1
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
2
|
Jiang R, Lai Y. Predictive role of neuron-specific enolase and S100-β in early neurological deterioration and unfavorable prognosis in patients with ischemic stroke. Open Med (Wars) 2024; 19:20241043. [PMID: 39669377 PMCID: PMC11635423 DOI: 10.1515/med-2024-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 12/14/2024] Open
Abstract
Background We aimed to assess whether neuron-specific enolase (NSE) and S100-β levels are associated with early neurological deterioration (END) in patients with acute ischemic stroke (AIS). Methods We conducted a prospective study between March 2022 and October 2023 in 286 patients with AIS. Serum NSE and S100-β levels on admission and at 24 and 48 h after stroke onset were measured using electrochemiluminescence immunoassays. Outcomes included END events within 48 h of admission and unfavorable neurological outcomes at 3 months. Results Patients with END had higher serum NSE and S100-β levels. Patients with poor prognosis had higher serum NSE and S100-β levels. Serum NSE (on admission) was an independent biomarker for END in AIS patients and for unfavorable recovery at 3 months. In addition, serum S100-β was an independent biomarker of unfavorable recovery after 3 months in patients with AIS. Conclusion Serum NSE on admission and S100-β at 48 h of stroke onset may serve as biomarkers of short-term clinical outcome in patients with AIS. Elevated serum NSE and S100-β levels may be useful tools to predict prognosis in patients with AIS.
Collapse
Affiliation(s)
- Ruishu Jiang
- Department of Neurology, The Second Hospital of Longyan, No.8, Shuangyang West Road, Beicheng, Xinluo District, Longyan, Fujian, 364000, China
| | - Youlian Lai
- Department of Neurology, The Second Hospital of Longyan, Longyan, Fujian, 364000, China
| |
Collapse
|
3
|
Heidarzadehpilehrood R, Pirhoushiaran M, Osman MB, Ling KH, Hamid HA. A high-throughput RNA sequency of peripheral blood mononuclear cells reveals on inflammatory state in women with PCOS. Arch Med Res 2024; 56:103129. [PMID: 39647252 DOI: 10.1016/j.arcmed.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 11/07/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine and reproductive condition affecting women of reproductive age, although its expression profiles and molecular pathways are not fully understood. AIMS To identify the transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in women with PCOS and controls. To investigate noninvasive diagnostic biomarkers and potential treatment targets to improve women's fertility. METHODS RNA sequencing (RNA-Seq) was conducted on PBMC samples from six patients with PCOS and six healthy controls. qRT-PCR validation was carried out in 68 subjects. Multivariate logistic regression was performed to assess the combined impact of biomarkers. RESULTS A total of 186 differentially expressed genes (DEG) were found between patients and controls (log2FC >1, p < 0.05). Enrichment analysis revealed cytokine-mediated signaling pathways, cytokine activity, and cytokine-cytokine receptor interaction. RNA sequencing showed consistency with qRT-PCR. Women with PCOS had significantly higher levels of AQP9 (p < 0.001), PROK2 (p = 0.001), and S100A12 (p < 0.001) expression compared to controls. AQP9 (AUC = 0.77), PROK2 (AUC = 0.71), and S100A12 (AUC = 0.82) adequately discriminated women with PCOS from healthy controls. In addition, multiple logistic regression on biomarkers resulted in a significant diagnostic power with an AUC = 0.89, 95 % CI: 0.81-0.97, p < 0.0001. Further associations were analyzed between relative gene expression and clinical, anthropometric, hormonal, and ultrasonographic data. CONCLUSIONS Dysregulated RNA expression in PBMCs may contribute to an increased risk of PCOS and serve as a potential diagnostic biomarker. The involvement of inflammatory and cytokine-related pathways supports the notion that PCOS is a chronic inflammatory condition.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Malaysian Research Institution on Ageing, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Trnka S, Stejskal P, Jablonsky J, Krahulik D, Pohlodek D, Hrabalek L. S100B protein as a biomarker and predictor in traumatic brain injury. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:288-294. [PMID: 37431619 DOI: 10.5507/bp.2023.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES To determine the prognostic potential of S100B protein in patients with craniocerebral injury, correlation between S100B protein and time, selected internal diseases, body habitus, polytrauma, and season. METHODS We examined the levels of S100B protein in 124 patients with traumatic brain injury (TBI). RESULTS The S100B protein level 72 h after injury and changes over 72 h afterwards are statistically significant for prediction of a good clinical condition 1 month after injury. The highest sensitivity (81.4%) and specificity (83.3%) for the S100B protein value after 72 h was obtained for a cut-off value of 0.114. For the change after 72 h, that is a decrease in S100B value, the optimal cut-off is 0.730, where the sum of specificity (76.3%) and sensitivity (54.2%) is the highest, or a decrease by 0.526 at the cut-off value, where sensitivity (62.5%) and specificity (62.9%) are more balanced. The S100B values were the highest at baseline; S100B value taken 72 h after trauma negatively correlated with GCS upon discharge or transfer (r=-0.517, P<0.0001). We found no relationship between S100B protein and hypertension, diabetes mellitus, BMI, or season when the trauma occurred. Changes in values and a higher level of S100B protein were demonstrated in polytraumas with a median of 1.070 (0.042; 8.780) μg/L compared to isolated TBI with a median of 0.421 (0.042; 11.230) μg/L. CONCLUSION S100B protein level with specimen collection 72 h after trauma can be used as a complementary marker of patient prognosis.
Collapse
Affiliation(s)
- Stefan Trnka
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Premysl Stejskal
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jakub Jablonsky
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - David Krahulik
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Daniel Pohlodek
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Lumir Hrabalek
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
5
|
Sun Y, Xu H, Gao W, Deng J, Song X, Li J, Liu X. S100a8/A9 proteins: critical regulators of inflammation in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1394137. [PMID: 39175627 PMCID: PMC11338807 DOI: 10.3389/fcvm.2024.1394137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Neutrophil hyperexpression is recognized as a key prognostic factor for inflammation and is closely related to the emergence of a wide range of cardiovascular disorders. In recent years, S100 calcium binding protein A8/A9 (S100A8/A9) derived from neutrophils has attracted increasing attention as an important warning protein for cardiovascular disease. This article evaluates the utility of S100A8/A9 protein as a biomarker and therapeutic target for diagnosing cardiovascular diseases, considering its structural features, fundamental biological properties, and its multifaceted influence on cardiovascular conditions including atherosclerosis, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure.
Collapse
Affiliation(s)
- Yu Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weihan Gao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlan Deng
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiayinan Song
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xijian Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
7
|
Shihui M, Shirong Y, Jing L, Jingjing H, Tongqian W, Tian T, Chenyu W, Fang Y. S100A4 reprofiles lipid metabolism in mast cells via RAGE and PPAR-γ signaling pathway. Int Immunopharmacol 2024; 128:111555. [PMID: 38280333 DOI: 10.1016/j.intimp.2024.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
S100A4 is implicated in metabolic reprogramming across various cell types and is known to propel the progression of numerous diseases including allergies. Nonetheless, the influence of S100A4 on mast cell metabolic reprogramming during allergic disorders remains unexplored. Utilizing a mast cell line (C57), cells were treated with recombinant mouse S100A4 protein, with or without a PPAR-γ agonist (ROSI) or a RAGE inhibitor (FPS-ZM1). Subsequent assessments were conducted for mast cell activation and lipid metabolism. S100A4 induced mast cell activation and the release of inflammatory mediators, concurrently altering molecules involved in lipid metabolism and glycolysis over time. Furthermore, S100A4 stimulation resulted in cellular oxidative stress and mitochondrial dysfunction. Alterations in the levels of pivotal molecules within the RAGE/Src/JAK2/STAT3/PPAR-γ and NF-κB signaling pathways were noted during this stimulation, which were partially counteracted by ROSI or FPS-ZMI. Additionally, a trend of metabolic alterations was identified in patients with allergic asthma who exhibited elevated serum S100A4 levels. Correlation analysis unveiled a positive association between serum S100A4 and serum IgE, implying an indirect association with asthma. Collectively, our findings suggest that S100A4 regulates the lipid-metabolic reprogramming of mast cells, potentially via the RAGE and PPAR-γ-involved signaling pathway, offering a novel perspective in the disease management in patients with allergic disorders.
Collapse
Affiliation(s)
- Mo Shihui
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yan Shirong
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Li Jing
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - He Jingjing
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wu Tongqian
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Tian
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wang Chenyu
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yu Fang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
8
|
Michetti F, Di Sante G, Clementi ME, Valeriani F, Mandarano M, Ria F, Di Liddo R, Rende M, Romano Spica V. The Multifaceted S100B Protein: A Role in Obesity and Diabetes? Int J Mol Sci 2024; 25:776. [PMID: 38255850 PMCID: PMC10815019 DOI: 10.3390/ijms25020776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The S100B protein is abundant in the nervous system, mainly in astrocytes, and is also present in other districts. Among these, the adipose tissue is a site of concentration for the protein. In the light of consistent research showing some associations between S100B and adipose tissue in the context of obesity, metabolic disorders, and diabetes, this review tunes the possible role of S100B in the pathogenic processes of these disorders, which are known to involve the adipose tissue. The reported data suggest a role for adipose S100B in obesity/diabetes processes, thus putatively re-proposing the role played by astrocytic S100B in neuroinflammatory/neurodegenerative processes.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy;
- Department of Neuroscience, Catholic University of the Sacred Heart, L.go F. Vito 1, 00168 Rome, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (G.D.S.); (M.R.)
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy;
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Martina Mandarano
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, 06132 Perugia, Italy;
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (G.D.S.); (M.R.)
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.V.); (V.R.S.)
| |
Collapse
|
9
|
Xi P, Zhu W, Zhang Y, Wang M, Liang H, Wang H, Tian D. Upregulation of hypothalamic TRPV4 via S100a4/AMPKα signaling pathway promotes the development of diet-induced obesity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166883. [PMID: 37683711 DOI: 10.1016/j.bbadis.2023.166883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Obesity is associated with abnormal regulation of energy metabolism in the hypothalamus. Transient receptor potential vanilloid 4 (TRPV4) is involved in regulating osmotic pressure, temperature and mechanical force transmission, but little is known about its role in obesity. Herein, the present study aimed to elucidate the effect of hypothalamic TRPV4 on high-fat diet-induced obesity (DIO) and evaluate its potential for regulating energy metabolism. Here we show that hypothalamic TRPV4 content is increased in DIO rats. Central administration of adeno-associated virus expressing TRPV4 in these animals remarkably increased body weight and fat mass by activating the S100a4/AMPKα signaling pathway, thereby promoting positive energy metabolism. Overexpressed hypothalamic TRPV4 impaired glucose tolerance, while promoting the accumulation of fat in liver cells, resulting in hepatic steatosis. In addition, the upregulation of hypothalamic TRPV4 reduces high-fat induced central inflammation. This study provides evidence that hypothalamic TRPV4 plays a significant role in regulating homeostasis. Hypothalamic TRPV4 emerges as a target for therapeutic intervention against obesity.
Collapse
Affiliation(s)
- Pengjiao Xi
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Wenjuan Zhu
- Department of Nuclear Medicine, Third Hospital of Nanchang, Nanchang, Jiangxi 330008, China
| | - Yan Zhang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Meng Wang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Huimin Liang
- Department of School of Nursing, Tianjin Medical University, Tianjin 300070, China
| | - Haomin Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China.
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China; Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
10
|
Drouard G, Hagenbeek FA, Whipp AM, Pool R, Hottenga JJ, Jansen R, Hubers N, Afonin A, Willemsen G, de Geus EJC, Ripatti S, Pirinen M, Kanninen KM, Boomsma DI, van Dongen J, Kaprio J. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins. BMC Med 2023; 21:508. [PMID: 38129841 PMCID: PMC10740308 DOI: 10.1186/s12916-023-03198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. METHODS Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. RESULTS We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. CONCLUSIONS Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Fiona A Hagenbeek
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Alyce M Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Aleksei Afonin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Gayger-Dias V, Vizuete AFK, Rodrigues L, Wartchow KM, Bobermin L, Leite MC, Quincozes-Santos A, Kleindienst A, Gonçalves CA. How S100B crosses brain barriers and why it is considered a peripheral marker of brain injury. Exp Biol Med (Maywood) 2023; 248:2109-2119. [PMID: 38058025 PMCID: PMC10800124 DOI: 10.1177/15353702231214260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.
Collapse
Affiliation(s)
- Vitor Gayger-Dias
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Adriana FK Vizuete
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Letícia Rodrigues
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Krista Minéia Wartchow
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10044, USA
| | - Larissa Bobermin
- Graduate Program in Neurosciences, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Marina Concli Leite
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - André Quincozes-Santos
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany
| | - Carlos-Alberto Gonçalves
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.035-003, Brazil
| |
Collapse
|
12
|
Bilska K, Dmitrzak-Węglarz M, Osip P, Pawlak J, Paszyńska E, Permoda-Pachuta A. Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients 2023; 15:4532. [PMID: 37960185 PMCID: PMC10648184 DOI: 10.3390/nu15214532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Metabolic syndrome (MS) is a growing social, economic, and health problem. MS coexists with nearly half of all patients with affective disorders. This study aimed to evaluate the neurobiological parameters (clinical, anthropometric, biochemical, adipokines levels, and ultrasound of carotid arteries) and their relationship with the development of MS in patients with bipolar disorder. The study group consisted of 70 patients (50 women and 20 men) hospitalized due to episodes of depression in the course of bipolar disorders. The Hamilton Depression Rating Scale was used to assess the severity of the depression symptoms in an acute state of illness and after six weeks of treatment. The serum concentration of adipokines was determined using an ELISA method. The main finding of this study is that the following adipokines correlated with MS in the bipolar depression women group: visfatin, S100B, and leptin had a positive correlation, whereas adiponectin, leptin-receptor, and adiponectin/leptin ratio showed a negative correlation. Moreover, the adiponectin/leptin ratio showed moderate to strong negative correlation with insulin level, BMI, waist circumference, triglyceride level, treatment with metformin, and a positive moderate correlation with HDL. The adiponectin/leptin ratio may be an effective tool to assess MS in depressed female bipolar patients.
Collapse
Affiliation(s)
- Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Monika Dmitrzak-Węglarz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Elżbieta Paszyńska
- Department of Integrated Dentistry, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | |
Collapse
|
13
|
Drouard G, Hagenbeek FA, Whipp A, Pool R, Hottenga JJ, Jansen R, Hubers N, Afonin A, Willemsen G, de Geus EJC, Ripatti S, Pirinen M, Kanninen KM, Boomsma DI, van Dongen J, Kaprio J. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.28.23291995. [PMID: 37425750 PMCID: PMC10327285 DOI: 10.1101/2023.06.28.23291995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remain underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. Methods Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N=651) and the Netherlands Twin Register (NTR) (N=665). Follow-up comprised four BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated using latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. The sources of genetic and environmental variation underlying the protein abundances were quantified using twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) using mixed-effect models and correlation networks. Results We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 6 and 4 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with many metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. Conclusions Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Fiona A. Hagenbeek
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Alyce Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rick Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Aleksei Afonin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - BIOS Consortium
- Biobank-based Integrative Omics Study Consortium. Lists of authors and their affiliations appear in the supplementary material (see Additional file 1)
| | | | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Cerón JJ, Ortín-Bustillo A, López-Martínez MJ, Martínez-Subiela S, Eckersall PD, Tecles F, Tvarijonaviciute A, Muñoz-Prieto A. S-100 Proteins: Basics and Applications as Biomarkers in Animals with Special Focus on Calgranulins (S100A8, A9, and A12). BIOLOGY 2023; 12:881. [PMID: 37372165 DOI: 10.3390/biology12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
S100 proteins are a group of calcium-binding proteins which received this name because of their solubility in a 100% saturated solution of ammonium sulphate. They have a similar molecular mass of 10-12 KDa and share 25-65% similarity in their amino acid sequence. They are expressed in many tissues, and to date 25 different types of S100 proteins have been identified. This review aims to provide updated information about S100 proteins and their use as biomarkers in veterinary science, with special emphasis on the family of calgranulins that includes S100A8 (calgranulin A; myeloid-related protein 8, MRP8), S100A9 (calgranulin B; MRP14), and S100A12 (calgranulin C). The proteins SA100A8 and S100A9 can be linked, forming a heterodimer which is known as calprotectin. Calgranulins are related to the activation of inflammation and the immune system and increase in gastrointestinal diseases, inflammation and sepsis, immunomediated diseases, and obesity and endocrine disorders in different animal species. This review reflects the current knowledge about calgranulins in veterinary science, which should increase in the future to clarify their role in different diseases and potential as biomarkers and therapeutic targets, as well as the practical use of their measurement in non-invasive samples such as saliva or feces.
Collapse
Affiliation(s)
- José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Peter David Eckersall
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| |
Collapse
|
15
|
Shu W, Wang Y, Li C, Zhang L, Zhuoma D, Yang P, Yan G, Chen C, Ba Y, Du P, Wang X. Single-cell Expression Atlas Reveals Cell Heterogeneity in the Creeping Fat of Crohn's Disease. Inflamm Bowel Dis 2023; 29:850-865. [PMID: 36715181 DOI: 10.1093/ibd/izac266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Creeping fat (CrF) has been recognized to play a positive role in Crohn's disease (CD) progression, yet the cellular compositions within mesenteric adipose tissue (MAT) and their potential mechanism in CrF formation are poorly understood. METHODS Analysis of 10X single-cell RNA sequencing was performed on 67 064 cells from 3 pairs of surgically resected samples of CrF and their uninvolved MAT. The results were validated in another cohort with 6 paired MAT samples by immunofluorescence. RESULTS All samples manifested excellent consistency and repeatability in our study, and 10 cell types from the transcriptome atlas, including 20 clusters, were identified. In CrF, a specific vascular endothelial cell subpopulation highly expressing lipoprotein lipase was first identified, with a significantly increased proportion. This vascular endothelial cell subpopulation manifested robust peroxisome proliferator-activated receptor γ (PPARγ) transcription activity and an upregulated PPAR signaling pathway and was involved in lipid metabolism and the antibacterial response. A novel fibroblast subpopulation (FC3) with remarkable GREM1 and RFLNB expression was identified and validated to predominantly accumulate in the CrF. The FC3 was annotated as inflammation-associated fibroblasts, which are characterized by inflammatory responses and the regulation of Smad phosphorylation related to intestinal fibrosis. The trajectory of fibroblasts revealed their pro-inflammatory and profibrotic conversion tendency during CrF formation with corresponding gene dynamics. Additionally, we unprecedently dissected the different origins and functions of 6 macrophage subclusters within the myeloid compartment. CONCLUSIONS Our results uncover the cellular heterogeneity in the MAT of CD and the role of these various cellular compositions in CrF development. This comprehensive understanding of CrF provides future directions for in-depth research on and potential targets for MAT-based treatment.
Collapse
Affiliation(s)
- Weigang Shu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongheng Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chuanding Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Deji Zhuoma
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengyu Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yongbing Ba
- OE Biotech Co., Ltd., Shanghai 201114, China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Xiaolei Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Reddy TP, Glynn SA, Billiar TR, Wink DA, Chang JC. Targeting Nitric Oxide: Say NO to Metastasis. Clin Cancer Res 2023; 29:1855-1868. [PMID: 36520504 PMCID: PMC10183809 DOI: 10.1158/1078-0432.ccr-22-2791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Utilizing targeted therapies capable of reducing cancer metastasis, targeting chemoresistant and self-renewing cancer stem cells, and augmenting the efficacy of systemic chemo/radiotherapies is vital to minimize cancer-associated mortality. Targeting nitric oxide synthase (NOS), a protein within the tumor microenvironment, has gained interest as a promising therapeutic strategy to reduce metastatic capacity and augment the efficacy of chemo/radiotherapies in various solid malignancies. Our review highlights the influence of nitric oxide (NO) in tumor progression and cancer metastasis, as well as promising preclinical studies that evaluated NOS inhibitors as anticancer therapies. Lastly, we highlight the prospects and outstanding challenges of using NOS inhibitors in the clinical setting.
Collapse
Affiliation(s)
- Tejaswini P. Reddy
- Texas A&M University Health Science Center, Bryan, Texas
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Sharon A. Glynn
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland
| | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Miyashita D, Inoue R, Tsuno T, Okuyama T, Kyohara M, Nakahashi-Oda C, Nishiyama K, Fukushima S, Inada Y, Togashi Y, Shibuya A, Terauchi Y, Shirakawa J. Protective effects of S100A8 on sepsis mortality: Links to sepsis risk in obesity and diabetes. iScience 2022; 25:105662. [PMID: 36505926 PMCID: PMC9732389 DOI: 10.1016/j.isci.2022.105662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/23/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity and diabetes are independent risk factors for death during sepsis. S100A8, an alarmin, is related to inflammation, obesity, and diabetes. Here, we examine the role of S100A8 in sepsis of obesity and diabetes models. Injection of S100A8 prolongs the survival of septic mice induced by lethal endotoxemia, Escherichia coli injection, or cecal ligation and puncture. S100A8 decrease the LPS-induced expression of proinflammatory cytokines in peritoneal macrophages by inhibiting TLR4-mediated signals in an autocrine manner. db/db, ob/ob, and western diet-fed mice demonstrate reduced upregulation of S100A8 induced by LPS treatment in both serum and peritoneal cells. These mice also show shorter survival after LPS injection, and S100A8 supplementation prolonged the survival. While myelomonocytic cells-specific S100A8-deficient mice (Lyz2 cre :S100A8 floxed/floxed ) exhibit shorter survival after LPS treatment, S100A8 supplementation prolonged the survival. Thus, myelomonocytic cell-derived S100A8 is crucial for protection from sepsis, and S100A8 supplementation improves sepsis, particularly in mice with obesity and diabetes.
Collapse
Affiliation(s)
- Daisuke Miyashita
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, and R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Yutaro Inada
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, and R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
- Corresponding author
| |
Collapse
|
18
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
19
|
Pemmari T, Hämäläinen M, Ryyti R, Peltola R, Moilanen E. Cloudberry ( Rubus chamaemorus L.) Supplementation Attenuates the Development of Metabolic Inflammation in a High-Fat Diet Mouse Model of Obesity. Nutrients 2022; 14:nu14183846. [PMID: 36145221 PMCID: PMC9503149 DOI: 10.3390/nu14183846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic diseases linked to obesity are an increasing problem globally. They are associated with systemic inflammation, which can be triggered by nutrients such as saturated fatty acids. Cloudberry is rich in ellagitannin and its derivatives, which are known to have anti-inflammatory properties. In the present study, a high-fat-diet-induced mouse model of obesity was used to study the effects of air-dried cloudberry powder on weight gain, systemic inflammation, lipid and glucose metabolism, and changes in gene expression in hepatic and adipose tissues. Cloudberry supplementation had no effect on weight gain, but it prevented the rise in the systemic inflammation marker serum amyloid A (SAA) and the hepatic inflammation/injury marker alanine aminotransferase (ALT), as well as the increase in the expression of many inflammation-related genes in the liver and adipose tissue, such as Mcp1, Cxcl14, Tnfa, and S100a8. In addition, cloudberry supplementation impeded the development of hypercholesterolemia and hyperglycemia. The results indicate that cloudberry supplementation helps to protect against the development of metabolic inflammation and provides partial protection against disturbed lipid and glucose metabolism. These results encourage further studies on the effects of cloudberry and cloudberry-derived ellagitannins and support the use of cloudberries as a part of a healthy diet to prevent obesity-associated metabolic morbidity.
Collapse
Affiliation(s)
- Toini Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96100 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
- Correspondence:
| |
Collapse
|
20
|
Lecoutre S, Lambert M, Drygalski K, Dugail I, Maqdasy S, Hautefeuille M, Clément K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022; 11:cells11152310. [PMID: 35954152 PMCID: PMC9367348 DOI: 10.3390/cells11152310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Mélanie Lambert
- Labex Inflamex, Université Sorbonne Paris Nord, INSERM, F-93000 Bobigny, France;
| | - Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), IBPS, Sorbonne Université, F-75005 Paris, France;
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
- Assistance Publique Hôpitaux de Paris, Nutrition Department, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
- Correspondence: or
| |
Collapse
|
21
|
Jonas W, Kluth O, Helms A, Voß S, Jähnert M, Gottmann P, Speckmann T, Knebel B, Chadt A, Al-Hasani H, Schürmann A, Vogel H. Identification of Novel Genes Involved in Hyperglycemia in Mice. Int J Mol Sci 2022; 23:3205. [PMID: 35328627 PMCID: PMC8949927 DOI: 10.3390/ijms23063205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting β-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Oliver Kluth
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Sarah Voß
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
22
|
Lui PPY, Yung PSH. Inflammatory mechanisms linking obesity and tendinopathy. J Orthop Translat 2022; 31:80-90. [PMID: 34976728 PMCID: PMC8666605 DOI: 10.1016/j.jot.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic tendinopathy is a debilitating tendon disorder with disappointing treatment outcomes. This review focuses on the potential roles of chronic low-grade inflammation in promoting tendinopathy in obesity. A systematic literature search was performed to identify all clinical studies supporting the actions of obesity-associated inflammatory mediators in the development of tendinopathy. The mechanisms of obesity-induced chronic inflammation in adipose tissue are firstly reviewed. Common inflammatory mediators potentially linking obesity and the development of tendinopathy, and their association with mechanical overuse, are discussed, along with pre-clinical evidences and a systematic literature search on clinical studies. The potential contribution of local adipose tissues in the promotion of inflammation, pain and tendon degeneration is then discussed. The future research directions are proposed. Translational potential statement Better understanding of the roles of obesity-associated inflammatory mediators on tendons will clarify the pathophysiological drivers of tendinopathy in patients with obesity and identify possible treatment targets. Further studies on the mechanisms of obesity-induced chronic inflammation on tendon are a promising direction for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Corresponding author. Room 74037, 5/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, China.
| | | |
Collapse
|
23
|
Suzuki M, Kohmura-Kobayashi Y, Ueda M, Furuta-Isomura N, Matsumoto M, Oda T, Kawai K, Itoh T, Matsuya M, Narumi M, Tamura N, Uchida T, Mochizuki K, Itoh H. Comparative Analysis of Gene Expression Profiles in the Adipose Tissue of Obese Adult Mice With Rapid Infantile Growth After Undernourishment In Utero. Front Endocrinol (Lausanne) 2022; 13:818064. [PMID: 35295992 PMCID: PMC8920555 DOI: 10.3389/fendo.2022.818064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid infantile growth (RG) markedly increases the risk of obesity and metabolic disorders in adulthood, particularly among neonates born small. To elucidate the molecular mechanisms by which RG following undernourishment in utero (UN) contributes to the deterioration of adult fat deposition, we developed a UN mouse model using maternal energy restriction, followed by RG achieved by adjustments to 4 pups per litter soon after birth. A high-fat diet (HFD) was fed to weaned pups treated or not (Veh) with tauroursodeoxycholic acid (TU). UN-RG pups showed the deterioration of diet-induced obesity and fat deposition, which was ameliorated by TU. We performed a microarray analysis of epididymal adipose tissue and two gene enrichment analyses (NN-Veh vs UN-RD-Veh and UN-RG-Veh vs UN-RG-TU). The results obtained identified 4 common gene ontologies (GO) terms of inflammatory pathways. In addition to the inflammatory characteristics of 4 GO terms, the results of heatmap and principal component analyses of the representative genes from 4 GO terms, genes of interest (GOI; Saa3, Ubd, S100a8, Hpx, Casp1, Agt, Ptgs2) selected from the 4 GO terms, and immunohistochemistry of macrophages collectively suggested the critical involvement of inflammation in the regulation of fat deposition in the responses to UN and TU. Therefore, the present results support the 'Developmental Origins of Metaflammation', the last word of which was recently proposed by the concept of metabolic disorders induced by low-grade systemic inflammation.
Collapse
Affiliation(s)
- Misako Suzuki
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kohmura-Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Yukiko Kohmura-Kobayashi,
| | - Megumi Ueda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomi Furuta-Isomura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masako Matsumoto
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Oda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenta Kawai
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiya Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Madoka Matsuya
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Megumi Narumi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoaki Tamura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiyuki Uchida
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
24
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
25
|
Chiappalupi S, Salvadori L, Donato R, Riuzzi F, Sorci G. Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19-The Role of RAGE-RAS Crosstalk. Biomolecules 2021; 11:biom11060876. [PMID: 34204735 PMCID: PMC8231494 DOI: 10.3390/biom11060876] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation-end products (RAGE) is a multiligand receptor with a role in inflammatory and pulmonary pathologies. Hyperactivation of RAGE by its ligands has been reported to sustain inflammation and oxidative stress in common comorbidities of severe COVID-19. RAGE is essential to the deleterious effects of the renin-angiotensin system (RAS), which participates in infection and multiorgan injury in COVID-19 patients. Thus, RAGE might be a major player in severe COVID-19, and appears to be a useful therapeutic molecular target in infections by SARS-CoV-2. The role of RAGE gene polymorphisms in predisposing patients to severe COVID-19 is discussed. .
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Correspondence: (R.D.); (G.S.); Tel.: +39-075-585-8258 (G.S.)
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (F.R.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Universitario di Ricerca Sulla Genomica Funzionale (CURGeF), University of Perugia, 06132 Perugia, Italy
- Correspondence: (R.D.); (G.S.); Tel.: +39-075-585-8258 (G.S.)
| |
Collapse
|
26
|
Chen N, Miao L, Lin W, Zou D, Huang L, Huang J, Shi W, Li L, Luo Y, Liang H, Pan S, Peng J. Integrated DNA Methylation and Gene Expression Analysis Identified S100A8 and S100A9 in the Pathogenesis of Obesity. Front Cardiovasc Med 2021; 8:631650. [PMID: 34055926 PMCID: PMC8163519 DOI: 10.3389/fcvm.2021.631650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Background: To explore the association of DNA methylation and gene expression in the pathology of obesity. Methods: (1) Genomic DNA methylation and mRNA expression profile of visceral adipose tissue (VAT) were performed in a comprehensive database of gene expression in obese and normal subjects. (2) Functional enrichment analysis and construction of differential methylation gene regulatory networks were performed. (3) Validation of the two different methylation sites and corresponding gene expression was done in a separate microarray dataset. (4) Correlation analysis was performed on DNA methylation and mRNA expression data. Results: A total of 77 differentially expressed mRNAs matched with differentially methylated genes. Analysis revealed two different methylation sites corresponding to two unique genes—s100a8-cg09174555 and s100a9-cg03165378. Through the verification test of two interesting different expression positions [differentially methylated positions (DMPs)] and their corresponding gene expression, we found that methylation in these genes was negatively correlated to gene expression in the obesity group. Higher S100A8 and S100A9 expressions in obese subjects were validated in a separate microarray dataset. Conclusion: This study confirmed the relationship between DNA methylation and gene expression and emphasized the important role of S100A8 and S100A9 in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Ningyuan Chen
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Liu Miao
- Department of Cardiology, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, China
| | - Wei Lin
- Department of Neurological Rehabilitation, Guangxi Jiangbin Hospital, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Huang
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Jia Huang
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Wanxin Shi
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Lilin Li
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Yuxing Luo
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Hao Liang
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Shangling Pan
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Junhua Peng
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci 2021; 272:119251. [PMID: 33636175 PMCID: PMC7900755 DOI: 10.1016/j.lfs.2021.119251] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Department of Translational Medicine, University of Piemonte Orientale, Novara 28100, Italy
| | - Aleksandra Vukasinovic
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Rosario Donato
- Interuniversity Institute of Myology (IIM), Perugia 06132, Italy
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy; Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia 06132, Italy
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Perugia 06132, Italy.
| |
Collapse
|
28
|
Garay-Sevilla ME, Gomez-Ojeda A, González I, Luévano-Contreras C, Rojas A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol Cell Biochem 2021; 476:1555-1573. [PMID: 33398664 DOI: 10.1007/s11010-020-04022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Far beyond the compelling proofs supporting that the metabolic syndrome represents a risk factor for diabetes and cardiovascular diseases, a growing body of evidence suggests that it is also a risk factor for different types of cancer. However, the involved molecular mechanisms underlying this association are not fully understood, and they have been mainly focused on the individual contributions of each component of the metabolic syndrome such as obesity, hyperglycemia, and high blood pressure to the development of cancer. The Receptor for Advanced Glycation End-products (RAGE) axis activation has emerged as an important contributor to the pathophysiology of many clinical entities, by fueling a chronic inflammatory milieu, and thus supporting an optimal microenvironment to promote tumor growth and progression. In the present review, we intend to highlight that RAGE axis activation is a crosswise element on the potential mechanistic contributions of some relevant components of metabolic syndrome into the association with cancer.
Collapse
Affiliation(s)
- Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Gomez-Ojeda
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Ileana González
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Claudia Luévano-Contreras
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
29
|
Roy D, Ramasamy R, Schmidt AM. Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue. Arterioscler Thromb Vasc Biol 2021; 41:614-627. [PMID: 33327744 PMCID: PMC7837689 DOI: 10.1161/atvbaha.120.315527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Divya Roy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
- New York Institute of Technology College of Osteopathic Medicine, Glen Head (D.R.)
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| |
Collapse
|
30
|
Mossel DM, Moganti K, Riabov V, Weiss C, Kopf S, Cordero J, Dobreva G, Rots MG, Klüter H, Harmsen MC, Kzhyshkowska J. Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions. Front Immunol 2020; 11:1071. [PMID: 32582175 PMCID: PMC7280556 DOI: 10.3389/fimmu.2020.01071] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The number of diabetic patients in Europe and world-wide is growing. Diabetes confers a 2-fold higher risk for vascular disease. Lack of insulin production (Type 1 diabetes, T1D) or lack of insulin responsiveness (Type 2 diabetes, T2D) causes systemic metabolic changes such as hyperglycemia (HG) which contribute to the pathology of diabetes. Monocytes and macrophages are key innate immune cells that control inflammatory reactions associated with diabetic vascular complications. Inflammatory programming of macrophages is regulated and maintained by epigenetic mechanisms, in particular histone modifications. The aim of our study was to identify the epigenetic mechanisms involved in the hyperglycemia-mediated macrophage activation. Using Affymetrix microarray profiling and RT-qPCR we identified that hyperglycemia increased the expression of S100A9 and S100A12 in primary human macrophages. Expression of S100A12 was sustained after glucose levels were normalized. Glucose augmented the response of macrophages to Toll-like receptor (TLR)-ligands Palmatic acid (PA) and Lipopolysaccharide (LPS) i.e., pro-inflammatory stimulation. The abundance of activating histone Histone 3 Lysine 4 methylation marks (H3K4me1, H3K4me3) and general acetylation on histone 3 (AceH3) with the promoters of these genes was analyzed by chromatin immunoprecipitation. Hyperglycemia increased acetylation of histones bound to the promoters of S100A9 and S100A12 in M1 macrophages. In contrast, hyperglycemia caused a reduction in total H3 which correlated with the increased expression of both S100 genes. The inhibition of histone methyltransferases SET domain-containing protein (SET)7/9 and SET and MYND domain-containing protein (SMYD)3 showed that these specifically regulated S100A12 expression. We conclude that hyperglycemia upregulates expression of S100A9, S100A12 via epigenetic regulation and induces an activating histone code on the respective gene promoters in M1 macrophages. Mechanistically, this regulation relies on action of histone methyltransferases SMYD3 and SET7/9. The results define an important role for epigenetic regulation in macrophage mediated inflammation in diabetic conditions.
Collapse
Affiliation(s)
- Dieuwertje M Mossel
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Kondaiah Moganti
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,Department of Dermatology, University of Münster, Münster, Germany
| | - Vladimir Riabov
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Medicine I: Endocrinology and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Julio Cordero
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marianne G Rots
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harald Klüter
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Martin C Harmsen
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Julia Kzhyshkowska
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
31
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
32
|
Lizcano F. The Beige Adipocyte as a Therapy for Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20205058. [PMID: 31614705 PMCID: PMC6834159 DOI: 10.3390/ijms20205058] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia.
| |
Collapse
|