1
|
Scheijmans FEV, Cuppen I, Zwartkruis MM, Signoria I, van Ekris C, Asselman F, Wadman RI, Knol EF, van der Pol WL, Groen EJN. Inflammatory markers in cerebrospinal fluid of paediatric spinal muscular atrophy patients receiving nusinersen treatment. Eur J Paediatr Neurol 2023; 42:34-41. [PMID: 36525882 DOI: 10.1016/j.ejpn.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease with onset during infancy or early childhood. Recent therapeutic advances targeting the genetic defect that underlies SMA improved survival in patients with infantile onset SMA (type 1) and improved motor function in SMA type 1-3. The most commonly used therapy for SMA, the antisense oligonucleotide nusinersen, is delivered by repeated intrathecal injections. The long-term safety effects of this procedure, however, have not yet been investigated in detail. We here present case reports of three children with SMA in which routine laboratory investigation revealed increased leukocyte counts in cerebrospinal fluid (CSF) collected during the course of nusinersen treatment. To further characterize this observation, we used a multiplex method to analyse a broad spectrum of inflammatory markers in the CSF of these patients. We found that interleukin-10 (IL10) was consistently elevated in CSF with increased leukocyte counts, but other inflammatory markers were not. Based on this analysis we selected 7 markers for further analysis in a cohort of 38 children with SMA and determined their expression during the course of nusinersen therapy. No consistent association was found between levels of inflammatory markers and the duration of nusinersen therapy in individual patients. However, monocyte chemoactive protein 1 (MCP1/CCL2) -a neuroprotective protein secreted by astrocytes and previously associated with SMA- levels increased over the course of nusinersen treatment, indicating a possible neuroprotective mechanism associated with nusinersen therapy. In summary, our findings confirm that repeated intrathecal injections are safe and do not trigger unwanted immune responses.
Collapse
Affiliation(s)
- F E V Scheijmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I Cuppen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M M Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C van Ekris
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R I Wadman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E F Knol
- Department of Dermatology and Allergology, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - W L van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - E J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Nallar SC, Kalvakolanu DV. Interferons, signal transduction pathways, and the central nervous system. J Interferon Cytokine Res 2015; 34:559-76. [PMID: 25084173 DOI: 10.1089/jir.2014.0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | | |
Collapse
|
3
|
Cucchiarini M, Madry H, Terwilliger EF. Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J Cell Mol Med 2013; 18:115-24. [PMID: 24237934 PMCID: PMC3916123 DOI: 10.1111/jcmm.12170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/19/2013] [Indexed: 01/24/2023] Open
Abstract
The identification of new components implicated in the pathogenesis of osteoarthritis (OA) might improve our understanding of the disease process. Here, we investigated the levels of the survival of motor neuron (SMN) expression in OA cartilage considering the fundamental role of the SMN protein in cell survival and its involvement in other stress-associated pathologies. We report that SMN expression is up-regulated in human OA compared with normal cartilage, showing a strong correlation with the disease severity, a result confirmed in vivo in an experimental model of the disease. We further show that the prominent inflammatory cytokines (IL-1β, TNF-α) are critical inducers of SMN expression. This is in marked contrast with the reported impaired levels of SMN in spinal muscular atrophy, a single inherited neuromuscular disorder characterized by mutations in the smn gene whereas OA is a complex disease with multiple aetiologies. While the precise functions of SMN during OA remain to be elucidated, the conclusions of this study shed light on a novel pathophysiological pathway involved in the progression of OA, potentially offering new targets for therapy.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | | |
Collapse
|
4
|
Tiziano FD, Melki J, Simard LR. Solving the puzzle of spinal muscular atrophy: what are the missing pieces? Am J Med Genet A 2013; 161A:2836-45. [PMID: 24124019 DOI: 10.1002/ajmg.a.36251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, lower motor neuron disease. Clinical heterogeneity is pervasive: three infantile (type I-III) and one adult-onset (type IV) forms are recognized. Type I SMA is the most common genetic cause of death in infancy and accounts for about 50% of all patients with SMA. Most forms of SMA are caused by mutations of the survival motor neuron (SMN1) gene. A second gene that is 99% identical to SMN1 (SMN2) is located in the same region. The only functionally relevant difference between the two genes identified to date is a C → T transition in exon 7 of SMN2, which determines an alternative spliced isoform that predominantly excludes exon 7. Thus, SMN2 genes do not produce sufficient full length SMN protein to prevent the onset of the disease. Since the identification of the causative mutation, biomedical research of SMA has progressed by leaps and bounds: from clues on the function of SMN protein, to the development of different models of the disease, to the identification of potential treatments, some of which are currently in human trials. The aim of this review is to elucidate the current state of knowledge, emphasizing how close we are to the solution of the puzzle that is SMA, and, more importantly, to highlight the missing pieces of this puzzle. Filling in these gaps in our knowledge will likely accelerate the development and delivery of efficient treatments for SMA patients and be a prerequisite towards achieving our final goal, the cure of SMA.
Collapse
|
5
|
Abstract
Spinal muscular atrophies (SMA) are genetic disorders characterized by degeneration of lower motor neurons. The most frequent form is caused by mutations of the survival motor neuron 1 gene (SMN1). The identification of this gene greatly improved diagnostic testing and family-planning options of SMA families. SMN plays a key role in metabolism of RNA. However, the link between RNA metabolism and motor neuron degeneration remains unknown. A defect in mRNA processing likely generates either a loss of function of some critical RNA or abnormal transcripts with toxic property for motor neurons. Mutations of SMN in various organisms highlighted an essential role of SMN in motor axon and neuromuscular junction development or maintenance. The quality of life of patients has greatly improved over recent decades through the improvement of care and management of patients. In addition, major advances in translational research have been made in the field of SMA. Various therapeutic strategies have been successfully developed aiming at acting on SMN2, a partially functional copy of the SMN1 gene which remains present in patients. Drugs have been identified and some are already at preclinical stages. Identifying molecules involved in the SMA degenerative process should represent additional attractive targets for therapeutics in SMA.
Collapse
Affiliation(s)
- Louis Viollet
- Hôpital Necker-Enfants Malades and Université Paris Descartes, Paris, France
| | | |
Collapse
|
6
|
Harahap ISK, Saito T, San LP, Sasaki N, Gunadi, Nurputra DKP, Yusoff S, Yamamoto T, Morikawa S, Nishimura N, Lee MJ, Takeshima Y, Matsuo M, Nishio H. Valproic acid increases SMN2 expression and modulates SF2/ASF and hnRNPA1 expression in SMA fibroblast cell lines. Brain Dev 2012; 34:213-22. [PMID: 21561730 DOI: 10.1016/j.braindev.2011.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is caused by loss of the survival motor neuron gene, SMN1. SMA treatment strategies have focused on production of the SMN protein from the almost identical gene, SMN2. Valproic acid (VPA) is a histone deacetylase inhibitor that can increase SMN levels in some SMA cells or SMA patients through activation of SMN2 transcription or splicing correction of SMN2 exon 7. It remains to be clarified what concentration of VPA is required and by what mechanisms the SMN production from SMN2 is elicited. We observed that in two fibroblast cell lines from Japanese SMA patients, more than 1mM of VPA increased SMN2 expression at both the transcript and protein levels. VPA increased not only full-length (FL) transcript level but also exon 7-excluding (Δ7) transcript level in the cell lines and did not change the ratio of FL/Δ7, suggesting that SMN2 transcription was mainly activated. We also found that VPA modulated splicing factor expression: VPA increased the expression of splicing factor 2/alternative splicing factor (SF2/ASF) and decreased the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). In conclusion, more than 1mM of VPA activated SMN2 transcription and modulated the expression of splicing factors in our SMA fibroblast cell lines.
Collapse
Affiliation(s)
- Indra Sari Kusuma Harahap
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O'Riordan CR, Klinger KW, Shihabuddin LS, Cheng SH. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010; 120:1253-64. [PMID: 20234094 DOI: 10.1172/jci41615] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/13/2010] [Indexed: 01/27/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN-expressing self-complementary AAV vector - a vector that leads to earlier onset of gene expression compared with standard AAV vectors - led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.
Collapse
Affiliation(s)
- Marco A Passini
- Genzyme Corporation, 49 New York Avenue, Room 2410, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Butchbach ME, Singh J, Þorsteinsdóttir M, Saieva L, Slominski E, Thurmond J, Andrésson T, Zhang J, Edwards JD, Simard LR, Pellizzoni L, Jarecki J, Burghes AH, Gurney ME. Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy. Hum Mol Genet 2010; 19:454-67. [PMID: 19897588 PMCID: PMC2798721 DOI: 10.1093/hmg/ddp510] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/22/2009] [Accepted: 11/05/2009] [Indexed: 12/21/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA), one of the most common genetic causes of infant death, results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of survival motor neuron (SMN) protein. In humans, the SMN gene is duplicated; SMA results from the loss of SMN1 but SMN2 remains intact. SMA severity is related to the copy number of SMN2. Compounds which increase the expression of SMN2 could, therefore, be potential therapeutics for SMA. Ultrahigh-throughput screening recently identified substituted quinazolines as potent SMN2 inducers. A series of C5-quinazoline derivatives were tested for their ability to increase SMN expression in vivo. Oral administration of three compounds (D152344, D153249 and D156844) to neonatal mice resulted in a dose-dependent increase in Smn promoter activity in the central nervous system. We then examined the effect of these compounds on the progression of disease in SMN lacking exon 7 (SMNDelta7) SMA mice. Oral administration of D156844 significantly increased the mean lifespan of SMNDelta7 SMA mice by approximately 21-30% when given prior to motor neuron loss. In summary, the C5-quinazoline derivative D156844 increases SMN expression in neonatal mouse neural tissues, delays motor neuron loss at PND11 and ameliorates the motor phenotype of SMNDelta7 SMA mice.
Collapse
Affiliation(s)
| | | | | | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Elzbieta Slominski
- Department of Biochemistry and Medical Genetics, University of Manitoba, Faculty of Medicine, Winnipeg, MB, Canada and
| | | | | | - Jun Zhang
- deCODE chemistry, Inc., Woodridge, IL, USA
| | | | - Louise R. Simard
- Department of Biochemistry and Medical Genetics, University of Manitoba, Faculty of Medicine, Winnipeg, MB, Canada and
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Arthur H.M. Burghes
- Department of Molecular and Cellular Biochemistry
- Department of Neurology, College of Medicine, and
- Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
9
|
Abstract
AbstractProgress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.
Collapse
|
10
|
Vitte J, Attali R, Warwar N, Gurt I, Melki J. Spinal muscular atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:237-46. [PMID: 20225030 DOI: 10.1007/978-90-481-2813-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinal muscular atrophies (SMA) are frequent autosomal recessive disorders characterized by degeneration of lower motor neurons. SMA are caused by mutations of the survival of motor neuron gene (SMN1) leading to a reduction of the SMN protein amount. The identification of SMN interacting proteins involved in the formation of the spliceosome and splicing changes in SMN-deficient tissues of mutant mice strongly support the view that SMN is involved in the splicing reaction. However, the molecular pathway linking SMN defect to the SMA phenotype remains unclear. From a better knowledge of the genetic basis of SMA and the defects resulting from the mutations of SMN1 in cellular or animal models, several therapeutics strategies have been selected aiming at targeting SMN2, a partially functional copy of SMN1 gene which remains present in patients, or to prevent neurons from death. Refined characterization of the degenerative process in SMA and the identification of the defective molecular pathway downstream from the SMN defect will provide further exciting insight into this disease in the near future. They should contribute to clarify the pathophysiology of SMA, the function of SMN and should help in designing potential targeted or non-targeted therapeutic molecules.
Collapse
Affiliation(s)
- Jérémie Vitte
- Department of Human Genetics, Hadassah University Hospital, PO Box 91120, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
11
|
Detection of human survival motor neuron (SMN) protein in mice containing the SMN2 transgene: applicability to preclinical therapy development for spinal muscular atrophy. J Neurosci Methods 2008; 175:36-43. [PMID: 18771690 DOI: 10.1016/j.jneumeth.2008.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 11/22/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant death results from loss of spinal motor neurons causing atrophy of skeletal muscle. SMA is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, however, an identically coding gene called SMN2 is retained, but is alternatively spliced to produce approximately 90% truncated protein. Most SMA translational and preclinical drug development has relied on the use of SMA mice to determine changes in SMN protein levels. However, the SMA mouse models are relatively severe and analysis of SMN-inducing compounds is confounded by the early mortality of these animals. An antibody that could detect SMN protein on a Smn background could circumvent this limitation and allow unaffected, heterozygous animals to be examined. Here we describe the generation and characterization of a monoclonal anti-SMN antibody, 4F11, which specifically recognizes human SMN protein. 4F11 detects SMN (human) but not native Smn (mouse) protein in SMN2 transgenic mice and in SMA cell lines. We demonstrate the feasibility of using 4F11 to detect changes in SMN2-derived SMN protein in SMA patient fibroblasts and in healthy SMN2 transgenic mice. This antibody is, therefore, an excellent tool for examining SMN2-inducing therapeutics in patient cells as well as in transgenic mice.
Collapse
|
12
|
Wilson PG, Cherry JJ, Schwamberger S, Adams AM, Zhou J, Shin S, Stice SL. An SMA Project Report: Neural Cell-Based Assays Derived from Human Embryonic Stem Cells. Stem Cells Dev 2007; 16:1027-41. [DOI: 10.1089/scd.2007.0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Jonathan J. Cherry
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Allison M. Adams
- Regenerative Bioscience Center, University of Georgia, Athens, GA 20602
| | - Jianhua Zhou
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Soojung Shin
- Regenerative Bioscience Center, University of Georgia, Athens, GA 20602
- Invitrogen, Carlsbad, CA 92008
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA 20602
| |
Collapse
|
13
|
Vitte J, Fassier C, Tiziano FD, Dalard C, Soave S, Roblot N, Brahe C, Saugier-Veber P, Bonnefont JP, Melki J. Refined characterization of the expression and stability of the SMN gene products. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1269-80. [PMID: 17717146 PMCID: PMC1988876 DOI: 10.2353/ajpath.2007.070399] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spinal muscular atrophy (SMA) is characterized by degeneration of lower motor neurons and caused by mutations of the SMN1 gene. SMN1 is duplicated in a homologous gene called SMN2, which remains present in patients. SMN has an essential role in RNA metabolism, but its role in SMA pathogenesis remains unknown. Previous studies suggested that in neurons the protein lacking the C terminus (SMN(Delta7)), the major product of the SMN2 gene, had a dominant-negative effect. We generated antibodies specific to SMN(FL) or SMN(Delta7). In transfected cells, the stability of the SMN(Delta7) protein was regulated in a cell-dependent manner. Importantly, whatever the human tissues examined, SMN(Delta7) protein was undetectable because of the instability of the protein, thus excluding a dominant effect of SMN(Delta7) in SMA. A similar decreased level of SMN(FL) was observed in brain and spinal cord samples from human SMA, suggesting that SMN(FL) may have specific targets in motor neurons. Moreover, these data indicate that the vulnerability of motor neurons cannot simply be ascribed to the differential expression or a more dramatic reduction of SMN(FL) in spinal cord when compared with brain tissue. Improving the stability of SMN(Delta7) protein might be envisaged as a new therapeutic strategy in SMA.
Collapse
Affiliation(s)
- Jérémie Vitte
- Molecular Neurogenetics Laboratory, INSERM U798, Evry and Paris 11 Universities, Evry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wirth PhD B, Riessland Msc M, Hahnen MBA E. Drug discovery for spinal muscular atrophy. Expert Opin Drug Discov 2007; 2:437-51. [DOI: 10.1517/17460441.2.4.437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Wirth B, Brichta L, Hahnen E. Spinal muscular atrophy and therapeutic prospects. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 44:109-32. [PMID: 17076267 DOI: 10.1007/978-3-540-34449-0_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular genetic basis of spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the loss of function of the survival motor neuron gene (SMN1). The SMN2 gene, a nearly identical copy of SMN1, has been detected as a promising target for SMA therapy. Both genes are ubiquitously expressed and encode identical proteins, but markedly differ in their splicing patterns: While SMN1 produces full-length (FL)-SMN transcripts only, the majority of SMN2 transcripts lacks exon 7. Transcriptional SMN2 activation or modulation of its splicing pattern to increase FL-SMN levels is believed to be clinically beneficial and therefore a crucial challenge in SMA research. Drugs such as valproic acid, phenylbutyrate, sodium butyrate, M344 and SAHA that mainly act as histone deacetylase inhibitors can mediate both: they stimulate the SMN2 gene transcription and/or restore the splicing pattern, thereby elevating the levels of FL-SMN2 protein. Preliminary phase II clinical trials and individual experimental curative approaches SMA patients show promising results. However, phase III double-blind placebo controlled clinical trials have to finally prove the efficacy of these drugs.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Institute of Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931 Cologne, Germany
| | | | | |
Collapse
|
16
|
Ting CH, Lin CW, Wen SL, Hsieh-Li HM, Li H. Stat5 constitutive activation rescues defects in spinal muscular atrophy. Hum Mol Genet 2007; 16:499-514. [PMID: 17220171 DOI: 10.1093/hmg/ddl482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a motor neuron degeneration disorder for which there is currently no effective treatment. Here, we report three compounds (sodium vanadate, trichostatin A and aclarubicin) that effectively enhance SMN2 expression by inducing Stat5 activation in SMA-like mouse embryonic fibroblasts and human SMN2-transfected NSC34 cells. We found that Stat5 activation enhanced SMN2 promoter activity with increase in both full-length and deletion exon 7 SMN transcripts in SMN2-NSC34 cells. Knockdown of Stat5 expression disrupted the effects of sodium vanadate on SMN2 activation but did not influence SMN2 splicing, suggesting that Stat5 signaling is involved in SMN2 transcriptional regulation. In addition, constitutive activation of Stat5 mutant (Stat5A1*6) profoundly increased the number of nuclear gems in SMA-patient lymphocytes and reduced SMA-like motor neuron axon outgrowth defects. These results demonstrate that Stat5 signaling could be a possible pharmacological target for treating SMA.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Abstract
The molecular basis of spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the homozygous loss of the survival motor neuron gene 1 (SMN1). A nearly identical copy of the SMN1 gene, called SMN2, modulates the disease severity. The functional difference between both genes is a translationally silent mutation that, however, disrupts an exonic splicing enhancer causing exon 7 skipping in most SMN2 transcripts. Only 10% of SMN2 transcripts encode functional full-length protein identical to SMN1. Transcriptional activation, facilitation of correct SMN2 splicing, or stabilization of the protein are considered as strategies for SMA therapy. Among various drugs, histone deacetylase inhibitors such as valproic acid (VPA) or 4-phenylbutyrate (PBA) have been shown to increase SMN2-derived RNA and protein levels. Recently, in vivo activation of the SMN gene was shown in VPA-treated SMA patients and carriers. Clinical trials are underway to investigate the effect of VPA and PBA on motor function in SMA patients.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
19
|
Riessland M, Brichta L, Hahnen E, Wirth B. The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum Genet 2006; 120:101-10. [PMID: 16724231 DOI: 10.1007/s00439-006-0186-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 04/09/2006] [Indexed: 12/19/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder causing infant death in half of all patients. Homozygous loss of the survival motor neuron 1 (SMN1) gene causes SMA, whereas the number of the SMN2 copy genes modulates the severity of the disease. Due to a silent mutation within an exonic splicing enhancer, SMN2 mainly produces alternatively spliced transcripts lacking exon 7 and only approximately 10% of a full-length protein identical to SMN1. However, SMN2 represents a promising target for an SMA therapy. The correct splicing of SMN2 can be efficiently restored by over-expression of the splicing factor Htra2-beta1 as well as by exogenous factors like drugs that inhibit histone deacetylases (HDACs). Here we show that the novel benzamide M344, an HDAC inhibitor, up-regulates SMN2 protein expression in fibroblast cells derived from SMA patients up to 7-fold after 64 h of treatment. Moreover, M344 significantly raises the total number of gems/nucleus as well as the number of nuclei that contain gems. This is the strongest in vitro effect of a drug on the SMN protein level reported so far. The reversion of Delta7-SMN2 into FL-SMN2 transcripts as demonstrated by quantitative RT-PCR is most likely facilitated by elevated levels of Htra2-beta1. Investigations of the cytotoxicity of M344 using an MTT assay revealed toxic cell effects only at very high concentrations. In conclusion, M344 can be considered as highly potent HDAC inhibitor which is active at low doses and therefore represents a promising candidate for a causal therapy of SMA.
Collapse
MESH Headings
- Alternative Splicing
- Blotting, Western
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Survival/drug effects
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fluorescent Antibody Technique
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/pharmacology
- Microscopy, Fluorescence
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- SMN Complex Proteins
- Survival of Motor Neuron 1 Protein
- Survival of Motor Neuron 2 Protein
- Transcription, Genetic/drug effects
- Vorinostat
Collapse
Affiliation(s)
- Markus Riessland
- Institute of Human Genetics, Institute of Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931 Cologne, Germany
| | | | | | | |
Collapse
|
20
|
Abstract
Spinal muscular atrophy is an autosomal recessive motor neuron disease that is the leading inherited cause of infant and early childhood mortality. Spinal muscular atrophy is caused by mutation of the telomeric copy of the survival motor neuron gene (SMN1), but all patients retain a centromeric copy of the gene, SMN2. SMN2 produces reduced amounts of full-length SMN mRNA, and spinal muscular atrophy likely results from insufficient levels of SMN protein in motor neurons. The SMN protein plays a well-established role in assembly of the spliceosome and may also mediate mRNA trafficking in the axon and nerve terminus of neurons. In patients, spinal muscular atrophy disease severity correlates inversely with increased SMN2 gene copy number and, in transgenic mice lacking endogenous SMN, increasing SMN2 gene copy number from two to eight prevents the SMA disease phenotype. These observations suggest that increasing SMN expression levels may be beneficial to SMA patients. Currently pursued therapeutic strategies for SMA include induction of SMN2 gene expression, modulation of splicing of SMN2-derived transcripts, stabilization of SMN protein, neuroprotection of SMN deficit neurons, and SMN1 gene replacement. Early clinical trials of candidate therapeutics are now ongoing in SMA patients. Clinical trials in this disease present a unique set of challenges, including the development of meaningful outcome measures and disease biomarkers.
Collapse
Affiliation(s)
- Charlotte J Sumner
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Eggert C, Chari A, Laggerbauer B, Fischer U. Spinal muscular atrophy: the RNP connection. Trends Mol Med 2006; 12:113-21. [PMID: 16473550 DOI: 10.1016/j.molmed.2006.01.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/22/2005] [Accepted: 01/27/2006] [Indexed: 02/01/2023]
Abstract
Degenerated motor neurons in the spinal cord are the pathological hallmark of spinal muscular atrophy (SMA). SMA is caused by mutations in the ubiquitously expressed survival motor neuron 1 (SMN1) gene, which lead to reduced levels of functional SMN protein. Many different functions have been assigned to SMN, including assembly of ribonucleoproteins (RNPs), splicing, transcription and axonal mRNA transport. Recently, tissue from SMA patients and animal models has been used to determine which function of SMN is affected in SMA patients. A surprising picture has emerged: the impaired assembly of RNP subunits of the spliceosome seems to be responsible for SMA pathogenesis. Here, we present a model of how this defect might cause motor-neuron degeneration and consider potential therapies.
Collapse
Affiliation(s)
- Christian Eggert
- Theodor Boveri Institute, Biocenter at the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
22
|
Garcia-Blanco MA. Alternative splicing: therapeutic target and tool. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:47-64. [PMID: 17076264 DOI: 10.1007/978-3-540-34449-0_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alternative splicing swells the coding capacity of the human genome, expanding the pharmacoproteome, the proteome that provides targets for therapy. Splicing, both constitutive and regulated forms, can itself be targeted by conventional and molecular therapies. This review focuses on splicing as a therapeutic target with a particular emphasis on molecular approaches. The review looks at the use of antisense oligonucleotides, which can be employed to promote skipping of constitutive exons, inhibit inappropriately activated exons, or stimulate exons weakened by mutations. Additionally this manuscript evaluates methods that reprogram RNAs using reactions that recombine RNA molecules in trans. Preliminary, but exciting, results in these areas of investigation suggest that these methods could eventually lead to treatments in heretofore intractable ailments.
Collapse
Affiliation(s)
- Mariano A Garcia-Blanco
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
23
|
Le TT, Pham LT, Butchbach MER, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AHM. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 2005; 14:845-57. [PMID: 15703193 DOI: 10.1093/hmg/ddi078] [Citation(s) in RCA: 480] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder in humans which results in the loss of motor neurons. It is caused by reduced levels of the survival motor neuron (SMN) protein as a result of loss or mutation of the SMN1 gene. SMN is encoded by two genes, SMN1 and SMN2, which essentially differ by a single nucleotide in exon 7. As a result, the majority of the transcript from SMN2 lacks exon 7 (SMNDelta7). SMNDelta7 may be toxic and detrimental in SMA, which, if true, could lead to adverse effects with drugs that stimulate expression of SMN2. To determine the role of SMNDelta7 in SMA, we created transgenic mice expressing SMNDelta7 and crossed them onto a severe SMA background. We found that the SMNDelta7 is not detrimental in that it extends survival of SMA mice from 5.2 to 13.3 days. Unlike mice with selective deletion of SMN exon 7 in muscle, these mice with a small amount of full-length SMN (FL-SMN) did not show a dystrophic phenotype. This indicates that low levels of FL-SMN as found in SMA patients and absence of FL-SMN in muscle tissue have different effects and raises the question of the importance of high SMN levels in muscle in the presentation of SMA. SMN and SMNDelta7 can associate with each other and we suggest that this association stabilizes SMNDelta7 protein turnover and ameliorates the SMA phenotype by increasing the amount of oligomeric SMN. The increased survival of the SMNDelta7 SMA mice we report will facilitate testing of therapies and indicates the importance of considering co-complexes of SMN and SMNDelta7 when analyzing SMN function.
Collapse
Affiliation(s)
- Thanh T Le
- Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rouget R, Vigneault F, Codio C, Rochette C, Paradis I, Drouin R, Simard L. Characterization of the survival motor neuron (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated P19 cells. Biochem J 2005; 385:433-43. [PMID: 15361068 PMCID: PMC1134714 DOI: 10.1042/bj20041024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/17/2004] [Accepted: 09/13/2004] [Indexed: 11/17/2022]
Abstract
There exist two SMN (survival motor neuron) genes in humans, the result of a 500 kb duplication in chromosome 5q13. Deletions/mutations in the SMN1 gene are responsible for childhood spinal muscular atrophy, an autosomal recessive neurodegenerative disorder. While the SMN1 and SMN2 genes are not functionally equivalent, up-regulation of the SMN2 gene represents an important therapeutic target. Consequently, we exploited in silico, in vitro and in vivo approaches to characterize the core human and mouse promoters in undifferentiated and differentiated P19 cells. Phylogenetic comparison revealed four highly conserved regions that contained a number of cis-elements, only some of which were shown to activate/repress SMN promoter activity. Interestingly, the effect of two Sp1 cis-elements varied depending on the state of P19 cells and was only observed in combination with a neighbouring Ets cis-element. Electrophoretic mobility-shift assay and in vivo DNA footprinting provided evidence for DNA-protein interactions involving Sp, NF-IL6 and Ets cis-elements, whereas transient transfection experiments revealed complex interactions involving these recognition sites. SMN promoter activity was strongly regulated by an NF-IL6 response element and this regulation was potentiated by a downstream Ets element. In vivo results suggested that the NF-IL6 response must function either via a protein-tethered transactivation mechanism or a transcription factor binding an upstream element. Our results provide strong evidence for complex combinatorial regulation and suggest that the composition or state of the basal transcription complex binding to the SMN promoter is different between undifferentiated and differentiated P19 cells.
Collapse
Key Words
- cellular differentiation
- p19 cell
- sp1 and ets cis-elements
- spinal muscular atrophy
- survival motor neuron gene
- transcriptional regulation
- ahr, aromatic hydrocarbon receptor
- c/ebp, ccaat/enhancer-binding protein
- cr, conserved region
- dms, dimethylsulphate
- ec cells, embryonal carcinoma cells
- ehmn, embryonic hybrid motor neuron
- emsa, electrophoretic mobility-shift assay
- il-6, interleukin-6
- lmpcr, ligation-mediated pcr
- nf1, nuclear factor-1
- p19ra, p19 cells treated with retinoic acid
- ra, retinoic acid
- rlu, relative luciferase unit
- sma, spinal muscular atrophy
- smn, survival motor neuron
- tf, transcription factor
- tis, transcription initiation site
- uvc, ultraviolet c
Collapse
Affiliation(s)
- Raphaël Rouget
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| | - François Vigneault
- †Département de Pédiatrie, Université de Sherbrooke and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC, Canada J1H 5N4
| | - Circé Codio
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| | - Camille Rochette
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| | - Isabelle Paradis
- †Département de Pédiatrie, Université de Sherbrooke and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC, Canada J1H 5N4
| | - Régen Drouin
- †Département de Pédiatrie, Université de Sherbrooke and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC, Canada J1H 5N4
| | - Louise R. Simard
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| |
Collapse
|
25
|
Chang HC, Hung WC, Chuang YJ, Jong YJ. Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int 2004; 45:1107-12. [PMID: 15337310 DOI: 10.1016/j.neuint.2004.04.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Homozygous deletion or mutation in the survival motor neuron (SMN)1 gene causes proximal spinal muscular atrophy (SMA), whereas SMN2 acts as a modifying gene that can influence the severity of SMA. It has been suggested that restoration of the SMN protein level in neuronal cells may prevent cell loss and may be helpful for treatment of SMA. Recent studies indicate that the ubiquitin/proteasome pathway is a major system for proteolysis of intracellular proteins. In this study, we investigate whether SMN protein is degraded via the ubiquitin/proteasome pathway. Primary fibroblasts were established from the skin biopsies of SMA patients and the effect of a proteasome inhibitor MG132 and lysosome inhibitor NH(4)Cl on SMN protein level was examined. We found that MG132, but not NH(4)Cl, significantly increased the amount and nuclear accumulation of SMN protein in SMA patient's fibroblasts. Immunoprecipitation/western blot analysis indicated that SMN protein was ubiquitinated in cells. In vitro protein ubiquitination assay also demonstrated that SMN protein could be conjugated with ubiquitin. Taken together, we have provided clear evidences that degradation of SMN protein is mediated via the ubiquitin/proteasome pathway and suggest that proteasome inhibitors may up-regulate SMN protein level and may be useful for the treatment of SMA.
Collapse
Affiliation(s)
- Hui-Chiu Chang
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | |
Collapse
|
26
|
Butchbach ME, Burghes AH. Perspectives on models of spinal muscular atrophy for drug discovery. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddmod.2004.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Abstract
Alternative splicing is the major source of proteome diversity in humans and thus is highly relevant to disease and therapy. For example, recent work suggests that the long-sought-after target of the analgesic acetaminophen is a neural-specific, alternatively spliced isoform of cyclooxygenase 1 (COX-1). Several important diseases, such as cystic fibrosis, have been linked with mutations or variations in either cis-acting elements or trans-acting factors that lead to aberrant splicing and abnormal protein production. Correction of erroneous splicing is thus an important goal of molecular therapies. Recent experiments have used modified oligonucleotides to inhibit cryptic exons or to activate exons weakened by mutations, suggesting that these reagents could eventually lead to effective therapies.
Collapse
Affiliation(s)
- Mariano A Garcia-Blanco
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Box 3053, Research Drive, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
28
|
Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 2004; 12:59-65. [PMID: 14560316 DOI: 10.1038/sj.ejhg.5201102] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease, characterized by degeneration of the anterior horn cells of the spinal cord. SMA presents with a highly variable phenotype ranging from very severe to mild (type I-III). No cure for SMA is available at present. All forms of SMA are caused by homozygous loss of the functional survival motor neuron (SMN1) gene. However, all patients have one or more copies of the SMN2 gene, nearly identical to SMN1. Both genes encode the SMN protein but the level produced by SMN2 is insufficient to protect from disease. Increasing SMN2 gene expression could be of considerable therapeutic importance. The aim of this study was to assess whether SMN2 gene expression can be increased by 4-phenylbutyrate (PBA). Fibroblast cell cultures from 16 SMA patients affected by different clinical severities were treated with PBA, and full-length SMN2 transcripts were measured by real-time PCR. In all cell cultures, except one, PBA treatment caused an increase in full-length SMN2 transcripts, ranging from 50 to 160% in type I and from 80 to 400% in type II and III cultures. PBA was found also effective in enhancing SMN protein levels and the number of SMN-containing nuclear structures (gems). These data show that SMN expression is considerably increased by PBA, and suggest that the compound, owing also to its favorable pharmacological properties, could be a good candidate for the treatment of SMA.
Collapse
Affiliation(s)
- Catia Andreassi
- Istituto di Genetica Medica, Università Cattolica S Cuore, Largo F Vito 1, Rome 00168, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Majumder S, Varadharaj S, Ghoshal K, Monani U, Burghes AHM, Jacob ST. Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene. J Biol Chem 2004; 279:14803-11. [PMID: 14742439 PMCID: PMC1761111 DOI: 10.1074/jbc.m308225200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Spinal muscular atrophy, an autosomal recessive disorder, is caused by loss of the SMN1 (survival motor neuron) gene while retaining the SMN2 gene. SMN1 produces a majority of full-length SMN transcript, whereas SMN2 generates mostly an isoform lacking exon 7. Here, we demonstrate a novel cAMP-response element, CRE-II, in the SMN promoter that interacts with the cAMP-response element-binding (CREB) family of proteins. In vitro DNase I protection analysis and in vivo genomic footprinting of the SMN promoter using the brain and liver nuclei from SMN2 transgenic mice revealed footprinting at the CRE-II site. Site-directed mutation of the CRE-II element caused a marked reduction in the SMN promoter activity revealed by transient transfection assay. Activation of the cAMP pathway by dibutyryl cAMP (0.5 mm) alone or in combination with forskolin (20 microm) caused a 2-5-fold increase in the SMN promoter activity but had no effect on the CRE-II mutated promoter. Electrophoretic mobility shift assay and a UV-induced DNA-protein cross-linking experiment confirmed that CREB1 binds specifically to the CRE-II site. Transient overexpression of CREB1 protein resulted in a 4-fold increase of the SMN promoter activity. Intraperitoneal injection of epinephrine in mice expressing two copies of the human SMN2 gene resulted in a 2-fold increase in full-length SMN transcript in the liver. Combined treatment with dibutyryl cAMP and forskolin significantly increased the level of both the full-length and exon 7-deleted SMN (exonDelta7SMN) transcript in primary hepatocytes from mice expressing two copies of human SMN2 gene. Similar treatments of type I spinal muscular atrophy mouse and human fibroblasts as well as HeLa cells resulted in an augmented level of SMN transcript. These findings suggest that the CRE-II site in SMN promoter positively regulates the expression of the SMN gene, and treatment with cAMP-elevating agents increases expression of both the full-length and exonDelta7SMN transcript.
Collapse
Affiliation(s)
- Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Alexander M, Forster C, Sugimoto K, Clark HB, Vogel S, Ross ME, Iadecola C. Interferon regulatory factor-1 immunoreactivity in neurons and inflammatory cells following ischemic stroke in rodents and humans. Acta Neuropathol 2003; 105:420-4. [PMID: 12677441 DOI: 10.1007/s00401-002-0658-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2002] [Revised: 11/11/2002] [Accepted: 11/11/2002] [Indexed: 10/25/2022]
Abstract
Interferon regulatory factor-1 (IRF-1), a transcription factor that controls the expression of genes related to inflammation and injury, may be involved in the mechanisms of cerebral ischemia. In this study, we used immunohistochemistry to determine whether IRF-1 protein is up-regulated after cerebral ischemia, and to define the identity of the cells that express IRF-1 in the postischemic brain. In mice, IRF-1 immunoreactivity was present in intravascular neutrophils 24 h after middle cerebral artery occlusion. At 96 h, immunoreactivity was observed in neutrophils infiltrating the ischemic tissue and in neurons at the outer border of the ischemic territory. IRF-1 immunoreactivity was also found in neurons and inflammatory cells in the brain of patients who died 1-2 days after ischemic stroke. The neuronal expression of IRF-1, in conjunction with the finding that IRF-1 deletion is beneficial to the post-ischemic brain, suggests that expression of IRF-1-dependent genes in neurons plays a role in ischemic neuronal death.
Collapse
Affiliation(s)
- Mihaela Alexander
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
DiDonato CJ, Parks RJ, Kothary R. Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Hum Gene Ther 2003; 14:179-88. [PMID: 12614569 DOI: 10.1089/104303403321070874] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron degeneration disorder, and manifests itself in patients as muscle weakness and paralysis that ultimately leads to death. Currently, there is no effective treatment for this disease. As a first step in developing a treatment for SMA, we are examining whether delivery of the gene encoding survival motor neuron (SMN) protein to primary fibroblast cell lines derived from SMA patients can lead to restoration of nuclear-staining foci, called gems, which are absent in patients with severe SMA. Using adenovirus-mediated gene delivery, we show that SMN can be efficiently expressed in patient fibroblasts, and leads to restoration of nuclear gems, which are thought to be important for the functional rescue of the SMA phenotype. The number of gems per cell is equal to or greater than those found in fibroblasts of normal individuals. Furthermore, ectopic expression of SMN also caused relocalization of Gemin2, an SMN-interacting protein, to gems. Overall, this work is the first demonstration of the feasibility of virus-based delivery of the SMN-coding gene to restore the normal SMN expression pattern in SMA patient-derived cells, and holds promise for gene therapy of SMA, as a potential long-term therapy for this devastating childhood disease.
Collapse
Affiliation(s)
- Christine J DiDonato
- Ottawa Health Research Institute, Molecular Medicine Program and University of Ottawa Center for Neuromuscular Disease, Ottawa, ON, K1N 8L6, Canada.
| | | | | |
Collapse
|
32
|
Monani UR, Pastore MT, Gavrilina TO, Jablonka S, Le TT, Andreassi C, DiCocco JM, Lorson C, Androphy EJ, Sendtner M, Podell M, Burghes AHM. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 2003; 160:41-52. [PMID: 12515823 PMCID: PMC2172739 DOI: 10.1083/jcb.200208079] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5q spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and the leading genetic cause of infantile death. Patients lack a functional survival of motor neurons (SMN1) gene, but carry one or more copies of the highly homologous SMN2 gene. A homozygous knockout of the single murine Smn gene is embryonic lethal. Here we report that in the absence of the SMN2 gene, a mutant SMN A2G transgene is unable to rescue the embryonic lethality. In its presence, the A2G transgene delays the onset of motor neuron loss, resulting in mice with mild SMA. We suggest that only in the presence of low levels of full-length SMN is the A2G transgene able to form partially functional higher order SMN complexes essential for its functions. Mild SMA mice exhibit motor neuron degeneration, muscle atrophy, and abnormal EMGs. Animals homozygous for the mutant transgene are less severely affected than heterozygotes. This demonstrates the importance of SMN levels in SMA even if the protein is expressed from a mutant allele. Our mild SMA mice will be useful in (a) determining the effect of missense mutations in vivo and in motor neurons and (b) testing potential therapies in SMA.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Blotting, Southern
- Blotting, Western
- Cyclic AMP Response Element-Binding Protein
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electromyography
- Electrophysiology
- Genotype
- Glutathione Transferase/metabolism
- Homozygote
- Immunohistochemistry
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Genetic
- Motor Neurons/pathology
- Muscles/cytology
- Muscles/metabolism
- Muscles/pathology
- Muscular Atrophy, Spinal/genetics
- Mutation
- Mutation, Missense
- Nerve Tissue Proteins/genetics
- Phenotype
- Protein Binding
- RNA-Binding Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- SMN Complex Proteins
- Survival of Motor Neuron 1 Protein
- Survival of Motor Neuron 2 Protein
- Time Factors
- Tissue Distribution
- Transgenes
Collapse
Affiliation(s)
- Umrao R Monani
- Department of Neurology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Within the flavivirus family, viruses that cause natural infections of the central nervous system (CNS) principally include members of the Japanese encephalitis virus (JEV) serogroup and the tick-borne encephalitis virus (TBEV) serocomplex. The pathogenesis of diseases involves complex interactions of viruses, which differ in neurovirulence potential, and a number of host factors, which govern susceptibility to infection and the capacity to mount effective antiviral immune responses both in the periphery and within the CNS. This chapter summarizes progress in the field of flavivirus neuropathogenesis. Mosquito-borne and tickborne viruses are considered together. Flavivirus neuropathogenesis involves both neuroinvasiveness (capacity to enter the CNS) and neurovirulence (replication within the CNS), both of which can be manipulated experimentally. Neuronal injury as a result of bystander effects may be a factor during flavivirus neuropathogenesis given that microglial activation and elaboration of inflammatory mediators, including IL-1β and TNF-α, occur in the CNS during these infections and may accompany the production of nitric oxide and peroxynitrite, which can cause neurotoxicity.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
34
|
Abstract
Spinal muscular atrophy (SMA) is a common recessive autosomal disorder characterized by degeneration of motor neurons of the spinal cord. SMA is caused by mutations of the survival of motor neuron gene that encodes a multifunctional protein, and mouse models have been generated. These advances represent starting points towards an understanding of the pathophysiology of this disease and the design of therapeutic strategies in SMA.
Collapse
Affiliation(s)
- Tony Frugier
- Molecular Neurogenetics Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM), Université d'Evry, E.9913, Genopole, 2 rue Gaston Crémieux, CP 5724, 91057, Evry, France
| | | | | | | |
Collapse
|
35
|
Abstract
Spinal muscular atrophies (SMA) are characterized by degeneration of lower motor neurons associated with muscle paralysis and atrophy. Childhood SMA is a common recessive autosomal disorder and represents one of the most common genetic causes of death in childhood. The pathophysiology remains unknown, and no curative treatment is available so far. The last 10 years have seen major advances in the field of SMA, which are starting points towards understanding the SMA pathogenesis and developing therapeutic strategies for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Carmen Cifuentes-Diaz
- Molecular Neurogenetics Laboratory, Institut National de la Santé et de la Recherche Médicale, Université d'Evry, Genopole, France
| | | | | |
Collapse
|
36
|
Germain-Desprez D, Brun T, Rochette C, Semionov A, Rouget R, Simard LR. The SMN genes are subject to transcriptional regulation during cellular differentiation. Gene 2001; 279:109-17. [PMID: 11733135 DOI: 10.1016/s0378-1119(01)00758-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by degeneration of alpha-motor neurons and muscular atrophy. The causal survival motor neuron (SMN) gene maps to a complex region of chromosome 5q13 harbouring an inverted duplication. Thus, there are two SMN genes, SMN1 and SMN2, but SMN1-deficiency alone causes SMA. In this study we demonstrate, for the first time, down-regulation of SMN promoter activity during cellular differentiation. Specifically, the minimal SMN promoter is four times more active in undifferentiated embryonal carcinoma P19 cells compared to cells treated with retinoic acid (RA) to initiate neuronal differentiation. This effect is mediated by sequences contained within the minimal core promoter that we have confined to the 257 nucleotides upstream of exon 1. We have identified seven regions that are highly conserved between the mouse and human SMN core promoters and this region contains the consensus sequence for a number of transcription factors. Most notably, AhR, HNF-3 and N-Oct3 have already been shown to respond to RA treatment of EC cells, while E47, HNF-3, MAZ, N-Oct3 and Pit-1a have been implicated in embryonic, muscle or neural development. In addition, we have mapped two strong transcription initiation sites upstream of SMN exon 1. The novel -79 site identified in this study is preferentially utilized during human foetal development. Furthermore, analysis of RNA from SMA patients with deletions of the entire SMN1 gene or chimpanzees that lack SMN2 suggests that the level of transcription initiation at these sites may be different for the SMN1 and SMN2 genes. Taken together, this work provides the first demonstration of transcriptional regulation of these genes during cellular differentiation and development. Deciphering the underlying mechanisms responsible for regulating SMN transcription may provide important clues towards enhancing SMN2 gene expression, one target for the treatment of SMA.
Collapse
Affiliation(s)
- D Germain-Desprez
- Centre de Recherche, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Spinal muscular atrophy is an autosomal-recessive disorder that is caused by homozygous mutations or deletion of the telomeric copy of the survival of motor neurone (SMN) gene on human chromosome 5q13. The SMN gene is present as an inverted repeat in this chromosomal region, and both SMN genes are expressed. They differ by the preferential expression of a full-length transcript from the telomeric copy and a truncated SMN protein from the centromeric SMN gene, which lacks the carboxyl-terminal portions of the protein encoded by exon 7. The SMN protein is part of multiprotein complexes in the cytoplasm and the nucleus that are involved in spliceosomal small-nuclear RNP assembly. This function depends on interaction with spliceosomal Sm core proteins. Recent data have also shown that the SMN protein interacts with RNA polymerase II, thus implying additional functions in messenger RNA transcription, possibly by assembly of RNA polymerase II transcription complexes. Thus, the SMN protein is involved in critical steps of messenger RNA transcription and processing, and current research efforts are directed at identifying the specificity of these defects for the pathophysiological changes in motor neurones that occur in spinal muscular atrophy.
Collapse
Affiliation(s)
- M Sendtner
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|