1
|
Hu J, Huang K, Zou H, Li J. Association between the systemic immune-inflammatory index and the immune response after hepatitis B vaccination: a cross-sectional analysis of NHANES data. Front Public Health 2025; 13:1480766. [PMID: 40438079 PMCID: PMC12116451 DOI: 10.3389/fpubh.2025.1480766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Aim Our research aimed to investigate the relationship between the systemic immune-inflammatory index (SII) and the immunological response to hepatitis B vaccination. Methods We collected data from the National Health and Nutrition Examination Survey database from 2007 to 2018. To examine the association between the SII and immunological response, we conducted weighted multiple regression analysis and subgroup analysis. Furthermore, we utilized restricted cubic splines (RCSs) to analyze the linear relationship between the two variables. Results In our study, we included a total of 6,123 patients, of whom 2,770 tested positive for hepatitis B antibodies. Multivariate logistic regression analysis indicated that, after controlling for all measured factors, a high level of the SII was inversely associated with the presence of antibodies following three doses of the hepatitis B vaccine (OR = 0.8661, 95% CI = 0.7577-0.9899, p = 0.035). Subgroup analysis and interaction testing revealed that sex, age, body mass index, diabetes, and other factors did not significantly influence this negative association (P for interaction >0.05). Additionally, the RCS model revealed no non-linear relationship between the SII and the immune response to the hepatitis B vaccine (p > 0.05). Notably, antibody expression significantly decreased as the SII increased beyond the threshold of 448.3. Conclusion This cross-sectional study revealed a strong association between low antibody production following hepatitis B vaccination and the SII. However, this cross-sectional study could not establish a causal relationship between the two variables. Therefore, further experimental verification is necessary to confirm the correlation observed in our study.
Collapse
Affiliation(s)
- Jiayan Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyue Huang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Aragona F, Rizzo M, Giudice E, Fazio F, Costa A, Di Bella B, De Caro S, Arfuso F, Briglia M, Piccione G, Giannetto C. Circadian Oscillation of Leukocyte Subpopulations and Inflammatory Cytokines over a 24-H Period in Horses. Vet Sci 2025; 12:386. [PMID: 40284888 PMCID: PMC12031226 DOI: 10.3390/vetsci12040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
The objective of the present study was to investigate the influence of daily rhythms on the immune and inflammatory systems in horses, considering white blood cell count (WBCs), leukocyte subpopulations (neutrophils, basophils, eosinophils, lymphocytes, and monocytes), CD4+, and CD8+ lymphocyte populations, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Ten Italian Saddle horses (7-12 years old, body weight 480 ± 30 kg) underwent blood sampling every 4 h over a 24-h period. The COSINOR method was used to identify rhythms and their parameters. A one-way analysis of variance (ANOVA) was applied to identify the differences in acrophase and robustness, and a multiple correlation analysis model (Pearson) was used to evaluate the relationships among the investigated parameters. WBCs, leukocyte subpopulations, CD4+, CD8+, IL-1β, IL-6, and TNFα exhibited daily rhythmicity. In particular, white WBCs, lymphocytes, IL-1β, and IL-6 reached their acrophases during the dark phase, while neuthrophils, CD4+, CD8+, and TNFα showed a diurnal acrophase. One-way ANOVA showed a statistical difference in the acrophase among the investigated parameters (p < 0.0001). The Pearson correlation matrix showed positive and negative relationships among the parameters. Circadian rhythms should be taken into consideration with the daily fluctuations in immune and inflammatory biomarkers to develop good management practices and improve welfare in horses.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Maria Rizzo
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Francesco Fazio
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Antonino Costa
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Beatrice Di Bella
- Department of Engineering, University of Messina, C/da di Dio (S. Agata), 98166 Messina, Italy; (B.D.B.); (S.D.C.)
| | - Salvatore De Caro
- Department of Engineering, University of Messina, C/da di Dio (S. Agata), 98166 Messina, Italy; (B.D.B.); (S.D.C.)
| | - Francesca Arfuso
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Marilena Briglia
- Department of Medicine and Surgery “Kore”, University of Enna, 94100 Enna, Italy;
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| | - Claudia Giannetto
- Department of Veterinary Science, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (A.C.); (F.A.); (G.P.); (C.G.)
| |
Collapse
|
3
|
Vink K, Kusters J, Wallinga J. Chrono-optimizing vaccine administration: a systematic review and meta-analysis. Front Public Health 2025; 13:1516523. [PMID: 40260163 PMCID: PMC12009823 DOI: 10.3389/fpubh.2025.1516523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Background Increasing evidence suggests that vaccine responses may vary based on the time of day of administration. This systematic review provides a comprehensive overview of the impact of vaccination timing on immune responses, to assess its potential role in optimizing vaccination programs. Methods A systematic literature search was performed in Embase, Medline and Scopus to identify eligible observational studies and clinical trials that assessed immune responses following vaccination at different times of the day in humans. A meta-analysis of clinical trials was conducted to quantify the effect size of vaccination timing on antibody responses. Results The search identified 17 studies that compared vaccine responses at different times of the day, covering vaccinations against COVID-19 (9), influenza (5), hepatitis B (2), hepatitis A (1), and pneumococcal infection (1). Eleven out of these 17 studies demonstrated statistically significant effects of vaccination timing on the antibody response, with 10 reporting stronger antibody responses following morning compared to afternoon vaccination. Of the six subgroups with an average age of 60 years and older, five showed significantly stronger antibody responses following morning vaccination, while the sixth showed a significant effect only in men. In contrast, only five out of 16 subgroups with an average age younger than 60 years showed a statistically significant effect of vaccination timing on antibody titers. Similarly, the meta-analysis indicated that receiving influenza vaccination in the morning elicited a stronger antibody response than in the afternoon (SMD = 0.24, 95% CI = 0.01-0.47), with subgroup analyses revealing a larger effect in adults aged 65 and older (SMD = 0.32, 95% CI = 0.21-0.43) compared to those aged 60 or younger (SMD = 0.00, 95% CI = -0.17-0.17). Conclusion Morning vaccination enhanced antibody responses in adults aged 60 years and older, a key demographic for influenza and COVID-19 vaccination. Chrono-optimizing vaccine administration may offer a low-risk, low-cost strategy to boost vaccine effectiveness in this age group. Systematic review registration https://inplasy.com/inplasy-2025-1-0060/.
Collapse
Affiliation(s)
- Koen Vink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Johannes Kusters
- Department of Epidemiology and Data Science, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Jacco Wallinga
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
4
|
Huang Z, Karaboué A, Zeng L, Lecoeuvre A, Zhang L, Li XM, Qin H, Danino G, Yang F, Malin MS, Deng L, Rigal M, Liu H, Chen X, Xu Q, Grimaldi L, Collon T, Wang J, Adam R, Yang N, Duchemann B, Zhang Y, Lévi F. Overall survival according to time-of-day of combined immuno-chemotherapy for advanced non-small cell lung cancer: a bicentric bicontinental study. EBioMedicine 2025; 113:105607. [PMID: 39983330 PMCID: PMC11893323 DOI: 10.1016/j.ebiom.2025.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Circadian rhythms regulate immune cell activity, influencing responses to vaccines, and immune checkpoint inhibitors (ICIs). Early time-of-day administration (ToDA) of singe-agent ICIs has been associated with improved overall survival (OS) in patients with metastatic "immunotherapy sensitive" cancers. However, the impact of ToDA on OS in patients receiving combination therapy with ICIs and chemotherapy for advanced non-small cell lung cancer (NSCLC) remains unclear. METHODS This retrospective study included patients from oncology units in Paris, France (Cohort 1) and Hunan, China (Cohort 2) who received first-line immuno-chemotherapy for stage IIIC or IV NSCLC between January 2018 and October 2023. The primary outcome was OS. The median ToDA of the initial four ICI infusions was computed for each patient. Hazard ratio (HR) for death or progression were determined using cut-off times ranging from 10:30 to 13:00. Kaplan Meier and Cox models were used to estimate OS and progression-free survival (PFS) adjusting for main patient characteristics. FINDINGS The study included 713 patients (Cohort 1, n = 165; Cohort 2, n = 548). Pembrolizumab was the most common ICI (51%), which was used with either pemetrexed-carboplatin/cisplatin (49%) or paclitaxel-carboplatin (51%). The optimal ToDA cut-off was 11:30, with patients receiving immuno-chemotherapy before 11:30 showing significantly improved OS (33.0 months [95% CI, 27.5-41.0] vs 19.5 months [18.0-22.5]; p < 0.0001). Multivariable analysis confirmed that earlier ToDA was associated with better OS (adjusted HR = 0.47 [95% CI, 0.37-0.60]). ToDA significantly impacted OS in each cohort and for PFS and response rates in each cohort and the pooled data. INTERPRETATION This sizeable bi-continental study provided real-world evidence that morning administration of standard first-line immuno-chemotherapy was associated with improved clinical outcomes compared to afternoon dosing in patients with NSCLC. Randomised trials are required to validate this finding and inform recommendations for clinical practice. FUNDING National Natural Science Foundation of China (82222048, 82003206, 82173338, and 82102747).
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Abdoulaye Karaboué
- Research Unit "Chronotherapy, Cancer, Transplantation", Faculty of Medicine, Paris-Saclay University, Hospital Paul Brousse, Villejuif, 94800, France; Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, Montfermeil, 93770, France
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Adrien Lecoeuvre
- Clinical Research Unit, Paris Saclay University and Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, 94275, France
| | - Lemeng Zhang
- Department of Thoracic Oncology, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xiao-Mei Li
- Research Unit "Chronotherapy, Cancer, Transplantation", Faculty of Medicine, Paris-Saclay University, Hospital Paul Brousse, Villejuif, 94800, France
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Gabrielle Danino
- Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, 93000, France
| | - Feng Yang
- Early Clinical Trial Centre, Office of National Drug Clinical Trial Institution, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Marie-Sara Malin
- Pharmacology Unit, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, 93000, France
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Marte Rigal
- Pharmacology Unit, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, 93000, France
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Centre of Skin Health and Disease, Xiangya Clinical Research Centre for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiang Chen
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Centre of Skin Health and Disease, Xiangya Clinical Research Centre for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Lamiae Grimaldi
- Clinical Research Unit, Paris Saclay University and Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, 94275, France
| | - Thierry Collon
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, Montfermeil, 93770, France
| | - Jing Wang
- Early Clinical Trial Centre, Office of National Drug Clinical Trial Institution, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - René Adam
- Research Unit "Chronotherapy, Cancer, Transplantation", Faculty of Medicine, Paris-Saclay University, Hospital Paul Brousse, Villejuif, 94800, France; Department of Hepatobiliary Surgery, Cancer and Transplantation, AP-HP Paul Brousse Hospital, Paris-Saclay University, Villejuif, 94800, France
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Boris Duchemann
- Research Unit "Chronotherapy, Cancer, Transplantation", Faculty of Medicine, Paris-Saclay University, Hospital Paul Brousse, Villejuif, 94800, France; Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique - Hôpitaux de Paris, Bobigny, 93000, France
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410013, China; Early Clinical Trial Centre, Office of National Drug Clinical Trial Institution, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410013, China.
| | - Francis Lévi
- Research Unit "Chronotherapy, Cancer, Transplantation", Faculty of Medicine, Paris-Saclay University, Hospital Paul Brousse, Villejuif, 94800, France; Gastro-Intestinal and Medical Oncology Department, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, 94800, France; Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
5
|
Sciarra F, Franceschini E, Palmieri G, Venneri MA. Complex gene-dependent and-independent mechanisms control daily rhythms of hematopoietic cells. Biomed Pharmacother 2025; 183:117803. [PMID: 39753096 DOI: 10.1016/j.biopha.2024.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored. Studies on anucleate hematopoietic components, such as red blood cells and platelets, have shown that auto-sustained redox reaction cycles persist and operate in mammals. This opens to the possibility that transcriptional and non-transcriptional circadian mechanisms might coexist in nucleated immune cell populations, potentially complementing each other. It is becoming increasingly clear that disruption of the circadian rhythm at the central level (core clock) is strongly implicated in a plethora of diseases that are associated with maladaptive immune responses. On the other hand, several evidence imply that dysregulated immune activity (e.g. excessive inflammation) may alter/disrupt the proper functioning of peripheral clocks. This knowledge paves the way to the exploitation of chronobiological concepts in clinical practice. A better comprehension of various transcriptional/translational and biochemical mechanisms that maintain rhythmicity in immune system activities, as well as the many factors (host-derived, microbiota-derived, environment) that can alter or disrupt these processes, will facilitate the development of novel chrono-immunotherapeutic approaches.
Collapse
Affiliation(s)
- Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Edoardo Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy.
| |
Collapse
|
6
|
Edgar RS, O'Donnell AJ, Xiaodong Zhuang A, Reece SE. Time to start taking time seriously: how to investigate unexpected biological rhythms within infectious disease research. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230336. [PMID: 39842489 PMCID: PMC11753885 DOI: 10.1098/rstb.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025] Open
Abstract
The discovery of rhythmicity in host and pathogen activities dates back to the Hippocratic era, but the causes and consequences of these biological rhythms have remained poorly understood. Rhythms in infection phenotypes or traits are observed across taxonomically diverse hosts and pathogens, suggesting general evolutionary principles. Understanding these principles may enable rhythms to be leveraged in manners that improve drug and vaccine efficacy or disrupt pathogen timekeeping to reduce virulence and transmission. Explaining and exploiting rhythms in infections require an integrative and multidisciplinary approach, which is a hallmark of research within chronobiology. Many researchers are welcomed into chronobiology from other fields after observing an unexpected rhythm or time-of-day effect in their data. Such findings can launch a rich new research topic, but engaging with the concepts, approaches and dogma in a new discipline can be daunting. Fortunately, chronobiology has well-developed frameworks for interrogating rhythms that can be readily applied in novel contexts. Here, we provide a 'how to' guide for exploring unexpected daily rhythms in infectious disease research. We outline how to establish: whether the rhythm is circadian, to what extent the host and pathogen are responsible, the relevance for host-pathogen interactions, and how to explore therapeutic potential.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Rachel S. Edgar
- Department of Infectious Disease, Imperial College London, LondonSW7 2AZ, UK
- Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, UK
| | - Aidan J. O'Donnell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alan Xiaodong Zhuang
- 4. Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, LondonWC1E 6BT, UK
| | - Sarah E. Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, UK
| |
Collapse
|
7
|
Zhao B, Nepovimova E, Wu Q. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development. Cell Commun Signal 2025; 23:30. [PMID: 39825442 PMCID: PMC11740368 DOI: 10.1186/s12964-025-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates. PERs in innate immune cells modulate the temporal patterns of NF-κB and TNF-α activities, as well as the response to LPS-induced toxic shock, initiating inflammatory responses that escalate into chronic inflammatory conditions. Crucially, PERs modulate cancer cell behaviors including proliferation, apoptosis, and migration by influencing the levels of cell cycle proteins and stimulating the expression of oncogenes c-Myc and MDM2. PER2/3, as antagonists in cancer stem cell biology, play important roles in differentiating cancer stem cells and in maintaining their stemness. Importantly, the expression of Pers serve as a significant factor for early cancer diagnosis and prognosis. This review delves into the link between circadian rhythm regulator PERs, disruptions in circadian rhythm, and oncogenesis. We examine the evidence that highlights how dysfunctions in PERs activities initiate cancer development, aid tumor growth, and modify cancer cell metabolism through pathways involved in oxidative stress and immune system. Comprehending these connections opens new pathways for the development of circadian rhythm-based therapeutic strategies, with the aims of boosting immune responses and enhancing cancer treatments.
Collapse
Affiliation(s)
- Baimei Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové , 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
8
|
Zou S, Chen Q, Shen Z, Qin B, Zhu X, Lan Y. Update on the roles of regular daily rhythms in combating brain tumors. Eur J Pharmacol 2025; 986:177144. [PMID: 39571672 DOI: 10.1016/j.ejphar.2024.177144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific. In some studies, it is reported that the treatment administered in the morning has been linked to prolonged survival for brain cancer patients, and drug sensitivity and gene expression in gliomas follow daily rhythms. These results suggest a relationship between the circadian rhythm and the onset and spread of brain tumors, while further accumulation of research evidence will be needed to establish definitely these positive outcomes as well as to determine the mechanism underlying them. Chronotherapy provides a means of harnessing current medicines to prolong patients' lifespans and improve their quality of life, indicating the significance of circadian rhythm in enhancing the design of future patient care and clinical trials. Moreover, it is implicated that chronobiological therapy target may provide a significant challenge that warrants extensive effort to achieve. This review examines evidence of the relationship of circadian rhythm with glioma molecular pathogenesis and summarizes the mechanisms and drugs implicated in this disease.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Zhiwei Shen
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Zhu
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulong Lan
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Lian JW, Li SY, Clarke RB, Howell SJ, Meng QJ. Can we utilise the circadian clock to target cancer stem cells? Cancer Lett 2024; 611:217360. [PMID: 39608441 DOI: 10.1016/j.canlet.2024.217360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The 24-hourly circadian clock has been implicated in the regulation of multiple cancer hallmarks and characteristics. Cancer stem cells (CSCs) are a small but significant population of cells within many cancers, characterised by their self-renewal and clonogenic capacities. Increasing evidence points to CSCs having prominent roles in metastasis and drug resistance. However, it remains largely unknown how circadian clocks are involved with CSCs and what implications these interactions have for cancer progression and therapeutics. In this review, we examine the growing evidence on the role of circadian clocks in CSCs and discuss the potential therapeutic implications. This opens up new opportunities to target CSCs through various chronotherapeutic approaches, potentially improving clinical cancer outcomes. We propose different scenarios in which targeting circadian clocks in CSCs or their surrounding microenvironment could be developed into effective therapeutic strategies, including: (1) direct pharmacological targeting of core clock molecules, (2) optimising the timing of systemic anticancer therapies, and (3) targeting the neighbouring cells or systemic factors that influence tumour cells in a circadian-dependent manner.
Collapse
Affiliation(s)
- Jia-Wen Lian
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shi-Yang Li
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sacha J Howell
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
10
|
Christensen J, Johansen ND, Janstrup KH, Modin D, Skaarup KG, Nealon J, Samson S, Loiacono M, Harris R, Larsen CS, Jensen AMR, Landler NE, Claggett BL, Solomon SD, Gislason GH, Køber L, Landray MJ, Sivapalan P, Jensen JUS, Biering-Sørensen T. Time of day for vaccination, outcomes, and relative effectiveness of high-dose vs. standard-dose quadrivalent influenza vaccine: A post hoc analysis of the DANFLU-1 randomized clinical trial. J Infect 2024; 89:106276. [PMID: 39303788 DOI: 10.1016/j.jinf.2024.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES Morning influenza vaccination enhances antibody response. In this post hoc analysis of the DANFLU-1 trial, we sought to evaluate the association between time of day for vaccination (ToV) and outcomes and whether ToV modified the relative effectiveness of high-dose (QIV-HD) vs. standard-dose (QIV-SD) quadrivalent influenza vaccine. METHODS DANFLU-1 was a pragmatic feasibility trial of QIV-HD vs. QIV-SD. Outcomes included hospitalizations and mortality. For subgroup analysis, the population was dichotomized at median ToV into two groups (early and late). RESULTS The study population included 12,477 participants. Mean age was 71.7 ± 3.9 years with 5877 (47.1%) female participants. Median ToV was 11.29 AM. Earlier ToV was associated with fewer respiratory hospitalizations independent of vaccine type, which persisted in adjusted analysis (IRR 0.88 per 1-hour decrement (95% CI 0.78- 0.98, p = 0.025). No effect modification by continuous or dichotomous ToV was found. In subgroup analysis, effects consistently favored QIV-HD against hospitalizations for pneumonia or influenza (early: IRR 0.30; late: 0.29), all-cause hospitalizations (early: IRR 0.87; late: 0.86), and mortality (early: HR 0.53; late: 0.50). CONCLUSION In this exploratory post hoc analysis, earlier ToV was associated with fewer respiratory hospitalizations. The relative effectiveness of QIV-HD vs. QIV-SD was not modified by ToV. Further research is needed to confirm findings. TRIAL REGISTRATION Clinicaltrials.gov: NCT05048589.
Collapse
Affiliation(s)
- Jacob Christensen
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Niklas Dyrby Johansen
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Kira Hyldekær Janstrup
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Daniel Modin
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Kristoffer Grundtvig Skaarup
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | | | | | | | | | - Carsten Schade Larsen
- Department of Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Marie Reimer Jensen
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Nino Emanuel Landler
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Brian L Claggett
- Harvard Medical School, Cardiovascular Division, Brigham and Women's Hospital, Boston, United States
| | | | - Gunnar H Gislason
- Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin J Landray
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Public Health, University of Oxford, Oxford, United Kingdom; Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Pradeesh Sivapalan
- Department of Medicine, Respiratory Medicine Section, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Ulrik Stæhr Jensen
- Department of Medicine, Respiratory Medicine Section, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tor Biering-Sørensen
- Center for Translational Cardiology and Pragmatic Randomized Trials (CTCPR), Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark; Cardiovascular Non-Invasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Denmark; Steno Diabetes Center Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Denmark.
| |
Collapse
|
11
|
Karaboué A, Innominato PF, Wreglesworth NI, Duchemann B, Adam R, Lévi FA. Why does circadian timing of administration matter for immune checkpoint inhibitors' efficacy? Br J Cancer 2024; 131:783-796. [PMID: 38834742 PMCID: PMC11369086 DOI: 10.1038/s41416-024-02704-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Tolerability and antitumour efficacy of chemotherapy and radiation therapy can vary largely according to their time of administration along the 24-h time scale, due to the moderation of their molecular and cellular mechanisms by circadian rhythms. Recent clinical data have highlighted a striking role of dosing time for cancer immunotherapy, thus calling for a critical evaluation. METHODS Here, we review the clinical data and we analyse the mechanisms through which circadian rhythms can influence outcomes on ICI therapies. We examine how circadian rhythm disorders can affect tumour immune microenvironment, as a main mechanism linking the circadian clock to the 24-h cycles in ICIs antitumour efficacy. RESULTS Real-life data from 18 retrospective studies have revealed that early time-of-day (ToD) infusion of immune checkpoint inhibitors (ICIs) could enhance progression-free and/or overall survival up to fourfold compared to late ToD dosing. The studies involved a total of 3250 patients with metastatic melanoma, lung, kidney, bladder, oesophageal, stomach or liver cancer from 9 countries. Such large and consistent differences in ToD effects on outcomes could only result from a previously ignored robust chronobiological mechanism. The circadian timing system coordinates cellular, tissue and whole-body physiology along the 24-h timescale. Circadian rhythms are generated at the cellular level by a molecular clock system that involves 15 specific clock genes. The disruption of circadian rhythms can trigger or accelerate carcinogenesis, and contribute to cancer treatment failure, possibly through tumour immune evasion resulting from immunosuppressive tumour microenvironment. CONCLUSIONS AND PERSPECTIVE Such emerging understanding of circadian rhythms regulation of antitumour immunity now calls for randomised clinical trials of ICIs timing to establish recommendations for personalised chrono-immunotherapies with current and forthcoming drugs.
Collapse
Affiliation(s)
- Abdoulaye Karaboué
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Medical Oncology Unit, GHT Paris Grand Nord-Est, Le Raincy-Montfermeil, 93770, Montfermeil, France
| | - Pasquale F Innominato
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- Cancer Chronotherapy Team, Division of Biomedical Sciences, Medical School, Warwick University, Coventry, CV4 7AL, UK
| | - Nicholas I Wreglesworth
- North Wales Cancer Centre, Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, LL57 2PW, UK
- School of Medical Sciences, Bangor University, Bangor, LL57 2PW, UK
| | - Boris Duchemann
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Thoracic and Medical Oncology Unit, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000, Bobigny, France
| | - René Adam
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France
- Hepato-Biliary Center, Paul Brousse Hospital, Assistance Publique-Hopitaux de Paris, 94800, Villejuif, France
| | - Francis A Lévi
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, 94800, Villejuif, France.
- Gastro-intestinal and Medical Oncology Service, Paul Brousse Hospital, 94800, Villejuif, France.
- Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
12
|
Carvalho Cabral P, Stegeman SK, Olivier M, Cermakian N. Circadian Regulation of Leishmania Parasite Internalisation in Macrophages and Downstream Cellular Events. Parasite Immunol 2024; 46:e13053. [PMID: 38817112 DOI: 10.1111/pim.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Leishmania spp. parasites use macrophages as a host cell during infection. As a result, macrophages have a dual role: clearing the parasite as well as acting as host cells. Recently, studies have shown that macrophages harbour circadian clocks, which affect many of their functions such as phagocytosis, receptor expression and cytokine release. Interestingly, Leishmania major infection in hosts was also shown to be under circadian control. Therefore, we decided to investigate what underlies the rhythms of L. major infection within macrophages. Using a culture model of infection of bone marrow-derived macrophages with L. major promastigotes, we show that the parasites are internalised into macrophages with a 24-h variation dependent on a functional circadian clock in the cells. This was associated with a variation in the number of parasites per macrophage. The cell surface expression of parasite receptors was not controlled by the cells' circadian clock. In contrast, the expression of the components of the endocytic pathway, EEA1 and LC3b, varied according to the time of infection. This was paralleled by variations in parasite-induced ROS production as well as cytokine tumour necrosis factor α. In summary, we have uncovered a time-dependent regulation of the internalisation of L. major promastigotes in macrophages, controlled by the circadian clock in these cells, as well as subsequent cellular events in the endocytic pathway, intracellular signalling and cytokine production.
Collapse
Affiliation(s)
| | - Sophia K Stegeman
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Wyse CA, Rudderham LM, Nordon EA, Ince LM, Coogan AN, Lopez LM. Circadian Variation in the Response to Vaccination: A Systematic Review and Evidence Appraisal. J Biol Rhythms 2024; 39:219-236. [PMID: 38459699 PMCID: PMC11141079 DOI: 10.1177/07487304241232447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Molecular timing mechanisms known as circadian clocks drive endogenous 24-h rhythmicity in most physiological functions, including innate and adaptive immunity. Consequently, the response to immune challenge such as vaccination might depend on the time of day of exposure. This study assessed whether the time of day of vaccination (TODV) is associated with the subsequent immune and clinical response by conducting a systematic review of previous studies. The Cochrane Library, PubMed, Google, Medline, and Embase were searched for studies that reported TODV and immune and clinical outcomes, yielding 3114 studies, 23 of which met the inclusion criteria. The global severe acute respiratory syndrome coronavirus 2 vaccination program facilitated investigation of TODV and almost half of the studies included reported data collected during the COVID-19 pandemic. There was considerable heterogeneity in the demography of participants and type of vaccine, and most studies were biased by failure to account for immune status prior to vaccination, self-selection of vaccination time, or confounding factors such as sleep, chronotype, and shiftwork. The optimum TODV was concluded to be afternoon (5 studies), morning (5 studies), morning and afternoon (1 study), midday (1 study), and morning or late afternoon (1 study), with the remaining 10 studies reporting no effect. Further research is required to understand the relationship between TODV and subsequent immune outcome and whether any clinical benefit outweighs the potential effect of this intervention on vaccine uptake.
Collapse
Affiliation(s)
- Cathy A. Wyse
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Laura M. Rudderham
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Enya A. Nordon
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| | - Louise M. Ince
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Andrew N. Coogan
- Kathleen Lonsdale Institute for Human Health Research and Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Lorna M. Lopez
- Kathleen Lonsdale Institute for Human Health Research and Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
14
|
Touitou Y, Cermakian N, Touitou C. The environment and the internal clocks: The study of their relationships from prehistoric to modern times. Chronobiol Int 2024; 41:859-887. [PMID: 38757600 DOI: 10.1080/07420528.2024.2353857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The origin of biological rhythms goes back to the very beginning of life. They are observed in the animal and plant world at all levels of organization, from cells to ecosystems. As early as the 18th century, plant scientists were the first to explain the relationship between flowering cycles and environmental cycles, emphasizing the importance of daily light-dark cycles and the seasons. Our temporal structure is controlled by external and internal rhythmic signals. Light is the main synchronizer of the circadian system, as daily exposure to light entrains our clock over 24 hours, the endogenous period of the circadian system being close to, but not exactly, 24 hours. In 1960, a seminal scientific meeting, the Cold Spring Harbor Symposium on Biological Rhythms, brought together all the biological rhythms scientists of the time, a number of whom are considered the founders of modern chronobiology. All aspects of biological rhythms were addressed, from the properties of circadian rhythms to their practical and ecological aspects. Birth of chronobiology dates from this period, with the definition of its vocabulary and specificities in metabolism, photoperiodism, animal physiology, etc. At around the same time, and right up to the present day, research has focused on melatonin, the circadian neurohormone of the pineal gland, with data on its pattern, metabolism, control by light and clinical applications. However, light has a double face, as it has positive effects as a circadian clock entraining agent, but also deleterious effects, as it can lead to chronodisruption when exposed chronically at night, which can increase the risk of cancer and other diseases. Finally, research over the past few decades has unraveled the anatomical location of circadian clocks and their cellular and molecular mechanisms. This recent research has in turn allowed us to explain how circadian rhythms control physiology and health.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Sládek M, Houdek P, Myung J, Semenovykh K, Dočkal T, Sumová A. The circadian clock in the choroid plexus drives rhythms in multiple cellular processes under the control of the suprachiasmatic nucleus. Fluids Barriers CNS 2024; 21:46. [PMID: 38802875 PMCID: PMC11131265 DOI: 10.1186/s12987-024-00547-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
Collapse
Affiliation(s)
- Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kateryna Semenovykh
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Tereza Dočkal
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic.
| |
Collapse
|
16
|
Jackson JA, Stewart A, Cable J. Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback. DISCOVERY IMMUNOLOGY 2024; 3:kyae007. [PMID: 38863794 PMCID: PMC11165434 DOI: 10.1093/discim/kyae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Immune responses are widely accepted to be under circadian regulation via a molecular clock, with many practical consequences, but much less is known of how other biological rhythms could affect the immune system. In this study, we search for lunar rhythms (circalunar, circasemilunar, and circatidal cycles) in the immune expression of the recently marine-derived freshwater fish, the low-plate morph of the three-spined stickleback. We employed time series of immune expression (mRNA) measurements for 14 immune-associated genes, representing a variety of immunological pathways. Times series measurements were taken on fish populations in the wild, in seminatural outdoor mesocosms, and in the laboratory, according to sampling regimens originally designed to study circannual variation but with the additional potential to provide information about lunar variation. Our evidence best supported the existence of a very small endogenous tidal rhythm. This is consistent with previous suggestions of the existence of a primordial tidal endogenous clock, some elements of which may be conserved in animals evolving outside the marine environment.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Alexander Stewart
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Wang C, Zeng Q, Gül ZM, Wang S, Pick R, Cheng P, Bill R, Wu Y, Naulaerts S, Barnoud C, Hsueh PC, Moller SH, Cenerenti M, Sun M, Su Z, Jemelin S, Petrenko V, Dibner C, Hugues S, Jandus C, Li Z, Michielin O, Ho PC, Garg AD, Simonetta F, Pittet MJ, Scheiermann C. Circadian tumor infiltration and function of CD8 + T cells dictate immunotherapy efficacy. Cell 2024; 187:2690-2702.e17. [PMID: 38723627 DOI: 10.1016/j.cell.2024.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| | - Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Zeynep Melis Gül
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Sisi Wang
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Phil Cheng
- Department of Oncology and Precision Oncology Service, Geneva University Hospitals, University of Geneva, Geneva 1211, Switzerland
| | - Ruben Bill
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; AGORA Cancer Research Center, Lausanne 1011, Switzerland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Yan Wu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Coline Barnoud
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, University of Lausanne, Lausanne 1066, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland
| | - Sofie Hedlund Moller
- Department of Fundamental Oncology, University of Lausanne, Lausanne 1066, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland
| | - Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Mengzhu Sun
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Ziyang Su
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Stéphane Jemelin
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Thoracic and Endocrine Surgery, Department of Surgery, Geneva University Hospitals, Geneva 1205, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), Geneva 1211, Switzerland
| | - Charna Dibner
- Division of Thoracic and Endocrine Surgery, Department of Surgery, Geneva University Hospitals, Geneva 1205, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), Geneva 1211, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Olivier Michielin
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Department of Oncology and Precision Oncology Service, Geneva University Hospitals, University of Geneva, Geneva 1211, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne 1066, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Federico Simonetta
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Division of Hematology, Department of Oncology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Mikaël J Pittet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; AGORA Cancer Research Center, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, Lausanne 1005, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Translational Research Centre in Onco-Hematology (CRTOH), Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), Geneva 1211, Switzerland; Geneva Centre for Inflammation Research (GCIR), Geneva 1211, Switzerland; Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
18
|
Borrmann H, Rijo-Ferreira F. Crosstalk between circadian clocks and pathogen niche. PLoS Pathog 2024; 20:e1012157. [PMID: 38723104 PMCID: PMC11081299 DOI: 10.1371/journal.ppat.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.
Collapse
Affiliation(s)
- Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
19
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
20
|
Ding J, Chen P, Qi C. Circadian rhythm regulation in the immune system. Immunology 2024; 171:525-533. [PMID: 38158836 DOI: 10.1111/imm.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature in nearly all living organisms, representing oscillatory patterns with a 24-h cycle that are widespread across various physiological processes. Circadian rhythms regulate a multitude of physiological systems, including the immune system. At the molecular level, most immune cells autonomously express clock-regulating genes, which play critical roles in regulating immune cell functions. These functions encompass migration, phagocytic activity, immune cell metabolism (such as mitochondrial structural function and metabolism), signalling pathway activation, inflammatory responses, innate immune recognition, and adaptive immune processes (including vaccine responses and pathogen clearance). The endogenous circadian clock orchestrates multifaceted rhythmicity within the immune system, optimizing immune surveillance and responsiveness; this bears significant implications for maintaining immune homeostasis and resilience against diseases. This work provides an overview of circadian rhythm regulation within the immune system.
Collapse
Affiliation(s)
- Jun Ding
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| | - Pengyu Chen
- Department of Clinical Medicine (5+3 Integrated), The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou, China
| |
Collapse
|
21
|
Ruiz-Torres DA, Naegele S, Podury A, Wirth L, Shalhout SZ, Faden DL. Immunotherapy time of infusion impacts survival in head and neck cancer: A propensity score matched analysis. Oral Oncol 2024; 151:106761. [PMID: 38507992 DOI: 10.1016/j.oraloncology.2024.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
The adaptive immune response is physiologically regulated by the circadian rhythm. Data in lung and melanoma malignancies suggests immunotherapy infusions earlier in the day may be associated with improved response; however, the optimal time of administration for patients with head and neck squamous cell carcinoma (HNSCC) is not known. We aimed to evaluate the association of immunotherapy infusion time with overall survival (OS) and progression free survival (PFS) in patients with HNSCC in an Institutional Review Board-approved, retrospective cohort study. 113 patients met study inclusion criteria and 98 patients were included in a propensity score-matched cohort. In the full unmatched cohort (N = 113), each additional 20 % of infusions received after 1500 h conferred an OS hazard ratio (HR) of 1.35 (95 % C.I.1.2-1.6; p-value = 0.0003) and a PFS HR of 1.34 (95 % C.I.1.2-1.6; p-value < 0.0001). A propensity score-matched analysis of patients who did or did not receive ≥20 % of infusions after 1500 h showed that those who were administered ≥20 % of infusions after 1500 h trended towards a shorter OS (HR = 1.35; p-value = 0.26) and a shorter PFS (HR = 1.57, 95 % C.I. 1.02-2.42, p-value = 0.04). Each additional 20 % of infusions received after 1500 h remained robust in the matched cohort multivariable analysis and was associated with shorter OS (adjusted HR = 1.4 (95 % C.I.1.2-1.8), p-value < 0.001). Patients with advanced HNSCC who received more of their infusions in the afternoon were associated with shorter OS and PFS and scheduling immunotherapy infusions earlier in the day may be warranted.
Collapse
Affiliation(s)
- Daniel A Ruiz-Torres
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Saskia Naegele
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Archana Podury
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Lori Wirth
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophia Z Shalhout
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel L Faden
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
22
|
Menghini GM, Thurnheer R, Kahlert CR, Kohler P, Grässli F, Stocker R, Battegay M, Vuichard-Gysin D. Impact of shift work and other work-related factors on anti-SARS-CoV-2 spike-protein serum concentrations in healthcare workers after primary mRNA vaccination - a retrospective cohort study. Swiss Med Wkly 2024; 154:3708. [PMID: 38639178 DOI: 10.57187/s.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Knowing whether shift work negatively affects the immune system's response to COVID-19 vaccinations could be valuable for planning future vaccination campaigns for healthcare workers. We aimed to determine the impact of working late or night shifts on serum anti-SARS-CoV-2 spike protein immunoglobulin G (anti-S) antibody levels after primary SARS-CoV-2-mRNA vaccination. METHODS To obtain detailed information on shift work, we sent a separate online questionnaire to 1475 eligible healthcare workers who participated in a prospective longitudinal study conducted in 15 healthcare institutions in Switzerland. We asked all vaccinated healthcare workers with available anti-S antibody levels after vaccination to complete a brief online survey on their working schedules within one week before and after primary mRNA vaccination. We used multivariate regression to evaluate the association between work shifts around primary vaccination and anti-S antibody levels. We adjusted for confounders already known to influence vaccine efficacy (e.g. age, sex, immunosuppression, and obesity) and for variables significant at the 0.05 alpha level in the univariate analyses. RESULTS The survey response rate was 43% (n = 638). Ninety-eight responders were excluded due to unknown vaccination dates, different vaccines, or administration of the second dose shortly (within 14 days) after or before serologic follow-up. Of the 540 healthcare workers included in our analysis, 175 (32.4%) had worked at least one late or night shift within seven days before and/or after primary vaccination. In the univariate analyses, working late or night shifts was associated with a nonsignificant -15.1% decrease in serum anti-S antibody levels (p = 0.090). In the multivariate analysis, prior infection (197.2% increase; p <0.001) and immunisation with the mRNA-1273 vaccine (63.7% increase compared to the BNT162b2 vaccine; p <0.001) were the strongest independent factors associated with increased anti-S antibody levels. However, the impact of shift work remained statistically nonsignificant (-13.5%, p = 0.108). CONCLUSION Working late or night shifts shortly before or after mRNA vaccination against COVID-19 does not appear to significantly impact serum anti-S antibody levels. This result merits consideration since it supports flexible vaccination appointments for healthcare workers, including those working late or night shifts.
Collapse
Affiliation(s)
- Gianluca Mauro Menghini
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Robert Thurnheer
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerlandh
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
- Children's Hospital of Eastern Switzerland, Department of Infectious Diseases and Hospital Epidemiology, St Gallen, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Fabian Grässli
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | | | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Danielle Vuichard-Gysin
- Department of Internal Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Thurgau Hospital Group, Muensterlingen and Frauenfeld, Switzerland
- Swiss National Center for Infection Prevention (Swissnoso), Bern, Switzerland
| |
Collapse
|
23
|
Sharma D, Kohlbach KA, Maples R, Farrar JD. The β2-adrenergic receptor (ADRB2) entrains circadian gene oscillation and diurnal responses to virus infection in CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584692. [PMID: 38559276 PMCID: PMC10980027 DOI: 10.1101/2024.03.12.584692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Adaptive immune cells are regulated by circadian rhythms (CR) under both steady state conditions and during responses to infection. Cytolytic CD8 + T cells display variable responses to infection depending upon the time of day of exposure. However, the neuronal signals that entrain these cyclic behaviors remain unknown. Immune cells express a variety of neurotransmitter receptors including nicotinic, glucocorticoid, and adrenergic receptors. Here, we demonstrate that the β2-adrenergic receptor (ADRB2) regulates the periodic oscillation of select core clock genes, such as Per2 and Bmal1 , and selective loss of the Adrb2 gene dramatically perturbs the normal diurnal oscillation of clock gene expression in CD8 + T cells. Consequently, their circadian-regulated anti-viral response is dysregulated, and the diurnal development of CD8 + T cells into variegated populations of cytolytic T cell (CTL) effectors is dramatically altered in the absence of ADRB2 signaling. Thus, the Adrb2 directly entrains core clock gene oscillation and regulates CR-dependent T cell responses to virus infection as a function of time-of-day of pathogen exposure. One Sentence Summary The β2-adrenergic receptor regulates circadian gene oscillation and downstream daily timing of cytolytic T cell responses to virus infection.
Collapse
|
24
|
Hirose M, Leliavski A, de Assis LVM, Matveeva O, Skrum L, Solbach W, Oster H, Heyde I. Chronic Inflammation Disrupts Circadian Rhythms in Splenic CD4+ and CD8+ T Cells in Mice. Cells 2024; 13:151. [PMID: 38247842 PMCID: PMC10814081 DOI: 10.3390/cells13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Internal circadian clocks coordinate 24 h rhythms in behavior and physiology. Many immune functions show daily oscillations, and cellular circadian clocks can impact immune functions and disease outcome. Inflammation may disrupt circadian clocks in peripheral tissues and innate immune cells. However, it remains elusive if chronic inflammation impacts adaptive immune cell clock, e.g., in CD4+ and CD8+ T lymphocytes. We studied this in the experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, as an established experimental paradigm for chronic inflammation. We analyzed splenic T cell circadian clock and immune gene expression rhythms in mice with late-stage EAE, CFA/PTx-treated, and untreated mice. In both treatment groups, clock gene expression rhythms were altered with differential effects for baseline expression and peak phase compared with control mice. Most immune cell marker genes tested in this study did not show circadian oscillations in either of the three groups, but time-of-day- independent alterations were observed in EAE and CFA/PTx compared to control mice. Notably, T cell effects were likely independent of central clock function as circadian behavioral rhythms in EAE mice remained intact. Together, chronic inflammation induced by CFA/PTx treatment and EAE immunization has lasting effects on circadian rhythms in peripheral immune cells.
Collapse
Affiliation(s)
- Misa Hirose
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | | | - Leonardo Vinícius Monteiro de Assis
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Olga Matveeva
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
| | - Ludmila Skrum
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Werner Solbach
- Institute for Medical Microbiology and Hygiene, University of Lübeck, 23562 Lübeck, Germany;
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Isabel Heyde
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
25
|
Joshi A, Sundar IK. Circadian Disruption in Night Shift Work and Its Association with Chronic Pulmonary Diseases. Adv Biol (Weinh) 2023; 7:e2200292. [PMID: 36797209 DOI: 10.1002/adbi.202200292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Indexed: 02/18/2023]
Abstract
Globalization and the expansion of essential services over continuous 24 h cycles have necessitated the adaptation of the human workforce to shift-based schedules. Night shift work (NSW) causes a state of desynchrony between the internal circadian machinery and external environmental cues, which can impact inflammatory and metabolic pathways. The discovery of clock genes in the lung has shed light on potential mechanisms of circadian misalignment in chronic pulmonary disease. Here, the current knowledge of circadian clock disruption caused by NSW and its impact on lung inflammation and associated pathophysiology in chronic lung diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and COVID-19, is reviewed. Furthermore, the limitations of the current understanding of circadian disruption and potential future chronotherapeutic advances are discussed.
Collapse
Affiliation(s)
- Amey Joshi
- Department of Internal Medicine, Manipal Hospitals, Bangalore, Karnataka, 560066, India
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| |
Collapse
|
26
|
Mallu ACT, Sivagurunathan S, Paul D, Aggarwal H, Nathan AA, Manikandan A, Ravi MM, Boppana R, Jagavelu K, Santra MK, Dixit M. Feeding enhances fibronectin adherence of quiescent lymphocytes through non-canonical insulin signalling. Immunology 2023; 170:60-82. [PMID: 37185810 DOI: 10.1111/imm.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Nutritional availability during fasting and refeeding affects the temporal redistribution of lymphoid and myeloid immune cells among the circulating and tissue-resident pools. Conversely, nutritional imbalance and impaired glucose metabolism are associated with chronic inflammation, aberrant immunity and anomalous leukocyte trafficking. Despite being exposed to periodic alterations in blood insulin levels upon fasting and feeding, studies exploring the physiological effects of these hormonal changes on quiescent immune cell function and trafficking are scanty. Here, we report that oral glucose load in mice and healthy men enhances the adherence of circulating peripheral blood mononuclear cells (PBMCs) and lymphocytes to fibronectin. Adherence to fibronectin is also observed upon regular intake of breakfast following overnight fasting in healthy subjects. This glucose load-induced phenomenon is abrogated in streptozotocin-injected mice that lack insulin. Intra-vital microscopy in mice demonstrated that oral glucose feeding enhances the homing of PBMCs to injured blood vessels in vivo. Furthermore, employing flow cytometry, Western blotting and adhesion assays for PBMCs and Jurkat-T cells, we elucidate that insulin enhances fibronectin adherence of quiescent lymphocytes through non-canonical signalling involving insulin-like growth factor-1 receptor (IGF-1R) autophosphorylation, phospholipase C gamma-1 (PLCγ-1) Tyr783 phosphorylation and inside-out activation of β-integrins respectively. Our findings uncover the physiological relevance of post-prandial insulin spikes in regulating the adherence and trafficking of circulating quiescent T-cells through fibronectin-integrin interaction.
Collapse
Affiliation(s)
- Abhiram Charan Tej Mallu
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sivapriya Sivagurunathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Debasish Paul
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abel Arul Nathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Amrutha Manikandan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mahalakshmi M Ravi
- Institute Hospital, Indian Institute of Technology Madras, Chennai, India
| | - Ramanamurthy Boppana
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | | | - Manas Kumar Santra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Madhulika Dixit
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
27
|
Coppeta L, Ferrari C, Verno G, Somma G, Trabucco Aurilio M, Di Giampaolo L, Treglia M, Magrini A, Pietroiusti A, Rizza S. Protective Anti-HBs Antibodies and Response to a Booster Dose in Medical Students Vaccinated at Childhood. Vaccines (Basel) 2023; 11:1326. [PMID: 37631894 PMCID: PMC10460060 DOI: 10.3390/vaccines11081326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
The immune system in humans is regulated by the circadian rhythm. Published studies have reported that the time of vaccination is associated with the immune response to vaccine for some pathogens. Our study aimed to evaluate the association between time of dose administration of challenge HBV vaccine and seroconversion for anti-HBs in medical students vaccinated at birth who were found to be unprotected at pre-training screening. Humoral protection for HBV was assessed in 885 medical students vaccinated during childhood. In total, 359 (41.0%) of them showed anti-HBs titer < 10 UI/mL and received a challenge dose of HBV vaccine followed by post-vaccination screening 30-60 days later. The challenge dose elicited a protective immune response (anti-HBs IgG titer > 10 UI/mL) in 295 (83.8%) individuals. Seroconversion was significantly associated with female gender and time of vaccination after controlling for age group and nationality at logistic regression analysis. Students who received the booster dose in the morning had a higher response rate than those who received the vaccine in the afternoon (OR 1.93; 95% C.I. 1.047-3.56: p < 0.05). This finding suggests that morning administration of the HBV booster may result in a better immune response in susceptible individuals.
Collapse
Affiliation(s)
- Luca Coppeta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.); (G.S.); (M.T.); (A.M.); (A.P.)
- Faculty of Medicine, University “Nostra Signora del Buon Consiglio”, Tirana 1000, Albania;
| | - Cristiana Ferrari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.); (G.S.); (M.T.); (A.M.); (A.P.)
| | - Greta Verno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.); (G.S.); (M.T.); (A.M.); (A.P.)
| | - Giuseppina Somma
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.); (G.S.); (M.T.); (A.M.); (A.P.)
| | - Marco Trabucco Aurilio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luca Di Giampaolo
- Department of Occupational Medicine, University of Chieti “G. D’Annunzio”, 66100 Chieti, Italy;
| | - Michele Treglia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.); (G.S.); (M.T.); (A.M.); (A.P.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.); (G.S.); (M.T.); (A.M.); (A.P.)
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.); (G.S.); (M.T.); (A.M.); (A.P.)
| | - Stefano Rizza
- Faculty of Medicine, University “Nostra Signora del Buon Consiglio”, Tirana 1000, Albania;
- Department of System Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
28
|
Borrmann H, Ulkar G, Kliszczak AE, Ismed D, Schilling M, Magri A, Harris JM, Balfe P, Vasudevan S, Borrow P, Zhuang X, McKeating JA. Molecular components of the circadian clock regulate HIV-1 replication. iScience 2023; 26:107007. [PMID: 37534138 PMCID: PMC10391662 DOI: 10.1016/j.isci.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) causes major health burdens worldwide and still lacks curative therapies and vaccines. Circadian rhythms are endogenous daily oscillations that coordinate an organism's response to its environment and invading pathogens. Peripheral viral loads of HIV-1 infected patients show diurnal variation; however, the underlying mechanisms remain unknown. Here, we demonstrate a role for the cell-intrinsic clock to regulate rhythmic HIV-1 replication in circadian-synchronized systems. Silencing the circadian activator Bmal1 abolishes this phenotype, and we observe BMAL1 binding to the HIV-1 promoter. Importantly, we show differential binding of the nuclear receptors REV-ERB and ROR to the HIV-long terminal repeat at different circadian times, demonstrating a dynamic interplay in time-of-day regulation of HIV-1 transcription. Bioinformatic analysis shows circadian regulation of host factors that control HIV-1 replication, providing an additional mechanism for rhythmic viral replication. This study increases our understanding of the circadian regulation of HIV-1, which can ultimately inform new therapies.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Görkem Ulkar
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anna E. Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dini Ismed
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Zhao D, Chen X, Wang L, Zhang J, Zhao Z, Yue N, Zhu Y, Fei W, Li X, Tan L, He W. Bidirectional and persistent immunomodulation of Astragalus polysaccharide as an adjuvant of influenza and recombinant SARS-CoV-2 vaccine. Int J Biol Macromol 2023; 234:123635. [PMID: 36801224 PMCID: PMC9932796 DOI: 10.1016/j.ijbiomac.2023.123635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Respiratory viral infections, such as coronavirus disease of 2019 (COVID-19) and influenza, cause significant morbidity and mortality and have become a worldwide public health concern with tremendous economic and societal burdens. Vaccination is a major strategy for preventing infections. However, some new vaccines have an unmet need for impairing responses in certain individuals, especially COVID-19 vaccines, despite ongoing vaccine and adjuvant research. Here, we evaluated the effectiveness of Astragalus polysaccharide (APS), a bioactive polysaccharide extracted from the traditional Chinese herb Astragalus membranaceus as an immune adjuvant to regulate the efficacy of influenza split vaccine (ISV) and recombinant severe acute respiratory syndrome (SARS)-Cov-2 vaccine in mice. Our data indicated that APS as an adjuvant can facilitate the induction of high levels of hemagglutination inhibition (HAI) titer and specific antibody immunoglobulin G (IgG) and confer protection against the lethal challenge of influenza A viruses, including increased survival and amelioration of weight loss in mice immunized with the ISV. RNA sequencing (RNA-seq) analysis revealed that the NF-κB and Fc gamma R-mediated phagocytosis signaling pathways are essential for the immune response of mice immunized with the recombinant SARS-Cov-2 vaccine (RSV). Another important finding was that bidirectional immunomodulation of APS on cellular and humoral immunity was observed, and APS-adjuvant-induced antibodies persisted at a high level for at least 20 weeks. These findings suggest that APS is a potent adjuvant for influenza and COVID-19 vaccines, and has the advantages of bidirectional immunoregulation and persistent immunity.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhongpeng Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Na Yue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lingyun Tan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Taylor L, Von Lendenfeld F, Ashton A, Sanghani H, Di Pretoro S, Usselmann L, Veretennikova M, Dallmann R, McKeating JA, Vasudevan S, Jagannath A. Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection. iScience 2023; 26:105877. [PMID: 36590897 PMCID: PMC9788990 DOI: 10.1016/j.isci.2022.105877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Felix Von Lendenfeld
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harshmeena Sanghani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Veretennikova
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Department of Mathematics, Mathematical Sciences Building, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
31
|
Vitale E, Mea R. Associations between sampling characteristics, nutritional supplemental taking and the SARS-CoV-2 infection onset in a cohort of Italian nurses. ITALIAN JOURNAL OF MEDICINE 2023. [DOI: 10.4081/itjm.2022.1540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: The aim of the present study was to analyze any relations existed between sampling characteristics and the onset of the SARS-CoV-2 infection, also by considering the number of times that it occurred in a cohort of Italian nurses interviewed. Additionally, by considering the nutritional supplemental taking, this research wanted to assess any differences both in the onset and in the number of times which the infection occurred among participants.
Method: An observational cohort study was carried out thorough all Italian nurses by advertising the questionnaire through some professional internet pages.
Results: Work typology (p=0.021), ward Covid-19 (p=0.002) and regular meal assumption (p=0.019) significantly associated to the onset of the SARS-CoV-2 infection. Most of nurses who contracted the SARS-CoV-2 infection worked during the night shift (53.7%), 44.3% worked in a no-Covid-19 ward and 53% declared to have a regular meals’ assumption. Ward typology significantly associated to the times of the SARS-CoV-2 onset (p=0.003), as most of nurses who contracted almost one time the SARS-CoV-2 infection were employed in a no-Covid-19 ward (55.5%) and 54.1% of them declared to have a regular meals’ assumption. The onset of the Sars-CoV-2 infection seemed to be more present in the most part of the sample collect.
Conclusion: The present study could be considered as pilot in this sense and also more studies will be performed in order to better relate the function of supplemental food intakes with a better functioning of the immune system.
Collapse
|
32
|
Cermakian N, Labrecque N. Regulation of Cytotoxic CD8+ T Cells by the Circadian Clock. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:12-18. [PMID: 36542828 DOI: 10.4049/jimmunol.2200516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
Abstract
Most aspects of physiology, including immunity, present 24-h variations called circadian rhythms. In this review, we examine the literature on the circadian regulation of CD8+ T cells, which are important to fight intracellular infections and tumors. CD8+ T cells express circadian clock genes, and ∼6% of their transcriptome presents circadian oscillations. CD8+ T cell counts present 24-h rhythms in the blood and in secondary lymphoid organs, which depend on the clock in these cells as well as on hormonal rhythms. Moreover, the strength of the response of these cells to Ag presentation varies according to time of day, a rhythm dependent on the CD8+ T cell clock. The relevance of CD8+ T cell circadian rhythms is shown by the daily variations in the fight of intracellular infections. Such a circadian regulation also has implications for cancer, as well as the optimization of vaccination and immunotherapy.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve Rosemont Hospital Research Centre, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Preliminary evidence that daily light exposure enhances the antibody response to influenza vaccination in patients with dementia. Brain Behav Immun Health 2022; 26:100515. [PMID: 36193044 PMCID: PMC9526132 DOI: 10.1016/j.bbih.2022.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Enhancing lighting conditions in institutions for individuals with dementia improves their sleep, circadian rhythms and well-being. Here, we report first findings that exposure to brighter light during daytime may support the immune response to the annual influenza vaccination. Eighty older institutionalised patients suffering from dementia (54 women and 26 men) continuously wore an activity tracker for 8 weeks to assess individual light exposure and rest-activity cycles. We analysed the patients’ immune response from two blood samples taken before and 4 weeks after the annual influenza vaccination. Individual antibody concentrations to three influenza virus strains (H3N2, H1N1, IB) were quantified via hemagglutination inhibition assays. By quantifying individual light exposure profiles (including daylight), we classified the patients into a low and a high light exposure group based on a median illuminance of 392.6 lux. The two light exposure groups did not differ in cognitive impairment severity, age or gender distribution. However, patients in the high light exposure group showed a significantly greater circadian rest-activity amplitude (i.e., more daytime activity and less nighttime activity) along with a significantly greater antibody titer increase to the H3N2 vaccine than patients in the low light exposure group, despite similar pre-vaccination concentrations. Sufficient seroprotective responses to all three influenza virus strains were attained for ≥75% of participants. These data provide preliminary evidence for a potentially enhanced immune response in patients with dementia when they received more daily light. Future studies are needed to determine whether regular daily light exposure may have beneficial effects on the human immune system, either directly or via a stabilising circadian sleep-wake rhythms. Data from individual light exposures and circadian rest-activity cycles in 80 institutionalised patients with dementia. Blood samples were taken before and 4 weeks after the annual influenza vaccination. Patients with on average higher light exposure had higher specific antibody titer ratios after the influenza strain H3N2 vaccine. Circadian rest-activity amplitude and inter-daily stability were also higher in the group with higher daily light exposures. The results provide preliminary evidencefor beneficial effects of light on the immune system in patients with dementia.
Collapse
|
34
|
Susceptibility to the Common Cold Virus is Associated with Day Length. iScience 2022; 25:104789. [PMID: 35982792 PMCID: PMC9379560 DOI: 10.1016/j.isci.2022.104789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022] Open
Abstract
Seasonal rhythms are endogenous timing mechanisms that allow animals living at temperate latitudes to synchronize their physiology to the seasons. Human viral respiratory disease is prevalent in the winter at temperate latitudes, but the role of endogenous mechanisms in these recurring annual patterns is unclear. The Common Cold Project is a repository of data describing the experimental viral challenge of 1,337 participants across the seasons of the year. We report a secondary analysis of these data to investigate if susceptibility to the common cold is associated with day length. The majority of the participants (78%) showed signs of infection but only 32% developed clinical signs of disease, and the probability of infection was significantly higher in longer day lengths (summer), but the disease was more likely in short (winter) day lengths. The persistence of winter disease patterns in experimental conditions supports the role of endogenous seasonality in human susceptibility to viral infection. Outbreaks of viral respiratory disease recur in winter in the northern hemisphere In controlled experiments, common cold infection was more likely in summer Infection was more likely to progress to the development of cold in winter Innate seasonality of human immunity could affect the prevalence of the common cold
Collapse
|
35
|
Abstract
The immune system is highly time-of-day dependent. Pioneering studies in the 1960s were the first to identify immune responses to be under a circadian control. Only in the last decade, however, have the molecular factors governing circadian immune rhythms been identified. These studies have revealed a highly complex picture of the interconnectivity of rhythmicity within immune cells with that of their environment. Here, we provide a global overview of the circadian immune system, focusing on recent advances in the rapidly expanding field of circadian immunology.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lydia Kay Lutes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Coline Barnoud
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
36
|
Loef B, Dollé MET, Proper KI, van Baarle D, Initiative LCR, van Kerkhof LW. Night-shift work is associated with increased susceptibility to SARS-CoV-2 infection. Chronobiol Int 2022; 39:1100-1109. [PMID: 35502475 DOI: 10.1080/07420528.2022.2069031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Night-shift workers experience disturbances of their circadian rhythm and sleep, which may make them more susceptible to infectious diseases. Therefore, we studied whether night-shift workers are at higher risk of testing positive for SARS-CoV-2 infection than day workers. In this prospective study, data were used from 20 questionnaire rounds of the Dutch Lifelines COVID-19 cohort that was initiated in March 2020. In the different questionnaire rounds, 2285 night-shift workers and 23,766 day workers reported whether they had tested positive for SARS-CoV-2. Cox proportional hazards regression models adjusted for demographic, work, and health covariates were used to compare SARS-CoV-2 incidence between night-shift and day workers. From March 2020-January 2021, 3.4% of night-shift workers and 2.2% of day workers reported to have tested positive for SARS-CoV-2 (p < .001). After adjustment for covariates, night-shift workers had a 37% higher risk of testing positive for SARS-CoV-2 (hazard ratio: 1.37, 95% confidence interval: 1.05-1.77). In this study, we show that night-shift workers were more likely to test positive for SARS-CoV-2 than day workers, which adds to the growing evidence that night-shift work may influence the complex processes involved in infection susceptibility. Further mechanistic insight is needed to understand the relation between night-shift work and (SARS-CoV-2) infection susceptibility.
Collapse
Affiliation(s)
- Bette Loef
- Center for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn E T Dollé
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Karin I Proper
- Center for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health research institute, Amsterdam, The Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Linda W van Kerkhof
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
37
|
Kim ES, Oh CE. Sleep and vaccine administration time as factors influencing vaccine immunogenicity. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The immunogenicity of vaccines is affected by host, external, environmental, and vaccine factors; in addition, sleep or circadian rhythms may also have effects. With the use of vaccines to mitigate the coronavirus disease 2019 (COVID-19) pandemic, research is underway to clarify what time of the day is optimal for COVID-19 vaccination and how disturbances of circadian rhythms will affect the immunogenicity of the vaccine in shift workers. Studies on the relationship between sleep time and the immunogenicity of vaccines for influenza and hepatitis have demonstrated that less sleep time and sleep deprivation tended to adversely affect immunogenicity. In some studies, there were even sex differences in these effects. When comparing shift workers with disturbances in their circadian rhythms and those who only worked during the day, one study found less antibody formation in shift workers; however, further studies on the relationship between shift work and the immunogenicity of vaccines are needed. Studies on the relationship between vaccine administration time and immunogenicity have shown different results according to age and sex. Therefore, future studies on vaccine administration time and immunogenicity may require an individualized approach for each vaccine and each population to be vaccinated. There is accumulating evidence on the effects of sleep and vaccine administration time on the immunogenicity of vaccines. However, further studies are needed to determine whether the association between immunogenicity and circadian rhythms and vaccine administration time can be used as a basis to increase the immunogenicity for individual vaccines.
Collapse
|
38
|
Matryba P, Gawalski K, Ciesielska I, Horvath A, Bartoszewicz Z, Sienko J, Ambroziak U, Malesa-Tarasiuk K, Staniszewska A, Golab J, Krenke R. The Influence of Time of Day of Vaccination with BNT162b2 on the Adverse Drug Reactions and Efficacy of Humoral Response against SARS-CoV-2 in an Observational Study of Young Adults. Vaccines (Basel) 2022; 10:443. [PMID: 35335074 PMCID: PMC8954058 DOI: 10.3390/vaccines10030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
An increasing body of evidence from both academic and clinical studies shows that time-of-day exposure to antigens might significantly alter and modulate the development of adaptive immune responses. Considering the immense impact of the COVID-19 pandemic on global health and the diminished efficacy of vaccination in selected populations, such as older and immunocompromised patients, it is critical to search for the most optimal conditions for mounting immune responses against SARS-CoV-2. Hence, we conducted an observational study on 435 healthy young adults vaccinated with two doses of BNT162b2 (Pfizer-BioNTech) vaccine to determine whether time-of-day of vaccination influences either the magnitude of humoral response or number of adverse drug reactions (ADR) being reported. We found no significant differences between morning and afternoon vaccination in terms of both titers of anti-Spike antibodies and frequency of ADR in the studied population. In addition, our analysis of data on the occurrence of ADR in 1324 subjects demonstrated that the second administration of vaccine in those with previous SARS-CoV-2 infection was associated with lower incidence of ADR. In aggregate, vaccination against COVID-19 with two doses of BNT162b2 mRNA vaccine is presumed to generate an equally efficient anti-Spike humoral response.
Collapse
Affiliation(s)
- Paweł Matryba
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.G.); (J.G.)
- The Doctoral School of the Medical University of Warsaw, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Gawalski
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.G.); (J.G.)
| | - Iga Ciesielska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.C.); (K.M.-T.); (R.K.)
| | - Andrea Horvath
- Department of Pediatrics, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Zbigniew Bartoszewicz
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, 02-097 Warsaw, Poland; (Z.B.); (U.A.)
| | - Jacek Sienko
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Urszula Ambroziak
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, 02-097 Warsaw, Poland; (Z.B.); (U.A.)
| | - Karolina Malesa-Tarasiuk
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.C.); (K.M.-T.); (R.K.)
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (K.G.); (J.G.)
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.C.); (K.M.-T.); (R.K.)
| |
Collapse
|
39
|
Zhuang X, Edgar RS, McKeating JA. The role of circadian clock pathways in viral replication. Semin Immunopathol 2022; 44:175-182. [PMID: 35192001 PMCID: PMC8861990 DOI: 10.1007/s00281-021-00908-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/26/2021] [Indexed: 02/07/2023]
Abstract
The daily oscillations of bi ological and behavioural processes are controlled by the circadian clock circuitry that drives the physiology of the organism and, in particular, the functioning of the immune system in response to infectious agents. Circadian rhythmicity is known to affect both the pharmacokinetics and pharmacodynamics of pharmacological agents and vaccine-elicited immune responses. A better understanding of the role circadian pathways play in the regulation of virus replication will impact our clinical management of these diseases. This review summarises the experimental and clinical evidence on the interplay between different viral pathogens and our biological clocks, emphasising the importance of continuing research on the role played by the biological clock in virus-host organism interaction.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Rachel S Edgar
- Faculty of Medicine, Imperial College London, London, UK
| | - Jane A McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
- Chinese Academy of Medical Sciences (CAMS), Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Oster H, Ray DW. Chronoimmunology: from preclinical assessments to clinical applications. Semin Immunopathol 2022; 44:149-151. [PMID: 35257251 DOI: 10.1007/s00281-022-00923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, DE, Germany.
- Centre of Brain, Behaviour & Metabolism (CBBM), University of Lübeck, Lübeck, DE, Germany.
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
41
|
Shirato K, Sato S. Macrophage Meets the Circadian Clock: Implication of the Circadian Clock in the Role of Macrophages in Acute Lower Respiratory Tract Infection. Front Cell Infect Microbiol 2022; 12:826738. [PMID: 35281442 PMCID: PMC8904936 DOI: 10.3389/fcimb.2022.826738] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian rhythm is a biological system that creates daily variations of physiology and behavior with a 24-h cycle, which is precisely controlled by the molecular circadian clock. The circadian clock dominates temporal activity of physiological homeostasis at the molecular level, including endocrine secretion, metabolic, immune response, coupled with extrinsic environmental cues (e.g., light/dark cycles) and behavioral cues (e.g., sleep/wake cycles and feeding/fasting cycles). The other side of the clock is that the misaligned circadian rhythm contributes to the onset of a variety of diseases, such as cancer, metabolic diseases, and cardiovascular diseases, the acceleration of aging, and the development of systemic inflammation. The role played by macrophages is a key mediator between circadian disruption and systemic inflammation. At the molecular level, macrophage functions are under the direct control of the circadian clock, and thus the circadian misalignment remodels the phenotype of macrophages toward a ‘killer’ mode. Remarkably, the inflammatory macrophages induce systemic and chronic inflammation, leading to the development of inflammatory diseases and the dampened immune defensive machinery against infectious diseases such as COVID-19. Here, we discuss how the circadian clock regulates macrophage immune functions and provide the potential risk of misaligned circadian rhythms against inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, Mitaka, Japan
| | - Shogo Sato
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, United States
- *Correspondence: Shogo Sato,
| |
Collapse
|