1
|
Zakzuk J, Lopez JF, Akdis C, Caraballo L, Akdis M M, van de Veen W. Human Ascaris infection is associated with higher frequencies of IL-10 producing B cells. PLoS Negl Trop Dis 2024; 18:e0012520. [PMID: 39312581 DOI: 10.1371/journal.pntd.0012520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Ascaris lumbricoides has dual effects on the immune system of infected hosts. The IgE response to this parasite has been thoroughly studied, but little is known about cellular responses induced by infection. This study aims to explore the interplay between A. lumbricoides infection and B cell responses, especially B regulatory cells. METHODS Participants from Santa Catalina, Bolívar, Colombia, a helminth-endemic town, were screened for soil-transmitted helminthiasis (STH) using stool examinations. Eighteen A. lumbricoides-infected and 11 non-infected subjects were selected. Blood samples were analyzed for Breg cells and related cytokines, and immunoglobulins specific to the A. lumbricoides excretory/secretory product, ABA-1. RESULTS Infected subjects exhibited higher frequencies of Breg cells, especially those with a higher A. lumbricoides egg burden. Higher frequencies of different Breg subsets were observed in infected individuals, with CD25+CD71+CD73- B cells being notably increased in strongly infected individuals. Additionally, A. lumbricoides infection was associated with reduced levels of circulating ABA-1-specific IgG1 and IgE. IL-10+ B cell frequencies correlated inversely with ABA-1-specific IgE. CONCLUSIONS A. lumbricoides infection has a significant impact on the immune response, particularly on Breg cell populations and antibody responses. Our findings suggest that A. lumbricoides infection mediates a dose-dependent immunosuppressive response characterized by an increase in Breg cells and concomitant suppression of ABA-1-specific humoral responses.
Collapse
Affiliation(s)
- Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Juan F Lopez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mübeccel Akdis M
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
2
|
Salim Masoud N, Knopp S, Lenz N, Lweno O, Abdul Kibondo U, Mohamed A, Schindler T, Rothen J, Masimba J, S. Mohammed A, Althaus F, Abdulla S, Tanner M, Daubenberger C, Genton B. The impact of soil transmitted helminth on malaria clinical presentation and treatment outcome: A case control study among children in Bagamoyo district, coastal region of Tanzania. PLoS Negl Trop Dis 2024; 18:e0012412. [PMID: 39133750 PMCID: PMC11341094 DOI: 10.1371/journal.pntd.0012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Parasitic infectious agents rarely occur in isolation. Epidemiological evidence is mostly lacking, and little is known on how the two common parasites Plasmodium and soil transmitted helminths (STH) interact. There are contradictory findings in different studies. Synergism, antagonism and neutral effect have been documented between Plasmodium and STH. This study investigated the impact of STH on clinical malaria presentation and treatment outcome. METHODS A matched case control study with a semi longitudinal follow up according to World Health Organization (WHO) antimalarial surveillance guideline was done among children aged 2 months to 9 years inclusively living in western rural areas of Bagamoyo, coastal region of Tanzania. Cases were children with uncomplicated and severe malaria enrolled from the health facilities while controls were children with asymptomatic Plasmodium parasitemia enrolled from the same community. RESULTS In simple conditional regression analysis there was a tendency for a protective effect of STH on the development of clinical malaria [OR = 0.6, 95% CI of 0.3-1.3] which was more marked for Enterobius vermicularis species [OR = 0.2, 95% CI of 0.0-0.9]. On the contrary, hookworm species tended to be associated with increased risk of clinical malaria [OR = 3.0, 95% CI of 0.9-9.5]. In multiple conditional regression analysis, the overall protective effect was lower for all helminth infection [OR = 0.8, 95% CI of 0.3-1.9] but remained significantly protective for E. vermicularis species [OR = 0.1, 95% CI of 0.0-1.0] and borderline significant for hookworm species [OR = 3.6, 95% CI of 0.9-14.3]. Using ordinal logistic regression which better reflects the progression of asymptomatic Plasmodium parasitemia to severe malaria, there was a 50% significant protective effect with overall helminths [OR = 0.5, 95% CI of 0.3-0.9]. On the contrary, hookworm species was highly predictive of uncomplicated and severe malaria [OR = 7.8, 95% (CI of 1.8-33.9) and 49.7 (95% CI of 1.9-1298.9) respectively]. Generally, children infected with STH had higher geometric mean time to first clearance of parasitemia. CONCLUSION The findings of a protective effect of E. vermicularis and an enhancing effect of hookworms may explain the contradictory results found in the literature about impact of helminths on clinical malaria. More insight should be gained on possible mechanisms for these opposite effects. These results should not deter at this stage deworming programs but rather foster implementation of integrated control program for these two common parasites.
Collapse
Affiliation(s)
- Nahya Salim Masoud
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
- Department of Pediatrics and Child Health, Muhimbili University Health and Allied Sciences (MUHAS), Dar es Salaam, United Republic of Tanzania
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefanie Knopp
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicole Lenz
- Food Microbial Systems, Risk Assessment and Mitigation Group, Agroscope, Bern, Switzerland
| | - Omar Lweno
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
| | - Ummi Abdul Kibondo
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
| | - Ali Mohamed
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
| | - Tobias Schindler
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
- University of Basel, Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Julian Rothen
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
- University of Basel, Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - John Masimba
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
| | - Alisa S. Mohammed
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
| | - Fabrice Althaus
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Health Unit, International Committee of the Red Cross (ICRC), Geneva, Switzerland
| | - Salim Abdulla
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, United Republic of Tanzania
| | - Marcel Tanner
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Claudia Daubenberger
- University of Basel, Basel, Switzerland
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Blaise Genton
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
González-Porcile MC, Muniz-Lagos AC, Cucher MA, Mourglia-Ettlin G. Mouse model of secondary cystic echinococcosis. Methods Cell Biol 2024; 185:115-136. [PMID: 38556444 DOI: 10.1016/bs.mcb.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cystic echinococcosis (CE) is a parasitic zoonosis caused by the larval stage of the cestode Echinococcus granulosus sensu lato (s. l.), a genetic complex composed of five species: E. granulosus sensu stricto (s. s.), E. equinus, E. ortleppi, E. canadensis, and E. felidis. The parasite requires two mammalian hosts to complete its life cycle: a definitive host (mainly dogs) harboring the adult parasite in its intestines, and an intermediate host (mostly farm and wild ungulates) where hydatid cysts develop mainly in the liver and lungs. Humans are accidental intermediate hosts, being susceptible to either primary or secondary forms of CE; the first one due to the ingestion of oncospheres, and the second one because of the spillage of protoscoleces (PSC) contained within a primary cyst. Secondary CE is a serious medical problem, and can be modeled in immunocompetent mice (a non-natural intermediate host) through the intraperitoneal inoculation of viable PSC from E. granulosus s. l. This model is useful to study not only the immunobiology of CE, but also to test new chemotherapeutics or therapeutical protocols, to explore novel vaccine candidates, and to evaluate alternative diagnostic and/or follow-up tools. The mouse model of secondary CE involves two sequential stages: an early stage of parasite pre-encystment (PSC develop into hydatid cysts in the peritoneal cavity of mice), and a late or chronic stage of parasite post-encystment (already differentiated cysts slowly grow during the whole host lifespan). This model is a time-consuming infection, whose outcome depends on several factors like the parasite infective dose, the mouse strain, and the parasite species/genotype. Thus, such variables should always be adjusted according to the research objectives. Herein, the general materials and procedures needed to establish secondary CE in mice are described, as well as several useful tips and recommendations.
Collapse
Affiliation(s)
- María Clara González-Porcile
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay; Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Montevideo, Uruguay; Graduate Program in Biotechnology, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Clara Muniz-Lagos
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay; Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Montevideo, Uruguay; Graduate Program in Biotechnology, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcela Alejandra Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias (DEPBIO), Facultad de Química, Universidad de la República, Montevideo, Uruguay; Unidad Asociada de Inmunología, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Inmunología, Instituto de Higiene "Prof. Arnoldo Berta", Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Kang SA, Yu HS. Anti-obesity effects by parasitic nematode ( Trichinella spiralis) total lysates. Front Cell Infect Microbiol 2024; 13:1285584. [PMID: 38259965 PMCID: PMC10800963 DOI: 10.3389/fcimb.2023.1285584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background Obesity is an inducible factor for the cause of chronic diseases and is described by an increase in the size and number of adipocytes that differentiate from precursor cells (preadipocytes). Parasitic helminths are the strongest natural trigger of type 2 immune system, and several studies have showed that helminth infections are inversely correlated with metabolic syndromes. Methodology/Principal findings To investigate whether helminth-derived molecules have therapeutic effects on high-fat diet (HFD)-induced obesity, we isolated total lysates from Trichinella spiralis muscle larvae. We then checked the anti-obesity effect after intraperitoneal administration and intraoral administration of total lysate from T. spiralis muscle larvae in a diet-induced obesity model. T. spiralis total lysates protect against obesity by inhibiting the proinflammatory response and/or enhancing M2 macrophages. In addition, we determined the effects of total lysates from T. spiralis muscle larvae on anti-obesity activities in 3T3-L1 preadipocytes by investigating the expression levels of key adipogenic regulators, including peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα) and adipocyte protein 2 (aP2). Oil Red O staining showed that the total lysates from T. spiralis muscle larvae decreased the differentiation of 3T3-L1 preadipocytes by decreasing the number of lipid droplets. In addition, the production levels of proinflammatory cytokines IL-1β, IL-6, IFN-γ and TNF-α were examined by enzyme-linked immunosorbent assay (ELISA). T. spiralis total lysates decreased intracellular lipid accumulation and suppressed the expression levels of PPARγ, C/EBPα and aP2. Conclusion/Significance These results show that T. spiralis total lysate significantly suppresses the symptoms of obesity in a diet- induced obesity model and 3T3-L1 cell differentiation and suggest that it has potential for novel anti-obesity therapeutics.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
5
|
Jeerawattanawart S, Hansakon A, Roytrakul S, Angkasekwinai P. Regulation and function of adiponectin in the intestinal epithelial cells in response to Trichinella spiralis infection. Sci Rep 2023; 13:14004. [PMID: 37635188 PMCID: PMC10460792 DOI: 10.1038/s41598-023-41377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Besides metabolic homeostasis regulation, adipokines are recently emerged as important players in regulating immunity and inflammation. Helminth infection has known to modulate circulating adipokine secretion; however, the regulation and function of adipokines in response to helminth infection is still unclear. Here, we investigated the regulation and function of adiponectin during T. spiralis infection. While there was no change in circulating level of adiponectin, we found an increased adiponectin, but not leptin expression in the small intestine. Interestingly, the intestinal adiponectin expression was strongly associated with the expression of epithelial cell-derived cytokines IL-25, IL-33, and TSLP following infection. Indeed, mice deficiency of IL-25 receptor exhibited no intestinal adiponectin induction upon helminth infection. Interestingly, IL-25-induced adiponectin modulated intestinal epithelial cell responses by enhancing occludin and CCL17 expression. Using LPS-induced intestinal epithelial barrier dysfunctions in a Caco-2 cell monolayer model, adiponectin pretreatment enhanced a Transepithelial electrical resistance (TEER) and occludin expression. More importantly, adiponectin pretreatment of Caco2 cells prevented T. spiralis larval invasion in vitro and its administration during infection enhanced intestinal IL-13 secretion and worm expulsion in vivo. Altogether, our data suggest that intestinal adiponectin expression induced by helminth infection through the regulation of IL-25 promotes worm clearance and intestinal barrier function.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Adithap Hansakon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand.
- Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
6
|
Al-kuraishy HM, Al-Gareeb AI, Alkazmi L, El-Bouseary MM, Hamad RS, Abdelhamid M, Batiha GES. The Potential Nexus between Helminths and SARS-CoV-2 Infection: A Literature Review. J Immunol Res 2023; 2023:5544819. [PMID: 37383608 PMCID: PMC10299886 DOI: 10.1155/2023/5544819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Chronic helminth infections (CHIs) can induce immunological tolerance through the upregulation of regulatory T cells. In coronavirus disease 2019 (COVID-19), abnormal adaptive immune response and exaggerated immune response may cause immune-mediated tissue damage. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and CHIs establish complicated immune interactions due to SARS-CoV-2-induced immunological stimulation and CHIs-induced immunological tolerance. However, COVID-19 severity in patients with CHIs is mild, as immune-suppressive anti-inflammatory cytokines counterbalance the risk of cytokine storm. Since CHIs have immunomodulatory effects, therefore, this narrative review aimed to clarify how CHIs modulate the immunoinflammatory response in SARS-CoV-2 infection. CHIs, through helminth-derived molecules, may suppress SARS-CoV-2 entry and associated hyperinflammation through attenuation of the inflammatory signaling pathway. In addition, CHIs may reduce the COVID-19 severity by reducing the SARS-CoV-2 entry points in the initial phase and immunomodulation in the late phase of the disease by suppressing the release of pro-inflammatory cytokines. In conclusion, CHIs may reduce the severity of SARS-CoV-2 infection by reducing hyperinflammation and exaggerated immune response. Thus, retrospective and prospective studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
7
|
Tong M, Yang X, Liu H, Ge H, Huang G, Kang X, Yang H, Liu Q, Ren P, Kuang X, Yan H, Shen X, Qiao Y, Kang Y, Li L, Yang Y, Fan W. The Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice. Int Immunopharmacol 2023; 117:109924. [PMID: 36848791 DOI: 10.1016/j.intimp.2023.109924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Obesity, an increasingly prevalent disease worldwide, is accompanied by chronic inflammation and intestinal dysbiosis. Helminth infections have been increasingly proved to exhibit a protective role in several inflammation-associated diseases. Considering the side effects of live parasite therapy, efforts have been made to develop helminth-derived antigens as promising candidates with fewer adverse effects. This study aimed to evaluate the effect and mechanisms of TsAg (T. spiralis-derived antigens) on obesity and the associated inflammation in high-fat diet (HFD)-fed mice. C57BL/6J mice were fed a normal diet or HFD with or without TsAg treatment. The results reported that TsAg treatment alleviated body weight gain and chronic inflammation induced by HFD. In the adipose tissue, TsAg treatment prevented macrophage infiltration, reduced the expression of Th1-type (IFN-γ) and Th17-type (IL-17A) cytokines while upregulating the production of Th2-type (IL-4) cytokines. Furthermore, TsAg treatment enhanced brown adipose tissue activation and energy and lipid metabolism and reduced intestinal dysbiosis, intestinal barrier permeability and LPS/TLR4 axis inflammation. Finally, the protective role of TsAg against obesity was transmissible via the fecal microbiota transplantation approach. For the first time, our findings showed that TsAg alleviated HFD-induced obesity and inflammation via modulation of the gut microbiota and balancing the immune disorders, suggesting that TsAg might be a safer promising therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Xiaodan Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Haixia Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huihui Ge
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Guangrong Huang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Hao Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Qingqing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Peng Ren
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaoyu Kuang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huan Yan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Xiaorong Shen
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yuyu Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Lin Li
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| |
Collapse
|
8
|
Caudet J, Trelis M, Cifre S, Tapia G, Soriano JM, Rodrigo R, Merino-Torres JF. Do Intestinal Unicellular Parasites Have a Role in the Inflammatory and Redox Status among the Severely Obese? Antioxidants (Basel) 2022; 11:2090. [PMID: 36358463 PMCID: PMC9686585 DOI: 10.3390/antiox11112090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The diagnosis of obesity comprises subjects with totally different phenotypes and metabolic profiles. Systemic inflammation and oxidative stress derived from the white adipose tissue are suggested as the link between this disease and the development of insulin resistance and metabolic comorbidities. The presence of unicellular eukaryotic parasites colonizing the human gut ecosystem is a common circumstance, and yet their influence on the inflammatory and redox status of the obese host has not been assessed. Herein, a set of inflammatory and redox biomarkers were assessed together with a parasitological analysis of 97 severely obese subjects. Information was also collected on insulin resistance and on the antioxidant composition of the diet. The global prevalence of intestinal unicellular parasites was 49.5%, with Blastocystis sp. the most prevalent protozoan found (42.3%). Colonized subjects displayed a higher total antioxidant capacity and a trend towards higher extracellular superoxide dismutase activity, regardless of their insulin resistance status, along with lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratios in plasma in the insulin-resistant subgroup. No changes in malondialdehyde levels, or in inflammatory cytokines in plasma, were found in regard to the colonization status. In conclusion, enteric eukaryotic unicellular parasites may play an important role in modulating the antioxidant defenses of an obese host, thus could have beneficial effects with respect to the development of systemic metabolic disorders.
Collapse
Affiliation(s)
- Jana Caudet
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - María Trelis
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - Susana Cifre
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
| | - Gabriela Tapia
- Parasite & Health Research Group, Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46010 Valencia, Spain
| | - José M. Soriano
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain
| | - Regina Rodrigo
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Joint Research Unit on Rare Diseases, CIPF-Health Research Institute Hospital La Fe, 46012 Valencia, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Juan F. Merino-Torres
- Department of Endocrinology and Nutrition, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute Hospital La Fe-University of Valencia, 46026 Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
9
|
Aravindhan V, Bobhate A, Sathishkumar K, Patil A, Kumpatla S, Viswanathan V. Unique Reciprocal Association Seen Between Latent Tuberculosis Infection and Diabetes Is Due to Immunoendocrine Modulation (DM-LTB-1). Front Microbiol 2022; 13:884374. [PMID: 35832818 PMCID: PMC9271927 DOI: 10.3389/fmicb.2022.884374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Aim The prevalence of latent tuberculosis infection (LTBI) among diabetes patients is poorly studied. In the present study, the prevalence of LTBI among pre-diabetes and diabetes patients was studied, along with immunoendocrine biomarkers (n = 804). Methods LTBI was screened by Quantiferon TB gold in Normal glucose tolerance [(NGT); n = 170, [Pre-diabetes (PDM; n = 209), Newly diagnosed diabetes (NDM; n = 165) and Known diabetes (KDM; n = 260) subjects. CRP, TNF-α, IL-6, IL-1β, IFN-β, IL-12, IFN-γ, IL-2, insulin, leptin, and adiponectin levels in serum and IFN-γ levels in quantiferon supernatants were quantified by ELISA. The expression of T-bet was quantified using qRT-PCR. Serum TBARS and nitrite levels were quantified by colorimetry. Results The LTBI prevalence was 32% in NGT, 23% in PDM, 24% in NDM, and 32% in KDM groups, with an adjusted OR of 0.61 (p < 0.05). Downregulation of CRP, TNF-α, and nitrites and upregulation of adiponectin could be responsible for LTBI mediated protection against insulin resistance (IR), while the high levels of IL-1β, IL-12, and leptin could be responsible for IR mediated anti-TB immunity. The defective antigen-specific IFN-γ response, as seen in the KDM group, could be responsible for the low detection rate of LTBI and high probability of endogenous reactivation. Conclusion There appears to be a biphasic relationship between diabetes-latent tuberculosis: At the early stages of diabetes it is reciprocal, while at a late stage it is synergistic, this important phenomenon obviously needs further research.
Collapse
Affiliation(s)
- Vivekanandhan Aravindhan
- Department of Genetics, Dr. ALM PG IBMS, University of Madras, Chennai, India
- *Correspondence: Vivekanandhan Aravindhan
| | - Anup Bobhate
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
| | - Kuppan Sathishkumar
- Department of Genetics, Dr. ALM PG IBMS, University of Madras, Chennai, India
| | - Aruna Patil
- ESIC-PGIMSR Medical College and Hospital, Chennai, India
| | | | - Vijay Viswanathan
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
- Vijay Viswanathan
| |
Collapse
|
10
|
Yang H, Li H, Chen W, Mei Z, Yuan Y, Wang X, Chu L, Xu Y, Sun Y, Li D, Gao H, Zhan B, Li H, Yang X. Therapeutic Effect of Schistosoma japonicum Cystatin on Atherosclerotic Renal Damage. Front Cell Dev Biol 2021; 9:760980. [PMID: 34901005 PMCID: PMC8656285 DOI: 10.3389/fcell.2021.760980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is a chronic inflammation of the arterial vessel wall driven by lipid metabolism disorders. Although helminthic infection and their derivatives have been identified to attenuate the chronic inflammatory diseases, the immunomodulatory effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) on metabolic diseases and atherosclerosis has not been reported. In this study, we investigated the therapeutic efficacy of rSj-Cys on atherosclerotic renal damage and explored the related immunological mechanism. The results demonstrated that treatment with rSj-Cys significantly reduced body weight gain, hyperlipidemia, and atherosclerosis induced by the high-fat diet in apoE–/– mice. The treatment of rSj-Cys also significantly improved kidney functions through promoting macrophage polarization from M1 to M2, therefore inhibiting M1 macrophage–induced inflammation. The possible mechanism underlying the regulatory effect of rSj-Cys on reducing atherosclerosis and atherosclerotic renal damage is that rSj-Cys stimulates regulatory T cell and M2 macrophage polarization that produce regulatory cytokines, such as interleukin 10 and transforming growth factor β. The therapeutic effect of rSj-Cys on atherosclerotic renal damage is possibly through inhibiting the activation of TLR2/Myd88 signaling pathway. The results in this study provide evidence for the first time that Schistosoma-derived cystatin could be developed as a therapeutic agent to treat lipid metabolism disorder and atherosclerosis that threats million lives around the world.
Collapse
Affiliation(s)
- Huijuan Yang
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Hongqi Li
- Department of Gerontology, Anhui Provincial Hospital, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Weidong Chen
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijie Mei
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu Xu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Yan Sun
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Dingru Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Hongyu Gao
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Basic Medical College of Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Gao YR, Zhang RH, Li R, Tang CL, Pan Q, Pen P. The effects of helminth infections against type 2 diabetes. Parasitol Res 2021; 120:1935-1942. [PMID: 34002262 DOI: 10.1007/s00436-021-07189-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2D) is a prevalent inflammation-related disease characterized by insulin resistance and elevated blood glucose levels. The high incidence rate of T2D in Western societies may be due to environmental conditions, including reduced worm exposure. In human and animal models, some helminths, such as Schistosoma, Nippostrongylus, Strongyloides, and Heligmosomoides, and their products reportedly ameliorate or prevent T2D progression. T2D induces adaptive immune pathways involved in the inhibition of type 1 immune responses, promotion of type 2 immune responses, and expansion of regulatory T cells and innate immune cells, such as macrophages, eosinophils, and group 2 innate lymphoid cells. Among immune cells expanded in T2DM, type 2 immune cells and macrophages are the most important and may have synergistic effects. The stimulation of host immunity by helminth infections also promotes interactions between the innate and adaptive immune systems. In this paper, we provide a comprehensive review of intestinal helminths' protective effects against T2D.
Collapse
Affiliation(s)
- Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ru Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Peng Pen
- Wuhan Institute for Tuberculosis Control, Wuhan Pulmonary Hospital, Wuhan, 430030, China.
| |
Collapse
|
12
|
Zou ZQ, Liu M, Zhong HQ, Guan GY. Association of previous schistosome infection with fatty liver and coronary heart disease: A cross-sectional study in china. Parasite Immunol 2021; 43:e12822. [PMID: 33454990 DOI: 10.1111/pim.12822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/05/2020] [Accepted: 01/08/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND More than 11 million people were estimated to have been infected by Schistosoma japonicum in China before the 1950s. However, few studies have been conducted to evaluate the longitudinal effects of previous schistosome infection (PSI). OBJECTIVE We aimed to evaluate the association of PSI with fatty liver and coronary heart disease in China. METHODS A cross-sectional study was conducted in regions which were all reportedly heavily endemic for S japonicum in China. All data were collected using a questionnaire administered and health examinations by well-trained medical professionals. 2867 participants aged 40 years and older were enrolled. Among these, 731 patients with PSI were selected as study subjects and 2136 subjects served as controls. Comparisons between groups were performed with or without an adjustment for a covariate, using Student's t tests for continuous variables and chi-square testing for categorical variables. Multivariable logistic models were used to estimate the associations between PSI and fatty liver or coronary heart disease. RESULTS The PSI participants had significantly lower levels of triglyceride, low-density lipoprotein cholesterol, fasting blood glucose, uric acid, serum creatinine, urea nitrogen, platelet, total protein and globulin as well as a lower prevalence of fatty liver (13.3% vs 53.6%, P < .001) and coronary heart disease (3.4% vs 6.0%, P < .05) compared with the uninfected, contemporaneous controls (without PSI), whereas the PSI participants had higher levels of high-density lipoprotein cholesterol, direct bilirubin and a higher prevalence of hepatic dysfunction compared with those without PSI (P < .05). CONCLUSION We found PSI significantly negatively associated with fatty liver and coronary heart disease. However, further studies on schistosomiasis may provide new directions for prevention and treatment of fatty liver and coronary heart disease.
Collapse
Affiliation(s)
- Zhuo-Qun Zou
- Gerontology Department, Huadong Sanatorium, Wuxi, China
| | - Mei Liu
- Gerontology Department, Huadong Sanatorium, Wuxi, China
| | | | - Guo-Yue Guan
- Gerontology Department, Huadong Sanatorium, Wuxi, China
| |
Collapse
|
13
|
Trichinella spiralis infection ameliorated diet-induced obesity model in mice. Int J Parasitol 2020; 51:63-71. [PMID: 32966835 DOI: 10.1016/j.ijpara.2020.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
Obesity is an increasingly prevalent disease worldwide, and genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases. Emerging studies indicate that innate and adaptive immune cell responses in adipose tissue play critical roles in the regulation of metabolic homeostasis. Parasitic helminths are the strongest natural inducers of type 2 inflammatory responses, and several studies have revealed that helminth infections inversely correlate with metabolic syndrome. Hence, this study investigated whether helminth infections could have preventative effects on high fat diet-induced obesity. Female C57BL/6 mice were maintained on either a low fat diet (LFD, 10% fat) or a high fat diet (HFD, 60% fat) for 6 weeks after Trichinella spiralis infection. The mice were randomly divided into four groups and were fed a normal diet, LFD, LFD after T. spiralis infection (Inf + LFD), a high fat diet (HFD), or HFD after T. spiralis infection (HFD + inf). All groups were assayed for body weight, food efficiency ratio (FER), total body weight gain (g)/total food intake amount (g) fat weight, and blood biochemical parameters. Our data indicate that the HFD + inf group significantly reduced body weight gain, fat mass, total cholesterol, and FER. Analysis of immune cell composition by flow cytometry revealed that T. spiralis promoted strong decreases in proinflammatory adipose macrophages (F4/80+CD11c+) and T cells. The alterations in microbiota from fecal samples of mice were analyzed, which showed that T. spiralis infection decreased the ratio of Firmicutes to Bacteriodetes, thereby restoring the previously increased ratio of Firmicutes to Bacteriodetes in HFD-fed mice. Moreover, elimination of T. spiralis retained the protective effects in the HFD-fed obese mice whereas flubendazole (FLBZ) treatment increased levels of the families Lachnospiraceae and Ruminococcaceae. In summary, we provided novel data suggesting that helminth infection protects against obesity and the protection was closely related to M2 macrophage proliferation, an inhibiting proinflammatory response. In addition, it alters the microbiota in the gut.
Collapse
|
14
|
Rajamanickam A, Munisankar S, Thiruvengadam K, Menon PA, Dolla C, Nutman TB, Babu S. Impact of Helminth Infection on Metabolic and Immune Homeostasis in Non-diabetic Obesity. Front Immunol 2020; 11:2195. [PMID: 33042134 PMCID: PMC7524873 DOI: 10.3389/fimmu.2020.02195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Several epidemiological and immunological studies indicate a reciprocal association between obesity/metabolic syndrome and helminth infections. Numerous studies demonstrated that obesity is concomitant with chronic low-grade inflammation, which is marked by vital changes in cellular composition and function of adipose tissue. However, the effect of helminth infection on the homeostatic milieu in obesity is not well-understood. To determine the relationship between Strongyloides stercoralis (Ss) infection and obesity, we examined an array of parameters linked with obesity both before and at 6 months following anthelmintic treatment. To this end, we measured serum levels of pancreatic hormones, incretins, adipokines and Type-1, Type-2, Type-17, and other proinflammatory cytokines in those with non-diabetic obesity with (INF) or without Ss infection (UN). In INF individuals, we evaluated the levels of these parameters at 6 months following anthelmintic treatment. INF individuals revealed significantly lower levels of insulin, glucagon, C-peptide, and GLP-1 and significantly elevated levels of GIP compared to UN individuals. INF individuals also showed significantly lower levels of Type-1, Type-17 and other pro-inflammatory cytokines and significantly increased levels of Type-2 and regulatory cytokines in comparison to UN individuals. Most of these changes were significantly reversed following anthelmintic treatment. Ss infection is associated with a significant alteration of pancreatic hormones, incretins, adipokines, and cytokines in obese individuals and its partial reversal following anthelmintic treatment. Our data offer a possible biological mechanism for the protective effect of Ss infection on obesity.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institute of Health-National Institute for Research in Tuberculosis (NIRT)-International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institute of Health-National Institute for Research in Tuberculosis (NIRT)-International Center for Excellence in Research, Chennai, India
| | - Kannan Thiruvengadam
- Department of Epidemiology, National Institute for Research in Tuberculosis, Chennai, India
| | - Pradeep A Menon
- Department of Epidemiology, National Institute for Research in Tuberculosis, Chennai, India
| | - Chandrakumar Dolla
- Department of Epidemiology, National Institute for Research in Tuberculosis, Chennai, India
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Subash Babu
- National Institute of Health-National Institute for Research in Tuberculosis (NIRT)-International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
15
|
Maple PAC, Gran B, Tanasescu R, Pritchard DI, Constantinescu CS. An Absence of Epstein-Barr Virus Reactivation and Associations with Disease Activity in People with Multiple Sclerosis Undergoing Therapeutic Hookworm Vaccination. Vaccines (Basel) 2020; 8:vaccines8030487. [PMID: 32872342 PMCID: PMC7564729 DOI: 10.3390/vaccines8030487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Epstein–Barr virus (EBV) infection is strongly associated with multiple sclerosis (MS). Helminth infection can downregulate antiviral immune responses, potentially protecting against MS, but with a theoretical risk for reactivating latent EBV infection. Objective: To investigate parameters of EBV infection and their relationship with disease activity in people with MS (PwMS) therapeutically vaccinated with Necator americanus (hookworm). Methods: Sequential serum samples from 51 PwMS; 26 therapeutically infected (25 larvae) with N. americanus and 25 controls were tested for EBV virus capsid antigen (VCA) IgG and IgM, EBV nuclear antigen-1 (EBNA-1) IgG, and EBV early antigen (EA) IgG. Disease activity was assessed by periodic MRI. Significance was set at p < 0.05. Results: All PwMS were EBV VCA IgG and EBNA-1 IgG positive, and 35.2% were EBV EA IgG positive. EBV antibody levels were generally stable, and EBV reactivation in PwMS was not demonstrated by significant increases in IgG titre over 12 months. Disease activity was most frequent in PwMS possessing high levels of EBV VCA IgG (>600 units/mL) or EBNA-1 IgG (>150 units/mL); however, there was no association with hookworm treatment. Interpretation: Therapeutic hookworm vaccination was not associated with EBV reactivation. Multiple sclerosis disease activity was associated with high levels of EBV VCA IgG or EBNA-1 IgG.
Collapse
Affiliation(s)
- Peter A. C. Maple
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Correspondence: ; Tel.: +44-115-8231443; Fax: +44-115-9709738
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Department of Neurology, Nottingham University Hospitals NHS Trust; Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Radu Tanasescu
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Department of Neurology, Nottingham University Hospitals NHS Trust; Queen’s Medical Centre, Nottingham NG7 2UH, UK
- Department of Neurosciences, University of Medicine and Pharmacy Carol Davila, 021172 Bucharest, Romania
- Department of Neurology, Colentina Hospital, 021172 Bucharest, Romania
| | - David I. Pritchard
- Immune Regulation Research Group (D.P.), University of Nottingham, Nottingham NG7 2UH, UK;
| | - Cris S. Constantinescu
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Department of Neurology, Nottingham University Hospitals NHS Trust; Queen’s Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
16
|
Su CW, Chen CY, Jiao L, Long SR, Mao T, Ji Q, O'Donnell S, Stanton C, Zheng S, Walker WA, Cherayil BJ, Shi HN. Helminth-Induced and Th2-Dependent Alterations of the Gut Microbiota Attenuate Obesity Caused by High-Fat Diet. Cell Mol Gastroenterol Hepatol 2020; 10:763-778. [PMID: 32629118 PMCID: PMC7498948 DOI: 10.1016/j.jcmgh.2020.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Epidemiological and animal studies have indicated an inverse correlation between the rising prevalence of obesity and metabolic syndrome and exposure to helminths. Whether helminth-induced immune response contributes to microbiota remodeling in obesity remains unknown. The aim of this study is to explore the immune-regulatory role of helminth in the prevention of HFD-induced obesity through remodeling gut microbiome. METHODS C57BL/6J WT and STAT6-/- mice were infected with Heligmosomoides polygyrus and followed by high fat diet (HFD) feeding for 6 weeks. The host immune response, body weight, and fecal microbiota composition were analyzed. We used adoptive transfer of M2 macrophages and microbiota transplantation approaches to determine the impact of these factors on HFD-obesity. We also examined stool microbiota composition and short chain fatty acids (SCFAs) concentration and determined the expression of SCFA-relevant receptors in the recipient mice. RESULTS Helminth infection of STAT6-/- (Th2-deficient) mice and adoptive transfer of helminth-induced alternatively activated (M2) macrophages demonstrated that the helminth-associated Th2 immune response plays an important role in the protection against obesity and induces changes in microbiota composition. Microbiota transplantation showed that helminth-induced, Th2-dependent alterations of the gut microbiota are sufficient to confer protection against obesity. Collectively, these results indicate that helminth infection protects against HFD-induced obesity by Th2-dependent, M2 macrophage-mediated alterations of the intestinal microbiota. CONCLUSION Our findings provide new mechanistic insights into the complex interplay between helminth infection, the immune system and the gut microbiota in a HFD-induced obesity model and holds promise for gut microbiome-targeted immunotherapy in obesity prevention.
Collapse
Affiliation(s)
- Chien Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Lefei Jiao
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Tangyou Mao
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Qiaorong Ji
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Shane O'Donnell
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Shasha Zheng
- Department of Nutrition, California Baptist University, Riverside, California
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
17
|
Filbey KJ, Mehta PH, Meijlink KJ, Pellefigues C, Schmidt AJ, Le Gros G. The Gastrointestinal Helminth Heligmosomoides bakeri Suppresses Inflammation in a Model of Contact Hypersensitivity. Front Immunol 2020; 11:950. [PMID: 32508831 PMCID: PMC7249854 DOI: 10.3389/fimmu.2020.00950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
Helminths regulate host immune responses to ensure their own long-term survival. Numerous studies have demonstrated that these helminth-induced regulatory mechanisms can also limit host inflammatory responses in several disease models. We used the Heligmosomoides bakeri (Hb) infection model (also known as H. polygyrus or H. polygyrus bakeri in the literature) to test whether such immune regulation affects skin inflammatory responses induced by the model contact sensitiser dibutyl phthalate fluorescein isothiocynate (DBP-FITC). Skin lysates from DBP-FITC-sensitized, Hb-infected mice produced less neutrophil specific chemokines and had significantly reduced levels of skin thickening and cellular inflammatory responses in tissue and draining lymph nodes (LNs) compared to uninfected mice. Hb-induced suppression did not appear to be mediated by regulatory T cells, nor was it due to impaired dendritic cell (DC) activity. Mice cleared of infection remained unresponsive to DBP-FITC sensitization indicating that suppression was not via the secretion of Hb-derived short-lived regulatory molecules, although long-term effects on cells cannot be ruled out. Importantly, similar helminth-induced suppression of inflammation was also seen in the draining LN after intradermal injection of the ubiquitous allergen house dust mite (HDM). These findings demonstrate that Hb infection attenuates skin inflammatory responses by suppressing chemokine production and recruitment of innate cells. These findings further contribute to the growing body of evidence that helminth infection can modulate inflammatory and allergic responses via a number of mechanisms with potential to be exploited in therapeutic and preventative strategies in the future.
Collapse
Affiliation(s)
- Kara J Filbey
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Palak H Mehta
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
18
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Arora N, Kaur R, Anjum F, Tripathi S, Mishra A, Kumar R, Prasad A. Neglected Agent Eminent Disease: Linking Human Helminthic Infection, Inflammation, and Malignancy. Front Cell Infect Microbiol 2019; 9:402. [PMID: 31867284 PMCID: PMC6909818 DOI: 10.3389/fcimb.2019.00402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Helminthic parasitic infection is grossly prevalent across the globe and is considered a significant factor in human cancer occurrence induced by biological agents. Although only three helminths (Schistosoma haematobium, Clonorchis sinensis, and Opisthorchis viverrini) so far have been directly associated with carcinogenesis; there are evidence suggesting the involvement of other species too. Broadly, human helminthiasis can cause chronic inflammation, genetic instability, and host immune modulation by affecting inter- and intracellular communications, disruption of proliferation-anti-proliferation pathways, and stimulation of malignant stem cell progeny. These changes ultimately lead to tumor development through the secretion of soluble factors that interact with host cells. However, the detailed mechanisms by which helminths introduce and promote malignant transformation of host cells are still not clear. Here, we reviewed the current understanding of immune-pathogenesis of helminth parasites, which have been associated with carcinogenesis, and how these infections initiate carcinogenesis in the host.
Collapse
Affiliation(s)
- Naina Arora
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rimanpreet Kaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Farhan Anjum
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Shweta Tripathi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Rajiv Kumar
- Institute for Himalayan Bioresource Technology (CSIR), Palampur, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
20
|
Arias-Hernández D, Flores-Pérez FI, Domínguez-Roldan R, Báez-Saldaña A, Carreon RA, García-Jiménez S, Hallal-Calleros C. Influence of the interaction between cysticercosis and obesity on rabbit behavior and productive parameters. Vet Parasitol 2019; 276:108964. [DOI: 10.1016/j.vetpar.2019.108964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
|
21
|
Kang SA, Park MK, Park SK, Choi JH, Lee DI, Song SM, Yu HS. Adoptive transfer of Trichinella spiralis-activated macrophages can ameliorate both Th1- and Th2-activated inflammation in murine models. Sci Rep 2019; 9:6547. [PMID: 31024043 PMCID: PMC6484028 DOI: 10.1038/s41598-019-43057-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Trichinella spiralis is a zoonotic nematode and food borne parasite and infection with T. spiralis leads to suppression of the host immune response and other immunopathologies. Alternative activated macrophages (M2) as well as Treg cells, a target for immunomodulation by the helminth parasite, play a critical role in initiating and modulating the host immune response to parasite. The precise mechanism by which helminths modulate host immune response is not fully understood. To determine the functions of parasite-induced M2 macrophages, we compared the effects of M1 and M2 macrophages obtained from Trichinella spiralis-infected mice with those of T. spiralis excretory/secretory (ES) protein-treated macrophages on experimental intestinal inflammation and allergic airway inflammation. T. spiralis infection induced M2 macrophage polarization by increasing the expression of CD206, ARG1, and Fizz2. In a single application, we introduced macrophages obtained from T. spiralis-infected mice and T. spiralis ES protein-treated macrophages into mice tail veins before the induction of dextran sulfate sodium (DSS)-induced colitis, ovalbumin (OVA)-alum sensitization, and OVA challenge. Colitis severity was assessed by determining the severity of colitis symptoms, colon length, histopathologic parameters, and Th1-related inflammatory cytokine levels. Compared with the DSS-colitis group, T. spiralis-infected mice and T. spiralis ES protein-treated macrophages showed significantly lower disease activity index (DAI) at sacrifice and smaller reductions of body weight and proinflammatory cytokine level. The severity of allergic airway inflammation was assessed by determining the severity of symptoms of inflammation, airway hyperresponsiveness (AHR), differential cell counts, histopathologic parameters, and levels of Th2-related inflammatory cytokines. Severe allergic airway inflammation was induced after OVA-alum sensitization and OVA challenge, which significantly increased Th2-related cytokine levels, eosinophil infiltration, and goblet cell hyperplasia in the lung. However, these severe allergic symptoms were significantly decreased in T. spiralis-infected mice and T. spiralis ES protein-treated macrophages. Helminth infection and helminth ES proteins induce M2 macrophages. Adoptive transfer of macrophages obtained from helminth-infected mice and helminth ES protein-activated macrophages is an effective treatment for preventing and treating airway allergy in mice and is promising as a therapeutic for treating inflammatory diseases.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Mi-Kyung Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Sang Kyun Park
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Jun Ho Choi
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Da In Lee
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - So Myong Song
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
22
|
Su CW, Chen CY, Li Y, Long SR, Massey W, Kumar DV, Walker WA, Shi HN. Helminth infection protects against high fat diet-induced obesity via induction of alternatively activated macrophages. Sci Rep 2018; 8:4607. [PMID: 29545532 PMCID: PMC5854586 DOI: 10.1038/s41598-018-22920-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate an inverse correlation between the prevalence of the so-called western diseases, such as obesity and metabolic syndrome, and the exposure to helminths. Obesity, a key risk factor for many chronic health problems, is rising globally and is accompanied by low-grade inflammation in adipose tissues. The precise mechanism by which helminths modulate metabolic syndrome and obesity is not fully understood. We infected high fat diet (HFD)-induced obese mice with the intestinal nematode parasite Heligmosomoides polygyrus and observed that helminth infection resulted in significantly attenuated obesity. Attenuated obesity corresponded with marked upregulation of uncoupling protein 1 (UCP1), a key protein involved in energy expenditure, in adipose tissue, suppression of glucose and triglyceride levels, and alteration in the expression of key genes involved in lipid metabolism. Moreover, the attenuated obesity in infected mice was associated with enhanced helminth-induced Th2/Treg responses and M2 macrophage polarization. Adoptive transfer of helminth-stimulated M2 cells to mice that were not infected with H. polygyrus resulted in a significant amelioration of HFD-induced obesity and increased adipose tissue browning. Thus, our results provide evidence that the helminth-dependent protection against obesity involves the induction of M2 macrophages.
Collapse
Affiliation(s)
- Chien Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Yali Li
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - William Massey
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Deepak Vijaya Kumar
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA.
| |
Collapse
|
23
|
Santiago HDC, Nutman TB. Role in Allergic Diseases of Immunological Cross-Reactivity between Allergens and Homologues of Parasite Proteins. Crit Rev Immunol 2017; 36:1-11. [PMID: 27480900 DOI: 10.1615/critrevimmunol.2016016545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Implied under the rubric of the hygiene hypothesis is that helminth infection can protect against allergic disease. It is well known that helminths induce processes associated with type 2 immune responses, but they also induce important regulatory responses that can modulate these type 2-associated responses-modulation that influences responses to bystander antigens including allergens. Indeed, most epidemiological studies demonstrate a beneficial effect of helminth infection on atopy, but there are also convincing data to demonstrate that helminth infection can precipitate or worsen allergic inflammation/disease. Reasons for these disparate findings are much debated, but there is a school of thought that suggests that helminth-triggered type 2-associated responses, including IgE to cross-reactive aeroallergens, can offset the regulatory effects imposed by the same organisms. The cross-reactivity among helminths and allergenic tropomyosins dominated the antigen/allergen cross-reactivity field, but recent data suggest that cross-reactivity is much more common than previously appreciated. It has been demonstrated that a high degree of molecular similarity exists between allergens and helminth proteins. Thus, an understanding of the mechanisms underlying the response induced by helminth infection and their impact on the induction of allergic disease in the host are critical for designing therapies using iatrogenic infections or parasite products to treat inflammatory diseases and for developing vaccines against helminth parasites.
Collapse
Affiliation(s)
- Helton da Costa Santiago
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
24
|
Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017; 140:1217-1228. [PMID: 29108604 DOI: 10.1016/j.jaci.2017.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
Allergic diseases are on the increase globally in parallel with a decrease in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in human subjects have generated a large knowledge base on the complexity of the interrelationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths can cause allergic-type inflammation, including symptoms of "classical" allergic disease. From an evolutionary perspective, subjects with an effective immune response against helminths can be more susceptible to allergy. This narrative review aims to inform readers of the most relevant up-to-date evidence on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but thus far, clinical trials in human subjects have not demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Collapse
|
25
|
Eze IC, Esse C, Bassa FK, Koné S, Acka F, Yao L, Imboden M, Jaeger FN, Schindler C, Dosso M, Laubhouet-Koffi V, Kouassi D, N'Goran EK, Utzinger J, Bonfoh B, Probst-Hensch N. Côte d'Ivoire Dual Burden of Disease (CoDuBu): Study Protocol to Investigate the Co-occurrence of Chronic Infections and Noncommunicable Diseases in Rural Settings of Epidemiological Transition. JMIR Res Protoc 2017; 6:e210. [PMID: 29079553 PMCID: PMC5681722 DOI: 10.2196/resprot.8599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Individual-level concomitance of infectious diseases and noncommunicable diseases (NCDs) is poorly studied, despite the reality of this dual disease burden for many low- and middle-income countries (LMICs). OBJECTIVE This study protocol describes the implementation of a cohort and biobank aiming for a better understanding of interrelation of helminth and Plasmodium infections with NCD phenotypes like metabolic syndrome, hypertension, and diabetes. METHODS A baseline cross-sectional population-based survey was conducted over one year, in the Taabo health and demographic surveillance system (HDSS) in south-central Côte d'Ivoire. We randomly identified 1020 consenting participants aged ≥18 years in three communities (Taabo-Cité, Amani-Ménou, and Tokohiri) reflecting varying stages of epidemiological transition. Participants underwent health examinations consisting of NCD phenotyping (anthropometry, blood pressure, renal function, glycemia, and lipids) and infectious disease testing (infections with soil-transmitted helminths, schistosomes, and Plasmodium). Individuals identified to have elevated blood pressure, glucose, lipids, or with infections were referred to the central/national health center for diagnostic confirmation and treatment. Aliquots of urine, stool, and venous blood were stored in a biobank for future exposome/phenome research. In-person interviews on sociodemographic attributes, risk factors for infectious diseases and NCDs, medication, vaccinations, and health care were also conducted. Appropriate statistical techniques will be applied in exploring the concomitance of infectious diseases and NCDs and their determinants. Participants' consent for follow-up contact was obtained. RESULTS Key results from this baseline study, which will be published in peer-reviewed literature, will provide information on the prevalence and co-occurrence of infectious diseases, NCDs, and their risk factors. The Taabo HDSS consists of rural and somewhat more urbanized areas, allowing for comparative studies at different levels of epidemiological transition. An HDSS setting is ideal as a basis for longitudinal studies since their sustainable field work teams hold close contact with the local population. CONCLUSIONS The collaboration between research institutions, public health organizations, health care providers, and staff from the Taabo HDSS in this study assures that the synthesized evidence will feed into health policy towards integrated infectious disease-NCD management. The preparation of health systems for the dual burden of disease is pressing in low- and middle-income countries. The established biobank will strengthen the local research capacity and offer opportunities for biomarker studies to deepen the understanding of the cross-talk between infectious diseases and NCDs. TRIAL REGISTRATION International Standard Randomized Controlled Trials Number (ISRCTN): 87099939; http://www.isrctn.com/ISRCTN87099939 (Archived by WebCite at http://www.webcitation.org/6uLEs1EsX).
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Clémence Esse
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Institut d'Ethnosociologie, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Fidèle K Bassa
- Unite de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Siaka Koné
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Felix Acka
- Institut National de Santé Publique, Abidjan, Côte d'Ivoire
| | - Loukou Yao
- Ligue Ivoirienne contre l'Hypertension Artérielle et les Maladies Cardiovasculaire, Abidjan, Côte d'Ivoire
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabienne N Jaeger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Mireille Dosso
- Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Véronique Laubhouet-Koffi
- Ligue Ivoirienne contre l'Hypertension Artérielle et les Maladies Cardiovasculaire, Abidjan, Côte d'Ivoire
| | - Dinard Kouassi
- Institut National de Santé Publique, Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Unite de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Bassirou Bonfoh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Taghipour N, Mosaffa N, Rostami-Nejad M, Homayoni MM, Mortaz E, Aghdaei HA, Zali MR. Syphacia obvelata: A New Hope to Induction of Intestinal Immunological Tolerance in C57BL/6 Mice. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:439-444. [PMID: 28877578 PMCID: PMC5594727 DOI: 10.3347/kjp.2017.55.4.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 11/23/2022]
Abstract
The ability of nematodes to manipulate the immune system of their host towards a Th2 and T regulatory responses has been proposed to suppress the inflammatory response. Clinical trials have proposed a useful effect of helminth infections on improvement of inflammatory disorders. In this study, we investigated the immunomodulatory effect of Syphacia obvelata infection to induce intestinal tolerance in C57BL/6 mice. Mice were infected through the cagemates with self-infected BALB/c mice. Four weeks post-infection, expression levels of IFN-γ, TNF-α, IL-17, and IL-10 were assessed in the supernatant of mesenteric lymph node (MLN) culture. Foxp3+Treg were measured in MLN cells by flow cytometry. In the S. obvelata-infected group, the percentage of Tregs (5.2±0.4) was significantly higher than the control (3.6±0.5) (P<0.05). The levels of IL-10 (55.3±2.2 vs 35.2±3.2), IL-17 (52.9±3.8 vs 41±1.8), IFN-γ (44.8±4.8 vs 22.3±2.3) and TNF-α (71.1±5.8 vs 60.1±3.3) were significantly increased in infected mice compared to the control group (P<0.05). The above results showed the potential effects of S. obvelata to induce intestinal tolerance. Therefore, it seems that S. obvelata may increase the immunological suppressive function in the intestinal tract.
Collapse
Affiliation(s)
- Niloofar Taghipour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Mohsen Homayoni
- Department of Parasitology and Mycology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Crowe J, Lumb FE, Harnett MM, Harnett W. Parasite excretory-secretory products and their effects on metabolic syndrome. Parasite Immunol 2017; 39. [PMID: 28066896 DOI: 10.1111/pim.12410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
Obesity, one of the main causes of metabolic syndrome (MetS), is an increasingly common health and economic problem worldwide, and one of the major risk factors for developing type 2 diabetes and cardiovascular disease. Chronic, low-grade inflammation is associated with MetS and obesity. A dominant type 2/anti-inflammatory response is required for metabolic homoeostasis within adipose tissue: during obesity, this response is replaced by infiltrating, inflammatory macrophages and T cells. Helminths and certain protozoan parasites are able to manipulate the host immune response towards a TH2 immune phenotype that is beneficial for their survival, and there is emerging data that there is an inverse correlation between the incidence of MetS and helminth infections, suggesting that, as with autoimmune and allergic diseases, helminths may play a protective role against MetS disease. Within this review, we will focus primarily on the excretory-secretory products that the parasites produce to modulate the immune system and discuss their potential use as therapeutics against MetS and its associated pathologies.
Collapse
Affiliation(s)
- J Crowe
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - F E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - M M Harnett
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - W Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
28
|
Bhattacharjee S, Kalbfuss N, Prazeres da Costa C. Parasites, microbiota and metabolic disease. Parasite Immunol 2016; 39. [DOI: 10.1111/pim.12390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Affiliation(s)
- S. Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene; Technische Universität München (TUM); München Germany
| | - N. Kalbfuss
- Institute for Medical Microbiology, Immunology and Hygiene; Technische Universität München (TUM); München Germany
| | - C. Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene; Technische Universität München (TUM); München Germany
| |
Collapse
|
29
|
Kim T, Holleman CL, Ptacek T, Morrow CD, Habegger KM. Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. Parasite Immunol 2016; 39. [PMID: 27924082 DOI: 10.1111/pim.12404] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES The combination of energy dense diets and reduced energy expenditure in modern society has escalated the prevalence of obesity and obesity-related comorbidities. Among these disease states, type-2 diabetics (T2D) are disproportionately associated with obesity, suggesting a shared etiology. In conjunction with defects in hormonal and inflammatory states, obesity and T2D are also characterized by dysbiosis. METHODS We have recently described the beneficial effects of duodenal nutrient exclusion, as induced by the duodenal endoluminal sleeve (DES); including body weight loss, prevented fat mass accumulation, and improved glucose tolerance in the ZDF rat, a rodent model of obesity and type-2 diabetes (T2D). To assess the relative role of DES on hindgut microbiota in the context of these metabolic changes, we analyzed cecal samples from rats implanted with a duodenal endoluminal sleeve (DES), or a sham control of this procedure. A group of pair-fed (pf) sham controls was also included to account for changes induced by reduced body weight and food intake. RESULTS Analysis of hindgut microbiota following DES in the ZDF rat elucidated discrete changes in several microbial populations including a reduction in Paraprevotella family members of the Clostridiales order along with an increase in Akkermansia muciniphila and species of the Allobaculum and Bifidobacterium genera. CONCLUSIONS Altogether, these observations suggest that like Roux-en Y gastric bypass (RYGB) and Metformin, regulation of gut microbiota may be a contributing factor to the therapeutic effects of DES.
Collapse
Affiliation(s)
- T Kim
- Comprehensive Diabetes Center and Department of Medicine-Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C L Holleman
- Comprehensive Diabetes Center and Department of Medicine-Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T Ptacek
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C D Morrow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K M Habegger
- Comprehensive Diabetes Center and Department of Medicine-Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
30
|
Tracey EF, McDermott RA, McDonald MI. Do worms protect against the metabolic syndrome? A systematic review and meta-analysis. Diabetes Res Clin Pract 2016; 120:209-20. [PMID: 27596058 DOI: 10.1016/j.diabres.2016.08.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/29/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023]
Abstract
AIMS There is increasing evidence on the role of helminth infections in modifying autoimmune and allergic diseases. These infections may have similar effect in other inflammatory processes, such as insulin resistance. This review aims to examine the literature on the effect of helminthic infections on metabolic outcomes in humans. METHODS Using the PRISMA protocol, we searched the literature using PubMed, MEDLINE, and a manual review of reference lists. Human studies published in English after 1995 were included. Four papers were included in this review. Data was extracted and a meta-analysis was conducted using a random-effects model. Heterogeneity was assessed using Tau(2) and I(2) tests. RESULTS The included studies found that infection was associated with lower glucose levels, less insulin resistance, and/or a lower prevalence of metabolic syndrome (MetS) or type 2 diabetes mellitus (T2DM). Meta-analysis showed that participants with a previous or current helminth infection were 50% less likely to have an endpoint of metabolic dysfunction in comparison to uninfected participants (OR 0.50; 95% CI 0.38-0.66). CONCLUSION This review has shown that helminth infections can be associated with improved metabolic outcomes. Understanding of the mechanisms underlying this relationship could facilitate the development of novel strategies to prevent or delay T2DM.
Collapse
Affiliation(s)
- Ella F Tracey
- College of Medicine & Dentistry, Division of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Robyn A McDermott
- Centre for Chronic Disease Prevention, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Malcolm I McDonald
- College of Medicine & Dentistry, Division of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia; Centre for Chronic Disease Prevention, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
31
|
Schistosome-Derived Molecules as Modulating Actors of the Immune System and Promising Candidates to Treat Autoimmune and Inflammatory Diseases. J Immunol Res 2016; 2016:5267485. [PMID: 27635405 PMCID: PMC5011209 DOI: 10.1155/2016/5267485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases.
Collapse
|
32
|
Cautivo KM, Molofsky AB. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells. Eur J Immunol 2016; 46:1315-25. [PMID: 27120716 DOI: 10.1002/eji.201545562] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or "allergic" immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT "browning," and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis.
Collapse
Affiliation(s)
- Kelly M Cautivo
- Department of Laboratory Medicine, Diabetes Center, University of California, San Francisco, CA, USA.,Microbiology & Immunology, University of California, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, Diabetes Center, University of California, San Francisco, CA, USA.,Microbiology & Immunology, University of California, San Francisco, CA, USA.,Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Echaubard P, Sripa B, Mallory FF, Wilcox BA. The role of evolutionary biology in research and control of liver flukes in Southeast Asia. INFECTION GENETICS AND EVOLUTION 2016; 43:381-97. [PMID: 27197053 DOI: 10.1016/j.meegid.2016.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 01/04/2023]
Abstract
Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework.
Collapse
Affiliation(s)
- Pierre Echaubard
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Tropical Disease Research laboratory, Department of Experimental Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Biology, Laurentian University, Sudbury, Ontario P3E 2C6, Canada; Global Health Asia, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Tropical Disease Research laboratory, Department of Experimental Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Department of Parasitology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Frank F Mallory
- Department of Biology, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Bruce A Wilcox
- Global Health Asia, Faculty of Public Health, Mahidol University, Bangkok, Thailand; Cummings School of Veterinary Medicine, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
34
|
Natural and induced antibodies contribute to differential susceptibility to secondary cystic echinococcosis of Balb/c and C57Bl/6 mice. Immunobiology 2016; 221:103-15. [DOI: 10.1016/j.imbio.2015.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023]
|
35
|
Sungkar S, Pohan APN, Ramadani A, Albar N, Azizah F, Nugraha ARA, Wiria AE. Heavy burden of intestinal parasite infections in Kalena Rongo village, a rural area in South West Sumba, eastern part of Indonesia: a cross sectional study. BMC Public Health 2015; 15:1296. [PMID: 26702820 PMCID: PMC4690433 DOI: 10.1186/s12889-015-2619-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/16/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Intestinal parasitic infections (IPIs) are one of the major public health problems, especially in the rural area of developing countries with low socio-economic status and poor sanitation. The study was aimed to determine the prevalence of IPIs among the inhabitants of a rural area in South West Sumba, eastern part of Indonesia. METHODS A cross-sectional study was done in Kalena Rongo village, South West Sumba in April 2014. Stool samples were collected and examined for IPIs using direct smear method. RESULTS Faecal samples were collected from 424 of 473 inhabitants of the village, age 2 months to 80 years. About 95.5 % (405/424) of the participants had any IPIs. The most prevalent parasites found were Ascaris lumbricoides 65.8 % (279/424), Trichuris trichiura 60.4 % (256/424), hookworms 53.5 % (227/424), Blastocystis hominis 34.4 % (146/424), Entamoeba histolytica 17.9 % (76/424), and Giardia lamblia 4.5 % (19/424). The villagers used no latrine and defecated in their backyard. Clean water sources were scarce and far from the village. CONCLUSIONS In Kalena Rongo village, the rural area in eastern part of Indonesia, the finding of IPIs was conspicuous and therefore expressed the poor hygiene and absence of proper sanitation in the area. Integrated efforts, such as improving infrastructure to provide clean water source and educating the inhabitants for appropriate hygienic lifestyle are needed.
Collapse
Affiliation(s)
- Saleha Sungkar
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Anggi P N Pohan
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Antari Ramadani
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Nafisah Albar
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Fitri Azizah
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Antonius R A Nugraha
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Aprilianto E Wiria
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia. .,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
36
|
Mourglia-Ettlin G, Merlino A, Capurro R, Dematteis S. Susceptibility and resistance to Echinococcus granulosus infection: Associations between mouse strains and early peritoneal immune responses. Immunobiology 2015; 221:418-26. [PMID: 26658113 DOI: 10.1016/j.imbio.2015.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 01/14/2023]
Abstract
In helminth infections, there are no easy associations between host susceptibility and immune responses. Interestingly, immunity to cestodes - unlike most helminths - seems to require Th1-type effectors. In this sense, we reported recently that Balb/c and C57Bl/6 mice are high and low susceptible strains, respectively, to experimental infection by Echinococcus granulosus. However, the role of the early cellular peritoneal response in such differential susceptibility is unknown. Here, we analyzed the kinetics of cytokines expression and cellular phenotypes in peritoneal cells from infected Balb/c and C57Bl/6 mice. Additionally, Principal Components Analysis (PCA) were conducted to highlight the most relevant differences between strains. Finally, the anti-parasite activities of peritoneal cells were assessed through in vitro systems. PCAs clustered C57Bl/6 mice by their early mixed IL-5/TNF-α responses and less intense expression of Th2-type cytokines. Moreover, they exhibited lower counts of eosinophils and higher numbers of macrophages and B cells. Functional studies showed that peritoneal cells from infected C57Bl/6 mice displayed greater anti-parasite activities, in accordance with higher rates of NO production and more efficient ADCC responses. In conclusion, mild Th2-responses and active cellular mechanisms are key determinants in murine resistance to E. granulosus infection, supporting the cestode immune exception among helminth parasites.
Collapse
Affiliation(s)
- Gustavo Mourglia-Ettlin
- Cátedra de Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República Avda. Alfredo Navarro 3051, CP 11600, Montevideo, Uruguay.
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República Iguá 4225, CP 11400, Montevideo, Uruguay.
| | - Rafael Capurro
- Cátedra de Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República Avda. Alfredo Navarro 3051, CP 11600, Montevideo, Uruguay.
| | - Sylvia Dematteis
- Cátedra de Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República Avda. Alfredo Navarro 3051, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
37
|
Shepherd C, Navarro S, Wangchuk P, Wilson D, Daly NL, Loukas A. Identifying the immunomodulatory components of helminths. Parasite Immunol 2015; 37:293-303. [PMID: 25854639 DOI: 10.1111/pim.12192] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Immunomodulatory components of helminths offer great promise as an entirely new class of biologics for the treatment of inflammatory diseases. Here, we discuss the emerging themes in helminth-driven immunomodulation in the context of therapeutic drug discovery. We broadly define the approaches that are currently applied by researchers to identify these helminth molecules, highlighting key areas of potential exploitation that have been mostly neglected thus far, notably small molecules. Finally, we propose that the investigation of immunomodulatory compounds will enable the translation of current and future research efforts into potential treatments for autoimmune and allergic diseases, while at the same time yielding new insights into the molecular interface of host-parasite biology.
Collapse
Affiliation(s)
- C Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Guigas B, Molofsky AB. A worm of one's own: how helminths modulate host adipose tissue function and metabolism. Trends Parasitol 2015; 31:435-41. [PMID: 25991556 PMCID: PMC4567404 DOI: 10.1016/j.pt.2015.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level.
Collapse
Affiliation(s)
- Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cellular Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ari B Molofsky
- Department of Microbiology & Immunology, University of California, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
39
|
Lukeš J, Stensvold CR, Jirků-Pomajbíková K, Wegener Parfrey L. Are Human Intestinal Eukaryotes Beneficial or Commensals? PLoS Pathog 2015; 11:e1005039. [PMID: 26270819 PMCID: PMC4536199 DOI: 10.1371/journal.ppat.1005039] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
| | | | | | - Laura Wegener Parfrey
- Canadian Institute for Advanced Research, Toronto, Canada
- Departments of Botany and Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Oliveira SMD, Bezerra FSDM, Carneiro TR, Pinheiro MCC, Queiroz JAN. Association between allergic responses and Schistosoma mansoni infection in residents in a low-endemic setting in Brazil. Rev Soc Bras Med Trop 2015; 47:770-4. [PMID: 25626657 DOI: 10.1590/0037-8682-0249-2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Schistosomiasis is endemic in 76 countries and territories. Several studies have found an inverse correlation between parasitic disease and the development of allergies. The purpose of the present study was to determine whether infection with Schistosoma mansoni in subjects with a low parasite load is protective against allergy. The final sample consisted of 39 S. mansoni-positive and 52 S. mansoni-negative residents of a small community in northeastern Brazil. METHODS All subjects were submitted to the Kato-Katz test, anti-S. mansoni IgG measurement, the prick test for aeroallergens, eosinophil counts and serum IgE measurement. RESULTS Subjects who reacted to one or more antigens in the prick test were considered allergic. Only 7 S. mansoni-positive subjects (17.9%) reacted to one or more antigens, whereas 20 S. mansoni-negative subjects (38.5%) tested positive for allergy. CONCLUSIONS Our findings suggest that, in areas of low endemicity, infection with S. mansoni significantly reduces the risk of the development of allergy in subjects with a low parasite load.
Collapse
Affiliation(s)
- Sara Menezes de Oliveira
- Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | | | | |
Collapse
|
41
|
Mylonas KJ, Jenkins SJ, Castellan RFP, Ruckerl D, McGregor K, Phythian-Adams AT, Hewitson JP, Campbell SM, MacDonald AS, Allen JE, Gray GA. The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an 'M2' phenotype in response to Th2 immunologic challenge. Immunobiology 2015; 220:924-33. [PMID: 25700973 PMCID: PMC4451497 DOI: 10.1016/j.imbio.2015.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/29/2015] [Accepted: 01/31/2015] [Indexed: 12/19/2022]
Abstract
Tissue resident macrophages have vital homeostatic roles in many tissues but their roles are less well defined in the heart. The present study aimed to identify the density, polarisation status and distribution of macrophages in the healthy murine heart and to investigate their ability to respond to immune challenge. Histological analysis of hearts from CSF-1 receptor (csf1-GFP; MacGreen) and CX3CR1 (Cx3cr1(GFP/+)) reporter mice revealed a sparse population of GFP positive macrophages that were evenly distributed throughout the left and right ventricular free walls and septum. F4/80+CD11b+ cardiac macrophages, sorted from myocardial homogenates, were able to phagocytose fluorescent beads in vitro and expressed markers typical of both 'M1' (IL-1β, TNF and CCR2) and 'M2' activation (Ym1, Arg 1, RELMα and IL-10), suggesting no specific polarisation in healthy myocardium. Exposure to Th2 challenge by infection of mice with helminth parasites Schistosoma mansoni, or Heligmosomoides polygyrus, resulted in an increase in cardiac macrophage density, adoption of a stellate morphology and increased expression of Ym1, RELMα and CD206 (mannose receptor), indicative of 'M2' polarisation. This was dependent on recruitment of Ly6ChighCCR2+ monocytes and was accompanied by an increase in collagen content. In conclusion, in the healthy heart resident macrophages are relatively sparse and have a phagocytic role. Following Th2 challenge this population expands due to monocyte recruitment and adopts an 'M2' phenotype associated with increased tissue fibrosis.
Collapse
Affiliation(s)
- Katie J Mylonas
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom.
| | - Stephen J Jenkins
- Centre for Inflammation Research, QMRI, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Raphael F P Castellan
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Dominik Ruckerl
- Institute of Immunology and Infection Research (IIIR), The King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Kieran McGregor
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Alexander T Phythian-Adams
- Institute of Immunology and Infection Research (IIIR), The King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, Scotland, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Grafton Street, Manchester M13 9NT, England, United Kingdom
| | - James P Hewitson
- Institute of Immunology and Infection Research (IIIR), The King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Sharon M Campbell
- Institute of Immunology and Infection Research (IIIR), The King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Andrew S MacDonald
- Institute of Immunology and Infection Research (IIIR), The King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, Scotland, United Kingdom; Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Grafton Street, Manchester M13 9NT, England, United Kingdom
| | - Judith E Allen
- Institute of Immunology and Infection Research (IIIR), The King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Gillian A Gray
- BHF/University Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| |
Collapse
|
42
|
Shen SW, Lu Y, Li F, Shen ZH, Xu M, Yao WF, Feng YB, Yun JT, Wang YP, Ling W, Qi HJ, Tong DX. The potential long-term effect of previous schistosome infection reduces the risk of metabolic syndrome among Chinese men. Parasite Immunol 2015; 37:333-9. [PMID: 25809087 DOI: 10.1111/pim.12187] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Affiliation(s)
- S.-W. Shen
- Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University; Wuxi City Jiangsu Province China
| | - Y. Lu
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| | - F. Li
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| | - Z.-H. Shen
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| | - M. Xu
- Jiangsu Institute of Parasitic Diseases; Wuxi City Jiangsu Province China
| | - W.-F. Yao
- Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University; Wuxi City Jiangsu Province China
| | - Y.-B. Feng
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| | - J.-T. Yun
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| | - Y.-P. Wang
- Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University; Wuxi City Jiangsu Province China
| | - W. Ling
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| | - H.-J. Qi
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| | - D.-X. Tong
- Jiangsu Provincial Taihu Cadre's Sanatorium of Jiangsu Provincial People's Hospital Group; Wuxi City Jiangsu Province China
| |
Collapse
|
43
|
Wiria AE, Hamid F, Wammes LJ, Prasetyani MA, Dekkers OM, May L, Kaisar MMM, Verweij JJ, Guigas B, Partono F, Sartono E, Supali T, Yazdanbakhsh M, Smit JWA. Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity. PLoS One 2015; 10:e0127746. [PMID: 26061042 PMCID: PMC4464734 DOI: 10.1371/journal.pone.0127746] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/20/2015] [Indexed: 11/28/2022] Open
Abstract
Objective Given that helminth infections have been shown to improve insulin sensitivity in animal studies, which may be explained by beneficial effects on energy balance or by a shift in the immune system to an anti-inflammatory profile, we investigated whether soil-transmitted helminth (STH)-infected subjects are more insulin sensitive than STH-uninfected subjects. Design We performed a cross-sectional study on Flores island, Indonesia, an area with high prevalence of STH infections. Methods From 646 adults, stool samples were screened for Trichuris trichiura by microscopy and for Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, and Strongyloides stercoralis by qPCR. No other helminth was found. We collected data on body mass index (BMI, kg/m2), waist-to-hip ratio (WHR), fasting blood glucose (FBG, mmol/L), insulin (pmol/L), high sensitive C-reactive protein (ng/ml) and Immunoglobulin E (IU/ml). The homeostatic model assessment for insulin resistance (HOMAIR) was calculated and regression models were used to assess the association between STH infection status and insulin resistance. Results 424 (66%) participants had at least one STH infection. STH infected participants had lower BMI (23.2 vs 22.5 kg/m2, p value = 0.03) and lower HOMAIR (0.97 vs 0.81, p value = 0.05). In an age-, sex- and BMI-adjusted model a significant association was seen between the number of infections and HOMAIR: for every additional infection with STH species, the HOMAIR decreased by 0.10 (p for linear trend 0.01). This effect was mainly accounted for by a decrease in insulin of 4.9 pmol/L for every infection (p for trend = 0.07). Conclusion STH infections are associated with a modest improvement of insulin sensitivity, which is not accounted for by STH effects on BMI alone.
Collapse
Affiliation(s)
- Aprilianto E. Wiria
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Firdaus Hamid
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, 90245, Makassar, Indonesia
| | - Linda J. Wammes
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Margaretta A. Prasetyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Olaf M. Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
- Department of Endocrinology & General Internal Medicine, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Linda May
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Maria M. M. Kaisar
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Jaco J. Verweij
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
- Laboratory for Medical Microbiology and Immunology, St. Elisabeth Hospital, 5022GC, Tilburg, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Felix Partono
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, 10430, Jakarta, Indonesia
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Johannes W. A. Smit
- Department of Endocrinology & General Internal Medicine, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
- Department of General Internal Medicine, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Tahapary DL, de Ruiter K, Martin I, van Lieshout L, Guigas B, Soewondo P, Djuardi Y, Wiria AE, Mayboroda OA, Houwing-Duistermaat JJ, Tasman H, Sartono E, Yazdanbakhsh M, Smit JWA, Supali T. Helminth infections and type 2 diabetes: a cluster-randomized placebo controlled SUGARSPIN trial in Nangapanda, Flores, Indonesia. BMC Infect Dis 2015; 15:133. [PMID: 25888525 PMCID: PMC4389675 DOI: 10.1186/s12879-015-0873-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022] Open
Abstract
Background Insulin resistance is a strong predictor of the development of type 2 diabetes mellitus. Chronic helminth infections might protect against insulin resistance via a caloric restriction state and indirectly via T-helper-2 polarization of the immune system. Therefore the elimination of helminths might remove this beneficial effect on insulin resistance. Methods/Design To determine whether soil-transmitted helminth infections are associated with a better whole-body insulin sensitivity and whether this protection is reversible by anthelmintic treatment, a household-based cluster-randomized, double blind, placebo-controlled trial was conducted in the area of Nangapanda on Flores Island, Indonesia, an area endemic for soil-transmitted helminth infections. The trial incorporates three monthly treatment with albendazole or matching placebo for one year, whereby each treatment round consists of three consecutive days of supervised drug intake. The presence of soil-transmitted helminths will be evaluated in faeces using microscopy and/or PCR. The primary outcome of the study will be changes in insulin resistance as assessed by HOMA-IR, while the secondary outcomes will be changes in body mass index, waist circumference, fasting blood glucose, 2 h-glucose levels after oral glucose tolerance test, HbA1c, serum lipid levels, immunological parameters, and efficacy of anthelmintic treatment. Discussion The study will provide data on the effect of helminth infections on insulin resistance. It will assess the relationship between helminth infection status and immune responses as well as metabolic parameters, allowing the establishment of a link between inflammation and whole-body metabolic homeostasis. In addition, it will give information on anthelmintic treatment efficacy and effectiveness. Trial registration This study has been approved by the ethical committee of Faculty of Medicine Universitas Indonesia (ref: 549/H2.F1/ETIK/2013), and has been filed by the ethics committee of Leiden University Medical Center, clinical trial number: ISRCTN75636394. The study is reported in accordance with the CONSORT guidelines for cluster-randomised trials.
Collapse
Affiliation(s)
- Dicky L Tahapary
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. .,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Karin de Ruiter
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ivonne Martin
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands. .,Department of Mathematics, Parahyangan Catholic University, Bandung, Indonesia.
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands. .,Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Pradana Soewondo
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Aprilianto E Wiria
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Hengki Tasman
- Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Indonesia, Jakarta, Indonesia.
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Johannes W A Smit
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands. .,Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
45
|
Lukeš J, Kuchta R, Scholz T, Pomajbíková K. (Self-) infections with parasites: re-interpretations for the present. Trends Parasitol 2014; 30:377-85. [DOI: 10.1016/j.pt.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022]
|
46
|
Wiria AE, Sartono E, Supali T, Yazdanbakhsh M. Helminth infections, type-2 immune response, and metabolic syndrome. PLoS Pathog 2014; 10:e1004140. [PMID: 24992724 PMCID: PMC4081794 DOI: 10.1371/journal.ppat.1004140] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Aprilianto E. Wiria
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: ,
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
du Plessis N, Walzl G. Helminth-M. tb co-infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 828:49-74. [PMID: 25253027 DOI: 10.1007/978-1-4939-1489-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nelita du Plessis
- Biomedical Sciences, Division Molecular Biology and Human Genetics, DST/NRF, Centre of Excellence in Biomedical TB Research, Stellenbosch University, Cape Town, Western Cape, South Africa,
| | | |
Collapse
|
48
|
|
49
|
Wiria AE, Wammes LJ, Hamid F, Dekkers OM, Prasetyani MA, May L, Kaisar MMM, Verweij JJ, Tamsma JT, Partono F, Sartono E, Supali T, Yazdanbakhsh M, Smit JWA. Relationship between carotid intima media thickness and helminth infections on Flores Island, Indonesia. PLoS One 2013; 8:e54855. [PMID: 23365679 PMCID: PMC3554693 DOI: 10.1371/journal.pone.0054855] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/17/2012] [Indexed: 01/03/2023] Open
Abstract
Objective To examine the association between helminth infections and atherosclerosis. Background Chronic helminth infection, which can lead to poor nutritional status and anti-inflammatory response, might protect against the development of atherosclerosis. Methods A cross-sectional study was performed in Flores, Indonesia, an area highly endemic for soil-transmitted helminths (STH). Stool samples from 675 participants aged 18–80 years were collected and screened for Trichuris trichiura by microscopy and for Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, and Strongyloides stercoralis by qPCR. We collected data on body mass index (BMI), waist to hip ratio (WHR), blood pressure, fasting blood glucose (FBG), lipid, high sensitive C-reactive protein (hs-CRP), total immunoglobulin-E (TIgE) and Escherichia coli lipopolysaccharide stimulated cytokines (tumor necrosis factor and interleukin-10). In a subset of 301 elderly adults (≥40 years of age) carotid intima media thickness (cIMT) was measured. Results Participants with any STH infection had lower BMI (kg/m2) (mean difference −0.66, 95%CI [−1.26, −0.06]), WHR (−0.01, [−0.02, −0.00]), total cholesterol (mmol/L) (−0.22, [−0.43, −0.01]) and LDL-cholesterol (mmol/L) (−0.20, [−0.39, −0.00]) than uninfected participants. After additional adjustment for BMI the association between helminth infection and total cholesterol (mean difference −0.17, 95%CI [−0.37, 0.03]) as well as LDL-cholesterol (−0.15, [−0.33, 0.04]) was less pronounced. BMI, WHR, and total cholesterol were negatively associated with number species of helminth co-infections. Participants with high TIgE, an indicator of exposure to helminths, had lower FBG, TC, and HDL. The association between TIgE and TC and HDL remained significant after adjustment with BMI. No clear association was found between STH infection or TIgE and mean cIMT. Conclusions This cross-sectional study presents evidence that helminth infections were negatively associated with risk factors for cardiovascular disease, an association at least partially mediated by an effect on BMI. The significance of this finding needs to be determined.
Collapse
Affiliation(s)
- Aprilianto Eddy Wiria
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|