1
|
Crecca E, Di Giuseppe G, Camplone C, Vigiano Benedetti V, Melaiu O, Mezza T, Cencioni C, Spallotta F. The multifaceted role of agents counteracting metabolic syndrome: A new hope for gastrointestinal cancer therapy. Pharmacol Ther 2025; 270:108847. [PMID: 40216262 DOI: 10.1016/j.pharmthera.2025.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/27/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Metabolic syndrome (MetS) is defined by the presence of at least three of five clinical parameters including abdominal obesity, insulin resistance, elevated triglycerides, reduced high-density lipoprotein (HDL) and hypertension. Major features describing MetS have been recognized risk factors for cancer onset, with an alarming impact on gastrointestinal (GI) tumors. Intriguingly, therapeutic administration of drugs to improve glycemic control and dyslipidemia (including metformin, statins) has been shown to have a preventive role in the development and in prognosis improvement of several cancer types. Overall, these observations highlight the key role of altered metabolism prevalently in cancer risk development and unveil anti-MetS agent repurposing potential beyond their conventional pharmacological action. The objective of this review is to summarize the current knowledge about the antitumor activity of anti-diabetic and anti-lipemic agents in GI cancer onset and progression. Here, pre-clinical evidence of their therapeutic potential and of their integration in novel compelling therapeutic strategies will be discussed. Possible clinical outcomes of these novel therapeutic combined protocols specifically dedicated to GI cancer patients will be put under the spotlight. In the future, these novel therapeutic options should be considered to improve conventional chemotherapy response and prognosis of this group of patients.
Collapse
Affiliation(s)
- Elena Crecca
- Institute of System Analysis and Informatics "Antonio Ruberti", National Research Council (IASI-CNR), 00185 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; Department of Translational Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Claudia Camplone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy; Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | | | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Teresa Mezza
- Department of Translational Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Chiara Cencioni
- Institute of System Analysis and Informatics "Antonio Ruberti", National Research Council (IASI-CNR), 00185 Rome, Italy.
| | - Francesco Spallotta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy; Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
2
|
Alsaleem MA, Al‐Kuraishy HM, Al‐Gareeb AI, Abdel‐Fattah MM, Alrouji M, Al‐Harchan NA, Alruwaili M, Papadakis M, Alexiou A, Batiha GE. Decrypting the Possible Mechanistic Role of Fenofibrate in Alzheimer's Disease and Type 2 Diabetes: The Truth and Mystery. J Cell Mol Med 2025; 29:e70378. [PMID: 40040308 PMCID: PMC11880132 DOI: 10.1111/jcmm.70378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease caused by the progressive deposition of extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles (NFTs). Of note, metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D) are associated with the development of brain IR and associated neurodegeneration. In addition, AD neuropathology and linked cognitive impairment accelerate the development of peripheral IR and the progression of T2D. Therefore, there is a bidirectional relationship between T2D and AD. It has been demonstrated that AD and T2D induce dysregulation of peroxisome proliferator-activated receptor alpha (PPAR-α) leading to the central and peripheral metabolic disturbances. Hence, dysregulated PPAR-α could be a shared mechanism in both AD and T2D, and restoration of PPAR-α signalling by PPAR-α agonist fenofibrate (FN) may alleviate T2D and AD. Therefore, this review aims to shed light on the potential involvement of PPAR-α in T2D and AD, and how FN could be effective in the management of AD. FN seems to be effective in both AD and T2D by dual neuroprotective and antidiabetic effects that can mitigate AD neuropathology and T2D-related complications by modulating various cellular processes and inflammatory signalling pathways. In conclusion, FN could be a possible candidate in the management of AD and T2D by modulating different signalling pathways involved in the pathogenesis of these conditions.
Collapse
Affiliation(s)
- Mansour A. Alsaleem
- Unit of Scientific Research, Applied CollegeQassim UniversityBuraydahSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical PharmacologyJabir Ibn Hayyan Medical UniversityKufaIraq
| | - Maha M. Abdel‐Fattah
- Department of Pharmacology and Toxicology, Faculty of PharmacyBeni‐Suef UniversityBeni‐SuefEgypt
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Nasser A. Al‐Harchan
- Department of Clinical Pharmacology, College of DentistryAl‐Rasheed UniversityBaghdadIraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Marios Papadakis
- University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationSydneyNew South WalesAustralia
- Department of Research & DevelopmentFunogenAthensGreece
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhour, AlBeheiraEgypt
| |
Collapse
|
3
|
Takahashi A, Nomoto H, Yokoyama H, Yokozeki K, Furusawa S, Oe Y, Kameda R, Kawata S, Miyoshi A, Nagai S, Miya A, Kameda H, Nakamura A, Atsumi T. Efficacy of imeglimin treatment versus metformin dose escalation on glycemic control in subjects with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor plus low-dose metformin: A multicenter, prospective, randomized, open-label, parallel-group comparison study (MEGMI study). Diabetes Obes Metab 2025; 27:1466-1476. [PMID: 39726204 DOI: 10.1111/dom.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
AIMS To compare the efficacy of adding imeglimin versus that of metformin dose escalation on glycemic control in subjects with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor plus low-dose metformin (500-1000 mg/day). MATERIALS AND METHODS In this multicentre, open-labelled, prospective, randomized, parallel-group comparison study, the addition of imeglimin (2000 mg/day) or metformin escalation was applied for 24 weeks in eligible subjects. The primary endpoint was the mean change in glycated haemoglobin (HbA1c) over 24 weeks. As the secondary endpoints, the occurrence of adverse events, changes in metabolic parameters, biomarkers and factors associated with HbA1c improvement were analysed. RESULTS Seventy-three eligible subjects were enrolled. Of them, 65 participants comprised the full analysis set. At 24 weeks, the addition of imeglimin (n = 33) resulted in greater improvement in HbA1c compared with metformin dose escalation (n = 32) (from 7.61 ± 0.48% to 6.93 ± 0.49% in imeglimin and from 7.56 ± 0.61% to 7.09 ± 0.56% in metformin escalation; change difference: -0.21% [95% confidence interval: -0.41%, -0.01%] [p = 0.038]); however, seven subjects in the imeglimin group discontinued imeglimin because of serious adverse events on gastrointestinal tract. In intra-group pre/post comparisons, imeglimin treatment significantly reduced body weight and improved liver enzyme elevation. There was a significant correlation between improvement levels of HbA1c and indicators of fatty liver disease in the imeglimin group. CONCLUSIONS Imeglimin in combination with a dipeptidyl peptidase-4 inhibitor and low-dose metformin improved HbA1c compared with metformin dose escalation.
Collapse
Affiliation(s)
- Akihiro Takahashi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | | | - Kei Yokozeki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sho Furusawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Oe
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Reina Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichiro Kawata
- Department of Internal Medicine, Tomakomai City Hospital, Tomakomai, Japan
| | - Arina Miyoshi
- Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, Japan
| | - So Nagai
- Division of Diabetes and Endocrinology, Department of Medicine, Sapporo Medical Center, NTT East Corporation, Sapporo, Japan
| | - Aika Miya
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
5
|
Bi S, Xu Z, Wang Z, Liu Y, Yu B, Tian J, Liu C, Qiao L, Zhang Y. Polydatin from Polygoni Cuspidati Rhizoma et Radix regulates glucolipid metabolism in the liver of diabetic rats: Multiscale analysis of network pharmacology and multiomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155992. [PMID: 39216300 DOI: 10.1016/j.phymed.2024.155992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Polygoni Cuspidati Rhizoma et Radix (Huzhang in Chinese), refers to the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Huzhang is commonly used in clinical practice for the prevention and treatment of diabetes and its complications, but its active components and regulatory mechanisms have not yet been thoroughly analyzed. PURPOSE The network pharmacology combined with multi-omics analysis will be employed to dissect the substance basis and action mechanism of Huzhang in exerting its anti-diabetic activity. METHODS This study employed phenotypic indicators for baseline assessment, followed by integrated analysis using network pharmacology, metabolomics, transcriptomics, and qPCR technology to elucidate the active components and pharmacological mechanisms of Huzhang. RESULTS The analysis of network pharmacology revealed that polydatin is a potential active component responsible for the anti-T2DM pharmacological effects of Huzhang. In vivo experimental results demonstrated that polydatin significantly regulates blood glucose, lipid levels, liver function, and liver pathological damage in diabetic rats. Analysis results from transcriptomics, metabolomics, and qPCR validation showed that polydatin comprehensively regulates glucose and lipid metabolism in T2DM by modulating bile acid metabolism, fatty acid oxidation, and lipogenesis. CONCLUSION Polydatin is a key component of Huzhang in treating T2DM, and its regulatory mechanisms are diverse, indicating significant development potential.
Collapse
Affiliation(s)
- Shijie Bi
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhenzhen Xu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zewen Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanxia Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bin Yu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaye Tian
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Howsawi AA, Alem MM. Clinical implications and pharmacological considerations of glycemic variability in patients with type 2 diabetes mellitus. Sci Rep 2024; 14:24062. [PMID: 39402124 PMCID: PMC11473953 DOI: 10.1038/s41598-024-74535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/26/2024] [Indexed: 10/17/2024] Open
Abstract
Glycemic variability (GV), independently of glycemic control, has emerged as a prognostic marker in patients with type 2 diabetes mellitus (DM). In this study, we assessed the prognostic value of long-term GV for predicting major adverse cardiovascular events (MACE) in our local population. We also assessed its prognostic value for diabetic microvascular complications (DMC) and its relationships with antidiabetic medications. This was a retrospective cohort study that recruited 680 patients with type 2 DM across 2015-2017. MACE were defined as: the composite of; total death, myocardial infarction (MI), stroke, hospitalization due to heart failure, and revascularization. GV was calculated for two glycemic control markers: glycated hemoglobin (G-Hb) and fasting blood sugar (FBS); via three metrics- standard deviation (SD), coefficient of variation (CV), and variability independent from the mean (VIM). Cox proportional hazard models and Kruskal-Wallis tests were used in the statistical analysis. 105 events classified as MACE were identified in 86 patients and 104 DMC in 98 patients in an average follow-up period of 78.43 months. Long-term GV was found to be an independent predictor of MACE, particularly for FBS-CV but not a predictor of DMC. FBS-CV ≥ 17.51% as compared with < 17.51% was a significant and independent predictor of MACE, with HR 1.589 (95% CI; 1.022, 2.472) (P = 0.040). DMC were predicted mainly by the duration of type 2 DM, and by the glycemic control; similarly represented by G-Hb and FBS. Patients on metformin, and dipeptidyl peptidase (DPP) 4 inhibitors, had the lowest GV, as compared with patients whose treatments included insulin/sulphonylureas (P < 0.001). In our population, long-term GV predicted MACE: with FBS-CV superior to the "gold standard" glycemic control marker G-Hb. Further, GV may be explained, partially at least, by the choice of antidiabetic medications: this finding might contribute to the cardiovascular protection attributed to one class rather than another.
Collapse
Affiliation(s)
- Alanood A Howsawi
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam, 31441, Saudi Arabia
| | - Manal M Alem
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
7
|
Melenovský V, Hošková E, Velebová K, Veleba J, Borlaug BA, Benes J, Kuda O, Čajka T, Segeťová M, Thieme L, Kopecký J, Kopecký J, Pelikánová T, Haluzík M, Hill M, Kahleová H. Metformin Improves Glycemic Control and Postprandial Metabolism and Enhances Postprandial Glucagon-Like Peptide 1 Secretion in Patients With Type 2 Diabetes and Heart Failure: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin Diabetes 2024; 43:23-32. [PMID: 39829685 PMCID: PMC11739370 DOI: 10.2337/cd24-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This randomized trial tested the effect of metformin on glycemic control and cardiac function in patients with heart failure (HF) and type 2 diabetes while evaluating intestinal effects on selected gut microbiome products reflected by trimethylamine-N-oxide (TMAO) and gut-derived incretins. Metformin treatment improved glycemic control and postprandial metabolism and enhanced postprandial glucagon-like peptide 1 (GLP-1) secretion but did not influence cardiac function or the TMAO levels. Metabolic effects of metformin in HF may be mediated by an improvement in intestinal endocrine function and enhanced secretion of the gut-derived incretin GLP-1.
Collapse
Affiliation(s)
- Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Hošková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Velebová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiří Veleba
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Barry A. Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Jan Benes
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondřej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Čajka
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Segeťová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lenka Thieme
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kopecký
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Terezie Pelikánová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Haluzík
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Hill
- Institute of Endocrinology, Prague, Czech Republic
| | - Hana Kahleová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Physicians Committee for Responsible Medicine, Washington, DC
| |
Collapse
|
8
|
Hansen LS, Gasbjerg LS, Brønden A, Dalsgaard NB, Bahne E, Stensen S, Hellmann PH, Rehfeld JF, Hartmann B, Wewer Albrechtsen NJ, Holst JJ, Vilsbøll T, Knop FK. The role of glucagon-like peptide 1 in the postprandial effects of metformin in type 2 diabetes: a randomized crossover trial. Eur J Endocrinol 2024; 191:192-203. [PMID: 39049802 DOI: 10.1093/ejendo/lvae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
AIMS Although metformin is widely used for treatment of type 2 diabetes (T2D), its glucose-lowering mechanism remains unclear. Using the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) antagonist exendin(9-39)NH2, we tested the hypothesis that postprandial GLP-1-mediated effects contribute to the glucose-lowering potential of metformin in T2D. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 15 individuals with T2D (median HbA1c 50 mmol/mol [6.7%], body mass index 30.1 kg/m2, age 71 years) underwent, in randomized order, 14 days of metformin and placebo treatment, respectively. Each treatment period was preceded by 14 days without any glucose-lowering medicine and concluded by two 4 h mixed meal tests performed in randomized order and separated by >24 h with either continuous intravenous exendin(9-39)NH2 or saline infusion. RESULTS Compared to placebo, metformin treatment lowered fasting plasma glucose (mean of differences [MD] 1.4 mmol/L × min [95% CI 0.8-2.0]) as well as postprandial plasma glucose excursions during both saline infusion (MD 186 mmol/L × min [95% CI 64-307]) and exendin(9-39)NH2 infusion (MD 268 mmol/L × min [95% CI 108-427]). The metformin-induced improvement in postprandial glucose tolerance was unaffected by GLP-1R antagonization (MD 82 mmol/L × min [95% CI -6564-170]). Metformin treatment increased fasting plasma GLP-1 (MD 1.7 pmol/L × min [95% CI 0.39-2.9]) but did not affect postprandial GLP-1 responses (MD 820 pmol/L × min [95% CI -1750-111]). CONCLUSIONS Using GLP-1R antagonization, we could not detect GLP-1-mediated postprandial glucose-lowering effect of metformin in individuals with T2D. We show that 2 weeks of metformin treatment increases fasting plasma GLP-1, which may contribute to metformin's beneficial effect on fasting plasma glucose in T2D. Trial registration: Clinicaltrials.gov NCT03246451.
Collapse
Affiliation(s)
- Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen NV, Denmark
| | - Niels B Dalsgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Emilie Bahne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Pernille H Hellmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
11
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
12
|
Liao Y, Yu H, Zhang Y, Lu Z, Sun Y, Guo L, Guo J, Kang Z, Feng X, Sun Y, Wang G, Su Z, Lu T, Yang Y, Li W, Lv L, Yan H, Zhang D, Yue W. Genome-wide association study implicates lipid pathway dysfunction in antipsychotic-induced weight gain: multi-ancestry validation. Mol Psychiatry 2024; 29:1857-1868. [PMID: 38336841 DOI: 10.1038/s41380-024-02447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Antipsychotic-induced weight gain (AIWG) is a common side effect of antipsychotic medication and may contribute to diabetes and coronary heart disease. To expand the unclear genetic mechanism underlying AIWG, we conducted a two-stage genome-wide association study in Han Chinese patients with schizophrenia. The study included a discovery cohort of 1936 patients and a validation cohort of 534 patients, with an additional 630 multi-ancestry patients from the CATIE study for external validation. We applied Mendelian randomization (MR) analysis to investigate the relationship between AIWG and antipsychotic-induced lipid changes. Our results identified two novel genome-wide significant loci associated with AIWG: rs10422861 in PEPD (P = 1.373 × 10-9) and rs3824417 in PTPRD (P = 3.348 × 10-9) in Chinese Han samples. The association of rs10422861 was validated in the European samples. Fine-mapping and functional annotation revealed that PEPD and PTPRD are potentially causal genes for AIWG, with their proteins being prospective therapeutic targets. Colocalization analysis suggested that AIWG and type 2 diabetes (T2D) shared a causal variant in PEPD. Polygenic risk scores (PRSs) for AIWG and T2D significantly predicted AIWG in multi-ancestry samples. Furthermore, MR revealed a risky causal effect of genetically predicted changes in low-density lipoprotein cholesterol (P = 7.58 × 10-4) and triglycerides (P = 2.06 × 10-3) caused by acute-phase of antipsychotic treatment on AIWG, which had not been previously reported. Our model, incorporating antipsychotic-induced lipid changes, PRSs, and clinical predictors, significantly predicted BMI percentage change after 6-month antipsychotic treatment (AUC = 0.79, R2 = 0.332). Our results highlight that the mechanism of AIWG involves lipid pathway dysfunction and may share a genetic basis with T2D through PEPD. Overall, this study provides new insights into the pathogenesis of AIWG and contributes to personalized treatment of schizophrenia.
Collapse
Affiliation(s)
- Yundan Liao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, 272067, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Liangkun Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Jing Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Zhewei Kang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Xiaoyang Feng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Yutao Sun
- No.5 Hospital, Tangshan, Hebei, 063000, China
| | - Guishan Wang
- The Second Affiliated Hospital of Jining Medical College, Jining, 272051, China
| | - Zhonghua Su
- The Second Affiliated Hospital of Jining Medical College, Jining, 272051, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Wenqiang Li
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Hao Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China
- Chinese Institute for Brain Research, Beijing, 102206, China
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China.
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
14
|
Cheng M, Ren L, Jia X, Wang J, Cong B. Understanding the action mechanisms of metformin in the gastrointestinal tract. Front Pharmacol 2024; 15:1347047. [PMID: 38617792 PMCID: PMC11010946 DOI: 10.3389/fphar.2024.1347047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Metformin is the initial medication recommended for the treatment of type 2 diabetes mellitus (T2DM). In addition to diabetes treatment, the function of metformin also can be anti-aging, antiviral, and anti-inflammatory. Nevertheless, further exploration is required to fully understand its mode of operation. Historically, the liver has been acknowledged as the main location where metformin reduces glucose levels, however, there is increasing evidence suggesting that the gastrointestinal tract also plays a significant role in its action. In the gastrointestinal tract, metformin effects glucose uptake and absorption, increases glucagon-like peptide-1 (GLP-1) secretion, alters the composition and structure of the gut microbiota, and modulates the immune response. However, the side effects of it cannot be ignored such as gastrointestinal distress in patients. This review outlines the impact of metformin on the digestive system and explores potential explanations for variations in metformin effectiveness and adverse effects like gastrointestinal discomfort.
Collapse
Affiliation(s)
- Meihui Cheng
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianwei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Goglia U, Hasballa I, Teti C, Boschetti M, Ferone D, Albertelli M. Ianus Bifrons: The Two Faces of Metformin. Cancers (Basel) 2024; 16:1287. [PMID: 38610965 PMCID: PMC11011026 DOI: 10.3390/cancers16071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ancient Roman god Ianus was a mysterious divinity with two opposite faces, one looking at the past and the other looking to the future. Likewise, metformin is an "old" drug, with one side looking at the metabolic role and the other looking at the anti-proliferative mechanism; therefore, it represents a typical and ideal bridge between diabetes and cancer. Metformin (1,1-dimethylbiguanidine hydrochloride) is a drug that has long been in use for the treatment of type 2 diabetes mellitus, but recently evidence is growing about its potential use in other metabolic conditions and in proliferative-associated diseases. The aim of this paper is to retrace, from a historical perspective, the knowledge of this molecule, shedding light on the subcellular mechanisms of action involved in metabolism as well as cellular and tissue growth. The intra-tumoral pharmacodynamic effects of metformin and its possible role in the management of different neoplasms are evaluated and debated. The etymology of the name Ianus is probably from the Latin term ianua, which means door. How many new doors will this old drug be able to open?
Collapse
Affiliation(s)
- Umberto Goglia
- Endocrinology and Diabetology Unit, Local Health Authority CN1, 12100 Cuneo, Italy
| | - Iderina Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Claudia Teti
- Endocrinology and Diabetology Unit, Local Health Autorithy Imperia 1, 18100 Imperia, Italy;
| | - Mara Boschetti
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Manuela Albertelli
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| |
Collapse
|
16
|
Papadakos SP, Argyrou A, Lekakis V, Arvanitakis K, Kalisperati P, Stergiou IE, Konstantinidis I, Schizas D, Koufakis T, Germanidis G, Theocharis S. Metformin in Esophageal Carcinoma: Exploring Molecular Mechanisms and Therapeutic Insights. Int J Mol Sci 2024; 25:2978. [PMID: 38474224 PMCID: PMC10932447 DOI: 10.3390/ijms25052978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Esophageal cancer (EC) remains a formidable malignancy with limited treatment options and high mortality rates, necessitating the exploration of innovative therapeutic avenues. Through a systematic analysis of a multitude of studies, we synthesize the diverse findings related to metformin's influence on EC. This review comprehensively elucidates the intricate metabolic pathways and molecular mechanisms through which metformin may exert its anti-cancer effects. Key focus areas include its impact on insulin signaling, AMP-activated protein kinase (AMPK) activation, and the mTOR pathway, which collectively contribute to its role in mitigating esophageal cancer progression. This review critically examines the body of clinical and preclinical evidence surrounding the potential role of metformin, a widely prescribed anti-diabetic medication, in EC management. Our examination extends to the modulation of inflammation, oxidative stress and angiogenesis, revealing metformin's potential as a metabolic intervention in esophageal cancer pathogenesis. By consolidating epidemiological and clinical data, we assess the evidence that supports metformin's candidacy as an adjuvant therapy for esophageal cancer. By summarizing clinical and preclinical findings, our review aims to enhance our understanding of metformin's role in EC management, potentially improving patient care and outcomes.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece;
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Polyxeni Kalisperati
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.); (I.E.S.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.); (I.E.S.)
| | | | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, General Hospital “Hippokration”, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece;
| |
Collapse
|
17
|
Abstract
Psychotropic drug-related weight gain (PDWG) is a common occurrence and is highly associated with non-initiation, discontinuation, and dissatisfaction with psychiatric drugs. Moreover, PDWG intersects with the elevated risk for obesity and associated morbidity that has been amply reported in the psychiatric population. Evidence indicates that differential liability for PDWG exists for antipsychotics, antidepressants, and anticonvulsants. During the past two decades, agents within these classes have become available with significantly lower or no liability for PDWG and as such should be prioritized. Although lithium is associated with weight gain, the overall extent of weight gain is significantly lower than previously estimated. The benefit of lifestyle and behavioral modification for obesity and/or PDWG in psychiatric populations is established, with effectiveness similar to that in the general population. Metformin is the most studied pharmacological treatment in the prevention and treatment of PDWG, and promising data are emerging for glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., liraglutide, exenatide, semaglutide). Most pharmacologic antidotes for PDWG are supported with low-confidence data (e.g., topiramate, histamine-2 receptor antagonists). Future vistas for pharmacologic treatment for PDWG include large, adequately controlled studies with GLP-1 receptor agonists and possibly GLP-1/glucose-dependent insulinotropic polypeptide co-agonists (e.g., tirzepatide) as well as specific dietary modifications.
Collapse
Affiliation(s)
- Roger S McIntyre
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Angela T H Kwan
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Joshua D Rosenblat
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Kayla M Teopiz
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Rodrigo B Mansur
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| |
Collapse
|
18
|
Du Y, Zhu J, Guo Z, Wang Z, Wang Y, Hu M, Zhang L, Yang Y, Wang J, Huang Y, Huang P, Chen M, Chen B, Yang C. Metformin adverse event profile: a pharmacovigilance study based on the FDA Adverse Event Reporting System (FAERS) from 2004 to 2022. Expert Rev Clin Pharmacol 2024; 17:189-201. [PMID: 38269492 DOI: 10.1080/17512433.2024.2306223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Metformin has the potential for treating numerous diseases, but there are still many unrecognized and unreported adverse events (AEs). METHODS We selected data from the United States FDA Adverse Event Reporting System (FAERS) database from the first quarter (Q1) of 2004 to the fourth quarter (Q4) of 2022 for disproportionality analysis to assess the association between metformin and related adverse events. RESULTS In this study 10,500,295 case reports were collected from the FAERS database, of which 56,674 adverse events related to metformin were reported. A total of 643 preferred terms (PTs) and 27 system organ classes (SOCs) that were significant disproportionality conforming to the four algorithms simultaneously were included. The SOCs included metabolic and nutritional disorders (p = 0.00E + 00), gastrointestinal disorders (p = 0.00E + 00) and others. PT levels were screened for adverse drug reaction (ADR) signals such as acute pancreatitis (p = 0.00E + 00), melas syndrome, pemphigoid (p = 0.00E + 00), skin eruption (p = 0.00E + 00) and drug exposure during pregnancy (p = 0.00E + 00). CONCLUSION Most of our results were consistent with the specification, but some new signals of adverse reactions such as acute pancreatitis were not included. Therefore, further studies are needed to validate unlabeled adverse reactions and provide important support for clinical monitoring and risk identification of metformin.
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, People's Republic of China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Zhuoming Guo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yuni Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Mianda Hu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Lingzhi Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yurong Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Jinjin Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yixing Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Peiying Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Mianhai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Bo Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| |
Collapse
|
19
|
Wang W, Li X, Chen F, Wei R, Chen Z, Li J, Qiao J, Pan Q, Yang W, Guo L. Secondary analysis of newly diagnosed type 2 diabetes subgroups and treatment responses in the MARCH cohort. Diabetes Metab Syndr 2024; 18:102936. [PMID: 38171152 DOI: 10.1016/j.dsx.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE To incorporate new clusters in the MARCH (Metformin and AcaRbose in Chinese patients as the initial Hypoglycemic treatment) cohort of newly diagnosed type 2 diabetes (T2D) patients and compare the anti-glycemic effects of metformin and acarbose across different clusters. METHODS K-means cluster analysis was performed based on six clinical indicators. The diabetic clusters in the MARCH cohort were retrospectively associated with the response to metformin and acarbose. RESULTS A total of 590 newly diagnosed T2D patients were classified by data-driven clusters into the MARD (mild obesity-related diabetes) (34.1 %), MOD (mild obesity-related diabetes) (34.1 %), SIDD (severe insulin-deficient diabetes) (20.3 %) and SIRD (severe insulin-resistant diabetes) (11.5 %) subgroups at baseline. At 24 and 48 weeks, 346 participants had finished the follow-up. After the adjustment of age, gender, weight, baseline HbA1c, baseline fasting glucose and 2-h postprandial blood glucose (2hPG), metformin mainly decreased the fasting glucose (0.07 ± 0.89 vs -0.26 ± 0.83, P = 0.043) in the MARD subgroup presented with OGTT (oral glucose tolerance test) results compared with acarbose group at 24 weeks. Acarbose led to a greater decrease in 2hPG in the MOD subgroup compared with metformin group (0.08 ± 0.86 vs -0.24 ± 0.92, P = 0.037) at 24 weeks. There was a also significant interaction between cluster and treatment efficacy in HbA1c (glycated hemoglobin) reduction in metformin and acarbose groups at 24 and 48 weeks (pinteraction<0.001). CONCLUSIONS Metformin and acarbose affected different metabolic variables depending on the diabetes subtype.
Collapse
Affiliation(s)
- Weihao Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyao Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
| | - Fei Chen
- College of Life Sciences, University of Chinese Academy of Sciences, China; China-Japan Friendship Hospital, Beijing, China
| | - Ran Wei
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Chen
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Jingjing Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
| | - Jingtao Qiao
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wenying Yang
- China-Japan Friendship Hospital, Beijing, China.
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Wen Q, Chowdhury AI, Aydin B, Shekha M, Stenlid R, Forslund A, Bergsten P. Metformin restores prohormone processing enzymes and normalizes aberrations in secretion of proinsulin and insulin in palmitate-exposed human islets. Diabetes Obes Metab 2023; 25:3757-3765. [PMID: 37694762 DOI: 10.1111/dom.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
AIM To elucidate how proinsulin synthesis and insulin was affected by metformin under conditions of nutrient overstimulation. MATERIALS AND METHODS Isolated human pancreatic islets from seven donors were cultured at 5.5 mmol/L glucose and 0.5 mmol/L palmitate for 12, 24 or 72 h. Metformin (25 μmol/L) was introduced after initial 12 h with palmitate. Proinsulin and insulin were measured. Expression of prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE), was determined by western blot. Adolescents with obesity, treated with metformin and with normal glucose tolerance (n = 5), prediabetes (n = 14), or type 2 diabetes (T2DM; n = 7) were included. Fasting proinsulin, insulin, glucose, 2-h glucose and glycated haemoglobin were measured. Proinsulin/insulin ratio (PI/I) was calculated. RESULTS In human islets, palmitate treatment for 12 and 24 h increased proinsulin and insulin proportionally. After 72 h, proinsulin but not insulin continued to increase which was coupled with reduced expression of PC1/3 and CPE. Metformin normalized expression of PC1/3 and CPE, and proinsulin and insulin secretion. In adolescents with obesity, before treatment, fasting proinsulin and insulin concentrations were higher in subjects with T2DM than with normal glucose tolerance. PI/I was reduced after metformin treatment in subjects with T2DM as well as in subjects with prediabetes, coupled with reduced 2-h glucose and glycated haemoglobin. CONCLUSIONS Metformin normalized proinsulin and insulin secretion after prolonged nutrient-overstimulation, coupled with normalization of the converting enzymes, in isolated islets. In adolescents with obesity, metformin treatment was associated with improved PI/I, which was coupled with improved glycaemic control.
Collapse
Affiliation(s)
- Quan Wen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Banu Aydin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mudhir Shekha
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Biology, College of Science, Salahaddin University, Erbil, Iraq
| | - Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Paediatric Obesity Clinic, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Forslund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Paediatric Obesity Clinic, Uppsala University Hospital, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Paediatric Obesity Clinic, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
21
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
22
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
23
|
Long X, Liu H, Xiong W, Li W, He H, Fu T, Li X, Chen C, Zhang L, Liu Y. Low dose of liraglutide combined with metformin leads to a significant weight loss in Chinese Han women with polycystic ovary syndrome: a retrospective study. Gynecol Endocrinol 2023; 39:2223648. [PMID: 37406658 DOI: 10.1080/09513590.2023.2223648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrine disorder with complex pathophysiological mechanism. It is reported that even a modest weight loss of 5-10% substantially may improve the reproductive and metabolic profile. This study aims to assess the efficacy of the low dose of liraglutide (0.6 mg QD) combined with metformin (0.85 mg BID) in weight loss in Chinese Han women with PCOS. METHODS We included clinical data of 102 obese/overweight (≥18 years, body mass index ≥28 kg/m2 or ≥24 kg/m2) women who were diagnosed with PCOS from October 2016 to March 2018 in Wuhan Union Hospital initially. They were treated with dinae-35, low dose of liraglutide (0.6 mg QD) and metformin (0.85 mg BID) for 12 weeks. The demographic and clinical data were retrieved retrospectively, and weight loss was the main outcome measure. Student's paired t-test and Wilcoxon rank sum test were used to compare the differences before and after therapy, p < 0.05 was considered statistically significant. RESULTS Participants(n = 102)had lost a mean of 7.20 ± 3.42 kg of body weight (95%CI: 6.55-7.86, p < 0.001), and the mean reduction of BMI was 2.87 ± 1.36 kg/m2 (95%CI: 0.02-0.27, p < 0.001). A total of 88.24% of participants lost more than 5% of their body weight. CONCLUSION The combination of low dose of liraglutide and metformin was associated with significant reduction of body weight in Chinese Han women with PCOS. Additionally, a larger randomized double-blind multicenter controlled clinical trial is needed to confirm that. TRIAL REGISTRATION The study was registered on http://www.chictr.org.cn as ChiCTR1900024384.
Collapse
Affiliation(s)
- Xuefeng Long
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjin Li
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitang He
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Fu
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Chen
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacology 2023:10.1007/s10787-023-01255-4. [PMID: 37337094 DOI: 10.1007/s10787-023-01255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/21/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
25
|
Wen Q, Fang S, Liang Y, Tian Y, Chen Y, Yuan J, Chen Q. Short-term effect of beinaglutide combined with metformin versus metformin alone on weight loss and metabolic profiles in obese patients with polycystic ovary syndrome: a pilot randomized trial. Front Endocrinol (Lausanne) 2023; 14:1156521. [PMID: 37347114 PMCID: PMC10280986 DOI: 10.3389/fendo.2023.1156521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023] Open
Abstract
Objective To observe the effect of beinaglutide combined with metformin versus metformin alone on weight loss and metabolic profiles in obese patients with polycystic ovary syndrome(PCOS). Methods A total of 64 overweight/obese women with PCOS diagnosed via the Rotterdam criteria were randomly assigned to metformin(MET) 850 mg twice a day(BID) or combined MET 850 mg BID with beinaglutide (COMB) starting at 0.1mg three times a day(TID)and increasing to 0.2mg TID two weeks later. The main endpoints were changes in anthropometric measurements of obesity. Glucose and lipid metabolic, gonadal profiles, and antral follicle count changes as secondary outcomes were also observed. Results 60(93.75%) patients completed the study. In terms of lowering weight, body mass index (BMI),waist circumference(WC) and waist to height ratio(WHtR), COMB treatment outperformed MET monotherapy. Subjects in the COMB arm lost weight 4.54±3.16kg compared with a 2.47±3.59kg loss in the MET arm. In the COMB group, BMI,WC and WHtR were reduced significantly compared with that in the MET group, respectively. COMB therapy is also more favorable in the reduction of fasting insulin(FINS), total testosterone(TT), and homeostasis model assessment-insulin resistance(HOMA-IR) when compared to MET therapy. Antral follicle count and ovarian volume were non-significantly changed in both groups.The most frequent side effects in both groups were mild and moderate digestive symptoms. Itching and induration at the injection site were reported with COMB treatment. Conclusion Short-term combined treatment with beinaglutide and metformin appears superior to metformin monotherapy in lowering body weight, BMI, WC,WHtR and improving insulin sensitivity and androgen excess in women with PCOS and obesity, with tolerable adverse events. Clinical trial registration https://www.chictr.org.cn/listbycreater.aspx, identifier ChiCTR2000033741.
Collapse
Affiliation(s)
- Qing Wen
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Fang
- Medical Department of Endocrinology, The Traditional Chinese Medicine Hospital of Longquanyi, Chengdu, China
| | - Yanjing Liang
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Tian
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Akrab SNA, Al Gawhary NE, Shafik AN, Morcos GNB, Wissa MY. The role of mosapride and levosulpiride in gut function and glycemic control in diabetic rats. Arab J Gastroenterol 2023; 24:109-116. [PMID: 36878815 DOI: 10.1016/j.ajg.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND STUDY AIMS Gastroparesis is a well-known consequence of long-standing diabetes that presents with gastric dysmotility in the absence of gastric outlet obstruction. This study aimed to evaluate the therapeutic effects of mosapride and levosulpiride on improving gastric emptying in type 2 diabetes mellitus (T2DM) while regulating glycemic levels. MATERIAL AND METHODS Rats were divided into the normal control, untreated diabetic, metformin-treated (100 mg/kg/day), mosapride-treated (3 mg/kg/day), levosulpiride-treated (5 mg/kg/day), metformin (100 mg/kg/day) + mosapride (3 mg/kg/day)-treated, and metformin (100 mg/kg/day) + levosulpiride (5 mg/kg/day)-treated diabetic groups. T2DM was induced by a streptozotocin-nicotinamide model. Fourweeks from diabetes onset, the treatment was started orally daily for 2 weeks. Serum glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels were measured. Gastric motility study was performed using isolated rat fundus and pylorus strip preparations. Moreover, the intestinal transit rate was measured. RESULTS Mosapride and levosulpiride administration showed a significant decrease in serum glucose levels with improvement of gastric motility and intestinal transit rate. Mosapride showed a significant increase in serum insulin and GLP-1 levels. Metformin with mosapride and levosulpiride co-administration showed better glycemic control and gastric emptying than either drug administered alone. CONCLUSION Mosapride and levosulpiride showed comparable prokinetic effects. Metformin administration with mosapride and levosulpiride showed better glycemic control and prokinetic effects. Mosapride provided better glycemic control than levosulpiride. Metformin + mosapride combination provided superior glycemic control and prokinetic effects.
Collapse
Affiliation(s)
- Sara N A Akrab
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Nawal E Al Gawhary
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - Amani N Shafik
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| | - George N B Morcos
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Cairo University, Egypt; Basic Medical Science Department, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Marian Y Wissa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt.
| |
Collapse
|
27
|
Ahn CH, Oh TJ, Min SH, Cho YM. Incretin and Pancreatic β-Cell Function in Patients with Type 2 Diabetes. Endocrinol Metab (Seoul) 2023; 38:1-9. [PMID: 36781163 PMCID: PMC10008660 DOI: 10.3803/enm.2023.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
To maintain normal glucose homeostasis after a meal, it is essential to secrete an adequate amount of insulin from pancreatic β-cells. However, if pancreatic β-cells solely depended on the blood glucose level for insulin secretion, a surge in blood glucose levels would be inevitable after the ingestion of a large amount of carbohydrates. To avoid a deluge of glucose in the bloodstream after a large carbohydrate- rich meal, enteroendocrine cells detect the amount of nutrient absorption from the gut lumen and secrete incretin hormones at scale. Since insulin secretion in response to incretin hormones occurs only in a hyperglycemic milieu, pancreatic β-cells can secrete a "Goldilocks" amount of insulin (i.e., not too much and not too little) to keep the blood glucose level in the normal range. In this regard, pancreatic β-cell sensitivity to glucose and incretin hormones is crucial for maintaining normal glucose homeostasis. In this Namgok lecture 2022, we review the effects of current anti-diabetic medications on pancreatic β-cell sensitivity to glucose and incretin hormones.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Hee Min
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Corresponding author: Young Min Cho. Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-1965, Fax: +82-2-2072-7246, E-mail:
| |
Collapse
|
28
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
29
|
Ruigrok RAAA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes 2023; 15:2201155. [PMID: 37074215 PMCID: PMC10120449 DOI: 10.1080/19490976.2023.2201155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
The human gut microbiota continues to demonstrate its importance in human health and disease, largely owing to the countless number of studies investigating the fecal microbiota. Underrepresented in these studies, however, is the role played by microbial communities found in the small intestine, which, given the essential function of the small intestine in nutrient absorption, host metabolism, and immunity, is likely highly relevant. This review provides an overview of the methods used to study the microbiota composition and dynamics along different sections of the small intestine. Furthermore, it explores the role of the microbiota in facilitating the small intestine in its physiological functions and discusses how disruption of the microbial equilibrium can influence disease development. The evidence suggests that the small intestinal microbiota is an important regulator of human health and its characterization has the potential to greatly advance gut microbiome research and the development of novel disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Renate A. A. A. Ruigrok
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Elevated Glucagon-like Peptide-1 Receptor Level in the Paraventricular Hypothalamic Nucleus of Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2022; 23:ijms232415945. [PMID: 36555587 PMCID: PMC9781792 DOI: 10.3390/ijms232415945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have been approved for the treatment of type 2 diabetes mellitus (T2DM); however, the brain actions of these drugs are not properly established. We used post mortem microdissected human hypothalamic samples for RT-qPCR and Western blotting. For in situ hybridization histochemistry and immunolabelling, parallel cryosections were prepared from the hypothalamus. We developed in situ hybridization probes for human GLP-1R and oxytocin. In addition, GLP-1 and oxytocin were visualized by immunohistochemistry. Radioactive in situ hybridization histochemistry revealed abundant GLP-1R labelling in the human paraventricular hypothalamic nucleus (PVN), particularly in its magnocellular subdivision (PVNmc). Quantitative analysis of the mRNA signal demonstrated increased GLP-1R expression in the PVNmc in post mortem hypothalamic samples from T2DM subjects as compared to controls, while there was no difference in the expression level of GLP-1R in the other subdivisions of the PVN, the hypothalamic dorsomedial and infundibular nuclei. Our results in the PVN were confirmed by RT-qPCR. Furthermore, we demonstrated by Western blot technique that the GLP-1R protein level was also elevated in the PVN of T2DM patients. GLP-1 fibre terminals were also observed in the PVNmc closely apposing oxytocin neurons using immunohistochemistry. The data suggest that GLP-1 activates GLP-1Rs in the PVNmc and that GLP-1R is elevated in T2DM patients, which may be related to the dysregulation of feeding behaviour and glucose homeostasis in T2DM.
Collapse
|
31
|
Abstract
Diabetes represents one of the most significant, and rapidly escalating, global healthcare crises we face today. Diabetes already affects one-tenth of the world's adults-more than 537 million people, numbers that have tripled since 2000 and are estimated to reach 643 million by 2030. Type 2 diabetes (T2D), the most prevalent form, is a complex disease with numerous contributing factors, including genetics, epigenetics, diet, lifestyle, medication use, and socioeconomic factors. In addition, the gut microbiome has emerged as a significant potential contributing factor in T2D development and progression. Gut microbes and their metabolites strongly influence host metabolism and immune function, and are now known to contribute to vitamin biosynthesis, gut hormone production, satiety, maintenance of gut barrier integrity, and protection against pathogens, as well as digestion and nutrient absorption. In turn, gut microbes are influenced by diet and lifestyle factors such as alcohol and medication use, including antibiotic use and the consumption of probiotics and prebiotics. Here we review current evidence regarding changes in microbial populations in T2D and the mechanisms by which gut microbes influence glucose metabolism and insulin resistance, including inflammation, gut permeability, and bile acid production. We also explore the interrelationships between gut microbes and different T2D medications and other interventions, including prebiotics, probiotics, and bariatric surgery. Lastly, we explore the particular role of the small bowel in digestion and metabolism and the importance of studying small bowel microbes directly in our search to find metabolically relevant biomarkers and therapeutic targets for T2D.
Collapse
Affiliation(s)
- Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Correspondence: Ruchi Mathur, MD, FRCPC, Director, Clinical Diabetes, Cedars-Sinai, 700 N San Vicente, Ste G271, West Hollywood, CA 90069, USA.
| |
Collapse
|
32
|
Khan D, Ojo OO, Woodward ORM, Lewis JE, Sridhar A, Gribble FM, Reimann F, Flatt PR, Moffett RC. Evidence for Involvement of GIP and GLP-1 Receptors and the Gut-Gonadal Axis in Regulating Female Reproductive Function in Mice. Biomolecules 2022; 12:1736. [PMID: 36551163 PMCID: PMC9775379 DOI: 10.3390/biom12121736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Substantial evidence suggests crosstalk between reproductive and gut-axis but mechanisms linking metabolism and reproduction are still unclear. The present study evaluated the possible role of glucose-dependent-insulinotropic-polypeptide (GIP) and glucagon-like-peptide-1 (GLP-1) in reproductive function by examining receptor distribution and the effects of global GIPR and GLP-1R deletion on estrous cycling and reproductive outcomes in mice. GIPR and GLP-1R gene expression were readily detected by PCR in female reproductive tissues including pituitary, ovaries and uterine horn. Protein expression was confirmed with histological visualisation of incretin receptors using GIPR-Cre and GLP1R-Cre mice in which the incretin receptor expressing cells were fluorescently tagged. Functional studies revealed that female GIPR-/- and GLP-1R-/- null mice exhibited significantly (p < 0.05 and p < 0.01) deranged estrous cycling compared to wild-type controls, indicative of reduced fertility. Furthermore, only 50% and 16% of female GIPR-/- and GLP-1R-/- mice, respectively produced litters with wild-type males across three breeding cycles. Consistent with a physiological role of incretin receptors in pregnancy outcome, litter size was significantly (p < 0.001-p < 0.05) decreased in GIPR-/- and GLP-1R-/- mice. Treatment with oral metformin (300 mg/kg body-weight), an agent used clinically for treatment of PCOS, for a further two breeding periods showed no amelioration of pregnancy outcome except that litter size in the GIPR-/- group was approximately 2 times greater in the second breeding cycle. These data highlight the significance of incretin receptors in modulation of female reproductive function which may provide future targets for pharmacological intervention in reproductive disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Opeolu O. Ojo
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
- Department of Biology, Chemistry & Forensic Science, School of Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Orla RM Woodward
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Jo Edward Lewis
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Fiona M. Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Peter R. Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - R. Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
33
|
da Silva EM, Yariwake VY, Alves RW, de Araujo DR, Andrade-Oliveira V. Crosstalk between incretin hormones, Th17 and Treg cells in inflammatory diseases. Peptides 2022; 155:170834. [PMID: 35753504 DOI: 10.1016/j.peptides.2022.170834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells constantly crosstalk with the gut microbiota and immune cells of the gut lamina propria. Enteroendocrine cells, secrete hormones, such as incretin hormones, which participate in host physiological events, such as stimulating insulin secretion, satiety, and glucose homeostasis. Interestingly, evidence suggests that the incretin pathway may influence immune cell activation. Consequently, drugs targeting the incretin hormone signaling pathway may ameliorate inflammatory diseases such as inflammatory bowel diseases, cancer, and autoimmune diseases. In this review, we discuss how these hormones may modulate two subsets of CD4 + T cells, the regulatory T cells (Treg)/Th17 axis important for gut homeostasis: thus, preventing the development and progression of inflammatory diseases. We also summarize the main experimental and clinical findings using drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (GLP-1) signaling pathways and their great impact on conditions in which the Treg/Th17 axis is disturbed such as inflammatory diseases and cancer. Understanding the role of incretin stimulation in immune cell activation and function, might contribute to new therapeutic designs for the treatment of inflammatory diseases, autoimmunity, and tumors.
Collapse
Affiliation(s)
| | - Victor Yuji Yariwake
- Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Renan Willian Alves
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil
| | | | - Vinicius Andrade-Oliveira
- Paulista School of Medicine, Federal University of São Paulo (UNIFESP), Brazil; Department of Immunology - Institute of Biomedical Sciences, University of São Paulo (USP), Brazil; Center for Natural and Human Sciences, Federal University of ABC (UFABC), Brazil.
| |
Collapse
|
34
|
Dorsey-Trevino EG, Kaur V, Mercader JM, Florez JC, Leong A. Association of GLP1R Polymorphisms With the Incretin Response. J Clin Endocrinol Metab 2022; 107:2580-2588. [PMID: 35723666 PMCID: PMC9387717 DOI: 10.1210/clinem/dgac374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Polymorphisms in the gene encoding the glucagon-like peptide-1 receptor (GLP1R) are associated with type 2 diabetes but their effects on incretin levels remain unclear. OBJECTIVE We evaluated the physiologic and hormonal effects of GLP1R genotypes before and after interventions that influence glucose physiology. DESIGN Pharmacogenetic study conducted at 3 academic centers in Boston, Massachusetts. PARTICIPANTS A total of 868 antidiabetic drug-naïve participants with type 2 diabetes or at risk for developing diabetes. INTERVENTIONS We analyzed 5 variants within GLP1R (rs761387, rs10305423, rs10305441, rs742762, and rs10305492) and recorded biochemical data during a 5-mg glipizide challenge and a 75-g oral glucose tolerance test (OGTT) following 4 doses of metformin 500 mg over 2 days. MAIN OUTCOMES We used an additive mixed-effects model to evaluate the association of these variants with glucose, insulin, and incretin levels over multiple timepoints during the OGTT. RESULTS During the OGTT, the G-risk allele at rs761387 was associated with higher total GLP-1 (2.61 pmol/L; 95% CI, 1.0.72-4.50), active GLP-1 (2.61 pmol/L; 95% CI, 0.04-5.18), and a trend toward higher glucose (3.63; 95% CI, -0.16 to 7.42 mg/dL) per allele but was not associated with insulin. During the glipizide challenge, the G allele was associated with higher insulin levels per allele (2.01 IU/mL; 95% CI, 0.26-3.76). The other variants were not associated with any of the outcomes tested. CONCLUSIONS GLP1R variation is associated with differences in GLP-1 levels following an OGTT load despite no differences in insulin levels, highlighting altered incretin signaling as a potential mechanism by which GLP1R variation affects T2D risk.
Collapse
Affiliation(s)
- Edgar G Dorsey-Trevino
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Varinderpal Kaur
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josep M Mercader
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jose C Florez
- Correspondence: Jose C. Florez, MD, PhD, Endocrine Division and Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge St, CPZN 5.250, Boston, MA 02114, USA.
| | - Aaron Leong
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
35
|
Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers (Basel) 2022; 14:cancers14133220. [PMID: 35804992 PMCID: PMC9265089 DOI: 10.3390/cancers14133220] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biguanides are a family of antidiabetic drugs with documented anticancer properties in preclinical and clinical settings. Despite intensive investigation, how they exert their therapeutic effects is still debated. Many studies support the hypothesis that biguanides inhibit mitochondrial complex I, inducing energy stress and activating compensatory responses mediated by energy sensors. However, a major concern related to this “complex” model is that the therapeutic concentrations of biguanides found in the blood and tissues are much lower than the doses required to inhibit complex I, suggesting the involvement of additional mechanisms. This comprehensive review illustrates the current knowledge of pharmacokinetics, receptors, sensors, intracellular alterations, and the mechanism of action of biguanides in diabetes and cancer. The conditions of usage and variables affecting the response to these drugs, the effect on the immune system and microbiota, as well as the results from the most relevant clinical trials in cancer are also discussed.
Collapse
Affiliation(s)
- Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
- Istituto Pasteur—Fondazione Cenci—Bolognetti, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
36
|
PEN2: Metformin's new partner at lysosome. Cell Res 2022; 32:507-508. [PMID: 35418220 DOI: 10.1038/s41422-022-00661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
37
|
Petakh P, Kamyshna I, Nykyforuk A, Yao R, Imbery JF, Oksenych V, Korda M, Kamyshnyi A. Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses 2022; 14:477. [PMID: 35336884 PMCID: PMC8955861 DOI: 10.3390/v14030477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019, or COVID-19, is a major challenge facing scientists worldwide. Alongside the lungs, the system of organs comprising the GI tract is commonly targeted by COVID-19. The dysbiotic modulations in the intestine influence the disease severity, potentially due to the ability of the intestinal microbiota to modulate T lymphocyte functions, i.e., to suppress or activate T cell subpopulations. The interplay between the lungs and intestinal microbiota is named the gut-lung axis. One of the most usual comorbidities in COVID-19 patients is type 2 diabetes, which induces changes in intestinal microbiota, resulting in a pro-inflammatory immune response, and consequently, a more severe course of COVID-19. However, changes in the microbiota in this comorbid pathology remain unclear. Metformin is used as a medication to treat type 2 diabetes. The use of the type 2 diabetes drug metformin is a promising treatment for this comorbidity because, in addition to its hypoglycemic action, it can increase amount of intestinal bacteria that induce regulatory T cell response. This dual activity of metformin can reduce lung damage and improve the course of the COVID-19 disease.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine;
| | - Andriy Nykyforuk
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
| | - Rouan Yao
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - John F. Imbery
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
38
|
Metformin as a Potential Treatment Option for Endometriosis. Cancers (Basel) 2022; 14:cancers14030577. [PMID: 35158846 PMCID: PMC8833654 DOI: 10.3390/cancers14030577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common disease in women of reproductive age, and its pathogenesis seems to be largely affected by hormone imbalance, inflammation, oxidative stress, and autophagy dysregulation. These pathophysiological disturbances interact with one another through mechanisms that are still awaiting elucidation. The aim of this article is to present current knowledge regarding the possibilities of using metformin in the pharmacological treatment of endometriosis. Metformin is an insulin sensitizer widely used for the treatment of type 2 diabetes mellitus. The pleiotropic effects of metformin are mainly exerted through the activation of AMP-activated protein kinase, which is the key cellular energy homeostasis regulator that inhibits mTOR, a major autophagy suppressor. Metformin regresses endometriotic implants by increasing the activity of superoxide dismutase. It is also an inhibitor of metalloproteinase-2, decreasing the levels of the vascular endothelial growth factor and matrix metalloproteinase-9 in animal studies. In endometriosis, metformin might modify the stroma-epithelium communication via Wnt2/β-catenin. With its unique therapeutic mechanisms and no serious side effects, metformin seems to be a helpful anti-inflammatory and anti-proliferative agent in the treatment of endometriosis. It could be a missing link for the successful treatment of this chronic disease.
Collapse
|
39
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
40
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
41
|
Cernea S, Dima L, Correll CU, Manu P. Pharmacological Management of Glucose Dysregulation in Patients Treated with Second-Generation Antipsychotics. Drugs 2021; 80:1763-1781. [PMID: 32930957 DOI: 10.1007/s40265-020-01393-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fasting hyperglycemia, impaired glucose tolerance, prediabetes, and diabetes are frequently present in patients treated with second-generation antipsychotics (SGAPs) for schizophrenia, bipolar disorder, and other severe mental illnesses. These drugs are known to produce weight gain, which may lead to insulin resistance, glucose intolerance, and metabolic syndrome, which constitute important risk factors for the emergence of diabetes. The aim of this review was to formulate therapeutic guidelines for the management of diabetes in patients treated with SGAPs, based on the association between SGAP-induced weight gain and glucose dysregulation. A systematic search in PubMed from inception to March 2020 for randomized controlled trials (RCTs) of diabetes or prediabetes in patients treated with SGAPs was performed. PubMed was also searched for the most recent clinical practice guidelines of interventions for co-morbid conditions associated with diabetes mellitus (DM) (arterial hypertension and dyslipidemia), lifestyle interventions and switching from high metabolic liability SGAPs to safer SGAPs. The search identified 14 RCTs in patients treated with SGAPs. Drug therapy using metformin as first-line therapy and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) or perhaps sodium-glucose cotransporter-2 (SGLT2) inhibitors as add-on therapy, might be preferred in these patients as well, as they favorably influence glucose metabolism and body mass index, and provide cardio-renal benefits in general to the DM population, although for the SGLT-2 inhibitors there are no RCTs in this specific patient category so far. Metformin is also useful for treatment of prediabetes. Arterial hypertension should be treated with angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers, and statins should be used for correction of dyslipidemia. The outcome of lifestyle-changing interventions has been disappointing. Switching from clozapine, olanzapine, or quetiapine to lower cardiometabolic-risk SGAPs, like aripiprazole, brexpiprazole, cariprazine, lurasidone, or ziprasidone, has been recommended.
Collapse
Affiliation(s)
- Simona Cernea
- Faculty of Medicine/Department M4/Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.,Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Universitatea Transilvania, Nicolae Balcescu Str 59, Brașov, 500019, Romania.
| | - Christoph U Correll
- Charite Universitaetsmedizin, Department of Child and Adolescent Psychiatry, Berlin, and Campus Virchow-Klinikum, Mittelallee 5A, Berlin, 13353, Germany.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Psychiatry and Molecular Medicine, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, USA
| | - Peter Manu
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,South Oaks Hospital, Northwell Health System, Amityville, NY, USA
| |
Collapse
|
42
|
Zhang D, Ma Y, Liu J, Deng Y, Zhou B, Wen Y, Li M, Wen D, Ying Y, Luo S, Shi C, Pu G, Miao Y, Zou C, Chen Y, Ma L. Metformin Alleviates Hepatic Steatosis and Insulin Resistance in a Mouse Model of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Promoting Transcription Factor EB-Dependent Autophagy. Front Pharmacol 2021; 12:689111. [PMID: 34366846 PMCID: PMC8346235 DOI: 10.3389/fphar.2021.689111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) results from an abnormal accumulation of lipids within hepatocytes, and is commonly associated with obesity, insulin resistance, and hyperlipidemia. Metformin is commonly used to treat type 2 diabetes mellitus and, in recent years, it was found to play a potential role in the amelioration of NAFLD. However, the mechanisms underlying the protective effect of metformin against NAFLD remain largely unknown. Transcription factor EB (TFEB) is a master transcriptional regulator of lysosomal biogenesis and autophagy and, when activated, is effective against disorders of lipid metabolism. However, the role of TFEB in hepatic steatosis is not well understood. In this report, we demonstrate that the activity of TFEB is reduced in the liver of mice fed a high-fat diet. Metformin treatment significantly reverses the activity of TFEB, and the protective effect of metformin against hepatic steatosis and insulin resistance is dependent on TFEB. We show that metformin-induced autophagy is regulated by TFEB, and our findings reveal that TFEB acts as a mediator, linking metformin with autophagy to reverse NAFLD, and highlight that TFEB may be a promising molecular target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yicheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Research Center of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Yi Deng
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Bo Zhou
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yu Wen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Mingke Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Daiyan Wen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yunyan Ying
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
| | - Sufeng Luo
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chunjing Shi
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Guangyu Pu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yinglei Miao
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuanli Chen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
43
|
Lu SC, Chen M, Atangan L, Killion EA, Komorowski R, Cheng Y, Netirojjanakul C, Falsey JR, Stolina M, Dwyer D, Hale C, Stanislaus S, Hager T, Thomas VA, Harrold JM, Lloyd DJ, Véniant MM. GIPR antagonist antibodies conjugated to GLP-1 peptide are bispecific molecules that decrease weight in obese mice and monkeys. Cell Rep Med 2021; 2:100263. [PMID: 34095876 PMCID: PMC8149376 DOI: 10.1016/j.xcrm.2021.100263] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/31/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) regulate glucose and energy homeostasis. Targeting both pathways with GIP receptor (GIPR) antagonist antibody (GIPR-Ab) and GLP-1 receptor (GLP-1R) agonist, by generating GIPR-Ab/GLP-1 bispecific molecules, is an approach for treating obesity and its comorbidities. In mice and monkeys, these molecules reduce body weight (BW) and improve many metabolic parameters. BW loss is greater with GIPR-Ab/GLP-1 than with GIPR-Ab or a control antibody conjugate, suggesting synergistic effects. GIPR-Ab/GLP-1 also reduces the respiratory exchange ratio in DIO mice. Simultaneous receptor binding and rapid receptor internalization by GIPR-Ab/GLP-1 amplify endosomal cAMP production in recombinant cells expressing both receptors. This may explain the efficacy of the bispecific molecules. Overall, our GIPR-Ab/GLP-1 molecules promote BW loss, and they may be used for treating obesity.
Collapse
Affiliation(s)
- Shu-Chen Lu
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Michelle Chen
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Larissa Atangan
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Elizabeth A. Killion
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Renee Komorowski
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Yuan Cheng
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Chawita Netirojjanakul
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - James R. Falsey
- Amgen Research, Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Marina Stolina
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Denise Dwyer
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Clarence Hale
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Shanaka Stanislaus
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Todd Hager
- Amgen Research, Department of Translational Safety & Bioanalytical Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Veena A. Thomas
- Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 1140 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - John M. Harrold
- Amgen Research, Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 1140 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - David J. Lloyd
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Murielle M. Véniant
- Amgen Research, Department of Cardiometabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
44
|
Bolívar S, Noriega L, Ortega S, Osorio E, Rosales W, Mendoza X, Mendoza-Torres E. Novel Targets of Metformin in Cardioprotection: Beyond the Effects Mediated by AMPK. Curr Pharm Des 2021; 27:80-90. [PMID: 32386485 DOI: 10.2174/1381612826666200509232610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is the main cause of death globally. In the heart, the ischemia/reperfusion injury gives rise to a complex cascade of molecular signals, called cardiac remodeling, which generates harmful consequences for the contractile function of the myocardium and consequently heart failure. Metformin is the drug of choice in the treatment of type 2 diabetes mellitus. Clinical data suggest the direct effects of this drug on cardiac metabolism and studies in animal models showed that metformin activates the classical pathway of AMP-activated protein kinase (AMPK), generating cardioprotective effects during cardiac remodeling, hypertrophy and fibrosis. Furthermore, new studies have emerged about other targets of metformin with a potential role in cardioprotection. This state of the art review shows the available scientific evidence of the cardioprotective potential of metformin and its possible effects beyond AMPK. Targeting of autophagy, mitochondrial function and miRNAs are also explored as cardioprotective approaches along with a therapeutic potential. Further advances related to the biological effects of metformin and cardioprotective approaches may provide new therapies to protect the heart and prevent cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Samir Bolívar
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Laura Noriega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Stefany Ortega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Estefanie Osorio
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Wendy Rosales
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Xilene Mendoza
- Universidad Metropolitana, Grupo de Investigacion en Medicina Traslacional (GIMET), Barranquilla, Colombia
| | - Evelyn Mendoza-Torres
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| |
Collapse
|
45
|
Lee CB, Chae SU, Jo SJ, Jerng UM, Bae SK. The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22073566. [PMID: 33808194 PMCID: PMC8037857 DOI: 10.3390/ijms22073566] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023] Open
Abstract
Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.
Collapse
Affiliation(s)
- Chae Bin Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Soon Uk Chae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Seong Jun Jo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
| | - Ui Min Jerng
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju 26339, Korea;
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Korea; (C.B.L.); (S.U.C.); (S.J.J.)
- Correspondence: ; Tel.: +82-2-2164-4054
| |
Collapse
|
46
|
Wang L, Cai Y, Jian L, Cheung CW, Zhang L, Xia Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol 2021; 20:2. [PMID: 33397369 PMCID: PMC7783984 DOI: 10.1186/s12933-020-01188-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The prevalence of cardiomyopathy is higher in diabetic patients than those without diabetes. Diabetic cardiomyopathy (DCM) is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as coronary artery disease, hypertension, and significant valvular disease. Multiple molecular events contribute to the development of DCM, which include the alterations in energy metabolism (fatty acid, glucose, ketone and branched chain amino acids) and the abnormalities of subcellular components in the heart, such as impaired insulin signaling, increased oxidative stress, calcium mishandling and inflammation. There are no specific drugs in treating DCM despite of decades of basic and clinical investigations. This is, in part, due to the lack of our understanding as to how heart failure initiates and develops, especially in diabetic patients without an underlying ischemic cause. Some of the traditional anti-diabetic or lipid-lowering agents aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose have been shown inadequately targeting multiple aspects of the conditions. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, plays an important role in mediating DCM-related molecular events. Pharmacological targeting of PPARα activation has been demonstrated to be one of the important strategies for patients with diabetes, metabolic syndrome, and atherosclerotic cardiovascular diseases. The aim of this review is to provide a contemporary view of PPARα in association with the underlying pathophysiological changes in DCM. We discuss the PPARα-related drugs in clinical applications and facts related to the drugs that may be considered as risky (such as fenofibrate, bezafibrate, clofibrate) or safe (pemafibrate, metformin and glucagon-like peptide 1-receptor agonists) or having the potential (sodium-glucose co-transporter 2 inhibitor) in treating DCM.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Liguo Jian
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
47
|
Borg MJ, Rayner CK, Jones KL, Horowitz M, Xie C, Wu T. Gastrointestinal Mechanisms Underlying the Cardiovascular Effect of Metformin. Pharmaceuticals (Basel) 2020; 13:410. [PMID: 33266396 PMCID: PMC7700183 DOI: 10.3390/ph13110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin, the most widely prescribed drug therapy for type 2 diabetes, has pleiotropic benefits, in addition to its capacity to lower elevated blood glucose levels, including mitigation of cardiovascular risk. The mechanisms underlying the latter remain unclear. Mechanistic studies have, hitherto, focused on the direct effects of metformin on the heart and vasculature. It is now appreciated that effects in the gastrointestinal tract are important to glucose-lowering by metformin. Gastrointestinal actions of metformin also have major implications for cardiovascular function. This review summarizes the gastrointestinal mechanisms underlying the action of metformin and their potential relevance to cardiovascular benefits.
Collapse
Affiliation(s)
- Malcolm J. Borg
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210096, China
| |
Collapse
|
48
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
49
|
Abstract
Polycystic ovary syndrome is a complex and heterogenous disorder involving multiple organ systems and different molecular pathways. It is tightly associated with obesity and especially abdominal obesity. As body weight reduction is the main modifiable risk factor for polycystic ovary syndrome, therapeutic approaches in overweight or obese women with polycystic ovary syndrome have been developed. Liraglutide is a glucagon-like peptide-1 receptor agonist that promotes sustained weight loss, as well as abdominal fat reduction, in individuals with obesity, prediabetes, and type 2 diabetes mellitus. The majority of current clinical studies have demonstrated that liraglutide therapy achieved significant reductions in body weight, body mass index, and abdominal circumference in overweight and obese women with polycystic ovary syndrome. Liraglutide therapy promoted significant improvements in free testosterone and sex hormone-binding globulin levels in some studies. Important metabolic and hormonal improvements were also reported after the combination of liraglutide with metformin. Increased menstrual frequency, as well as potential positive effects in reproduction, were described. However, the small number of participants, short duration, and low daily liraglutide dose are some of the main limitations of these studies. Larger and longer, multi-centred, double-blind, placebo-controlled trials of liraglutide monotherapy or combination therapy, with prolonged post-interventional monitoring, are crucially anticipated. Metabolic, hormonal, and reproductive primary outcomes should be uniformly addressed, to tailor future targeted treatment approaches, according to the patient phenotype and needs. This will improve long-term therapeutic outcomes in this population.
Collapse
|
50
|
Xing C, Li C, He B. Insulin Sensitizers for Improving the Endocrine and Metabolic Profile in Overweight Women With PCOS. J Clin Endocrinol Metab 2020; 105:dgaa337. [PMID: 32490533 PMCID: PMC7365687 DOI: 10.1210/clinem/dgaa337] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/27/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To evaluate the efficacy of insulin sensitizers on menstrual frequency, sex hormone, and metabolic parameters in overweight women with polycystic ovary syndrome (PCOS). METHODS We searched multiple databases from inception to September 2019 for randomized controlled trials. Network meta-analysis was conducted using multivariate random effects method. RESULTS Fourteen trials reporting on 619 women were included. Compared with metformin, metformin + thiazolidinediones (TZDs) was more superior in menstrual recovery (weighted mean difference [WMD] 3.68; 95% credibility interval [CrI], 1.65 to 8.20), metformin + glucagon-like peptide-1 (GLP-1) receptor agonists was more effective in decreasing androstenedione (WMD -2.53; 95% CrI, -3.96 to -1.09), both metformin + GLP-1 receptor agonists (WMD 9.22; 95% CrI, 5.46 to 12.98) and metformin + TZDs (WMD 4.30; 95% CrI, 0.78 to 7.82) were more effective in increasing sex hormone-binding globulin (SHBG), while TZDs were less effective in decreasing body mass index (BMI) (WMD 1.69; 95% CrI, 0.72 to 2.66). Compared with GLP-1 receptor agonists, metformin + GLP-1 receptor agonists was associated with higher SHBG (WMD 7.80; 95% CrI, 4.75 to 10.85), lower free testosterone (WMD -1.77; 95% CrI, -3.25 to -0.29), lower androstenedione (WMD -2.70; 95% CrI, -3.91 to -1.50) and lower fasting blood glucose (WMD -0.41; 95% CrI, -0.73 to -0.08). CONCLUSION For overweight women with PCOS, both metformin combined with GLP-1 receptor agonists and metformin combined with TZDs appear superior to monotherapy in improving hyperandrogenemia. Metformin combined with TZDs could be particularly effective in promoting the recovery of menstruation. Metformin combined with GLP-1 receptor agonists has the additional advantage of improving fasting glucose when compared with GLP-1 receptor agonists alone. TZDs are inferior to metformin in decreasing BMI.
Collapse
Affiliation(s)
- Chuan Xing
- The First Endocrinology Department of Shengjing Hospital of China Medical University, Shenyang
| | - Chunzhu Li
- The First Endocrinology Department of Shengjing Hospital of China Medical University, Shenyang
| | - Bing He
- The First Endocrinology Department of Shengjing Hospital of China Medical University, Shenyang
| |
Collapse
|