P = 0.021 and P < 0.0001). Together, these results have important implications for therapy.
Collapse
Affiliation(s)
- Christopher P Vellano
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miles C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Russell G Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Daniele
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabio Conforti
- Division of Melanoma, Sarcomas, and Rare Tumors, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elizabeth M Burton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew J Lastrapes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Ologun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, Guthrie Courtland Medical Center, Courtland, NY, USA
| | - Alexandria P Cogdill
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Immunai, New York, NY, USA
| | - Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Prieto
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, University of Rochester, Rochester, NY, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M A Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beth Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodabe N Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey J Kovacs
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sapna Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Moffitt Cancer Center, Tampa, FL, USA
| | - Michael Peoples
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,AstraZeneca, Gaithersburg, MD, USA
| | - Haifeng Zhu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Gao
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiya Banerjee
- Clinical Development and Analytics, Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Mike Lau
- Novartis Pharma, Basel, Switzerland
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony Lucci
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merrick I Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Pala
- Division of Melanoma, Sarcomas, and Rare Tumors, European Institute of Oncology, IRCCS, Milan, Italy
| | - Eleonora Pagan
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Rossana Lazcano Segura
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mikayla S Borthwick
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda S Yates
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Tetzlaff
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, University of California, San Francisco, CA, USA
| | - Lauren E Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - XiaoYan Ma
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary Kulstad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney W Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ningping Feng
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorenzo Federico
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swathi Arur
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy E Moran
- Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P Heffernan
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Joseph R Marszalek
- TRACTION Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
29
|
Oligosaccharide and Flavanoid Mediated Prebiotic Interventions to Treat Gut Dysbiosis Associated Cognitive Decline. J Neuroimmune Pharmacol 2022; 17:94-110. [PMID: 35043295 DOI: 10.1007/s11481-021-10041-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022]
Abstract
Oligosaccharides are potential prebiotic which maintains gut microbiota and improves gut health. The association of gut and brain is named as gut-brain-axis. Gut dysbiosis disrupts gut-brain-axis and effectively contributes to psychiatric disorders. In the present study, Xylo-oligosaccharide (XOS) and Quercetin were used as therapeutic interventions against gut dysbiosis mediated cognitive decline. Gut dysbiosis was established in mice through administration of Ampicillin Sodium, orally for 14 days. XOS and quercetin were administered separately or in combination along with antibiotic. Gene expression studies using mice faecal samples showed both XOS and quercetin could revive Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were reduced due to antibiotic treatment. FITC-dextran concentration in serum revealed XOS and quercetin protected intestinal barrier integrity against antibiotic associated damage. This was verified by histopathological studies showing restored intestinal architecture. Moreover, intestinal inflammation which increased after antibiotic treated animals was reduced upon XOS and quercetin treatment. Behavioural studies demonstrated that gut dysbiosis reduced fear conditioning, spatial and recognition memory which were reversed upon XOS and quercetin treatment. XOS and quercetin also reduced inflammation and acetylcholine esterase which were heightened in antibiotic treated animal brain. They also reduced oxidative stress, pro-inflammatory cytokines and chemokines and protected hippocampal neurons. In conclusion, XOS and quercetin effectively reduced antibiotic associated gut dysbiosis and prevented gut dysbiosis associated cognitive decline in mice.
Collapse
|
30
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
31
|
Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022; 11:cells11081362. [PMID: 35456041 PMCID: PMC9030021 DOI: 10.3390/cells11081362] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.
Collapse
Affiliation(s)
- Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Hediyal Ahmed Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilant, MI 48917, USA;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (S.B.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
- Correspondence: (S.B.C.); (B.-J.S.)
| |
Collapse
|
32
|
Xiong Z, Peng K, Song S, Zhu Y, Gu J, Huang C, Li X. Cerebral Intraparenchymal Hemorrhage Changes Patients’ Gut Bacteria Composition and Function. Front Cell Infect Microbiol 2022; 12:829491. [PMID: 35372117 PMCID: PMC8966894 DOI: 10.3389/fcimb.2022.829491] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Gut bacteria consists of 150 times more genes than humans that are vital for health. Several studies revealed that gut bacteria are associated with disease status and influence human behavior and mentality. Whether human brain injury alters the gut bacteria is yet unclear, we tested 20 fecal samples from patients with cerebral intraparenchymal hemorrhage and corresponding healthy controls through metagenomic shotgun sequencing. The composition of patients’ gut bacteria changed significantly at the phylum level; Verrucomicrobiota was the specific phylum colonized in the patients’ gut. The functional alteration was observed in the patients’ gut bacteria, including high metabolic activity for nutrients or neuroactive compounds, strong antibiotic resistance, and less virulence factor diversity. The changes in the transcription and metabolism of differential species were more evident than those of the non-differential species between groups, which is the primary factor contributing to the functional alteration of patients with cerebral intraparenchymal hemorrhage.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Kang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shaoyu Song
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
- Centre for Clinical and Translational Medicine Research, Jishou University, Jishou, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Gu
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhai Huang
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou, China
- Centre for Clinical and Translational Medicine Research, Jishou University, Jishou, China
- *Correspondence: Chunhai Huang, ; Xuejun Li,
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Chunhai Huang, ; Xuejun Li,
| |
Collapse
|
33
|
Babaei F, Mirzababaei M, Mohammadi G, Dargahi L, Nassiri-Asl M. Saccharomyces boulardii attenuates lipopolysaccharide-induced anxiety-like behaviors in rats. Neurosci Lett 2022; 778:136600. [DOI: 10.1016/j.neulet.2022.136600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 12/22/2022]
|
34
|
Risk Factors for Gut Dysbiosis in Early Life. Microorganisms 2021; 9:microorganisms9102066. [PMID: 34683389 PMCID: PMC8541535 DOI: 10.3390/microorganisms9102066] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/22/2022] Open
Abstract
Dysbiosis refers to a reduction in microbial diversity, combined with a loss of beneficial taxa, and an increase in pathogenic microorganisms. Dysbiosis of the intestinal microbiota can have a substantial effect on the nervous and immune systems, contributing to the onset of several inflammatory diseases. Epidemiological studies provided insight in how changes in the living environment have contributed to an overall loss of diversity and key taxa in the gut microbiome, coinciding with increased reports of atopy and allergic diseases. The gut microbiome begins development at birth, with major transition periods occurring around the commencement of breastfeeding, and the introduction of solid foods. As such, the development of the gut microbiome remains highly plastic and easily influenced by environmental factors until around three years of age. Developing a diverse and rich gut microbiome during this sensitive period is crucial to setting up a stable gut microbiome into adulthood and to prevent gut dysbiosis. Currently, the delivery route, antibiotic exposure, and diet are the best studied drivers of gut microbiome development, as well as risk factors of gut dysbiosis during infancy. This review focuses on recent evidence regarding key environmental factors that contribute to promoting gut dysbiosis.
Collapse
|
35
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
36
|
Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther 2021; 231:107978. [PMID: 34492236 DOI: 10.1016/j.pharmthera.2021.107978] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are live microorganisms, which when administered in adequate amounts, present a health benefit for the host. While the beneficial effects of probiotics on gastrointestinal function are generally well recognized, new animal research and clinical studies have found that alterations in gut microbial communities can have a broad range of effects throughout the body. Non-intestinal sites impacted include the immune, endocrine, cardiovascular and the central nervous system (CNS). In particular, there has been a growing interest and appreciation about the role that gut microbiota may play in affecting CNS-related function through the 'microbiota-gut-brain axis'. Emerging evidence suggests potential therapeutic benefits of probiotics in several CNS conditions, such as anxiety, depression, autism spectrum disorders and Parkinson's disease. There may also be some gender-specific variances in terms of probiotic mediated effects, with the gut microbiota shaping and being concurrently molded by the hormonal environment governing differences between the sexes. Probiotics may influence the ability of the gut microbiome to affect a variety of biological processes in the host, including neurotransmitter activity, vagal neurotransmission, generation of neuroactive metabolites and inflammatory response mediators. Some of these may engage in cross talk with host sex hormones, such as estrogens, which could be of relevance in relation to their effects on stress response and cognitive health. This raises the possibility of gender-specific variation with regards to the biological action of probiotics, including that on the endocrine and central nervous systems. In this review we aim to describe the current understanding in relation to the role and use of probiotics in microbiota-gut-brain axis-related dysfunction. Furthermore, we will address the conceptualization and classification of probiotics in the context of gender and lifespan as well as how restoring gut microbiota composition by clinical or dietary intervention can help in supporting health outcomes other than those related to the gastrointestinal tract. We also evaluate how these new learnings may impact industrial effort in probiotic research and the discovery and development of novel and more personalized, condition-specific, beneficial probiotic therapeutic agents.
Collapse
Affiliation(s)
| | - Kevin Ha
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Paul Tsai
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
37
|
Qu W, Liu L, Miao L. Exposure to antibiotics during pregnancy alters offspring outcomes. Expert Opin Drug Metab Toxicol 2021; 17:1165-1174. [PMID: 34435921 DOI: 10.1080/17425255.2021.1974000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The composition of microorganisms is closely related to human health. Antibiotic use during pregnancy may have adverse effects on the neonatal gut microbiome and subsequently affect infant health development, leading to childhood atopy and allergic diseases, intestinal, metabolic and brain disorders, and infection. AREAS COVERED This review includes the effect of maternal antibiotic use during pregnancy on potential diseases in animals and human offspring. EXPERT OPINION Exposure to antibiotics during pregnancy alters offspring outcomes. Alterations in the microbiome may potentially lower the risk of a range of problems and may also be a novel therapeutic target in children later in life.
Collapse
Affiliation(s)
- Wenhao Qu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China.,College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Linsheng Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China.,College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Zheng S, Zhu Y, Wu W, Zhang Q, Wang Y, Wang Z, Yang F. A correlation study of intestinal microflora and first-episode depression in Chinese patients and healthy volunteers. Brain Behav 2021; 11:e02036. [PMID: 33960717 PMCID: PMC8413750 DOI: 10.1002/brb3.2036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This research examines the intestinal-associated flora of patients with depression compared with healthy volunteers to identify the characteristics and differences of flora associated with depression. It provides a theoretical basis for the prevention and treatment of depression through intestinal micro-ecological regulation. METHODS We recruited 30 patients with depression to participate in the patient group (PG), and 30 volunteers were recruited for the healthy control group (HG) from the Beijing Hui-long-guan Hospital. Thereafter, the 16S rRNA high-throughput sequencing method, using the Hamilton Depression Scale, was applied to analyze patient and healthy groups. RESULTS PG and HG microflora were different regarding phylum, Family, Genus, and Order. The results showed that Barnesiella was the dominant flora in depression patients, while Lachnospiraceae and Alloprevotella were the dominant bacteria in healthy participants. The proportion of Betaproteobateria (Proteobacteria), Alcaligenaceae (proinflammatory), Peptostreptococcaceae, Catenibacterium, Romboutsia, Sutterella, and Burkholderiales in the anxiety-negative depressed group was significantly higher than in the anxiety-positive group; and the proportion of Anaerostipes (inflammation) and Faecalibacterium (anti-inflammatory) bacteria was significantly lower than that of patients with anxiety. CONCLUSION Results showed there were differences in intestinal micro-ecology between patients with depression and healthy volunteers. We found that the level of inflammation-related bacteria in anxiety-positive patients was lower than that in anxiety-negative patients. These results enrich the knowledge of relationships between depression and intestinal flora and provide a theoretical basis for probiotics to assist in the treatment of depression.
Collapse
Affiliation(s)
- Shaojun Zheng
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Yubing Zhu
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weidong Wu
- Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Qi Zhang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yongqian Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| |
Collapse
|
39
|
Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals (Basel) 2021; 11:ani11061494. [PMID: 34064126 PMCID: PMC8224346 DOI: 10.3390/ani11061494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High ambient temperature is a major environmental stressor affecting the physiological and behavioral status of animals, increasing stress susceptibility and immunosuppression, and consequently increasing intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or decrease stress-associated detrimental effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate that a dietary probiotic supplement, Bacillus subtilis, reduces heat stress-induced abnormal behaviors and negative effects on skeletal health in broilers through a variety of cellular responses, regulating the functioning of the microbiota–gut–brain axis and/or microbiota-modulated immunity during bone remodeling under thermoneutral and heat-stressed conditions. Abstract The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.
Collapse
|
40
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
41
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
42
|
Lyte JM, Keane J, Eckenberger J, Anthony N, Shrestha S, Marasini D, Daniels KM, Caputi V, Donoghue AM, Lyte M. Japanese quail (Coturnix japonica) as a novel model to study the relationship between the avian microbiome and microbial endocrinology-based host-microbe interactions. MICROBIOME 2021; 9:38. [PMID: 33531080 PMCID: PMC7856774 DOI: 10.1186/s40168-020-00962-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/06/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microbial endocrinology, which is the study of neuroendocrine-based interkingdom signaling, provides a causal mechanistic framework for understanding the bi-directional crosstalk between the host and microbiome, especially as regards the effect of stress on health and disease. The importance of the cecal microbiome in avian health is well-recognized, yet little is understood regarding the mechanisms underpinning the avian host-microbiome relationship. Neuroendocrine plasticity of avian tissues that are focal points of host-microbiome interaction, such as the gut and lung, has likewise received limited attention. Avian in vivo models that enable the study of the neuroendocrine dynamic between host and microbiome are needed. As such, we utilized Japanese quail (Coturnix japonica) that diverge in corticosterone response to stress to examine the relationship between stress-related neurochemical concentrations at sites of host-microbe interaction, such as the gut, and the cecal microbiome. RESULTS Our results demonstrate that birds which contrast in corticosterone response to stress show profound separation in cecal microbial community structure as well as exhibit differences in tissue neurochemical concentrations and structural morphologies of the gut. Changes in neurochemicals known to be affected by the microbiome were also identified in tissues outside of the gut, suggesting a potential relationship in birds between the cecal microbiome and overall avian physiology. CONCLUSIONS The present study provides the first evidence that the structure of the avian cecal microbial community is shaped by selection pressure on the bird for neuroendocrine response to stress. Identification of unique region-dependent neurochemical changes in the intestinal tract following stress highlights environmental stressors as potential drivers of microbial endocrinology-based mechanisms of avian host-microbiome dialogue. Together, these results demonstrate that tissue neurochemical concentrations in the avian gut may be related to the cecal microbiome and reveal the Japanese quail as a novel avian model in which to further examine the mechanisms underpinning these relationships. Video abstract.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701 USA
| | - James Keane
- Department of Computer Science, Cork Institute of Technology, Cork, Ireland
| | - Julia Eckenberger
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Nicholas Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Sandip Shrestha
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Daya Marasini
- Weems Design Studio Inc., Suwanee, Georgia, USA/ Contractor to Centers for Disease control and Prevention, Atlanta, GA 30333 USA
| | - Karrie M. Daniels
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | | | - Annie M. Donoghue
- Poultry Production and Product Safety Research, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701 USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
43
|
Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021; 13:nu13010249. [PMID: 33467150 PMCID: PMC7830868 DOI: 10.3390/nu13010249] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Studies suggest that the bidirectional relationship existent between the gut microbiome (GM) and the central nervous system (CNS), or so-called the microbiome–gut–brain axis (MGBA), is involved in diverse neuropsychiatric diseases in children and adults. In pediatric age, most studies have focused on patients with autism. However, evidence of the role played by the MGBA in attention deficit/hyperactivity disorder (ADHD), the most common neurodevelopmental disorder in childhood, is still scanty and heterogeneous. This review aims to provide the current evidence on the functioning of the MGBA in pediatric patients with ADHD and the specific role of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in this interaction, as well as the potential of the GM as a therapeutic target for ADHD. We will explore: (1) the diverse communication pathways between the GM and the CNS; (2) changes in the GM composition in children and adolescents with ADHD and association with ADHD pathophysiology; (3) influence of the GM on the ω-3 PUFA imbalance characteristically found in ADHD; (4) interaction between the GM and circadian rhythm regulation, as sleep disorders are frequently comorbid with ADHD; (5) finally, we will evaluate the most recent studies on the use of probiotics in pediatric patients with ADHD.
Collapse
|
44
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
45
|
Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, Samuel F, Ma G, Geurts JMW. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients 2021; 13:nu13010199. [PMID: 33435231 PMCID: PMC7828103 DOI: 10.3390/nu13010199] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Proper nutrition is crucial for normal brain and neurocognitive development. Failure to optimize neurodevelopment early in life can have profound long-term implications for both mental health and quality of life. Although the first 1000 days of life represent the most critical period of neurodevelopment, the central and peripheral nervous systems continue to develop and change throughout life. All this time, development and functioning depend on many factors, including adequate nutrition. In this review, we outline the role of nutrients in cognitive, emotional, and neural development in infants and young children with special attention to the emerging roles of polar lipids and high quality (available) protein. Furthermore, we discuss the dynamic nature of the gut-brain axis and the importance of microbial diversity in relation to a variety of outcomes, including brain maturation/function and behavior are discussed. Finally, the promising therapeutic potential of psychobiotics to modify gut microbial ecology in order to improve mental well-being is presented. Here, we show that the individual contribution of nutrients, their interaction with other micro- and macronutrients and the way in which they are organized in the food matrix are of crucial importance for normal neurocognitive development.
Collapse
Affiliation(s)
- Kathrin Cohen Kadosh
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
| | - Leilani Muhardi
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Panam Parikh
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Melissa Basso
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Hamid Jan Jan Mohamed
- Nutrition and Dietetics Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Titis Prawitasari
- Nutrition and Metabolic Diseases Working Group, Indonesian Pediatric Society, Jakarta 10310, Indonesia;
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusomo National Referral Hospital Jakarta, Jakarta 10430, Indonesia
| | - Folake Samuel
- Department of Human Nutrition, University of Ibadan, Ibadan 200284, Nigeria;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China;
- Laboratory of Toxicological Research and Risk assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| | - Jan M. W. Geurts
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence: ; Tel.: +31-6-53310499
| |
Collapse
|
46
|
Wen K, Tao L, Tao Z, Meng Y, Zhou S, Chen J, Yang K, Da W, Zhu Y. Fecal and Serum Metabolomic Signatures and Microbial Community Profiling of Postmenopausal Osteoporosis Mice Model. Front Cell Infect Microbiol 2020; 10:535310. [PMID: 33330117 PMCID: PMC7728697 DOI: 10.3389/fcimb.2020.535310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Multiple studies have shown that an imbalance in the intestinal microbiota is related to bone metabolism, but the role of the intestinal microbiota in postmenopausal osteoporosis remains to be elucidated. We explored the effect of the intestinal microbiota on osteoporosis. Methods We constructed a postmenopausal osteoporosis mouse model, and Micro CT was used to observe changes in bone structure. Then, we identified the abundance of intestinal microbiota by 16S RNA sequencing and found that the ratio of Firmicutes and Bacteroidetes increased significantly. UHPLC-MS analysis was further used to analyze changes in metabolites in feces and serum. Results We identified 53 upregulated and 61 downregulated metabolites in feces and 2 upregulated and 22 downregulated metabolites in serum under OP conditions, and interestedly, one group of bile acids showed significant differences in the OP and control groups. Network analysis also found that these bile acids had a strong relationship with the same family, Eggerthellaceae. Random forest analysis confirmed the effectiveness of the serum and fecal models in distinguishing the OP group from the control group. Conclusions These results indicated that changes in the gut microbiota and metabolites in feces and serum were responsible for the occurrence and development of postmenopausal osteoporosis. The gut microbiota is a vital inducer of osteoporosis and could regulate the pathogenesis process through the “microbiota-gut-metabolite-bone” axis, and some components of this axis are potential biomarkers, providing a new entry point for the future study on the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Kaicheng Wen
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhengbo Tao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Meng
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianhua Chen
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Keda Yang
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wacili Da
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Possible links between gut-microbiota and attention-deficit/hyperactivity disorders in children and adolescents. Eur J Nutr 2020; 59:3391-3403. [PMID: 32918136 DOI: 10.1007/s00394-020-02383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
An association between gut-microbiota and several neuropsychiatric conditions including autism, depression, anxiety, schizophrenia, and attention-deficit/hyperactivity disorder (ADHD) has been observed. Despite being the most prevalent neurodevelopmental disorders in children and adolescents worldwide, the etiology and curative approaches to treatment of ADHD remain unclear. There is a probability that gut-microbiota may contribute to ADHD via bidirectional communication between the gut and brain, a system known as the "gut-brain axis". Although a mechanistic link in the gut-brain axis in ADHD has been proposed, there is still a lack of information about the correlation of the microbiome profile with the mechanisms involved. The objective of this review was to summarize the diversity of the gut-microbiota and taxonomic profiles in children and adolescents with ADHD. In this review, we have provided an overview of the association between ADHD and gut-microbiota. The evidence pertinent to potentially distinctive gut-microbiota in children and adolescents with ADHD is also discussed and compared to that of their non-ADHD peers. Finally, the implications and future directions for investigation into the gut microbiome in ADHD patients are proposed.
Collapse
|
48
|
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020; 12:E2604. [PMID: 32867089 PMCID: PMC7551451 DOI: 10.3390/nu12092604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all psychiatric diseases, yet our understanding of its pathophysiological components continues to be fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on the main biological aspects involving central and peripheral neurohormonal pathways, endocrine function, as well as the microbiome-gut-brain axis. It emerged from the unique complexity of constantly accumulating new discoveries, which hamper the ability to look at the disease in a more comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and potential new directions that require further investigation in clinical settings.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Emil Dadański
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Barbara Bętkowska-Korpała
- Department of Psychiatry, Jagiellonian University Medical College, Institute of Medical Psychology, Jakubowskiego St 2, 30-688 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| |
Collapse
|
49
|
Qiao Y, Zhao J, Li C, Zhang M, Wei L, Zhang X, Kurskaya O, Bi H, Gao T. Effect of combined chronic predictable and unpredictable stress on depression-like symptoms in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:942. [PMID: 32953742 PMCID: PMC7475446 DOI: 10.21037/atm-20-5168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Mental stress mainly induces depression, and predictable stress, as well as a constant bombardment of chronic unpredictable micro-stressors, always coexist in daily life. However, the combined effect of predictable and unpredictable stress on depression is still not fully understood. Methods The chronic restraint stress (CRS) is to restrain the mice for 6 h per day for 3 weeks, and the chronic unpredictable mild stress (CUMS) is to stimulate the mice with 7 different stressors for 3 weeks. We evaluated the combined effect of CRS and CUMS on depression-like symptoms using behavioral tests and investigated the action mechanism through analysis of neurotransmitters, brain-derived factors, inflammatory factors, antioxidants, and intestinal microorganisms. Results Our data suggested the combined stress of CRS and CUMS caused significant weight loss, food intake reduction, depression-like behaviors-including anhedonia, learned helplessness, and reduction in spontaneous activity-and even atrophy and severe structural damage to the hippocampus in mice. Our pathogenesis study showed that combined stress-induced the reduction of glucocorticoid receptor (GR) levels, loss of oligodendrocytes (NG2 and Olig2 cells), and inhibition of neuron proliferation in the CA1, CA3, and DG regions of the hippocampus, decreased the contents of monoamine neurotransmitters (5-HT and NE) and BDNF in the cerebral cortex, caused hyperactivity of the HPA system, led to immune dysfunction, aggravated oxidative stress, and weakened the capacity of antioxidants in mice. Compared with single stress, combined stress gave rise to a more significant diversity change of the gut microbiota. Conclusions Combined stress caused significant depression-like behaviors, atrophy, and severe structural damage to the hippocampus in mice via monoamine neurotransmitter, BDNF, HPA axis, neurogenesis, and neurodegenerative, immune, oxidative stress and gut-brain axis action pathways.
Collapse
Affiliation(s)
- Yajun Qiao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiubo Zhao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xiaoyuan Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
| | - Tingting Gao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
RNASeq analysis reveals upregulation of complement C3 in the offspring gut following prenatal stress in mice. Immunobiology 2020; 225:151983. [PMID: 32747015 DOI: 10.1016/j.imbio.2020.151983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022]
Abstract
Dysregulated activation of inflammatory signaling by the immature neonatal immune system could lead to the development of many pediatric diseases including necrotizing enterocolitis (NEC). While the mechanism(s) of pathogenesis is unknown, NEC is believed to have multifactorial causes. Microbial dysbiosis and intestinal immaturity have been implicated as potential triggers for this disease. We hypothesized that psychological stress during pregnancy negatively impacts the development of intestinal tissues in offspring and contributes to development of NEC. Consistent with this hypothesis, we previously observed shorter villi and a decrease in total surface area in the small intestine of pups derived from mice that were chronically stressed during gestation. In this study, we performed RNASeq analysis to determine the gene expression changes in the offspring gut following prenatal stress in pregnant mice and identified several differentially expressed genes (DEGs) and biological pathways. Notably, C3 was upregulated in the small intestine and contributed to a higher tissue injury score in a mesenteric ischemia model compared to unstressed controls. We discuss the potential implications of these stress-induced genes expression changes and their contribution to development of intestinal inflammation.
Collapse
|