1
|
Xu X, Li Z, Ma Q, Gu P. Application of Bacillus cereus for synthesis of polyhydroxyalkanoates from industrial corn starch residue. Int J Biol Macromol 2025; 289:138785. [PMID: 39675601 DOI: 10.1016/j.ijbiomac.2024.138785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Starch hydrolysate from corn is typically employed as a carbon source for citric acid production by Aspergillus niger. Enzymatic or acid hydrolysis of corn starch generates a corn starch residue (CSR), which represents a potential bio-fermentation carbon source. In addition, polyhydroxyalkanoates (PHAs) can be used as an alternative to traditional petrochemical plastics. In this study, the potential applications of CSR in microbial PHA production were investigated. Two Bacillus cereus strains, MG1 and MQ1, were isolated based on their ability to grow with CSR as the sole carbon source and their capacity for PHA accumulation. After introducing key genes involved in the PHA synthesis pathway and optimizing fermentation conditions, the PHA content of MG2 reached 61.61 % of the cell dry weight (CDW), representing the highest PHA content (CDW%) in B. cereus. To the best of our knowledge, this is the first report of PHA synthesis from CSR in B. cereus and provides a novel approach for the rational utilization of CSR.
Collapse
Affiliation(s)
- Xiaomei Xu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Zepeng Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Qianqian Ma
- School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|
2
|
Han D, Wang W, Gong J, Ma Y, Li Y. Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing. Nanomedicine (Lond) 2025; 20:207-224. [PMID: 39686770 PMCID: PMC11731254 DOI: 10.1080/17435889.2024.2439242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable controlled delivery systems for mesenchymal stem cells (MSCs) have emerged as novel advancements in the field of regenerative medicine, particularly for accelerating bone fracture healing. This detailed study emphasizes the importance of quick and adequate fracture treatment and the limitations of existing methods. New approaches employing biodegradable scaffolds can be placed within a fracture to serve as a mechanical support and allow controlled release of in situ MSCs and bioactive agents. They are made up of polymers and composites which degrade over time, aiding in natural tissue regrowth. The fabrication methods, including 3D printing, electrospinning, and solvent casting, with particulate leaching that enable precise control over scaffold architecture and properties, are discussed. Progress in controlled drug delivery systems including encapsulation techniques and release kinetics is described, highlighting the potential of such strategies to maintain therapeutic benefits over a prolonged time as well as improving outcomes for fracture repair. MSCs play a role in bone regeneration through differentiation using biodegradable scaffolds, paracrine effects, and regulation of inflammation focusing on fracture healing. Current trends and future directions in scaffold technology and MSC delivery, including smart scaffolds with growth factor incorporation and innovative delivery approaches for fracture healing are also discussed.
Collapse
Affiliation(s)
- Dong Han
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Otolaryngology Department, Yantaishan Hospital, Yantai, China
| | - Jinpeng Gong
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yupeng Ma
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yu Li
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| |
Collapse
|
3
|
Hiller T, Gutbrod F, Bonten L, Vocht MP, Azimian M, Resch J, Bonten C, Winnacker M. Generation of Bio-Based, Shape- and Temperature-Stable Three-Dimensional Nonwoven Structures Using Different Polyhydroxyalkanoates. Polymers (Basel) 2024; 17:51. [PMID: 39795453 PMCID: PMC11722760 DOI: 10.3390/polym17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Recent research has shown the potential of polyhydroxyalkanoates (PHAs), particularly poly(3-hydroxybutyrate) (P3HB), to form nonwoven structures with fine fiber diameter distributions ranging from 2.5 µm to 20 µm during the meltblow process. The shortcomings of existing fabrics of this type include high brittleness, low elongation at break (max. 3%), and a lack of flexibility. Furthermore, the high melt adhesion and the special crystallization kinetics of PHAs have commonly been regarded as constraints in filament and nonwoven processing so far. However, these two properties have now been used to elaborate a three-dimensional fiber arrangement on a matrix, resulting in the creation of dimensionally and temperature-stable "nonwoven-parts". Moreover, this study investigated the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), revealing a similar processability to P3HB and PHBV in the meltblow process. A significant increase in the (peak load) elongation in the machine direction was observed, reaching values between 5% and 10%, while the tensile strength retained unaltered. The addition of the bio-based plasticizer acetyltributylcitrate (ATBC) to PHBH resulted on an increase in elongation up to 15%. The three-dimensional fabric structure of PHBH exhibited complete resilience to compression, a property that differentiates it from both P3HB and PHBV. However, the addition of the plasticizer to P3HB did not lead to any improvements. This interesting array of properties results in moderate air permeability and hydrophobicity, leading to impermeability to water.
Collapse
Affiliation(s)
- Tim Hiller
- German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany
| | - Frederik Gutbrod
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Louisa Bonten
- German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany
| | - Marc Philip Vocht
- German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany
| | - Mehdi Azimian
- German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany
| | - Julia Resch
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Christian Bonten
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Malte Winnacker
- German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany
| |
Collapse
|
4
|
Ben Abdeladhim R, Reis JA, Vieira AM, de Almeida CD. Polyhydroxyalkanoates: Medical Applications and Potential for Use in Dentistry. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5415. [PMID: 39597239 PMCID: PMC11595952 DOI: 10.3390/ma17225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are promising biopolymers as an alternative to traditional synthetic polymers due to their biodegradability and biocompatibility. The PHA market is blooming in response to the growing demand for biodegradable and environmentally friendly plastics. These biopolyesters are produced and degraded by a variety of microorganisms, making them environmentally friendly, while offering benefits such as biocompatibility (when adequately processed) and biodegradability. Their versatility extends to various areas, from biomedicine to agriculture and composite materials, where they pave the way for significative innovations. In the field of regenerative medicine, some PHAs have key applications, namely in vascular grafts, oral tissue regeneration, and development of self-healing polymers. In addition, PHAs have the potential to be used in the creation of dental implant materials and dental medical devices. PHAs can also be used to encapsulate hydrophobic drugs, providing an approach for more targeted and effective treatments. To summarize, PHAs open new perspectives in the field of medicine by improving drug delivery and offering ecologically biocompatible solutions for medical devices. The aim of this review is to present the medical and dental applications of PHA, their advantages, disadvantages, and indications.
Collapse
Affiliation(s)
- Rim Ben Abdeladhim
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
| | - José Alexandre Reis
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Ana Maria Vieira
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Catarina Dias de Almeida
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| |
Collapse
|
5
|
Wang S, Liu Y, Guo H, Meng Y, Xiong W, Liu R, Yang C. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9. Biotechnol Bioeng 2024; 121:2106-2120. [PMID: 38587130 DOI: 10.1002/bit.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Kelly S, Tham JL, McKeever K, Dillon E, O'Connell D, Scholz D, Simpson JC, O'Connor K, Narancic T, Cagney G. Comprehensive Proteomics Analysis of Polyhydroxyalkanoate (PHA) Biology in Pseudomonas putida KT2440: The Outer Membrane Lipoprotein OprL is a Newly Identified Phasin. Mol Cell Proteomics 2024; 23:100765. [PMID: 38608840 PMCID: PMC11103573 DOI: 10.1016/j.mcpro.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Pseudomonas putida KT2440 is an important bioplastic-producing industrial microorganism capable of synthesizing the polymeric carbon-rich storage material, polyhydroxyalkanoate (PHA). PHA is sequestered in discrete PHA granules, or carbonosomes, and accumulates under conditions of stress, for example, low levels of available nitrogen. The pha locus responsible for PHA metabolism encodes both anabolic and catabolic enzymes, a transcription factor, and carbonosome-localized proteins termed phasins. The functions of phasins are incompletely understood but genetic disruption of their function causes PHA-related phenotypes. To improve our understanding of these proteins, we investigated the PHA pathways of P.putida KT2440 using three types of experiments. First, we profiled cells grown in nitrogen-limited and nitrogen-excess media using global expression proteomics, identifying sets of proteins found to coordinately increase or decrease within clustered pathways. Next, we analyzed the protein composition of isolated carbonosomes, identifying two new putative components. We carried out physical interaction screens focused on PHA-related proteins, generating a protein-protein network comprising 434 connected proteins. Finally, we confirmed that the outer membrane protein OprL (the Pal component of the Pal-Tol system) localizes to the carbonosome and shows a PHA-related phenotype and therefore is a novel phasin. The combined datasets represent a valuable overview of the protein components of the PHA system in P.putida highlighting the complex nature of regulatory interactions responsive to nutrient stress.
Collapse
Affiliation(s)
- Siobhan Kelly
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Jia-Lynn Tham
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Kate McKeever
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Eugene Dillon
- UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - David O'Connell
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Dimitri Scholz
- UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Jeremy C Simpson
- UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kevin O'Connor
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland; UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Tanja Narancic
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Gerard Cagney
- BiOrbic - Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
7
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
8
|
Liu H, Chen Y, Wang S, Liu Y, Zhao W, Huo K, Guo H, Xiong W, Wang S, Yang C, Liu R. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Int J Biol Macromol 2023; 253:126732. [PMID: 37678685 DOI: 10.1016/j.ijbiomac.2023.126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Bio-based plastics polyhydroxyalkanoates (PHAs) are considered as a good substitutive to traditional fossil-based plastics because PHAs outcompete chemical plastics in several important properties, such as biodegradability, biocompatibility, and renewability. However, the industrial production of PHA (especially medium-chain-length PHA, mcl-PHA) is greatly restricted by the cost of carbon sources. Currently, xylose and cellobiose derived from lignocellulose are potential substrates for mcl-PHA production. In this study, Pseudomonas putida KTU-U27, a genome-streamlined strain derived from a mcl-PHA producer P. putida KT2440, was used as the optimal chassis for the construction of microbial cell factories with the capacity to efficiently produce mcl-PHA from xylose and cellobiose by introducing the xylose and cellobiose metabolism modules and enhancing the transport of xylose and cellobiose. The lag phases of the xylose- and cellobiose-grown engineered strains were almost completely eliminated and the xylose- and cellobiose-utilizing performance was greatly improved via adaptive laboratory evolution. In shake-flask fermentation, the engineered strain 27A-P13-xylABE-Ptac-tt and 27A-P13-bglC-P13-gts had a mcl-PHA content of 41.67 wt% and 45.18 wt%, respectively, and were able to efficiently utilize xylose or cellobiose as the sole carbon source for cell growth. Herein, microbial production of mcl-PHA using xylose as the sole carbon source has been demonstrated for the first time. Meanwhile, the highest yield of mcl-PHA produced from cellobiose has been obtained in this study. Interestingly, the engineered strains derived from genome-reduced P. putida strains showed higher xylose- and cellobiose-utilizing performance and higher PHA yield than those derived from P. putida KT2440. This study highlights enormous potential of the engineered strains as promising platforms for low-cost production of mcl-PHA from xylose- and cellobiose-rich substrates.
Collapse
Affiliation(s)
- Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Murueva AV, Shershneva AM, Shishatskaya EI, Volova TG. Characteristics of Microparticles Based on Resorbable Polyhydroxyalkanoates Loaded with Antibacterial and Cytostatic Drugs. Int J Mol Sci 2023; 24:14983. [PMID: 37834429 PMCID: PMC10573759 DOI: 10.3390/ijms241914983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The development of controlled drug delivery systems, in the form of microparticles, is an important area of experimental pharmacology. The success of the design and the quality of the obtained microparticles are determined by the method of manufacture and the properties of the material used as a carrier. The goal is to obtain and characterize microparticles depending on their method of preparation, the chemical composition of the polymer and the load of the drugs. To obtain microparticles, four types of degradable PHAs, differing in their chemical compositions, degrees of crystallinity, molecular weights and temperature characteristics, were used (poly-3-hydroxybutyrate and copolymers 3-hydroxybutyric-co-3-hydroxyvaleric acid, 3-hydroxybutyric-co-4-hydroxybutyric acid, and 3-hydroxybutyric-co-3-hydroxyhexanoic acid). The characteristics of microparticles from PHAs were studied. Good-quality particles with an average particle diameter from 0.8 to 65.0 μm, having satisfactory ζ potential values (from -18 to -50 mV), were obtained. The drug loading content, encapsulation efficiency and in vitro release were characterized. Composite microparticles based on PHAs with additives of polyethylene glycol and polylactide-co-glycolide, and loaded with ceftriaxone and 5-fluorouracil, showed antibacterial and antitumor effects in E. coli and HeLa cultures. The results indicate the high potential of PHAs for the design of modern and efficient drug delivery systems.
Collapse
Affiliation(s)
- Anastasiya V. Murueva
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Anna M. Shershneva
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
- Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| |
Collapse
|
11
|
Höhnemann T, Windschiegl I. Influence of Rheological and Morphological Characteristics of Polyhydroxybutyrate on Its Meltblown Process Behavior. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6525. [PMID: 37834662 PMCID: PMC10574176 DOI: 10.3390/ma16196525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Polyhydroxybutyrate (PHB) is a promising biopolymer. However, processing PHB in pure form in thermoplastic processes is limited due to its rapid degradation, very low initial crystallization rate, strong post-crystallization, and its low final stretchability. In this article, we screened commercial PHBs for morphological characteristics, rheological properties, and "performance" in the meltblown process in order to reveal process-relevant properties and overcome the shortcoming of PHB in thermoplastic processes for fiber formation. An evaluation of degradation (extruded (meltblown) material vs. granules) was performed via rheological and SEC analysis. The study revealed large differences in the minimum melt temperature (175 up to 200 °C) and the grade-dependent limitation of accessible throughput on a 500 mm plant. The average fiber diameter could be lowered from around 10 μm to 2.4 μm in median, which are the finest reported values in the literature so far. It was found that the determination of the necessary process temperature can be predicted well from the complex shear viscosity. Different to expectations, it became apparent that a broader initial molar mass distribution (>8) is suitable to overcome the state-of-the art limitations of PHAs in order to stabilize fiber formation, increase the productivity, and obtain better resistance towards thermal degradation in process. Accordingly, longer polymer chain fractions could be more affected by degradation than medium and short polymer chains in the distribution. Further, a low initial narrow distributed molar mass resulted in too brittle fabrics.
Collapse
Affiliation(s)
- Tim Höhnemann
- German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany;
| | | |
Collapse
|
12
|
Volova TG, Zhila NO, Kiselev EG, Sukovatyi AG, Lukyanenko AV, Shishatskaya EI. Biodegradable Polyhydroxyalkanoates with a Different Set of Valerate Monomers: Chemical Structure and Physicochemical Properties. Int J Mol Sci 2023; 24:14082. [PMID: 37762383 PMCID: PMC10531092 DOI: 10.3390/ijms241814082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The properties, features of thermal behavior and crystallization of copolymers containing various types of valerate monomers were studied depending on the set and ratio of monomers. We synthesized and studied the properties of three-component copolymers containing unusual monomers 4-hydroxyvalerate (4HV) and 3-hydroxy-4-methylvalerate (3H4MV), in addition to the usual 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) monomers. The results showed that P(3HB-co-3HV-co-4HV) and P(3HB-co-3HV-co-3H4MV) terpolymers tended to increase thermal stability, especially for methylated samples, including an increase in the gap between melting point (Tmelt) and thermal degradation temperature (Tdegr), an increase in the melting point and glass transition temperature, as well as a lower degree of crystallinity (40-46%) compared with P(3HB-co-3HV) (58-66%). The copolymer crystallization kinetics depended on the set and ratio of monomers. For terpolymers during exothermic crystallization, higher rates of spherulite formation (Gmax) were registered, reaching, depending on the ratio of monomers, 1.6-2.0 µm/min, which was several times higher than the Gmax index (0.52 µm/min) for the P(3HB-co-3HV) copolymer. The revealed differences in the thermal properties and crystallization kinetics of terpolymers indicate that they are promising polymers for processing into high quality products from melts.
Collapse
Affiliation(s)
- Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| | - Anna V. Lukyanenko
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (T.G.V.); (E.G.K.); (A.G.S.); (E.I.S.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia;
| |
Collapse
|
13
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
14
|
Shishatskaya EI, Demidenko AV, Sukovatyi AG, Dudaev AE, Mylnikov AV, Kisterskij KA, Volova TG. Three-Dimensional Printing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] Biodegradable Scaffolds: Properties, In Vitro and In Vivo Evaluation. Int J Mol Sci 2023; 24:12969. [PMID: 37629152 PMCID: PMC10455171 DOI: 10.3390/ijms241612969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young's modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Demidenko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
| | - Alexey E. Dudaev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Mylnikov
- Clinical Hospital “RZD-Medicine”, Lomonosov Street, 47, 660058 Krasnoyarsk, Russia
| | - Konstantin A. Kisterskij
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
15
|
Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS APPLIED BIO MATERIALS 2023; 6:1398-1430. [PMID: 36912908 DOI: 10.1021/acsabm.3c00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The diseases caused by microorganisms are innumerable existing on this planet. Nevertheless, increasing antimicrobial resistance has become an urgent global challenge. Thus, in recent decades, bactericidal materials have been considered promising candidates to combat bacterial pathogens. Recently, polyhydroxyalkanoates (PHAs) have been used as green and biodegradable materials in various promising alternative applications, especially in healthcare for antiviral or antiviral purposes. However, it lacks a systematic review of the recent application of this emerging material for antibacterial applications. Therefore, the ultimate goal of this review is to provide a critical review of the state of the art recent development of PHA biopolymers in terms of cutting-edge production technologies as well as promising application fields. In addition, special attention was given to collecting scientific information on antibacterial agents that can potentially be incorporated into PHA materials for biological and durable antimicrobial protection. Furthermore, the current research gaps are declared, and future research perspectives are proposed to better understand the properties of these biopolymers as well as their possible applications.
Collapse
Affiliation(s)
- Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Alireza Saidi
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
16
|
Microbially Synthesized Polymer-Metal Nanoparticles Composites as Promising Wound Dressings to Overcome Methicillin-Resistance Staphylococcus aureus Infections. Polymers (Basel) 2023; 15:polym15040920. [PMID: 36850204 PMCID: PMC9960834 DOI: 10.3390/polym15040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Antimicrobial resistance has been declared one of the top 10 global public health threats. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of recurring skin and soft tissue infections in patients with chronic skin conditions such as diabetic foot infections, making the treatment of the ulcers challenging. Wound dressings combined with metal nanoparticles have been suggested to prevent and treat MRSA-infected wounds. However, these particles are commonly synthesized by chemical approaches. In this study, we developed bio-based silver (Bio-AgNPs) and copper oxide nanoparticles (CuONPs) polymer composites using a microbially produced polyester from the Polyhydroxyalkanoates (PHAs) family. Poly(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate) (PHO) was synthesized by Pseudomonas putida and functionalized in-situ with Bio-AgNPs or ex-situ with CuONPs. PHO-CuONPs films did not inhibit MRSA growth, while a reduction of 6.0 log CFU/mL was achieved with PHO-Bio-AgNPs synthesized from silver nitrate (AgNO3) solution at 3.5 mM. Exposure of human fibroblast cells (HFF-1) to the bioactive films did not induce notable cytotoxicity and genotoxicity, as seen by a viability higher than 79% and no significant changes in basal DNA damage. However, exposure to PHO-Bio-AgNPs induced oxidative DNA damage in HFF-1 cells. No hemolytic potential was observed, while platelet aggregation was promoted and desired for wound healing. Here we demonstrate the biosynthesis of polymer-nanoparticle composites and their potential as bioactive films for MRSA treatment.
Collapse
|
17
|
Cai F, Lin M, Jin W, Chen C, Liu G. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxvalerate) from volatile fatty acids by Cupriavidus necator. J Basic Microbiol 2023; 63:128-139. [PMID: 36192143 DOI: 10.1002/jobm.202200448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 02/03/2023]
Abstract
A promising strategy to alleviate the plastic pollution from traditional petroleum-based plastics is the application of biodegradable plastics, in which polyhydroxyalkanoates (PHAs) have received increasing interest owing to their considerable biodegradability. In the PHAs family, poly(3-hydroxybutyrate-co-3-hydroxvalerate) (PHBV) has better mechanical properties, which possesses broader application prospects. With this purpose, the present study adopted Cupriavidus necator to synthesize PHBV utilizing volatile fatty acids (VFAs) as sole carbon sources. Results showed that the concentration and composition of VFAs significantly influenced the production of PHAs. Especially, even carbon VFAs (acetate and butyrate) synthesized only poly(3-hydroxybutyrate) (PHB), while the addition of odd carbon VFAs (propionate and valerate) resulted in PHBV production. The 3-hydroxyvalerate (3HV) contents in PHBV were directly determined by the specific VFAs compositions, in which valerate was the preferred substrate for 3HV accumulation. After optimization by response surface methodology, the highest PHBV accumulation achieved 79.47% in dry cells, and the conversion efficiency of VFAs to PHBV reached 40%, with the PHBV production of 1.20 ± 0.05 g/L. This study revealed the metabolic rule of VFAs converting into PHAs by C. necator and figured out the optimal VFAs condition for PHBV accumulation, which provides a valuable reference for developing downstream strategies of PHBV production in industrial applications in future.
Collapse
Affiliation(s)
- Fanfan Cai
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Lin
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wenxiong Jin
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chang Chen
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
18
|
Modification of Polyhydroxyalkanoates Polymer Films Surface of Various Compositions by Laser Processing. Polymers (Basel) 2023; 15:polym15030531. [PMID: 36771832 PMCID: PMC9920739 DOI: 10.3390/polym15030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The results of surface modification of solvent casting films made from polyhydroxyalkanoates (PHAs) of various compositions are presented: homopolymer poly-3-hydroxybutyrate P(3HB) and copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate(4HB), and 3-hydroxyhexanoate (3HHx) monomers treated with a CO2 laser in continuous and quasi-pulsed radiation modes. The effects of PHAs film surface modification, depending on the composition and ratio of monomers according to the results of the study of SEM and AFM, contact angles of wetting with water, adhesion and growth of fibroblasts have been revealed for the laser radiation regime used. Under continuous irradiation with vector lines, melted regions in the form of grooves are formed on the surface of the films, in which most of the samples have increased values of the contact angle and a decrease in roughness. The quasi-pulse mode by the raster method causes the formation of holes without pronounced melted zones, the total area of which is lower by 20% compared to the area of melted grooves. The number of viable fibroblasts NIH 3T3 on the films after the quasi-pulse mode is 1.5-2.0 times higher compared to the continuous mode, and depends to a greater extent on the laser treatment mode than on the PHAs' composition. The use of various modes of laser modification on the surface of PHAs with different compositions makes it possible to influence the morphology and properties of polymer films in a targeted manner. The results that have been obtained contribute to solving the critical issue of functional biodegradable polymeric materials.
Collapse
|
19
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
20
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
21
|
Shishatskaya EI, Dudaev AE, Volova TG. Resorbable Nanomatrices from Microbial Polyhydroxyalkanoates: Design Strategy and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3843. [PMID: 36364619 PMCID: PMC9656924 DOI: 10.3390/nano12213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
From a series of biodegradable natural polymers of polyhydroxyalkanoates (PHAs)-poly-3-hydroxybutyrate (P(3HB) and copolymers containing, in addition to 3HB monomers, monomers of 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HHx), and 4-hydroxybutyrate (4HB), with different ratios of monomers poured-solvent casting films and nanomembranes with oriented and non-oriented ultrathin fibers were obtained by electrostatic molding. With the use of SEM, AFM, and measurement of contact angles and energy characteristics, the surface properties and mechanical and biological properties of the polymer products were studied depending on the method of production and the composition of PHAs. It has been shown in cultures of mouse fibroblasts of the NIH 3T3 line and diploid human embryonic cells of the M22 line that elastic films and nanomembranes composed of P(3HB-co-4HB) copolymers have high biocompatibility and provide adhesion, proliferation and preservation of the high physiological activity of cells for up to 7 days. Polymer films, namely oriented and non-oriented nanomembranes coated with type 1 collagen, are positively evaluated as experimental wound dressings in experiments on laboratory animals with model and surgical skin lesions. The results of planimetric measurements of the dynamics of wound healing and analysis of histological sections showed the regeneration of model skin defects in groups of animals using experimental wound dressings from P(3HB-co-4HB) of all types, but most actively when using non-oriented nanomembranes obtained by electrospinning. The study highlights the importance of nonwoven nanomembranes obtained by electrospinning from degradable low-crystalline copolymers P(3HB-co-4HB) in the effectiveness of the skin wound healing process.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| |
Collapse
|
22
|
Biosynthesis and Properties of a P(3HB- co-3HV- co-4HV) Produced by Cupriavidus necator B-10646. Polymers (Basel) 2022; 14:polym14194226. [PMID: 36236173 PMCID: PMC9570873 DOI: 10.3390/polym14194226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthesis of P(3HB-co-3HV-co-4HV) copolymers by the wild-type strain Cupriavidus necator B-10646 on fructose or sodium butyrate as the main C-substrate with the addition of γ-valerolactone as a precursor of 3HV and 4HV monomers was studied. Bacterial cells were cultivated in the modes that enabled production of a series of copolymers with molar fractions of 3HV (from 7.3 to 23.4 mol.%) and 4HV (from 1.9 to 4.7 mol.%) with bacterial biomass concentration (8.2 ± 0.2 g/L) and PHA content (80 ± 2%). Using HPLC, DTA, DSC, X-Ray, SEM, and AFM, the physicochemical properties of copolymers and films prepared from them have been investigated as dependent on proportions of monomers. Copolymers are characterized by a reduced degree of crystallinity (Cx 38-49%) molecular weight characteristics Mn (45-87 kDa), and Mw (201-248 kDa) compared with P(3HB). The properties of the films surface of various composition including the porosity and surface roughness were studied. Most of the samples showed a decrease in the average pore area and an increase in their number with a total increase in 3HV and 4HV monomers. The results allow scaling up the productive synthesis of P(3HB-co-3HV-co-4HV) copolymers using Cupriavidus necator B-10646.
Collapse
|
23
|
Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Kim M, Kang J, Yun SI. Alginate-reinforced poly(3-hydroxybutyrate)/ poly(hydroxybutyrate-co-hydroxyvalerate) aerogel monoliths fabricated by phase separation as environmental floating adsorbents. Int J Biol Macromol 2022; 217:956-968. [PMID: 35908678 DOI: 10.1016/j.ijbiomac.2022.07.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/05/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) aerogel monoliths were prepared via nonsolvent induced phase separation and then sequentially immersed in ethanol and sodium alginate (ALG) solutions. The resulting composite aerogels contained up to a 52 wt% fraction ALG, causing a remarkable increase in their compressive modulus and collapse strength from 0.3 MPa and 33 kPa to 4 MPa and 406 kPa, respectively, i.e., by 13/12 times. An increase in the ALG contents in the composite aerogels allowed them to effectively adsorb both water and soybean oil, according to pseudo-second-order adsorption kinetics. The highly porous composite aerogel acted as an efficient floating adsorbent for a cationic dye (i.e., methylene blue (MB)) in water. MB adsorption was found to be strongly dependent on ALG contents in the adsorbent, as well as operating parameters such as the initial concentration, pH, and temperature of MB solutions. MB adsorption is best described by the Langmuir isotherm and follows pseudo-second-order kinetics. Ca2+-crosslinking of ALG further increased compressive strength but significantly decreased MB adsorption capability following pseudo-first-order kinetics, implying a slow internal diffusion step for MB adsorption due to its tightened network structure relative to noncrosslinked adsorbents.
Collapse
Affiliation(s)
- Minji Kim
- Department of Chemical Engineering and Materials Science, College of Biochemical Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jiseon Kang
- Department of Chemical Engineering and Materials Science, College of Biochemical Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Seok Il Yun
- Department of Chemical Engineering and Materials Science, College of Biochemical Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
25
|
Kopf S, Åkesson D, Skrifvars M. Textile Fiber Production of Biopolymers – A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2076693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sabrina Kopf
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Dan Åkesson
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| | - Mikael Skrifvars
- Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden
| |
Collapse
|
26
|
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel) 2022; 14:2141. [PMID: 35683815 PMCID: PMC9182786 DOI: 10.3390/polym14112141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering technology aids in the regeneration of new tissue to replace damaged or wounded tissue. Three-dimensional biodegradable and porous scaffolds are often utilized in this area to mimic the structure and function of the extracellular matrix. Scaffold material and design are significant areas of biomaterial research and the most favorable material for seeding of in vitro and in vivo cells. Polyhydroxyalkanoates (PHAs) are biopolyesters (thermoplastic) that are appropriate for this application due to their biodegradability, thermo-processability, enhanced biocompatibility, mechanical properties, non-toxicity, and environmental origin. Additionally, they offer enormous potential for modification through biological, chemical and physical alteration, including blending with various other materials. PHAs are produced by bacterial fermentation under nutrient-limiting circumstances and have been reported to offer new perspectives for devices in biological applications. The present review discusses PHAs in the applications of conventional medical devices, especially for soft tissue (sutures, wound dressings, cardiac patches and blood vessels) and hard tissue (bone and cartilage scaffolds) regeneration applications. The paper also addresses a recent advance highlighting the usage of PHAs in implantable devices, such as heart valves, stents, nerve guidance conduits and nanoparticles, including drug delivery. This review summarizes the in vivo and in vitro biodegradability of PHAs and conducts an overview of current scientific research and achievements in the development of PHAs in the biomedical sector. In the future, PHAs may replace synthetic plastics as the material of choice for medical researchers and practitioners.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | | | | | - Azura Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| |
Collapse
|
27
|
Kang J, Yun SI. Chitosan-reinforced PHB hydrogel and aerogel monoliths fabricated by phase separation with the solvent-exchange method. Carbohydr Polym 2022; 284:119184. [DOI: 10.1016/j.carbpol.2022.119184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 01/03/2023]
|
28
|
Liu H, Chen Y, Zhang Y, Zhao W, Guo H, Wang S, Xia W, Wang S, Liu R, Yang C. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Int J Biol Macromol 2022; 209:117-124. [PMID: 35395277 DOI: 10.1016/j.ijbiomac.2022.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/19/2022] [Accepted: 04/02/2022] [Indexed: 11/05/2022]
Abstract
Polyhydroxyalkanoates (PHAs), a class of bioplastics produced by a variety of microorganisms, have become the ideal alternatives for oil-derived plastics due to their superior physicochemical and material characteristics. Pseudomonas putida KT2440 can produce medium-chain-length PHA (mcl-PHA) from various substrates. In this study, a novel strategy of the large-scale deletion of genomic islands (GIs) coupling with promoter engineering was developed in P. putida KT2440 for constructing the minimal genome cell factories (MGF) capable of efficiently producing mcl-PHA. Firstly, P. putida KTU-U13, a 13 GIs- and upp-deleted mutant derived from the parental strain P. putida KT2440, was used as a starting strain for further deletion of GIs to generate a series of genome-reduced strains. Subsequently, the two minimal genome strains KTU-U24 and KTU-U27, which had a 7.19% and 8.35% reduction relative to the genome size of KT2440 and were advantageous over the strain KTU (KT2440∆upp) and KTU-U13 in several physiological traits such as the maximum specific growth rate, plasmid transformation efficiency, heterologous protein expression capacity and PHA production capacity, were selected as the chassis cells for PHA metabolic engineering. To prevent the formation of the by-product gluconic acid, the glucose dehydrogenase gene was deleted in KTU-U24 and KTU-U27, resulting in KTU-U24∆gcd and KTU-U27∆gcd. To enhance the transcriptional level of PHA synthase genes (phaC) and the supply of the precursor acetyl-CoA, a strong endogenous promoter P46 was inserted into upstream of the phaC operon and pyruvate dehydrogenase gene in the genome of KTU-U24∆gcd and KTU-U27∆gcd, to generate KTU-U24∆gcd-P46CA and KTU-U27∆gcd-P46CA, with the PHA yield of 50.5 wt% and 53.8 wt% (weight percent of PHA in cell dry weight). Finally, KTU-U27∆gcd-P46CA, the most minimal KT2440 chassis currently available, was able to accumulate the PHA to 55.82 wt% in a 5-l fermentor, which is the highest PHA yield obtained with P. putida KT2440 so far. This study suggests that genome streamlining in combination with promoter engineering may be a feasible strategy for the development of the MGF for the efficient production of high value products. Moreover, further streamlining of the P. putida KT2440 genome has great potential to create the optimal chassis for synthetic biology applications.
Collapse
Affiliation(s)
- Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
29
|
Additive Manufacturing of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)/Poly(D,L-lactide- co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23073895. [PMID: 35409254 PMCID: PMC8999344 DOI: 10.3390/ijms23073895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.
Collapse
|
30
|
Awasthi MK, Kumar V, Yadav V, Sarsaiya S, Awasthi SK, Sindhu R, Binod P, Kumar V, Pandey A, Zhang Z. Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review. CHEMOSPHERE 2022; 290:133310. [PMID: 34919909 DOI: 10.1016/j.chemosphere.2021.133310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Poly-3-hydroxyalkanoates (PHA) are biodegradable and compostable polyesters. This review is aimed to provide a unique approach that can help think tanks to frame strategies aiming for clean technology by utilizing cutting edge biotechnological advances to convert fruit and vegetable waste to biopolymer. A PHA manufacturing method based on watermelon waste residue that does not require extensive pretreatment provides a more environmentally friendly and sustainable approach that utilizes an agricultural waste stream. Incorporating fruit processing industry by-products and water, and other resource conservation methods would not only make the manufacturing of microbial bio-plastics like PHA more eco-friendly, but will also help our sector transition to a bioeconomy with circular product streams. The final and most critical element of this review is an in-depth examination of the several hazards inherent in PHA manufacturing.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
31
|
Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. MATERIALS 2022; 15:ma15041410. [PMID: 35207952 PMCID: PMC8875380 DOI: 10.3390/ma15041410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible biopolymers. These biomaterials have grown in importance in the fields of tissue engineering and tissue reconstruction for structural applications where tissue morphology is critical, such as bone, cartilage, blood vessels, and skin, among others. Furthermore, they can be used to accelerate the regeneration in combination with drugs, as drug delivery systems, thus reducing microbial infections. When cells are cultured under stress conditions, a wide variety of microorganisms produce them as a store of intracellular energy in the form of homo- and copolymers of [R]—hydroxyalkanoic acids, depending on the carbon source used for microorganism growth. This paper gives an overview of PHAs, their biosynthetic pathways, producing microorganisms, cultivation bioprocess, isolation, purification and characterization to obtain biomaterials with medical applications such as tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mihaela Carmen Eremia
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Correspondence:
| | - Misu Moscovici
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
| |
Collapse
|
32
|
Li J, Zhang X, Udduttula A, Fan ZS, Chen JH, Sun AR, Zhang P. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives. Front Bioeng Biotechnol 2022; 9:763031. [PMID: 34993185 PMCID: PMC8724543 DOI: 10.3389/fbioe.2021.763031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a class of structurally diverse natural biopolyesters, synthesized by various microbes under unbalanced culture conditions. PHAs as biomedical materials have been fabricated in various forms to apply to tissue engineering for the past years due to their excellent biodegradability, inherent biocompatibility, modifiable mechanical properties, and thermo-processability. However, there remain some bottlenecks in terms of PHA production on a large scale, the purification process, mechanical properties, and biodegradability of PHA, which need to be further resolved. Therefore, scientists are making great efforts via synthetic biology and metabolic engineering tools to improve the properties and the product yields of PHA at a lower cost for the development of various PHA-based scaffold fabrication technologies to widen biomedical applications, especially in bone tissue engineering. This review aims to outline the biosynthesis, structures, properties, and the bone tissue engineering applications of PHA scaffolds with different manufacturing technologies. The latest advances will provide an insight into future outlooks in PHA-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Jian Li
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Anjaneyulu Udduttula
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhi Shan Fan
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Hai Chen
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Antonia RuJia Sun
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Zhang
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
33
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
34
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
35
|
Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
36
|
Guo P, Luo Y, Wu J, Wu H. Recent advances in the microbial synthesis of lactate-based copolymer. BIORESOUR BIOPROCESS 2021; 8:106. [PMID: 38650297 PMCID: PMC10992027 DOI: 10.1186/s40643-021-00458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcomings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the material properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in this article. These studies would facilitate to expand the application fields of the corresponding materials.
Collapse
Affiliation(s)
- Pengye Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
37
|
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 2021; 42:668-692. [PMID: 34645360 DOI: 10.1080/07388551.2021.1960265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymers are synonymous with the modern way of living. However, polymers with a large carbon footprint, especially those derived from nonrenewable petrochemical sources, are increasingly perceived as detrimental to the environment and a sustainable future. Polyhydroxyalkanoate (PHA) is a microbial biopolymer and a plausible alternative for renewable sources. However, PHA in its monomeric forms has very limited applications due to its limited flexibility, tensile strength, and moldability. Herein, the life cycle of PHA molecules, from biosynthesis to commercial utilization for diverse applications is discussed. For clarity, the applications of this bioplastic biocomposite material are further segregated into two domains, namely, the industrial sector and the medical sector. The industry sectors reviewed here include food packaging, textiles, agriculture, automotive, and electronics. High-value addition of PHA for a sustainable future can be foreseen in the medical domain. Properties such as biodegradability and biocompatibility make PHA a suitable candidate for decarbonizing biomaterials during tissue repair, organ reconstruction, drug delivery, bone tissue engineering, and chemotherapeutics.
Collapse
Affiliation(s)
- Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
38
|
Li D, Ma X, Li J, Sun B. Insights into enhanced polyhydroxyalkanoate production by the synergistic use of waste wood hydrolysate and volatile fatty acids by mixed microbial cultures. BIORESOURCE TECHNOLOGY 2021; 337:125488. [PMID: 34320767 DOI: 10.1016/j.biortech.2021.125488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 05/20/2023]
Abstract
The feasibility of producing polyhydroxyalkanoate (PHA) from pretreated waste wood hydrolysate and volatile fatty acids (VFAs) from sewage fermented products as co-substrate feedstock through mixed microbial cultures (MMCs) process was explored. The results showed that the addition of co-substrate shortened the cycle of PHA reaching the maximum and increased the proportion of 3-hydroxyvalerate (3HV) monomer. Compared with N-excess supply, almost 1.6 times increased PHA accumulation was realized under N-limitation, and simultaneously the highest proportion of 3HV monomer with 51% was also obtained. Additionally, PHA production in S1400 reactor reached a maximum value of about 3088 mg COD/L with culture time to 36 h. The microbial community also displayed a high diversity, which was composed of 65 bacterial genera. It is a novel attempt to accumulate PHA from pretreated waste wood hydrolysate and VFAs co-substrate through MMCs, providing an effective green approach to reduce its expensive cost and achieve mass production.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Binqing Sun
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
39
|
Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks. Life (Basel) 2021; 11:life11080807. [PMID: 34440551 PMCID: PMC8398495 DOI: 10.3390/life11080807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable polymers that are considered able to replace synthetic plastic because their biochemical characteristics are in some cases the same as other biodegradable polymers. However, due to the disadvantages of costly and non-renewable carbon sources, the production of PHA has been lower in the industrial sector against conventional plastics. At the same time, first-generation sugar-based cultivated feedstocks as substrates for PHA production threatens food security and considerably require other resources such as land and energy. Therefore, attempts have been made in pursuit of suitable sustainable and affordable sources of carbon to reduce production costs. Thus, in this review, we highlight utilising waste lignocellulosic feedstocks (LF) as a renewable and inexpensive carbon source to produce PHA. These waste feedstocks, second-generation plant lignocellulosic biomass, such as maize stoves, dedicated energy crops, rice straws, wood chips, are commonly available renewable biomass sources with a steady supply of about 150 billion tonnes per year of global yield. The generation of PHA from lignocellulose is still in its infancy, hence more screening of lignocellulosic materials and improvements in downstream processing and substrate pre-treatment are needed in the future to further advance the biopolymer sector.
Collapse
|
40
|
Bhola S, Arora K, Kulshrestha S, Mehariya S, Bhatia RK, Kaur P, Kumar P. Established and Emerging Producers of PHA: Redefining the Possibility. Appl Biochem Biotechnol 2021; 193:3812-3854. [PMID: 34347250 DOI: 10.1007/s12010-021-03626-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.
Collapse
Affiliation(s)
- Shivam Bhola
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kanika Arora
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | | | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Parneet Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
41
|
Nygaard D, Yashchuk O, Hermida ÉB. PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions. J Basic Microbiol 2021; 61:825-834. [PMID: 34342882 DOI: 10.1002/jobm.202100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 07/16/2021] [Indexed: 11/05/2022]
Abstract
Polyhydroxyalkanoates (PHA) are polymers produced by microorganisms with increasing commercialization potential; Cupriavidus necator has been the model microorganism to research PHA production. Despite many contributions concerning the formation and degradation of PHA granules, as well as the morphological changes in cells, these phenomena have not been univocally explained yet. Thus, this study aims to integrate the microscopic and analytical analysis to characterize changes in bacterial cell/PHA granules morphology, PHA content, and yield coefficients under different cultivation strategies of C. necator ATCC 17697. The cell size and morphology, granule size and amount, residual biomass, and PHA concentration along the fermentation and degradation depend greatly on nutritional conditions and cultivation time of C. necator. It was proposed to calculate a yield coefficient for the residual biomass production in the PHA utilization stage, related to the bacteria's ability to survive without a carbon source in the culture medium by utilizing the accumulated PHA previously. Maximum granule length reached 1.07 µm after 72 h of PHA accumulation stage under optimum nutritional conditions. This value is twice the values previously reported for C. necator. It is important since the larger PHA granules facilitate the recovery of PHA and different application development.
Collapse
Affiliation(s)
- Daiana Nygaard
- Laboratorio de Biomateriales, Biomecánica y Bioinstrumentación, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, San Martín, Provincia de Buenos Aires, Argentina
| | - Oxana Yashchuk
- Laboratorio de Biomateriales, Biomecánica y Bioinstrumentación, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, San Martín, Provincia de Buenos Aires, Argentina
| | - Élida B Hermida
- Laboratorio de Biomateriales, Biomecánica y Bioinstrumentación, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
42
|
Czechowska J, Skibiński S, Guzik M, Zima A. Silver Decorated βTCP-Poly(3hydroxybutyrate) Scaffolds for Bone Tissue Engineering. MATERIALS 2021; 14:ma14154227. [PMID: 34361421 PMCID: PMC8346965 DOI: 10.3390/ma14154227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023]
Abstract
Implantations in orthopedics are associated with a high risk of bacterial infections in the surgery area. Therefore, biomaterials containing antibacterial agents, such as antibiotics, bactericidal ions or nanoparticles have been intensively investigated. In this work, silver decorated β tricalcium phosphate (βTCP)-based porous scaffolds were obtained and coated with a biopolymer-poly(3-hydroxybutyrate)-P(3HB). To the best of our knowledge, studies using silver-doped βTCP and P(3HB), as a component in ceramic-polymer scaffolds for bone tissue regeneration, have not yet been reported. Obtained materials were investigated by high-temperature X-ray diffraction, X-ray fluorescence, scanning electron microscopy with energy dispersive spectroscopy, hydrostatic weighing, compression tests and ultrahigh-pressure liquid chromatography with mass spectrometry (UHPLC-MS) measurements. The influence of sintering temperature (1150, 1200 °C) on the scaffolds' physicochemical properties (phase and chemical composition, microstructure, porosity, compressive strength) was evaluated. Materials covered with P(3HB) possessed higher compressive strength (3.8 ± 0.6 MPa) and surgical maneuverability, sufficient to withstand the implantation procedures. Furthermore, during the hydrolytic degradation of the composite material not only pure (R)-3-hydroxybutyric acid but also its oligomers were released which may nourish surrounding tissues. Thus, obtained scaffolds were found to be promising bone substitutes for use in non-load bearing applications.
Collapse
Affiliation(s)
- Joanna Czechowska
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland;
- Correspondence: (J.C.); (S.S.)
| | - Szymon Skibiński
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland;
- Correspondence: (J.C.); (S.S.)
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Aneta Zima
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland;
| |
Collapse
|
43
|
Volova T, Kiselev E, Nemtsev I, Lukyanenko А, Sukovatyi A, Kuzmin A, Ryltseva G, Shishatskaya E. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Int J Biol Macromol 2021; 182:98-114. [PMID: 33836189 DOI: 10.1016/j.ijbiomac.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them. RESULTS Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), and 3-hydroxyhexanoate (3HHx) monomers were synthesized under specialized conditions. Relationships were found between the monomer composition of PHAs and their molecular-weight and thermal properties and degree of crystallinity. All copolymers had decreased weight average molecular weights, Mw (to 390-600 kDa), and increased values of polydispersity (3.2-4.6) compared to the P(3HB). PHA copolymers showed different thermal behavior: an insignificant decrease in Tmelt and the presence of the second peak in the melting region and changes in parameters of crystallization and glass transition. At the same time, they retained thermostability, and the difference between Tmelt and Tdegr was at least 100-120 °C. Incorporation of 4HB, 3HV, and 3HHx monomer units into the 3-hydroxybutyrate chain caused changes in the amorphous to crystalline ratio and decreased the degree of crystallinity (Cx) to 20-40%. According to the degree to which the monomers reduced crystallinity, they were ranked as follows: 4HB - 3HHx - 3HV. A unique set of films was produced; their surface properties and physical/mechanical properties were studied as dependent on PHA composition; monomers other than 3-hydroxybutyrate were found to enhance hydrophilicity, surface development, and elasticity of polymer films. CONCLUSION An innovative set of PHA copolymers was synthesized and solution-cast films were prepared from them; the copolymers and films were investigated as dependent on polymer chemical composition. Results obtained in the present study contribute to the solution of a critical issue of producing degradable polymer materials.
Collapse
Affiliation(s)
- T Volova
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - E Kiselev
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - I Nemtsev
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Federal Research Center "Krasnoyarsk Science Center SB RAS", 50 Akademgorodok, Krasnoyarsk 660036, Russia; L.V. Kirensky Institute of Physics, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/12 Akademgorodok, Krasnoyarsk 660036, Russia
| | - А Lukyanenko
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; L.V. Kirensky Institute of Physics, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/12 Akademgorodok, Krasnoyarsk 660036, Russia
| | - A Sukovatyi
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia.
| | - A Kuzmin
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia
| | - G Ryltseva
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia
| | - E Shishatskaya
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk 660041, Russia; Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
44
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
45
|
Sachin K, Karn SK. Microbial Fabricated Nanosystems: Applications in Drug Delivery and Targeting. Front Chem 2021; 9:617353. [PMID: 33959586 PMCID: PMC8093762 DOI: 10.3389/fchem.2021.617353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
The emergence of nanosystems for different biomedical and drug delivery applications has drawn the attention of researchers worldwide. The likeness of microorganisms including bacteria, yeast, algae, fungi, and even viruses toward metals is well-known. Higher tolerance to toxic metals has opened up new avenues of designing microbial fabricated nanomaterials. Their synthesis, characterization and applications in bioremediation, biomineralization, and as a chelating agent has been well-documented and reviewed. Further, these materials, due to their ability to get functionalized, can also be used as theranostics i.e., both therapeutic as well as diagnostic agents in a single unit. Current article attempts to focus particularly on the application of such microbially derived nanoformulations as a drug delivery and targeting agent. Besides metal-based nanoparticles, there is enough evidence wherein nanoparticles have been formulated using only the organic component of microorganisms. Enzymes, peptides, polysaccharides, polyhydroxyalkanoate (PHA), poly-(amino acids) are amongst the most used biomolecules for guiding crystal growth and as a capping/reducing agent in the fabrication of nanoparticles. This has promulgated the idea of complete green chemistry biosynthesis of nano-organics that are most sought after in terms of their biocompatibility and bioavailability.
Collapse
Affiliation(s)
- Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| |
Collapse
|
46
|
Kouřilová X, Schwarzerová J, Pernicová I, Sedlář K, Mrázová K, Krzyžánek V, Nebesářová J, Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms 2021; 9:909. [PMID: 33923216 PMCID: PMC8146576 DOI: 10.3390/microorganisms9050909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
Collapse
Affiliation(s)
- Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Jana Schwarzerová
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Iva Pernicová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| | - Karel Sedlář
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic; (J.S.); (K.S.)
| | - Kateřina Mrázová
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Vladislav Krzyžánek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Jana Nebesářová
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (X.K.); (I.P.)
| |
Collapse
|
47
|
Huong KH, Sevakumaran V, Amirul AA. P(3HB- co-4HB) as high value polyhydroxyalkanoate: its development over recent decades and current advances. Crit Rev Biotechnol 2021; 41:474-490. [PMID: 33726581 DOI: 10.1080/07388551.2020.1869685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polyhydroxyalkanoate (PHA) is a biogenic polymer that has the potential to substitute synthetic plastic in numerous applications. This is due to its unique attribute of being a biodegradable and biocompatible thermoplastic, achievable through microbial fermentation from a broad utilizable range of renewable resources. Among all the PHAs discovered, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] stands out as a next generation healthcare biomaterial for having high biopharmaceutical and medical value since it is highly compatible to mammalian tissue. This review provides a critical assessment and complete overview of the development and trend of P(3HB-co-4HB) research over the last few decades, highlighting aspects from the microbial strain discovery to metabolic engineering and bioprocess cultivation strategies. The article also outlines the relevance of P(3HB-co-4HB) as a material for high value-added products in numerous healthcare-related applications.
Collapse
Affiliation(s)
- Kai-Hee Huong
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Vigneswari Sevakumaran
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu, Terengganu, Malaysia
| | - A A Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.,Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia.,Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, Gelugor, Penang, Malaysia
| |
Collapse
|
48
|
Giubilini A, Bondioli F, Messori M, Nyström G, Siqueira G. Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering (Basel) 2021; 8:29. [PMID: 33672131 PMCID: PMC7926534 DOI: 10.3390/bioengineering8020029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, biopolymers have been attracting the attention of researchers and specialists from different fields, including biotechnology, material science, engineering, and medicine. The reason is the possibility of combining sustainability with scientific and technological progress. This is an extremely broad research topic, and a distinction has to be made among different classes and types of biopolymers. Polyhydroxyalkanoate (PHA) is a particular family of polyesters, synthetized by microorganisms under unbalanced growth conditions, making them both bio-based and biodegradable polymers with a thermoplastic behavior. Recently, PHAs were used more intensively in biomedical applications because of their tunable mechanical properties, cytocompatibility, adhesion for cells, and controllable biodegradability. Similarly, the 3D-printing technologies show increasing potential in this particular field of application, due to their advantages in tailor-made design, rapid prototyping, and manufacturing of complex structures. In this review, first, the synthesis and the production of PHAs are described, and different production techniques of medical implants are compared. Then, an overview is given on the most recent and relevant medical applications of PHA for drug delivery, vessel stenting, and tissue engineering. A special focus is reserved for the innovations brought by the introduction of additive manufacturing in this field, as compared to the traditional techniques. All of these advances are expected to have important scientific and commercial applications in the near future.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy;
| | - Federica Bondioli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
| | - Massimo Messori
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
| |
Collapse
|
49
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
50
|
Goswami M, Rekhi P, Debnath M, Ramakrishna S. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules 2021; 26:860. [PMID: 33562111 PMCID: PMC7915662 DOI: 10.3390/molecules26040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are proteinaceous storage granules ranging from 100 nm to 500 nm. Bacillus sp. serve as unique bioplastic sources of short-chain length and medium-chain length PHA showcasing properties such as biodegradability, thermostability, and appreciable mechanical strength. The PHA can be enhanced by adding functional groups to make it a more industrially useful biomaterial. PHA blends with hydroxyapatite to form nanocomposites with desirable features of compressibility. The reinforced matrices result in nanocomposites that possess significantly improved mechanical and thermal properties both in solid and melt states along with enhanced gas barrier properties compared to conventional filler composites. These superior qualities extend the polymeric composites' applications to aggressive environments where the neat polymers are likely to fail. This nanocomposite can be used in different industries as nanofillers, drug carriers for packaging essential hormones and microcapsules, etc. For fabricating a bone scaffold, electrospun nanofibrils made from biocomposite of hydroxyapatite and polyhydroxy butyrate, a form of PHA, can be incorporated with the targeted tissue. The other methods for making a polymer scaffold, includes gas foaming, lyophilization, sol-gel, and solvent casting method. In this review, PHA as a sustainable eco-friendly NextGen biomaterial from bacterial sources especially Bacillus cereus, and its application for fabricating bone scaffold using different strategies for bone regeneration have been discussed.
Collapse
Affiliation(s)
- Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| |
Collapse
|