1
|
Gumpper RH, Nichols DE. Chemistry/structural biology of psychedelic drugs and their receptor(s). Br J Pharmacol 2024. [PMID: 39354889 DOI: 10.1111/bph.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/03/2024] Open
Abstract
This brief review highlights some of the structure-activity relationships of classic serotonergic psychedelics. In particular, we discuss structural features of three chemotypes: phenethylamines, ergolines and certain tryptamines, which possess psychedelic activity in humans. Where they are known, we point out the underlying molecular mechanisms utilized by each of the three chemotypes of psychedelic molecules. With a focus on the 5-HT2A receptor subtype, a G-protein coupled receptor known to be the primary target of psychedelics, we refer to several X-ray and cryoEM structures, with a variety of ligands bound, to illustrate the underlying atomistic basis for some of the known pharmacological observations of psychedelic drug actions.
Collapse
Affiliation(s)
- Ryan H Gumpper
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David E Nichols
- Department of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Ridler K, Rizzo G, Burstein ES, Forsberg Morén A, Stepanov V, Halldin C, Rabiner EA. Imaging the 5-HT 2C receptor with PET: Evaluation of 5-HT 2C and 5-HT 2A affinity of pimavanserin in the primate brain. J Cereb Blood Flow Metab 2024:271678X241276312. [PMID: 39169749 DOI: 10.1177/0271678x241276312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two complimentary techniques were used to estimate occupancy of pimavanserin (a selective 5-HT2A/2C inverse agonist) to 5-HT2A and 5-HT2C receptors in non-human primate brains. One employed the 5-HT2A/2C selective radioligand [11C]CIMBI-36 combined with quantification of binding potentials in brain regions known to be enriched in 5-HT2A (cortex) or 5-HT2C (choroid plexus) receptors to estimate occupancy. Pimavanserin was 6-10 fold more potent displacing [11C]CIMBI-36 from cortex (ED50 = 0.007 mg/kg; EC50 = 0.6 ng/ml) than from choroid plexus (ED50 =0.046 mg/kg; EC50 = 6.0 ng/ml). The assignment of [11C]CIMBI-36 binding to 5-HT2A and 5-HT2C receptors by anatomical brain structure was confirmed using the 5-HT2A selective inverse agonist MDL 100,907 and the 5-HT2C selective antagonist SB 242584 to displace [11C]CIMBI-36. The second technique employed a novel, 5-HT2C selective tracer called [11C]AC1332. [11C]AC1332 bound robustly to choroid plexus, moderately to hippocampus, and minimally to cortex. Pimavanserin displaced [11C]AC1332 with similar potency (ED50 = 0.062 mg/kg; EC50 = 2.5 ng/ml) as its potency displacing [11C]CIMBI-36 binding from choroid plexus. These results demonstrate the feasibility of simultaneously estimating drug occupancy of 5-HT2A and 5-HT2C receptors in vivo, and the utility of a novel 5-HT2C receptor selective tracer ligand.
Collapse
Affiliation(s)
| | - Gaia Rizzo
- Invicro, London, UK
- Division of Brain Sciences, Imperial College London, London, UK
| | | | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
3
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
4
|
Magnussen JH, Ettrup A, Lehel S, Peters D, Dyssegaard A, Thomsen MS, Mikkelsen JD, Knudsen GM. Characterizing the binding of TC-5619 and encenicline on the alpha7 nicotinic acetylcholine receptor using PET imaging in the pig. FRONTIERS IN NEUROIMAGING 2024; 3:1358221. [PMID: 38601007 PMCID: PMC11004359 DOI: 10.3389/fnimg.2024.1358221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The alpha7 nicotinic acetylcholine receptor (α7-nAChR) has has long been considered a promising therapeutic target for addressing cognitive impairments associated with a spectrum of neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, despite this potential, clinical trials employing α7-nAChR (partial) agonists such as TC-5619 and encenicline (EVP-6124) have fallen short in demonstrating sufficient efficacy. We here investigate the target engagement of TC-5619 and encenicline in the pig brain by use of the α7-nAChR radioligand 11C-NS14492 to characterize binding both with in vitro autoradiography and in vivo occupancy using positron emission tomography (PET). In vitro autoradiography demonstrates significant concentration-dependent binding of 11C-NS14492, and both TC-5619 and encenicline can block this binding. Of particular significance, our in vivo investigations demonstrate that TC-5619 achieves substantial α7-nAChR occupancy, effectively blocking approximately 40% of α7-nAChR binding, whereas encenicline exhibits more limited α7-nAChR occupancy. This study underscores the importance of preclinical PET imaging and target engagement analysis in informing clinical trial strategies, including dosing decisions.
Collapse
Affiliation(s)
- Janus H. Magnussen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Szabolcs Lehel
- PET and Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Morten S. Thomsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Chavan LN, Voll R, Sanchez MM, Nye JA, Goodman MM. Concise and Scalable Radiosynthesis of (+)-[ 18F]MDL100907 as a Serotonin 5-HT 2A Receptor Antagonist for PET. ACS Chem Neurosci 2023; 14:3694-3703. [PMID: 37748194 PMCID: PMC10557077 DOI: 10.1021/acschemneuro.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
5-Hydroxytryptamine (5-HT2A) receptors play an important role in several psychiatric disorders. In order to investigate the serotonin (5-HT) receptor in vivo, reliable syntheses are required for positron emission tomography (PET) 5-HT radioligands. Owing to the excellent in vivo properties of [18F]MDL100907 for PET, there has been great interest to develop a novel synthetic route for [18F]MDL100907. Here, we report a highly efficient, scalable, and expedient synthesis for [18F]MDL100907. The radiofluorination was performed on a 18F-labeling boron pinacol ester precursor, which is synthesized using the Liebeskind-Srogl cross-coupling reaction as a key step. Our method is practically more suitable to employ late-stage Cu-mediated radiofluorination and facilitate the production of the [18F]MDL100907 radioligand in excellent decay-corrected RCY of 32 ± 10% (n = 7) within 60 min. We prepared [18F]MDL100907 in high molar activity (2.1 Ci/μmol) and compared it to [11C]MDL100907 in the brain of a nonhuman primate.
Collapse
Affiliation(s)
- Lahu N. Chavan
- Department
of Radiology and Imaging Science, Emory
University School of Medicine, Atlanta, Georgia 30329, United States
| | - Ronald Voll
- Department
of Radiology and Imaging Science, Emory
University School of Medicine, Atlanta, Georgia 30329, United States
- Department
of Psychiatry and Behavioral Sciences, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Mar M. Sanchez
- Department
of Psychiatry and Behavioral Sciences, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jonathon A. Nye
- Department
of Radiology and Imaging Science, Emory
University School of Medicine, Atlanta, Georgia 30329, United States
- Department
of Psychiatry and Behavioral Sciences, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Mark M. Goodman
- Department
of Radiology and Imaging Science, Emory
University School of Medicine, Atlanta, Georgia 30329, United States
- Department
of Psychiatry and Behavioral Sciences, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department
of Radiology and Imaging Sciences Wesley
Woods Health Center, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, Georgia 30329, United States
| |
Collapse
|
6
|
Slifstein M, Abi-Dargham A. Detecting Pharmacologically Induced Serotonin Release in Depression With Positron Emission Tomography Imaging: A New Approach. Biol Psychiatry 2023; 93:1056-1058. [PMID: 37257982 DOI: 10.1016/j.biopsych.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023]
Affiliation(s)
- Mark Slifstein
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.
| | - Anissa Abi-Dargham
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
7
|
Syrová K, Šíchová K, Danda H, Lhotková E, Jorratt P, Pinterová-Leca N, Vejmola Č, Olejníková-Ladislavová L, Hájková K, Kuchař M, Horáček J, Páleníček T. Acute pharmacological profile of 2C-B-Fly-NBOMe in male Wistar rats—pharmacokinetics, effects on behaviour and thermoregulation. Front Pharmacol 2023; 14:1120419. [PMID: 36969854 PMCID: PMC10033663 DOI: 10.3389/fphar.2023.1120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction:N-2-methoxy-benzylated (“NBOMe”) analogues of phenethylamine are a group of new psychoactive substances (NPS) with reported strong psychedelic effects in sub-milligram doses linked to a number of severe intoxications, including fatal ones. In our present work, we provide a detailed investigation of pharmacokinetics and acute behavioural effects of 2C-B-Fly-NBOMe (2-(8-bromo-2,3,6,7-tetrahydrobenzo [1,2-b:4,5-b′]difuran-4-yl)-N-[(2-methoxybenzyl]ethan-1-amine), an analogue of popular psychedelic entactogen 2C-B (4-Bromo-2,5-dimethoxyphenethylamine).Methods: All experiments were conducted on adult male Wistar rats. Pharmacokinetic parameters of 2C-B-Fly-NBOMe (1 mg/kg subcutaneously; s. c.) in blood serum and brain tissue were analysed over 24 h using liquid chromatography-mass spectrometry (LC/MS). For examination of behavioural parameters in open field test (OFT) and prepulse inhibition (PPI) of acoustic startle reaction (ASR), 2C-B-Fly-NBOMe (0.2, 1 and 5 mg/kg s. c.) was administered in two temporal onsets: 15 and 60 min after administration. Thermoregulatory changes were evaluated in individually and group-housed animals over 8 h following the highest dose used in behavioural experiments (5 mg/kg s. c.).Results: Peak drug concentrations were detected 30 and 60 min after the drug application in serum (28 ng/ml) and brain tissue (171 ng/g), respectively. The parental compound was still present in the brain 8 h after administration. Locomotor activity was dose-dependently reduced by the drug in both temporal testing onsets. ASR was also strongly disrupted in both temporal onsets, drug’s effect on PPI was weaker. 2C-B-Fly-NBOMe did not cause any significant thermoregulatory changes.Discussion: Our results suggest that 2C-B-Fly-NBOMe penetrates animal brain tissue in a relatively slow manner, induces significant inhibitory effects on motor performance, and attenuates sensorimotor gating. Its overall profile is similar to closely related analogue 2C-B and other NBOMe substances.
Collapse
Affiliation(s)
- Kateřina Syrová
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Klára Šíchová
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Hynek Danda
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Lhotková
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Pascal Jorratt
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Pinterová-Leca
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Čestmír Vejmola
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Olejníková-Ladislavová
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Hájková
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Martin Kuchař
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- *Correspondence: Tomáš Páleníček, ; Martin Kuchař,
| | - Jiří Horáček
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Páleníček
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Tomáš Páleníček, ; Martin Kuchař,
| |
Collapse
|
8
|
Oh HA, Yoo JH, Kim YJ, Han KS, Woo DH. 4-EA-NBOMe, an amphetamine derivative, alters glutamatergic synaptic transmission through 5-HT 1A receptors on cortical neurons from SpragueDawley rat and pyramidal neurons from C57BL/6 mouse. Neurotoxicology 2023; 95:144-154. [PMID: 36738894 DOI: 10.1016/j.neuro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
New psychoactive substances (NPSs) are compounds designed to mimic illegal recreational drugs. In particular, there are difficulties in legal restrictions because there is no fast NPS detection method to suppress the initial spread of NPS with criminal records; thus, they expose the public to serious health threats, including toxicity and dependence. However, the effects of NPSs on the brain and the related cellular mechanisms are well unknown. One of the recently emerging drugs is 4-ethylamphetamine-NBOMe (4-EA-NBOMe), a member of the 2 C phenylalanine family with a similar structure to methamphetamine (methA). In this study, we tested the effect of methA analogs on the glutamatergic synaptic transmission on primary cultured cortical neurons of SpragueDawley (SD) rats and C57BL/6 mice, and also layer 2/3 pyramidal neurons of the medial prefrontal cortex (mPFC) of C57BL/6 mice. We found that acute treatment with 4-EA-NBOMe inhibits spontaneous excitatory postsynaptic currents (EPSCs) and that withdrawal after chronic inhibition by 4-EA-NBOMe augments glutamatergic synaptic transmission. These modifications of synaptic responses are mediated by 5-HT1A receptors. These findings suggest that 4-EA-NBOMe directly affects the central nervous system by changing the efficacy of glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Hyun-A Oh
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 South Korea
| | - Ye-Ji Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, South Korea
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 South Korea.
| | - Dong Ho Woo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, South Korea.
| |
Collapse
|
9
|
Deventer MH, Persson M, Laus A, Pottie E, Cannaert A, Tocco G, Gréen H, Stove CP. Off-target activity of NBOMes and NBOMe analogs at the µ opioid receptor. Arch Toxicol 2023; 97:1367-1384. [PMID: 36853332 DOI: 10.1007/s00204-023-03465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
New psychoactive substances (NPS) are introduced on the illicit drug market at a rapid pace. Their molecular targets are often inadequately elucidated, which contributes to the delayed characterization of their pharmacological effects. Inspired by earlier findings, this study set out to investigate the µ opioid receptor (MOR) activation potential of a large set of psychedelics, substances which typically activate the serotonin (5-HT2A) receptor as their target receptor. We observed that some substances carrying the N-benzyl phenethylamine (NBOMe) structure activated MOR, as confirmed by both the NanoBiT® βarr2 recruitment assay and the G protein-based AequoScreen® Ca2+ release assay. The use of two orthogonal systems proved beneficial as some aspecific, receptor independent effects were found for various analogs when using the Ca2+ release assay. The specific 'off-target' effects at MOR could be blocked by the opioid antagonist naloxone, suggesting that these NBOMes occupy the same common opioid binding pocket as conventional opioids. This was corroborated by molecular docking, which revealed the plausibility of multiple interactions of 25I-NBOMe with MOR, similar to those observed for opioids. Additionally, structure-activity relationship findings seen in vitro were rationalized in silico for two 25I-NBOMe isomers. Overall, as MOR activity of these psychedelics was only noticed at high concentrations, we consider it unlikely that for the tested compounds there will be a relevant opioid toxicity in vivo at physiologically relevant concentrations. However, small modifications to the original NBOMe structure may result in a panel of more efficacious and potent MOR agonists, potentially exhibiting a dual MOR/5-HT2A activation potential.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Mattias Persson
- Department of Forensic Genetic and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Antonio Laus
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Henrik Gréen
- Department of Forensic Genetic and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
10
|
Erritzoe D, Godlewska BR, Rizzo G, Searle GE, Agnorelli C, Lewis Y, Ashok AH, Colasanti A, Boura I, Farrell C, Parfitt H, Howes O, Passchier J, Gunn RN, Politis M, Nutt DJ, Cowen PJ, Knudsen GM, Rabiner EA. Brain Serotonin Release Is Reduced in Patients With Depression: A [ 11C]Cimbi-36 Positron Emission Tomography Study With a d-Amphetamine Challenge. Biol Psychiatry 2022:S0006-3223(22)01704-8. [PMID: 36635177 DOI: 10.1016/j.biopsych.2022.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND The serotonin hypothesis of depression proposes that diminished serotonergic (5-HT) neurotransmission is causal in the pathophysiology of the disorder. Although the hypothesis is over 50 years old, there is no firm in vivo evidence for diminished 5-HT neurotransmission. We recently demonstrated that the 5-HT2A receptor agonist positron emission tomography (PET) radioligand [11C]Cimbi-36 is sensitive to increases in extracellular 5-HT induced by an acute d-amphetamine challenge. Here we applied [11C]Cimbi-36 PET to compare brain 5-HT release capacity in patients experiencing a major depressive episode (MDE) to that of healthy control subjects (HCs) without depression. METHODS Seventeen antidepressant-free patients with MDE (3 female/14 male, mean age 44 ± 13 years, Hamilton Depression Rating Scale score 21 ± 4 [range 16-30]) and 20 HCs (3 female/17 male, mean age 32 ± 9 years) underwent 90-minute dynamic [11C]Cimbi-36 PET before and 3 hours after a 0.5-mg/kg oral dose of d-amphetamine. Frontal cortex (main region of interest) 5-HT2A receptor nondisplaceable binding was calculated from kinetic analysis using the multilinear analysis-1 approach with the cerebellum as the reference region. RESULTS Following d-amphetamine administration, frontal nondisplaceable binding potential (BPND) was significantly reduced in the HC group (1.04 ± 0.31 vs. 0.87 ± 0.24, p < .001) but not in the MDE group (0.97 ± 0.25 vs. 0.92 ± 0.22, not significant). ΔBPND of the MDE group was significantly lower than that of the HC group (HC: 15% ± 14% vs. MDE: 6.5% ± 20%, p = .041). CONCLUSIONS This first direct assessment of 5-HT release capacity in people with depression provides clear evidence for dysfunctional serotonergic neurotransmission in depression by demonstrating reduced 5-HT release capacity in patients experiencing an MDE.
Collapse
Affiliation(s)
- David Erritzoe
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Beata R Godlewska
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | | | | | - Claudio Agnorelli
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom; Department of Molecular Medicine, University of Siena, Siena, Italy
| | | | - Abhishekh H Ashok
- Department of Psychosis Studies, King's College London, London, United Kingdom; Department of Radiology, University of Cambridge & Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Iro Boura
- Parkinson Foundation Centre of Excellence, King's College London, London, United Kingdom
| | - Chloe Farrell
- Parkinson Foundation Centre of Excellence, King's College London, London, United Kingdom
| | - Hollie Parfitt
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Oliver Howes
- Department of Psychosis Studies, King's College London, London, United Kingdom
| | | | | | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter, Exeter, United Kingdom
| | - David J Nutt
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Gitte M Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eugenii A Rabiner
- Invicro, London, United Kingdom; Department of Neuroimaging, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Demin KA, Kupriyanova OV, Shevyrin VA, Derzhavina KA, Krotova NA, Ilyin NP, Kolesnikova TO, Galstyan DS, Kositsyn YM, Khaybaev AAS, Seredinskaya MV, Dubrovskii Y, Sadykova RG, Nerush MO, Mor MS, Petersen EV, Strekalova T, Efimova EV, Kuvarzin SR, Yenkoyan KB, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Kalueff AV. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chem Neurosci 2022; 13:1902-1922. [PMID: 35671176 DOI: 10.1021/acschemneuro.2c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, Kazan 420008, Russia.,Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia
| | - Ksenia A Derzhavina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nataliya A Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Yurii M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yaroslav Dubrovskii
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg State Chemical Pharmaceutical University, St. Petersburg 197022, Russia
| | | | - Maria O Nerush
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | | | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Savelii R Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M. Heratsi Yerevan State Medical University, Yerevan AM 0025, Armenia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia
| | | | | | | | | | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Ural Federal University, Ekaterinburg 620075, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia.,Moscow Institute of Physics and Technology, Moscow 141701, Russia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia.,Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
13
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
14
|
Pottie E, Stove CP. In vitro assays for the functional characterization of (psychedelic) substances at the serotonin receptor 5-HT 2A R. J Neurochem 2022; 162:39-59. [PMID: 34978711 DOI: 10.1111/jnc.15570] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
Serotonergic psychedelics are substances that induce alterations in mood, perception, and thought, and have the activation of serotonin (5-HT) 2A receptors (5-HT2A Rs) as a main pharmacological mechanism. Besides their appearance on the (illicit) drug market, e.g. as new psychoactive substances, their potential therapeutic application is increasingly explored. This group of substances demonstrates a broad structural variety, leading to insufficiently described structure-activity relationships, hence illustrating the need for better functional characterization. This review therefore elaborates on the in vitro molecular techniques that have been used the most abundantly for the characterization of (psychedelic) 5-HT2A R agonists. More specifically, this review covers assays to monitor the canonical G protein signaling pathway (e.g. measuring G protein recruitment/activation, inositol phosphate accumulation, or Ca2+ mobilization), assays to monitor non-canonical G protein signaling (such as arachidonic acid release), assays to monitor β-arrestin recruitment or signaling, and assays to monitor receptor conformational changes. In particular, focus lies on the mechanism behind the techniques, and the specific advantages and challenges that are associated with these. Additionally, several variables are discussed that one should consider when attempting to compare functional outcomes from different studies, both linked to the specific assay mechanism and linked to its specific execution, as these may heavily impact the assay outcome.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Nykodemová J, Šuláková A, Palivec P, Češková H, Rimpelová S, Šíchová K, Leonhardt T, Jurásek B, Hájková K, Páleníček T, Kuchař M. 2C-B-Fly-NBOMe Metabolites in Rat Urine, Human Liver Microsomes and C. elegans: Confirmation with Synthesized Analytical Standards. Metabolites 2021; 11:metabo11110775. [PMID: 34822433 PMCID: PMC8624686 DOI: 10.3390/metabo11110775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive substances are being increasingly utilized in neurobiological and clinical research, as diagnostic tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several studies on NBPEA metabolism have emerged, but scarce information about substances with a tetrahydrobenzodifuran ("Fly") moiety is available. Here, we investigated the metabolism of 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in an untargeted screening and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge of their fragmentation patterns was utilized for confirmation or tentative identification of isomers. Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major detected metabolic pathways were mono- and poly-hydroxylation, O-demethylation, oxidative debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation and/or N-acetylation. Differences were observed for the three used media. The highest number of metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites detected from rat urine included two poly-hydroxylated metabolites found only in this media. Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.
Collapse
Affiliation(s)
- Jitka Nykodemová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Anna Šuláková
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Hedvika Češková
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
- Correspondence: (S.R.); (M.K.); Tel.: +420-220-444-431 (M.K.)
| | - Klára Šíchová
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Bronislav Jurásek
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Kateřina Hájková
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
- Correspondence: (S.R.); (M.K.); Tel.: +420-220-444-431 (M.K.)
| |
Collapse
|
16
|
Jacobsen SC, Speth NR, Xiong M, Herth MM, Kristensen JL, Palner M, Janfelt C. Desorption Electrospray Ionization Mass Spectrometry Imaging of Cimbi-36, a 5-HT 2A Receptor Agonist, with Direct Comparison to Autoradiography and Positron Emission Tomography. Mol Imaging Biol 2021; 23:676-685. [PMID: 33651266 DOI: 10.1007/s11307-021-01592-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The study demonstrates the use of Desorption Electrospray Ionization mass spectrometry imaging (DESI-MSI) for imaging of the PET tracer compound Cimbi-36 in brain tissue and compares imaging by DESI-MSI to imaging by autoradiography and PET. PROCEDURES Rats were dosed intraperitoneally with 3 mg/kg of Cimbi-36 and euthanized at t = 5, 10, 15, 30, 60 and 120 min post-injection. The brains were removed, frozen and sectioned, and sagittal sections were imaged by DESI-MSI in positive ion mode. Additionally, brain sections from a non-dosed animal were incubated with 14C-labelled Cimbi-36 and imaged by autoradiography. Finally, PET images were acquired from an animal dosed with 11C-labelled Cimbi-36. RESULTS DESI-MSI and autoradiography images of a sagittal brain sections showed similar distributions of Cimbi-36, with increased abundance in the frontal cortex and choroid plexus, regions which are high in 5-HT2A and 5-HT2C receptors. The PET image also showed increased abundance in cortex, but the spatial resolution was clearly inferior to DESI-MSI and autoradiography. The DESI-MSI results showed increased abundance of Cimbi-36 in brain tissue until 15 min, after which the abundance was declining. The PET-tracer was still clearly detectable at t = 120 min. Similar imaging of the kidneys showed the abundance of Cimbi-36 peaking at 30 min. Cimbi-36 was quantified in a t = 15 min brain section by quantitative DESI-MSI, resulting in tissue concentrations of 19.8 μg/g in cortex, 15.4 μg/g in cerebellum and 12.5 μg/g in whole brain. CONCLUSIONS DESI imaging from an in vivo dosing experiment showed distribution of the PET tracer remarkably similar to what was obtained by autoradiography of an in vitro incubation experiment, indicating that the obtained results represent actual binding to certain receptors in the brain. DESI-MSI is suggested as a cost-effective screening tool, which does not rely on labelling of compounds.
Collapse
Affiliation(s)
- Sophie C Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Nikolaj R Speth
- Neurobiology Research Unit, Copenhagen University Hospital, Blegdamsvej 9, 2200, Copenhagen, Denmark
| | - Mengfei Xiong
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Blegdamsvej 9, 2200, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Blegdamsvej 9, 2200, Copenhagen, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Blegdamsvej 9, 2200, Copenhagen, Denmark
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
17
|
Märcher Rørsted E, Jensen AA, Kristensen JL. 25CN-NBOH: A Selective Agonist for in vitro and in vivo Investigations of the Serotonin 2A Receptor. ChemMedChem 2021; 16:3263-3270. [PMID: 34288515 DOI: 10.1002/cmdc.202100395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/20/2023]
Abstract
4-(2-((2-hydroxybenzyl)amino)ethyl)-2,5-dimethoxybenzonitrile (25CN-NBOH) was first reported as a potent and selective serotonin 2A receptor (5-HT2A R) agonist in 2014, and it has since found extensive use as a pharmacological tool in a variety of in vitro, ex vivo and in vivo studies. 25CN-NBOH is readily available from a synthetic perspective using standard chemical transformations, and displays favorable physiochemical properties in terms of stability and solubility. Due to its superior selectivity for 5-HT2A R, 25CN-NBOH has been used to investigate the effects of selective 5-HT2A R activation in vivo, and has thus become an important pharmacological tool for the exploration of 5-HT2A R signaling in a range of animal models. In the present review, we outline the discovery of 25CN-NBOH, its pharmacological profile and major findings from studies where it has been used.
Collapse
Affiliation(s)
- Emil Märcher Rørsted
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
18
|
Willmann M, Hegger J, Neumaier B, Ermert J. Radiosynthesis and Biological Evaluation of [ 18F]R91150, a Selective 5-HT 2A Receptor Antagonist for PET-Imaging. ACS Med Chem Lett 2021; 12:738-744. [PMID: 34055220 DOI: 10.1021/acsmedchemlett.0c00658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Serotonergic 5-HT2A receptors in cortical and forebrain regions are an important substrate for the neuromodulatory actions of serotonin in the brain. They have been implicated in the etiology of many neuropsychiatric disorders and serve as a target for antipsychotic, antidepressant, and anxiolytic drugs. Positron emission tomography imaging using suitable radioligands can be applied for in vivo quantification of receptor densities and receptor occupancy for therapy evaluation. Recently, the radiosynthesis of the selective 5-HT2AR antagonist [18F]R91150 was reported. However, the six-step radiosynthesis is cumbersome and time-consuming with low radiochemical yields (RCYs) of <5%. In this work, [18F]R91150 was prepared using late-stage Cu-mediated radiofluorination to simplify its synthesis. The detailed protocol enabled us to obtain RCYs of 14 ± 1%, and the total synthesis time was reduced to 60 min. In addition, autoradiographic studies with [18F]R91150 in rat brain slices revealed the typical uptake pattern of 5-HT2A receptor ligands.
Collapse
Affiliation(s)
- Michael Willmann
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
| | - Julian Hegger
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
- Uniklinik Köln, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Köln, Germany
| | - Johannes Ermert
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
| |
Collapse
|
19
|
Cumming P, Scheidegger M, Dornbierer D, Palner M, Quednow BB, Martin-Soelch C. Molecular and Functional Imaging Studies of Psychedelic Drug Action in Animals and Humans. Molecules 2021; 26:2451. [PMID: 33922330 PMCID: PMC8122807 DOI: 10.3390/molecules26092451] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Hallucinogens are a loosely defined group of compounds including LSD, N,N-dimethyltryptamines, mescaline, psilocybin/psilocin, and 2,5-dimethoxy-4-methamphetamine (DOM), which can evoke intense visual and emotional experiences. We are witnessing a renaissance of research interest in hallucinogens, driven by increasing awareness of their psychotherapeutic potential. As such, we now present a narrative review of the literature on hallucinogen binding in vitro and ex vivo, and the various molecular imaging studies with positron emission tomography (PET) or single photon emission computer tomography (SPECT). In general, molecular imaging can depict the uptake and binding distribution of labelled hallucinogenic compounds or their congeners in the brain, as was shown in an early PET study with N1-([11C]-methyl)-2-bromo-LSD ([11C]-MBL); displacement with the non-radioactive competitor ketanserin confirmed that the majority of [11C]-MBL specific binding was to serotonin 5-HT2A receptors. However, interactions at serotonin 5HT1A and other classes of receptors and pleotropic effects on second messenger pathways may contribute to the particular experiential phenomenologies of LSD and other hallucinogenic compounds. Other salient aspects of hallucinogen action include permeability to the blood-brain barrier, the rates of metabolism and elimination, and the formation of active metabolites. Despite the maturation of radiochemistry and molecular imaging in recent years, there has been only a handful of PET or SPECT studies of radiolabeled hallucinogens, most recently using the 5-HT2A/2C agonist N-(2[11CH3O]-methoxybenzyl)-2,5-dimethoxy- 4-bromophenethylamine ([11C]Cimbi-36). In addition to PET studies of target engagement at neuroreceptors and transporters, there is a small number of studies on the effects of hallucinogenic compounds on cerebral perfusion ([15O]-water) or metabolism ([18F]-fluorodeoxyglucose/FDG). There remains considerable scope for basic imaging research on the sites of interaction of hallucinogens and their cerebrometabolic effects; we expect that hybrid imaging with PET in conjunction with functional magnetic resonance imaging (fMRI) should provide especially useful for the next phase of this research.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4059, Australia
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
| | - Dario Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
| | - Mikael Palner
- Odense Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark;
- Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, CH-8032 Zurich, Switzerland; (M.S.); (D.D.); (B.B.Q.)
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, CH-8058 Zurich, Switzerland
| | | |
Collapse
|
20
|
25CN-NBOMe Metabolites in Rat Urine, Human Liver Microsomes and C.elegans-Structure Determination and Synthesis of the Most Abundant Metabolites. Metabolites 2021; 11:metabo11040212. [PMID: 33807281 PMCID: PMC8066366 DOI: 10.3390/metabo11040212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
N-Benzylphenethylamines are novel psychedelic substances increasingly used for research, diagnostic, or recreational purposes. To date, only a few metabolism studies have been conducted for N-2-methoxybenzylated compounds (NBOMes). Thus, the available 2,5-dimethoxy-4-(2-((2-methoxybenzyl)amino)ethyl)benzonitrile (25CN-NBOMe) metabolism data are limited. Herein, we investigated the metabolic profile of 25CN-NBOMe in vivo in rats and in vitro in Cunninghamella elegans (C. elegans) mycelium and human liver microsomes. Phase I and phase II metabolites were first detected in an untargeted screening, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of the most abundant metabolites by comparison with in-house synthesized reference materials. The major metabolic pathways described within this study (mono- and bis-O-demethylation, hydroxylation at different positions, and combinations thereof, followed by the glucuronidation, sulfation, and/or N-acetylation of primary metabolites) generally correspond to the results of previously reported metabolism of several other NBOMes. The cyano functional group was either hydrolyzed to the respective amide or carboxylic acid or remained untouched. Differences between species should be taken into account in studies of the metabolism of novel substances.
Collapse
|
21
|
Alves de Barros W, Queiroz MP, da Silva Neto L, Borges GM, Martins FT, de Fátima Â. Synthesis of 25X-BOMes and 25X-NBOHs (X = H, I, Br) for pharmacological studies and as reference standards for forensic purposes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Kamińska K, Świt P, Malek K. 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOME): A Harmful Hallucinogen Review. J Anal Toxicol 2021; 44:947-956. [PMID: 32128596 DOI: 10.1093/jat/bkaa022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NBOMes are N-benzylmethoxy derivatives of the 2C family compounds with N-2-methoxybenzyl moiety substituted by the methoxy group at the 2- and 5-position and the halogen group at the 4-position of the phenyl ring. These substances are a new class of potent serotonin 5-HT2A receptor agonist hallucinogens with potential harmful effects. The substitution with halogen of the already psychoactive phenethylamine produces a derivative (2C-I) with increased hallucinogenic effects. This class of hallucinogens has chemical structures very similar to natural hallucinogenic alkaloid mescaline and these are sold mainly via internet as a 'legal' alternative to other hallucinogenic drug-lysergic acid diethylamide (LSD). 25I-NBOMe is the first synthesized and one of the most common compound from NBOMes. Knowledge of pharmacological properties of 25I-NBOMe is very limited so far. There are only a few in vivo and in vitro so far published studies. The behavioral experiments are mainly related with the hallucinogenic effect of 25I-NBOMe while the in vitro studies concerning mainly the affinity for 5-HT2A receptors. The 25I-NBOMe Critical Review 2016 reported 51 non-fatal intoxications and 21 deaths associated with 25I-NBOMe across Europe. Case reports describe various toxic effects of 25I-NBOMe usage including tachycardia, hypertension, hallucinations, rhabdomyolysis, acute kidney injury and death. The growing number of fatal and non-fatal intoxication cases indicates that 25I-NBOMe should be considered as a serious danger to public health. This review aims to present the current state of knowledge on pharmacological effects and chemical properties of 25I-NBOMe and to describe reported clinical cases and analytical methods available for identification of this agent in biological material.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Paweł Świt
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, Krakow 30-387, Poland
| |
Collapse
|
23
|
de Natale ER, Wilson H, Politis M. Serotonergic imaging in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:303-338. [PMID: 33785134 DOI: 10.1016/bs.pbr.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive degeneration of monoaminergic central pathways such as the serotonergic. The degeneration of serotonergic signaling in striatal and extrastriatal brain regions is an early feature of PD and is associated with several motor and non-motor complications of the disease. Molecular imaging techniques with Positron Emission Tomography (PET) have greatly contributed to the investigation of biological changes in vivo and to the understanding of the extent of serotonergic pathology in patients or individuals at risk for PD. Such discoveries provide with opportunities for the identification of new targets that can be used for the development of novel disease-modifying drugs or symptomatic treatments. Future studies of imaging serotonergic molecular targets will better clarify the importance of serotonergic pathology in PD, including progression of pathology, target-identification for pharmacotherapy, and relevance to endogenous synaptic serotonin levels. In this article, we review the current status and understanding of serotonergic imaging in PD.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom.
| |
Collapse
|
24
|
Donovan LL, Johansen JV, Ros NF, Jaberi E, Linnet K, Johansen SS, Ozenne B, Issazadeh-Navikas S, Hansen HD, Knudsen GM. Effects of a single dose of psilocybin on behaviour, brain 5-HT 2A receptor occupancy and gene expression in the pig. Eur Neuropsychopharmacol 2021; 42:1-11. [PMID: 33288378 DOI: 10.1016/j.euroneuro.2020.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Psilocybin has in some studies shown promise as treatment of major depressive disorder and psilocybin therapy was in 2019 twice designated as breakthrough therapy by the U.S. Food and Drug Administration (FDA). A very particular feature is that ingestion of just a single dose of psilocybin is associated with lasting changes in personality and mood. The underlying molecular mechanism behind its effect is, however, unknown. In a translational pig model, we here present the effects of a single dose of psilocybin on pig behaviour, receptor occupancy and gene expression in the brain. An acute i.v. injection of 0.08 mg/kg psilocybin to awake female pigs induced characteristic behavioural changes in terms of headshakes, scratching and rubbing, lasting around 20 min. A similar dose was associated with a cerebral 5-HT2A receptor occupancy of 67%, as determined by positron emission tomography, and plasma psilocin levels were comparable to what in humans is associated with an intense psychedelic experience. We found that 19 genes were differentially expressed in prefrontal cortex one day after psilocybin injection, and 3 genes after 1 week. Gene Set Enrichment Analysis demonstrated that multiple immunological pathways were regulated 1 week after psilocybin exposure. This provides a framework for future investigations of the lasting molecular mechanisms induced by a single dose of psilocybin. In the light of an ongoing debate as to whether psilocybin is a safe treatment for depression and other mental illnesses, it is reassuring that our data suggest that any effects on gene expression are very modest.
Collapse
Affiliation(s)
- Lene Lundgaard Donovan
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nídia Fernandez Ros
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Elham Jaberi
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kristian Linnet
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Sys Stybe Johansen
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Department of Public Health, Section of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit 8057 and The Center for Experimental Medicine Neuropharmacology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
25
|
Åstrand A, Guerrieri D, Vikingsson S, Kronstrand R, Green H. In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Sci Int 2020; 317:110553. [DOI: 10.1016/j.forsciint.2020.110553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
|
26
|
Fragment-based labeling using condensation reactions of six potential 5-HT7R PET tracers. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Shalgunov V, Xiong M, L'Estrade ET, Raval NR, Andersen IV, Edgar FG, Speth NR, Baerentzen SL, Hansen HD, Donovan LL, Nasser A, Peitersen ST, Kjaer A, Knudsen GM, Syvänen S, Palner M, Herth MM. Blocking of efflux transporters in rats improves translational validation of brain radioligands. EJNMMI Res 2020; 10:124. [PMID: 33074370 PMCID: PMC7572968 DOI: 10.1186/s13550-020-00718-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Positron emission tomography (PET) is a molecular imaging technique that can be used to investigate the in vivo pharmacology of drugs. Initial preclinical evaluation of PET tracers is often conducted in rodents due to the accessibility of disease models as well as economic considerations. Compared to larger species, rodents display a higher expression and/or activity of efflux transporters such as the P-glycoprotein (P-gp). Low brain uptake could, therefore, be species-specific and uptake in rodents not be predictive for that in humans. We hypothesized that a better prediction from rodent data could be achieved when a tracer is evaluated under P-gp inhibition. Consequently, we compared the performance of eight neuroreceptor tracers in rats with and without P-gp inhibition including a specific binding blockade. This data set was then used to predict the binding of these eight tracers in pigs. Methods PET tracers targeting serotonin 5-HT2A receptors ([18F]MH.MZ, [18F]Altanserin, [11C]Cimbi-36, [11C]Pimavanserin), serotonin 5-HT7 receptors ([11C]Cimbi-701, [11C]Cimbi-717 and [11C]BA-10) and dopamine D2/3 receptors ([18F]Fallypride) were used in the study. The brain uptake and target-specific binding of these PET radiotracers were evaluated in rats with and without inhibition of P-gp. Rat data were subsequently compared to the results obtained in pigs. Results Without P-gp inhibition, the amount of target-specific binding in the rat brain was sufficient to justify further translation for three out of eight evaluated tracers. With P-gp inhibition, results for five out of eight tracers justified further translation. The performance in pigs could correctly be predicted for six out of eight tracers when rat data obtained under P-gp inhibition were used, compared to four out of eight tracers without P-gp inhibition. Conclusions P-gp strongly affects the uptake of PET tracers in rodents, but false prediction outcomes can be reduced by evaluating a tracer under P-gp inhibition.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mengfei Xiong
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Elina T L'Estrade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Nakul R Raval
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ida V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Fraser G Edgar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Nikolaj R Speth
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Simone L Baerentzen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Lene L Donovan
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Siv T Peitersen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Mikael Palner
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark. .,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
28
|
Lützen E, Holtkamp M, Stamme I, Schmid R, Sperling M, Pütz M, Karst U. Multimodal imaging of hallucinogens 25C‐ and 25I‐NBOMe on blotter papers. Drug Test Anal 2020; 12:465-471. [DOI: 10.1002/dta.2751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Elias Lützen
- University of MünsterInstitute of Inorganic and Analytical Chemistry Münster Germany
| | - Michael Holtkamp
- University of MünsterInstitute of Inorganic and Analytical Chemistry Münster Germany
| | - Imke Stamme
- Criminal Police Office (BKA)Forensic Science Institute Wiesbaden Germany
| | - Robin Schmid
- University of MünsterInstitute of Inorganic and Analytical Chemistry Münster Germany
| | - Michael Sperling
- University of MünsterInstitute of Inorganic and Analytical Chemistry Münster Germany
- European Virtual Institute for Speciation Analysis (EVISA) Münster Germany
| | - Michael Pütz
- Criminal Police Office (BKA)Forensic Science Institute Wiesbaden Germany
| | - Uwe Karst
- University of MünsterInstitute of Inorganic and Analytical Chemistry Münster Germany
| |
Collapse
|
29
|
Serotonin release measured in the human brain: a PET study with [ 11C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology 2020; 45:804-810. [PMID: 31715617 PMCID: PMC7075951 DOI: 10.1038/s41386-019-0567-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Positron emission tomography (PET) enables non-invasive estimation of neurotransmitter fluctuations in the living human brain. While these methods have been applied to dopamine and some other transmitters, estimation of 5-hydroxytryptamine (5-HT; Serotonin) release has proved to be challenging. Here we demonstrate the utility of the novel 5-HT2A receptor agonist radioligand, [11C]CIMBI-36, and a d-amphetamine challenge to evaluate synaptic 5-HT changes in the living human brain. Seventeen healthy male volunteers received [11C]CIMBI-36 PET scans before and 3 h after an oral dose of d-amphetamine (0.5 mg/kg). Dynamic PET data were acquired over 90 min, and the total volume of distribution (VT) in the frontal cortex and the cerebellum derived from a kinetic analysis using MA1. The frontal cortex binding potential (BPNDfrontal) was calculated as (VTfrontal/VTcerebellum) - 1. ∆BPNDfrontal = 1 - (BPNDfrontal post-dose/BPNDfrontal baseline) was used as an index of 5-HT release. Statistical inference was tested by means of a paired Students t-test evaluating a reduction in post-amphetamine [11C]CIMBI-36 BPNDfrontal. Following d-amphetamine administration, [11C]CIMBI-36 BPNDfrontal was reduced by 14 ± 13% (p = 0.002). Similar effects were observed in other cortical regions examined in an exploratory analysis. [11C]CIMBI-36 binding is sensitive to synaptic serotonin release in the human brain, and when combined with a d-amphetamine challenge, the evaluation of the human brain serotonin system in neuropsychiatric disorders, such as major depression and Parkinson's disease is enabled.
Collapse
|
30
|
Abstract
Abstract
Purpose
N-Methoxybenzyls, a group of toxic phenylethylamine derivatives of the 2C family compounds, are a new class of potent serotonin 5-HT2A receptor agonist hallucinogens with potential harmful effects. This study summarizes current state of knowledge of one of the most dangerous representative of this group—N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe). Due to hallucinogenic properties similar to those observe after lysergic acid diethylamide (LSD) usage (altered thoughts, feelings, and awareness of one’s surroundings), this compound is very attractive to hallucinogenic substances users.
Methods
An exhaustive literature search was carried out in PubMed, Google Scholar and other biomedical data bases without limiting period, to identify relevant articles.
Results
Despite frequent recreational use, knowledge about the 25C-NBOMe action and toxic and fatal consequences is still very limited. Most data on this drug come from clinical reports, from cases of acute fatal and non-fatal intoxications. Some animal and in vitro studies indicated a route of metabolism of the drug in the body. The drug and its metabolites were also detected in human blood and urine using combinations of chromatographic separation and mass spectrometry detection.
Conclusions
Overall, findings show that 25C-NBOMe is a powerful hallucinogen. Easy online availability, low prize and the lack of knowledge of 25C-NBOMe makes this substance potentially very dangerous to its users. Thus, further investigation on the mechanism of action, chemical, pharmacological and toxicological properties is needed to evaluate 25C-NBOMe potential harmful effects.
Collapse
|
31
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
32
|
Poulie CBM, Jensen AA, Halberstadt AL, Kristensen JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem Neurosci 2019; 11:3860-3869. [PMID: 31657895 PMCID: PMC9191638 DOI: 10.1021/acschemneuro.9b00528] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N-Benzylphenethylamines, commonly known as NBOMes, are synthetic psychedelic compounds derived from the phenethylamine class of psychedelics (2C-X compounds), which originally have been derived from the naturally occurring alkaloid mescaline. Analogously to their parent compounds and other classical psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), NBOMes are believed to exert their main pharmacological effects through activation of serotonin 2A (5-HT2A) receptors. Since their introduction as New Psychoactive Substances (NPSs) in 2010, NBOMes have been widely used for recreational purposes; this has resulted in numerous cases of acute toxicity, sometimes with lethal outcomes, leading to the classification of several NBOMes as Schedule I substances in 2013. However, in addition to their recreational use, the NBOMe class has yielded several important biochemical tools, including [11C]Cimbi-36, which is now being used in positron emission tomography (PET) studies of the 5-HT2A and 5-HT2C receptors in the mammalian brain, and 25CN-NBOH, one of the most selective 5-HT2A receptor agonists developed to date. In this Review, the history, chemistry, structure-activity relationships, ADME (absorption, distribution, metabolism, and excretion) properties, and safety profiles of NBOMes will be outlined and discussed.
Collapse
|
33
|
L'Estrade ET, Erlandsson M, Edgar FG, Ohlsson T, Knudsen GM, Herth MM. Towards selective CNS PET imaging of the 5-HT 7 receptor system: Past, present and future. Neuropharmacology 2019; 172:107830. [PMID: 31669129 DOI: 10.1016/j.neuropharm.2019.107830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022]
Abstract
Since its discovery in 1993, the serotonin receptor subtype 7 (5-HT7) has attracted significant attention as a potential drug target; due to its elucidated roles in conditions such as insomnia, schizophrenia, and more. Therefore, it is unsurprising that there has been relatively early efforts undertaken to develop a positron emission tomography (PET) imaging agent for said receptor system. PET can be clinically used to probe receptor systems in vivo, permitting information such as a drug's occupancy against this system to be investigated. This review focuses on the efforts towards the development of a 5-HT7R selective PET CNS tracer over the last 20 years, critically reflecting on applied strategies and commonly employed chemical frameworks and suggests future considerations that are needed to successfully develop a PET tracer for this clinically relevant target. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Elina T L'Estrade
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark; Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Maria Erlandsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Fraser G Edgar
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark
| | - Tomas Ohlsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Matthias M Herth
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
34
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
35
|
Yang KC, Stepanov V, Amini N, Martinsson S, Takano A, Bundgaard C, Bang-Andersen B, Sanchez C, Halldin C, Farde L, Finnema SJ. Effect of clinically relevant doses of vortioxetine and citalopram on serotonergic PET markers in the nonhuman primate brain. Neuropsychopharmacology 2019; 44:1706-1713. [PMID: 31216565 PMCID: PMC6784989 DOI: 10.1038/s41386-019-0442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Vortioxetine is a multimodal antidepressant approved for treatment of major depressive disorder. Preclinical studies have demonstrated that the mechanism of action of vortioxetine might be different from selective serotonin reuptake inhibitors (SSRIs), including larger serotonin (5-HT) release and direct modulation of several 5-HT receptors. In the current positron emission tomography (PET) study, we evaluated the mechanism of action of vortioxetine by comparing its effect to the SSRI citalopram on the binding of [11C]AZ10419369 to the 5-HT1B receptor in the nonhuman primate brain. Initially, the 5-HT transporter (5-HTT) binding of vortioxetine was determined by [11C]MADAM PET measurements before and after administration of vortioxetine (0.1-3.0 mg/kg) and data were used to confirm clinically relevant dosing in subsequent PET measurements with [11C]AZ10419369. The 5-HT1B receptor binding was significantly decreased after 0.3 mg/kg of citalopram in the dorsal raphe nucleus (5%), as well as after 0.3 mg/kg of vortioxetine in six brain regions (~25%) or 1.0 mg/kg of vortioxetine in all 12 examined regions (~48%). Moreover, there was no effect of 1.0 mg/kg of vortioxetine on the binding of [11C]Cimbi-36 to the 5-HT2A receptor, which has comparable sensitivity to 5-HT release as [11C]AZ10419369 binding. In conclusion, at clinically relevant doses, vortioxetine induced larger reductions in [11C]AZ10419369 binding than citalopram. These observations suggest that vortioxetine binds to the 5-HT1B receptor at clinically relevant doses. Future studies are warranted to evaluate the role of the 5-HT1B receptor in the therapeutic effects of vortioxetine and as a potential target for the development of novel antidepressant drugs.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | - Vladimir Stepanov
- 0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Nahid Amini
- 0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Stefan Martinsson
- 0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Akihiro Takano
- 0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | | | | | - Christer Halldin
- 0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- 0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden ,0000 0004 1937 0626grid.4714.6Personalized Health Care and Biomarkers, AstraZeneca PET Science Center at Karolinska Institutet, Stockholm, Sweden
| | - Sjoerd J. Finnema
- 0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden ,0000000419368710grid.47100.32Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT USA
| |
Collapse
|
36
|
Richter LHJ, Menges J, Wagmann L, Brandt SD, Stratford A, Westphal F, Flockerzi V, Meyer MR. In vitro toxicokinetics and analytical toxicology of three novel NBOMe derivatives: phase I and II metabolism, plasma protein binding, and detectability in standard urine screening approaches studied by means of hyphenated mass spectrometry. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00498-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Human biodistribution and radiation dosimetry of the 5-HT 2A receptor agonist Cimbi-36 labeled with carbon-11 in two positions. EJNMMI Res 2019; 9:71. [PMID: 31367837 PMCID: PMC6669221 DOI: 10.1186/s13550-019-0527-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cimbi-36 can be 11C-labeled to form an agonist radioligand used for positron emission tomography (PET) imaging of the 5-HT2A receptor in the brain. In its non-labeled form (25B-NBOMe), it is used as a recreational drug that can lead to severe adverse effects, in some cases, with fatal outcome. We investigated human biodistribution and radiation dosimetry of the radioligand with two different radiolabeling positions. Seven healthy volunteers underwent dynamic 120-min whole-body PET scans (injection of 581 ± 16 MBq, n = 5 for 11C-Cimbi-36; 593 ± 14 MBq, n = 2 for 11C-Cimbi-36_5). Time-integrated activity coefficients (TIACs) from time-activity curves (TACs) of selected organs were used as input into the OLINDA/EXM software to obtain dosimetry information for both 11C-labeling positions of Cimbi-36. Results The effective dose was only slightly higher for 11C-Cimbi-36 (5.5 μSv/MBq) than for 11C-Cimbi-36_5 (5.3 μSv/MBq). Standard uptake value (SUV) curves showed higher uptake of 11C-Cimbi-36 in the pancreas, small intestines, liver, kidney, gallbladder, and urinary bladder compared with 11C-Cimbi-36_5, reflecting differences in radiometabolism for the two radioligands. Variability in uptake in excretory organs for 11C-Cimbi-36 points to inter-individual differences with regard to metabolic rate and route. Surprisingly, moderate uptake was found in brown adipose tissue (BAT) in four subjects, possibly representing specific 5-HT2A/2C receptor binding. Conclusion The low effective dose of 5.5 μSv/MBq allows for the injection of up to 1.8 GBq for healthy volunteers per study (equivalent to 3 scans if injecting 600 MBq) and still stay below the international guidelines of 10 mSv, making 11C-Cimbi-36 eligible for studies involving a series of PET scans in a single subject. The biodistribution of Cimbi-36 (and its metabolites) may also help to shed light on the toxic effects of 25B-NBOMe when used in pharmacological doses in recreational settings. Electronic supplementary material The online version of this article (10.1186/s13550-019-0527-4) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Almalki AJ, Clark CR, DeRuiter J. GC–MS analysis of regioisomeric substituted N-benzyl-4-bromo-2,5-dimethoxyphenethylamines. Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Vasović D, Divović B, Treven M, Knutson DE, Steudle F, Scholze P, Obradović A, Fabjan J, Brković B, Sieghart W, Ernst M, Cook JM, Savić MM. Trigeminal neuropathic pain development and maintenance in rats are suppressed by a positive modulator of α6 GABA A receptors. Eur J Pain 2019; 23:973-984. [PMID: 30633839 PMCID: PMC6461498 DOI: 10.1002/ejp.1365] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/06/2023]
Abstract
γ-Aminobutyric acid type A (GABAA ) receptors containing the α6 subunit are located in trigeminal ganglia, and their reduction by small interfering RNA increases inflammatory temporomandibular and myofascial pain in rats. We thus hypothesized that enhancing their activity may help in neuropathic syndromes originating from the trigeminal system. Here, we performed a detailed electrophysiological and pharmacokinetic analysis of two recently developed deuterated structurally similar pyrazoloquinolinone compounds. DK-I-56-1 at concentrations below 1 µM enhanced γ-aminobutyric acid (GABA) currents at recombinant rat α6β3γ2, α6β3δ and α6β3 receptors, whereas it was inactive at most GABAA receptor subtypes containing other α subunits. DK-I-87-1 at concentrations below 1 µM was inactive at α6-containing receptors and only weakly modulated other GABAA receptors investigated. Both plasma and brain tissue kinetics of DK-I-56-1 were relatively slow, with half-lives of 6 and 13 hr, respectively, enabling the persistence of estimated free brain concentrations in the range 10-300 nM throughout a 24-hr period. Results obtained in two protocols of chronic constriction injury of the infraorbital nerve in rats dosed intraperitoneally with DK-I-56-1 during 14 days after surgery or with DK-I-56-1 or DK-I-87-1 during 14 days after trigeminal neuropathy were already established, demonstrated that DK-I-56-1 but not DK-I-87-1 significantly reduced the hypersensitivity response to von Frey filaments. SIGNIFICANCE: Neuropathic pain induced by trigeminal nerve damage is poorly controlled by current treatments. DK-I-56-1 that positively modulates α6 GABAA receptors is appropriate for repeated administration and thus may represent a novel treatment option against the development and maintenance of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Dina Vasović
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Divović
- Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia
| | - Marco Treven
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Friederike Steudle
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Aleksandar Obradović
- Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia
| | - Jure Fabjan
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Božidar Brković
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Sieghart
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Miroslav M Savić
- Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
Prabhakaran J, DeLorenzo C, Zanderigo F, Knudsen GM, Gilling N, Pratap M, Jorgensen MJ, Daunais J, Kaplan JR, Parsey RV, Mann JJ, Kumar D. In vivo PET Imaging of [11C]CIMBI-5, a 5-HT2AR Agonist Radiotracer in Nonhuman Primates. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2019; 22:352-364. [PMID: 31356761 PMCID: PMC7453972 DOI: 10.18433/jpps30329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE 5-HT2AR exists in high and low affinity states. Agonist PET tracers measure binding to the active high affinity site and thus provide a functionally relevant measure of the receptor. Limited in vivo data have been reported so far for a comparison of agonist versus antagonist tracers for 5-HT2AR used as a proof of principle for measurement of high and low affinity states of this receptor. We compared the in vivo binding of [11C]CIMBI-5, a 5-HT2AR agonist, and of the antagonist [11C]M100907, in monkeys and baboons. METHODS [11C]CIMBI-5 and [11C]M100907 baseline PET scans were performed in anesthetized male baboons (n=2) and male vervet monkeys (n=2) with an ECAT EXACT HR+ and GE 64-slice PET/CT Discovery VCT scanners. Blocking studies were performed in vervet monkeys by pretreatment with MDL100907 (0.5 mg/kg, i.v.) 60 minutes prior to the scan. Regional distribution volumes and binding potentials were calculated for each ROI using the likelihood estimation in graphical analysis and Logan plot, with either plasma input function or reference region as input, and simplified reference tissue model approaches. RESULTS PET imaging of [11C]CIMBI-5 in baboons and monkeys showed the highest binding in 5-HT2AR-rich cortical regions, while the lowest binding was observed in cerebellum, consistent with the expected distribution of 5-HT2AR. Very low free fractions and rapid metabolism were observed for [11C]CIMBI-5 in baboon plasma. Binding potential values for [11C]CIMBI-5 were 25-33% lower than those for [11C]MDL100907 in the considered brain regions. CONCLUSION The lower binding potential of [11C]CIMBI-5 in comparison to [11C]MDL100907 is likely due to the preferential binding of the former to the high affinity site in vivo in contrast to the antagonist, [11C]MDL100907, which binds to both high and low affinity sites.
Collapse
Affiliation(s)
- Jaya Prabhakaran
- Department of Psychiatry, Columbia University Medical Center, New York, USA. Area of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Elmore JS, Decker AM, Sulima A, Rice KC, Partilla JS, Blough BE, Baumann MH. Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats. Neuropharmacology 2018; 142:240-250. [PMID: 29501528 PMCID: PMC6119551 DOI: 10.1016/j.neuropharm.2018.02.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
2,5-Dimethoxyphenethylamines (2C compounds) are 5-HT2A/2C receptor agonists that induce hallucinogenic effects. N-methoxybenzylation of 2C compounds markedly increases their affinity for 5-HT2A receptors, and two such analogs, 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) and 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe), have emerged in recreational drug markets. Here, we investigated the neuropharmacology of 25C-NBOMe and 25I-NBOMe in rats, as compared to their 2C analogs and the prototypical 5-HT2A/2C agonist 1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine (DOI). Compounds were tested in vitro using 5-HT2A receptor binding and calcium mobilization assays. For in vivo experiments, 25C-NBOMe (0.01-0.3 mg/kg), 25I-NBOMe (0.01-0.3 mg/kg), 2-(4-chloro-2,5-dimethoxyphenyl)ethanamine (2C-C) (0.1-3.0 mg/kg), 2-(4-iodo-2,5-dimethoxyphenyl)ethanamine (2C-I) (0.1-3.0 mg/kg) and DOI (0.03-1.0 mg/kg) were administered subcutaneously (sc) to male rats, and 5-HT2A-mediated behaviors were assessed. NBOMes displayed higher affinity for 5-HT2A receptors than their 2C counterparts but were substantially weaker in functional assays. 25C-NBOMe and 25I-NBOMe were much more potent at inducing wet dog shakes (WDS) and back muscle contractions (BMC) when compared to 2C-C and 2C-I. Pretreatment with the selective 5-HT2A antagonist (R)-(2,3-dimethoxyphenyl){1-[2-(4-fluorophenyl)ethyl]-4-piperidinyl}methanol (M100907) reversed behaviors produced by all agonists. Interestingly, binding affinities at the 5-HT2A receptor were significantly correlated with potencies to induce BMC but not WDS. Our findings show that NBOMes are highly potent 5-HT2A agonists in rats, similar to effects in mice, and consistent with the reported hallucinogenic effects in human users. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.
Collapse
Affiliation(s)
- Joshua S Elmore
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John S Partilla
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
43
|
Johansen A, Hansen HD, Svarer C, Lehel S, Leth-Petersen S, Kristensen JL, Gillings N, Knudsen GM. The importance of small polar radiometabolites in molecular neuroimaging: A PET study with [ 11C]Cimbi-36 labeled in two positions. J Cereb Blood Flow Metab 2018; 38:659-668. [PMID: 29215308 PMCID: PMC5888860 DOI: 10.1177/0271678x17746179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
[11C]Cimbi-36, a 5-HT2A receptor agonist PET radioligand, contains three methoxy groups amenable to [11C]-labeling. In pigs, [11C]Cimbi-36 yields a polar (M1) and a less polar (M2) radiometabolite fraction, while changing the labeling to [11C]Cimbi-36_5 yields only the M1 fraction. We investigate whether changing the labeling position of [11C]Cimbi-36 eliminates M2 in humans, and if this changes the signal-to-background ratio. Six healthy volunteers each underwent two dynamic PET scans; after injection of [11C]Cimbi-36, both the M1 and M2 fraction appeared in plasma, whereas only the M1 appeared after [11C]Cimbi-36_5 injection. [11C]Cimbi-36_5 generated higher uptake than [11C]Cimbi-36 in both neocortex and cerebellum. With the simplified reference tissue model mean neocortical non-displaceable binding potential for [11C]Cimbi-36 was 1.38 ± 0.07, whereas for [11C]Cimbi-36_5, it was 1.18 ± 0.14. This significant difference can be explained by higher non-displaceable binding caused by demethylation products in the M1 fraction such as [11C]formaldehyde and/or [11C]carbon dioxide/bicarbonate. Although often considered without any impact on binding measures, we show that small polar radiometabolites can substantially decrease the signal-to-background ratio of PET radioligands for neuroimaging. Further, we find that [11C]Cimbi-36 has a better signal-to-background ratio than [11C]Cimbi-36_5, and thus will be more sensitive to changes in 5-HT2A receptor levels in the brain.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Szabolcs Lehel
- PET & Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Leth-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nic Gillings
- PET & Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Abstract
This chapter will summarize structure-activity relationships (SAR) that are known for the classic serotonergic hallucinogens (aka psychedelics), focusing on the three chemical types: tryptamines, ergolines, and phenethylamines. In the brain, the serotonin 5-HT2A receptor plays a key role in regulation of cortical function and cognition, and also appears to be the principal target for hallucinogenic/psychedelic drugs such as LSD. It is one of the most extensively studied of the 14 known types of serotonin receptors. Important structural features will be identified for activity and, where possible, those that the psychedelics have in common will be discussed. Because activation of the 5-HT2A receptor is the principal mechanism of action for psychedelics, compounds with 5-HT2A agonist activity generally are quickly discarded by the pharmaceutical industry. Thus, most of the research on psychedelics can be related to activation of 5-HT2A receptors. Therefore, much of the discussion will include not only clinical or anecdotal studies, but also will consider data from animal models as well as a certain amount of molecular pharmacology where it is known.
Collapse
Affiliation(s)
- David E Nichols
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
45
|
Hazari PP, Pandey A, Chaturvedi S, Mishra AK. New Trends and Current Status of Positron-Emission Tomography and Single-Photon-Emission Computerized Tomography Radioligands for Neuronal Serotonin Receptors and Serotonin Transporter. Bioconjug Chem 2017; 28:2647-2672. [PMID: 28767225 DOI: 10.1021/acs.bioconjchem.7b00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The critical role of serotonin (5-hydroxytryptamine; 5-HT) and its receptors (5-HTRs) in the pathophysiology of diverse neuropsychiatric and neurodegenerative disorders render them attractive diagnostic and therapeutic targets for brain disorders. Therefore, the in vivo assessment of binding of 5-HT receptor ligands under a multitude of physiologic and pathologic scenarios may support more-accurate identification of disease and its progression and the patient's response to therapy as well as the screening of novel therapeutic strategies. The present Review aims to focus on the current status of radioligands used for positron-emission tomography (PET) and single-photon-emission computerized tomography (SPECT) imaging of human brain serotonin receptors. We further elaborate upon and emphasize the attributes that qualify a radioligand for theranostics on the basis of its frequency of use in clinics, its benefit to risk assessment in humans, and its continuous evolution, along with the major limitations.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Ankita Pandey
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
46
|
Zygowiec J, Solomon S, Jaworski A, Bloome M, Gotlib A. 25C-NBOMe Ingestion. Clin Pract Cases Emerg Med 2017; 1:295-297. [PMID: 29849316 PMCID: PMC5965197 DOI: 10.5811/cpcem.2017.5.33994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/07/2017] [Accepted: 05/15/2017] [Indexed: 11/12/2022] Open
Abstract
The popularity of recreational synthetic drug use has increased within the past several years. Emergency physicians, along with prehospital providers, are often the first to interact with patients who use these new drugs. We report the case of a 27-year-old male with two emergency department visits with confirmed ingestion of a relatively new synthetic drug of abuse. We discuss symptom management as well as the identification process of the ingestant.
Collapse
Affiliation(s)
- Jonathan Zygowiec
- Henry Ford Wyandotte Hospital, Department of Emergency Medicine, Wyandotte, Michigan
| | - Spencer Solomon
- Henry Ford Wyandotte Hospital, Department of Emergency Medicine, Wyandotte, Michigan
| | - Anthony Jaworski
- Henry Ford Wyandotte Hospital, Department of Emergency Medicine, Wyandotte, Michigan
| | - Michael Bloome
- Henry Ford Wyandotte Hospital, Department of Emergency Medicine, Wyandotte, Michigan
| | - Ari Gotlib
- Henry Ford Wyandotte Hospital, Department of Emergency Medicine, Wyandotte, Michigan
| |
Collapse
|
47
|
Edgar FG, Hansen HD, Leth-Petersen S, Ettrup A, Kristensen JL, Knudsen GM, Herth MM. Synthesis, radiofluorination, and preliminary evaluation of the potential 5-HT 2A receptor agonists [ 18 F]Cimbi-92 and [ 18 F]Cimbi-150. J Labelled Comp Radiopharm 2017; 60:586-591. [PMID: 28856700 DOI: 10.1002/jlcr.3557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Abstract
An agonist PET tracer is of key interest for the imaging of the 5-HT2A receptor, as exemplified by the previously reported success of [11 C]Cimbi-36. Fluorine-18 holds several advantages over carbon-11, making it the radionuclide of choice for clinical purposes. In this respect, an 18 F-labelled agonist 5-HT2A receptor (5-HT2A R) tracer is highly sought after. Herein, we report a 2-step, 1-pot labelling methodology of 2 tracer candidates. Both ligands display high in vitro affinities for the 5-HT2A R. The compounds were synthesised from easily accessible labelling precursors, and radiolabelled in acceptable radiochemical yields, sufficient for in vivo studies in domestic pigs. PET images partially conformed to the expected brain distribution of the 5-HT2A R; a notable exception however being significant uptake in the striatum and thalamus. Additionally, a within-scan displacement challenge with a 5-HT2A R antagonist was unsuccessful, indicating that the tracers cannot be considered optimal for neuroimaging of the 5-HT2A R.
Collapse
Affiliation(s)
- Fraser Graeme Edgar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
| | | | - Anders Ettrup
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen, Denmark
| |
Collapse
|
48
|
Valento M, Lebin J. Emerging Drugs of Abuse: Synthetic Cannabinoids, Phenylethylamines (2C Drugs), and Synthetic Cathinones. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2017. [DOI: 10.1016/j.cpem.2017.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Yang KC, Stepanov V, Martinsson S, Ettrup A, Takano A, Knudsen GM, Halldin C, Farde L, Finnema SJ. Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain. Int J Neuropsychopharmacol 2017; 20:683-691. [PMID: 28911007 PMCID: PMC5581490 DOI: 10.1093/ijnp/pyx051] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/18/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND [11C]Cimbi-36 is a serotonin 2A receptor agonist positron emission tomography radioligand that has recently been examined in humans. The binding of agonist radioligand is expected to be more sensitive to endogenous neurotransmitter concentrations than antagonist radioligands. In the current study, we compared the effect of serotonin releaser fenfluramine on the binding of [11C]Cimbi-36, [11C]MDL 100907 (a serotonin 2A receptor antagonist radioligand), and [11C]AZ10419369 (a serotonin 1B receptor partial agonist radioligand with established serotonin sensitivity) in the monkey brain. METHODS Eighteen positron emission tomography measurements, 6 for each radioligand, were performed in 3 rhesus monkeys before or after administration of 5.0 mg/kg fenfluramine. Binding potential values were determined with the simplified reference tissue model using cerebellum as the reference region. RESULTS Fenfluramine significantly decreased [11C]Cimbi-36 (26-62%) and [11C]AZ10419369 (35-58%) binding potential values in most regions (P < 0.05). Fenfluramine-induced decreases in [11C]MDL 100907 binding potential were 8% to 30% and statistically significant in 3 regions. Decreases in [11C]Cimbi-36 binding potential were larger than for [11C]AZ10419369 in neocortical and limbic regions (~35%) but smaller in striatum and thalamus (~40%). Decreases in [11C]Cimbi-36 binding potential were 0.9 to 2.8 times larger than for [11C]MDL 100907, and the fraction of serotonin 2A receptor in the high-affinity state was estimated as 54% in the neocortex. CONCLUSIONS The serotonin sensitivity of serotonin 2A receptor agonist radioligand [11C]Cimbi-36 was higher than for antagonist radioligand [11C]MDL 100907. The serotonin sensitivity of [11C]Cimbi-36 was similar to [11C]AZ10419369, which is one of the most sensitive radioligands. [11C]Cimbi-36 is a promising radioligand to examine serotonin release in the primate brain.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde).,Correspondence: Kai-Chun Yang, MD, Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska University Hospital, Building R5:02, SE-171 76 Stockholm, Sweden ()
| | - Vladimir Stepanov
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Stefan Martinsson
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Anders Ettrup
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Akihiro Takano
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Gitte M Knudsen
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Christer Halldin
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Lars Farde
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| | - Sjoerd J Finnema
- Karolinska Institutet and Stockholm County Council, Department of Clinical Neuroscience, Center for Psychiatric Research, Stockholm, Sweden (Drs Yang and Stepanov, Mr Martinsson, and Drs Takano, Halldin, Farde, and Finnema); Rigshospitalet, Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark and University of Copenhagen, Faculty of Health and Medicine Sciences, Copenhagen, Denmark (Drs Ettrup and Knudsen); AstraZeneca, PET Science Center at Karolinska Institutet, Personalized Health Care and Biomarkers, Stockholm, Sweden (Dr Farde)
| |
Collapse
|
50
|
Pasin D, Cawley A, Bidny S, Fu S. Characterization of hallucinogenic phenethylamines using high-resolution mass spectrometry for non-targeted screening purposes. Drug Test Anal 2017; 9:1620-1629. [DOI: 10.1002/dta.2171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Daniel Pasin
- Centre for Forensic Science; University of Technology Sydney; Broadway NSW 2007 Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory; Racing NSW Sydney NSW 2000 Australia
| | - Sergei Bidny
- Forensic Toxicology Laboratory; NSW Forensic and Analytical Science Service; Lidcombe NSW 2141 Australia
| | - Shanlin Fu
- Centre for Forensic Science; University of Technology Sydney; Broadway NSW 2007 Australia
| |
Collapse
|