1
|
Meng YQ, Cui X, Li S, Jin CH. Application of Compounds with Anti-Cardiac Fibrosis Activity: A Review. Chem Biodivers 2024:e202401078. [PMID: 39223082 DOI: 10.1002/cbdv.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xun Cui
- Department of Physiology, School of Medicinal Sciences, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
2
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
3
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Xavier DP, Chagas GCL, Gomes LGF, Ferri-Guerra J, Oquet REH. Effects of statin therapy in hospitalized adult COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. EINSTEIN-SAO PAULO 2023; 21:eRW0351. [PMID: 37341222 DOI: 10.31744/einstein_journal/2023rw0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 06/22/2023] Open
Abstract
INTRODUCTION COVID-19 is associated with endothelial activation and systemic inflammation; consequently, statins can be used in its treatment as they have anti-inflammatory, antithrombotic, and profibrinolytic properties and may interfere with COVID-19 viral entry into cells through disruption of cell membrane lipid rafts. OBJECTIVE We performed a meta-analysis of randomized clinical trials that compared statin therapy to placebo or to standard care in adult patients hospitalized for COVID-19. METHODS We searched the MEDLINE, EMBASE, and Cochrane Library databases for all-cause mortality, hospitalization duration, and admission to the intensive care unit. RESULTS Of the 228 studies reviewed, four studies were included, with a total of 1,231 patients, of whom 610 (49.5%) were treated with statins. There was no significant difference in all-cause mortality (odds ratio [OR] 0.96; 95% confidence interval [95%CI]: 0.61-1.51; p=0.86; I2=13%), duration of hospitalization (mean difference [MD] 0.21; 95%CI: -1.74-2.16; p=0.83; I2=92%), intensive care unit admission (OR= 3.31; 95%CI: 0.13-87.1; p=0.47; I2=84%), need for mechanical ventilation (OR= 1.03; 95%CI: 0.36-2.94; p=0.95; I2=0%), or increase in liver enzyme levels (OR= 0.58; 95%CI: 0.27-1.25; p=0.16; I2=0%) between patients treated with or without statin therapy. CONCLUSION Our findings suggest that in adult patients hospitalized with COVID-19, statin therapy results in no difference in clinical outcomes when compared to outcomes by placebo or standard of care. Prospero database registration: (www.crd.york.ac.uk/prospero) under the number CRD42022338283.
Collapse
Affiliation(s)
| | | | | | - Juliana Ferri-Guerra
- Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | |
Collapse
|
5
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
6
|
Vanizor Kural B, Azi Mohamed S, Kör S, Arıkan Malkoç M, Yuluğ E, Hajizadeh Tekmeh H, Örem A. Caution may be required in using l-theanine in diabetes mellitus: A study on the rats. Biochem Biophys Res Commun 2023; 666:170-178. [PMID: 37199135 DOI: 10.1016/j.bbrc.2023.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND The study aimed to identify the effects of l-theanine on kidney and heart tissues in diabetic rats. 24 male rats included in the study were divided into 4 groups (n = 6/group): SHAM, LTEA, DM and DM + LTEA. For 28 days, drinking water was given to SHAM and DM, and LTEA (200 mg/kg/day) to LTEA and DM + LTEA groups, intragastrically. DM was induced by 120 mg/kg nicotinamide (NA) + 60 mg/kg streptozotocin (STZ). The levels of cystatin C (CysC) and angiotensin-converting enzyme 2 (ACE2) were determined by ELISA kits, homocysteine, electrolytes and iron by an autoanalyzer, the ratio of oxidized/total reduced glutathione (GSSG/TGSH) by assay kits. The tissues were histopathologically analyzed. RESULTS LTEA alleviated histopathological degenerations. However, it decreased significantly serum iron and homocysteine levels (p < 0.05). CONCLUSION LTEA did not exhibit significant protective effects on kidney and heart tissues; it may have affected the homocysteine and iron metabolisms in diabetics.
Collapse
Affiliation(s)
- Birgül Vanizor Kural
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye.
| | - Sabrina Azi Mohamed
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Sevil Kör
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Meltem Arıkan Malkoç
- Vocational School of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Esin Yuluğ
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Hamed Hajizadeh Tekmeh
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| | - Asım Örem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
7
|
Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, de la Cruz SH, Cervantes-Pérez LG, Del Valle-Mondragón L, Sánchez-Mendoza A, Centurión D. NaHS restores the vascular alterations in the renin-angiotensin system induced by hyperglycemia in rats. Peptides 2023; 164:171001. [PMID: 36990388 DOI: 10.1016/j.peptides.2023.171001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Hyperglycemia (HG) impairs the renin-angiotensin system (RAS), which may contribute to vascular dysfunction. Besides, hydrogen sulfide (H2S) exerts beneficial cardiovascular effects in metabolic diseases. Therefore, our study aimed to determine the effects of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor) and DL-Propargylglycine [DL-PAG; cystathionine-ץ-lyase (CSE) inhibitor] on the RAS-mediated vascular responses impairments observed in thoracic aortas from male diabetic Wistar rats. For that purpose, neonatal rats were divided into two groups that received: 1) citrate buffer (n = 12) or 2) streptozotocin (STZ, 70 mg/kg; n = 48) on the third postnatal day. After 12 weeks, diabetic animals were divided into 4 subgroups (n = 12 each) that received daily i.p. injections during 4 weeks of: 1) non-treatment; 2) vehicle (PBS, 1 mL/kg); 3) NaHS (5.6 mg/kg); and 4) DL-PAG (10 mg/kg). After treatments (16 weeks), blood glucose, angiotensin-(1-7) [Ang-(1-7)], and angiotensin II (Ang II) levels, vascular responses to Ang-(1-7) and Ang II, and the expression of angiotensin AT1, AT2, and Mas receptors, angiotensin converting enzyme (ACE) and ACE type 2 (ACE2) were determined. HG induced: 1) increased blood glucose levels and expression of angiotensin II AT1 receptor; 2) impaired Ang-(1-7) and Ang II mediated vascular responses; 3) decreased angiotensin levels and expression of angiotensin II AT2 and angiotensin-(1-7) Mas receptors, and ACE2; and 4) no changes in ACE expression. Interestingly, NaHS, but not DL-PAG, reversed HG-induced impairments, except for blood glucose level changes. These results suggest that NaHS restores vascular function in streptozotocin-induced HG through RAS modulation.
Collapse
Affiliation(s)
- Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Luz Graciela Cervantes-Pérez
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico.
| |
Collapse
|
8
|
Abiri B, Ahmadi AR, Hejazi M, Amini S. Obesity, Diabetes Mellitus, and Metabolic Syndrome: Review in the Era of COVID-19. Clin Nutr Res 2022; 11:331-346. [PMID: 36381471 PMCID: PMC9633974 DOI: 10.7762/cnr.2022.11.4.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now at pandemic levels leading to considerable morbidity and mortality throughout the globe. Patients with obesity, diabetes, and metabolic syndrome (MetS) are mainly susceptible and more probably to get severe side effects when affected by this virus. The pathophysiologic mechanisms for these notions have not been completely known. The pro-inflammatory milieu observed in patients with metabolic disruption could lead to COVID-19-mediated host immune dysregulation, such as immune dysfunction, severe inflammation, microvascular dysfunction, and thrombosis. The present review expresses the current knowledge regarding the influence of obesity, diabetes mellitus, and MetS on COVID-19 infection and severity, and their pathophysiological mechanisms.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Amirhossein Ramezani Ahmadi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Shirin Amini
- Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar 64517-73865, Iran
| |
Collapse
|
9
|
Relationship between Metabolic Syndrome Components and COVID-19 Disease Severity in Hospitalized Patients: A Pilot Study. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:9682032. [PMID: 36061633 PMCID: PMC9433267 DOI: 10.1155/2022/9682032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 01/08/2023]
Abstract
Background Preliminary data suggest that patients with comorbidities are more susceptible to severe COVID-19 infection. However, data regarding the presence of metabolic syndrome (MetS) in patients with COVID-19 are scarce. Aim In the present study, we aim to investigate the association between MetS components and disease severity in hospitalized COVID-19 patients. Methods We conducted a prospective observational study of 90 hospitalized patients with COVID-19 pneumonia at a tertiary hospital. The study population consisted of inpatients who tested positive by the reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2. Patients with critical COVID-19 disease on admission were excluded. Adult Treatment Panel III of the National Cholesterol Education Program (NCEP-ATP III) criteria were used to define MetS. Laboratory analysis and thorax CT were performed on admission. Results 90 patients, 60 moderate and 30 severe COVID-19 patients, included in the study. The percentage of MetS cases was higher among severe COVID-19 patients (p=0.018). Of the MetS criteria fasting blood glucose (p=0.004), triglycerides (p=0.007) were significantly higher in patients with severe COVID-19 disease with no statistical significance found in waist circumference (WC) (p=0.348), systolic blood pressure (p=0.429), and HDL-C levels (p=0.263) between two groups. Body mass index (BMI) values were similar in both severe and moderate cases (p=0.854). In logistic regression analysis, serum triglycerides (p=0.024), HDL-C (p=0.006), and WC (p=0.004) were found as independent prognostic factor for severe COVID-19 infection. Conclusion Severe COVID-19 patients have higher rates of MetS. Serum triglycerides, HDL-C, and WC have an impact on disease severity in COVID-19.
Collapse
|
10
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
11
|
Changaripour S, Sarvazad H, Barghi M, Sajadi E, Sadeghian MH, Roozbahani NE. Lipid profile changes in patients with COVID-19 referred to medical centers in Kermanshah, Iran; a case-control study. J Int Med Res 2022; 50:3000605221078699. [PMID: 35196906 PMCID: PMC8883308 DOI: 10.1177/03000605221078699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To evaluate blood lipid profiles in patients with coronavirus disease 2019 (COVID-19), and to explore the association with disease severity. METHODS This case-control study included patients with COVID-19, referred to two medical centers in Kermanshah, Iran (between July 2020 and December 2020), and healthy controls. Lipid profiles were evaluated in patients who were grouped according to severe (intensive care unit [ICU]), or less severe (outpatient), forms of COVID-19, and in healthy controls, and were compared among the three groups. RESULTS A total of 132 participants were included, comprising ICU (n = 49), outpatient (n = 48) and control (n = 35) groups. Mean cholesterol levels were lower in the patient groups than in controls; high-density lipoprotein cholesterol (HDL-C) levels were higher in the ICU group versus outpatients, and low-density lipoprotein cholesterol (LDL-C) levels were lower in the ICU group versus outpatients. The frequency of diabetes and hypertension was higher in the ICU group than in the outpatient group. Furthermore, LDL-C level was associated with disease severity (odds ratio 0.966, 95% confidence interval 0.944, 0.989). CONCLUSION Lipid profiles differ between severe and less severe forms of COVID-19. LDL-C level may be a useful indicator of COVID-19 severity.
Collapse
Affiliation(s)
- Shahab Changaripour
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Sarvazad
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Barghi
- Department of Biochemistry, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Elham Sajadi
- Department of Basic Science, Shiraz University, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahdi Hashempour Sadeghian
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Eskandari Roozbahani
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Dr Narges Eskandari Roozbahani, Clinical Research Development Centre, Imam Reza Hospital, Kermanshah University of Medical Sciences, Zakariya Razi Blvd, Kermanshah, Iran. Po. Box: 6714415332 E-mail: ;
| |
Collapse
|
12
|
Teixeira L, Temerozo JR, Pereira-Dutra FS, Ferreira AC, Mattos M, Gonçalves BS, Sacramento CQ, Palhinha L, Cunha-Fernandes T, Dias SSG, Soares VC, Barreto EA, Cesar-Silva D, Fintelman-Rodrigues N, Pão CRR, de Freitas CS, Reis PA, Hottz ED, Bozza FA, Bou-Habib DC, Saraiva EM, de Almeida CJG, Viola JPB, Souza TML, Bozza PT. Simvastatin Downregulates the SARS-CoV-2-Induced Inflammatory Response and Impairs Viral Infection Through Disruption of Lipid Rafts. Front Immunol 2022; 13:820131. [PMID: 35251001 PMCID: PMC8895251 DOI: 10.3389/fimmu.2022.820131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.
Collapse
Affiliation(s)
- Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - André Costa Ferreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Preclinical Research Laboratory, Universidade Iguaçu (UNIG), Nova Iguaçu, Brazil
| | - Mayara Mattos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Barbara Simonson Gonçalves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Suelen S. G. Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ester A. Barreto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Camila R. R. Pão
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Caroline S. de Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia A. Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Minas Gerais, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Dumith C. Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília J. G. de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- *Correspondence: Patrícia T. Bozza, ;
| |
Collapse
|
13
|
Hejazi S, Mircheraghi F, Elyasi S, Davoodian N, Salarbashi D, Mehrad-Majd H. Atorvastatin Efficacy in the Management of Mild to Moderate Hospitalized COVID-19: A Pilot Randomized Triple-blind Placebo- controlled Clinical Trial. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:212-222. [PMID: 36056874 DOI: 10.2174/2772434417666220902153823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Statins are first-line lipid-lowering agents with tolerable adverse reactions, low cost, and high availability worldwide. The potent anti-inflammatory, antioxidant, anti-thrombotic and immunomodulatory effects of statins propose them as an option against COVID-19 infection. OBJECTIVE In this randomized triple-blind placebo-controlled clinical trial, we have investigated the atorvastatin efficacy in the management of mild to moderate hospitalized COVID-19 patients. METHODS In this study, 52 mild to moderate hospitalized COVID-19 patients who fulfilled the inclusion criteria were allocated to the treatment group to receive 40 mg atorvastatin orally once daily for two weeks (n=26) or the placebo group (n=26). Patients' symptoms and laboratory investigations were assessed at baseline and during the follow-up period. We also evaluated the duration of hospitalization and supplemental oxygen therapy as endpoints. RESULTS After 14-day of follow-up, the oxygen saturation (SaO2) was significantly higher, and the serum high sensitivity C-reactive protein (hs-CRP) level was lower in the treatment group compared to the placebo group. Moreover, at the end of the followup in the treatment group, the lymphocyte count was higher, and the duration of symptom resolution was shorter but not significant. Additionally, in the treatment group, the length of supplemental oxygen therapy and hospitalization duration were meaningfully shorter. Our results revealed that the mortality rate was almost twice higher in the placebo group compared to the treatment group, without any significant adverse drug reaction. CONCLUSION Atorvastatin significantly reduces supplemental oxygen need, hospitalization duration, and serum hs-CRP level in mild to moderate hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Sepideh Hejazi
- Lung Disease Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Mircheraghi
- Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Davoodian
- Infectious Diseases Research Centre, Gonabad University of Medical Sciences, Gonabad, Iran
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Davoud Salarbashi
- Infectious Diseases Research Centre, Gonabad University of Medical Sciences, Gonabad, Iran
- Department of Nutrition and food science, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
- Nanomedicine Research Center, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hassan Mehrad-Majd
- Research Development Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Zapatero-Belinchón FJ, Moeller R, Lasswitz L, van Ham M, Becker M, Brogden G, Rosendal E, Bi W, Carriquí-Madroñal B, Islam K, Lenman A, Gunesch AP, Kirui J, Pietschmann T, Överby AK, Jänsch L, Gerold G. Fluvastatin mitigates SARS-CoV-2 infection in human lung cells. iScience 2021; 24:103469. [PMID: 34812415 PMCID: PMC8599137 DOI: 10.1016/j.isci.2021.103469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.
Collapse
Affiliation(s)
- Francisco J. Zapatero-Belinchón
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Miriam Becker
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Graham Brogden
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Ebba Rosendal
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), R893+F4 Umeå, Sweden
| | - Wenjie Bi
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Belén Carriquí-Madroñal
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Koushikul Islam
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Annasara Lenman
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Antonia P. Gunesch
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Jared Kirui
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Anna K. Överby
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), R893+F4 Umeå, Sweden
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
15
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
16
|
Xie L, Zhang Z, Wang Q, Chen Y, Lu D, Wu W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front Endocrinol (Lausanne) 2021; 12:772865. [PMID: 34867819 PMCID: PMC8639866 DOI: 10.3389/fendo.2021.772865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
The potential relationship between diabetes and COVID-19 has been evaluated. However, new knowledge is rapidly emerging. In this study, we systematically reviewed the relationship between viral cell surface receptors (ACE2, AXL, CD147, DC-SIGN, L-SIGN and DPP4) and SARS-CoV-2 infection risk, and emphasized the implications of ACE2 on SARS-CoV-2 infection and COVID-19 pathogenesis. Besides, we updated on the two-way interactions between diabetes and COVID-19, as well as the treatment options for COVID-19 comorbid patients from the perspective of ACE2. The efficacies of various clinical chemotherapeutic options, including anti-diabetic drugs, renin-angiotensin-aldosterone system inhibitors, lipid-lowering drugs, anticoagulants, and glucocorticoids for COVID-19 positive diabetic patients were discussed. Moreover, we reviewed the significance of two different forms of ACE2 (mACE2 and sACE2) and gender on COVID-19 susceptibility and severity. This review summarizes COVID-19 pathophysiology and the best strategies for clinical management of diabetes patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihua Wu
- Department of Endocrinology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Choi D, Chen Q, Goonewardena SN, Pacheco H, Mejia P, Smith RL, Rosenson RS. Efficacy of Statin Therapy in Patients with Hospital Admission for COVID-19. Cardiovasc Drugs Ther 2021; 36:1165-1173. [PMID: 34524566 PMCID: PMC8440735 DOI: 10.1007/s10557-021-07263-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE COVID-19 is characterized by dysfunctional immune responses and metabolic derangements, which in some, lead to multi-organ failure and death. Statins are foundational lipid-lowering therapeutics for cardiovascular disease and also possess beneficial immune-modulating properties. Because of these immune-modulating properties, some have suggested their use in COVID-19. We sought to investigate the association between statin use and mortality in patients hospitalized with COVID-19. METHODS Five thousand three hundred seventy-five COVID-19 patients admitted to Mount Sinai Health System hospitals in New York between February 27, 2020, and December 3, 2020, were included in this analysis. Statin use was classified as either non-user, low-to-moderate-intensity user, or high-intensity user. Multivariate Cox proportional hazards models were used to evaluate in-hospital mortality rate. Considered covariates were age, sex, race, and comorbidities. RESULTS Compared to non-statin users, both low-to-moderate-intensity (adjusted hazard ratio; aHR 0.62, 95% confidential intervals; CI 0.51-0.76) and high-intensity statin users (aHR 0.53, 95% CI 0.43-0.65) had a reduced risk of death. Subgroup analysis of 723 coronary artery disease patients showed decreased mortality among high-intensity statin users compared to non-users (aHR 0.51, 95% CI 0.36-0.71). CONCLUSIONS Statin use in patients hospitalized with COVID-19 was associated with a reduced in-hospital mortality. The protective effect of statin was greater in those with coronary artery disease. These data support continued use of statin therapy in hospitalized patients with COVID-19. Clinical trials are needed to prospectively determine if statin use is effective in lowering the mortality in COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Daein Choi
- Department of Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qinzhong Chen
- Metabolism and Lipids Unit, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, The Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Pacheco
- Metabolism and Lipids Unit, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, The Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Priscilla Mejia
- Metabolism and Lipids Unit, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, The Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA
| | - Robin L Smith
- Clinical Associate Professor, Department of Medicine, Rutgers New Jersey Medical School and the CURA Foundation, New York, NY, USA
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, The Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA.
| |
Collapse
|
18
|
Ayeh SK, Abbey EJ, Khalifa BAA, Nudotor RD, Osei AD, Chidambaram V, Osuji N, Khan S, Salia EL, Oduwole MO, Yusuf HE, Lasisi O, Nosakhare E, Karakousis PC. Statins use and COVID-19 outcomes in hospitalized patients. PLoS One 2021; 16:e0256899. [PMID: 34506533 PMCID: PMC8432819 DOI: 10.1371/journal.pone.0256899] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background There is an urgent need for novel therapeutic strategies for reversing COVID-19-related lung inflammation. Recent evidence has demonstrated that the cholesterol-lowering agents, statins, are associated with reduced mortality in patients with various respiratory infections. We sought to investigate the relationship between statin use and COVID-19 disease severity in hospitalized patients. Methods A retrospective analysis of COVID-19 patients admitted to the Johns Hopkins Medical Institutions between March 1, 2020 and June 30, 2020 was performed. The outcomes of interest were mortality and severe COVID-19 infection, as defined by prolonged hospital stay (≥ 7 days) and/ or invasive mechanical ventilation. Logistic regression, Cox proportional hazards regression and propensity score matching were used to obtain both univariable and multivariable associations between covariates and outcomes in addition to the average treatment effect of statin use. Results Of the 4,447 patients who met our inclusion criteria, 594 (13.4%) patients were exposed to statins on admission, of which 340 (57.2%) were male. The mean age was higher in statin users compared to non-users [64.9 ± 13.4 vs. 45.5 ± 16.6 years, p <0.001]. The average treatment effect of statin use on COVID-19-related mortality was RR = 1.00 (95% CI: 0.99–1.01, p = 0.928), while its effect on severe COVID-19 infection was RR = 1.18 (95% CI: 1.11–1.27, p <0.001). Conclusion Statin use was not associated with altered mortality, but with an 18% increased risk of severe COVID-19 infection.
Collapse
Affiliation(s)
- Samuel K. Ayeh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Enoch J. Abbey
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Banda A. A. Khalifa
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Richard D. Nudotor
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Albert Danso Osei
- Department of Internal Medicine, Medstar Union Memorial Hospital, Baltimore, MD, United States of America
| | - Vignesh Chidambaram
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Ngozi Osuji
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Samiha Khan
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Emmanuella L. Salia
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Modupe O. Oduwole
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Hasiya E. Yusuf
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Oluwatobi Lasisi
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Esosa Nosakhare
- Armstrong Institute for Patient Safety and Quality, Johns Hopkins Medicine, Baltimore, MD, United States of America
| | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
19
|
Sobh E, Reihan MS, Hifnawy TMS, Abdelsalam KG, Awad SS, Mahmoud NMH, Sindi NA, Alhadrami HA. Cardiovascular system and coronavirus disease-2019 (COVID-19): mutual injuries and unexpected outcomes. Egypt Heart J 2021; 73:77. [PMID: 34478001 PMCID: PMC8414463 DOI: 10.1186/s43044-021-00202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Cardiovascular system involvement in coronavirus disease-2019 (COVID-19) has gained great interest in the scientific community. MAIN BODY Several studies reported increased morbidity and mortality among COVID-19 patients who had comorbidities, especially cardiovascular diseases like hypertension and acute coronary syndrome (ACS). COVID-19 may be associated with cardiovascular complications as arrhythmia, myocarditis, and thromboembolic events. We aimed to illustrate the interactions of COVID-19 disease and the cardiovascular system and the consequences on clinical decision as well as public health. CONCLUSIONS COVID-19 has negative consequences on the cardiovascular system. A high index of suspicion should be present to avoid poor prognosis of those presenting with unusual presentation.
Collapse
Affiliation(s)
- Eman Sobh
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Medina, Saudi Arabia.
| | - Muhammad Saad Reihan
- Cardiology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
- Alghad International College of Applied Medical Sciences, Jeddah, Saudi Arabia
| | - Tamer M S Hifnawy
- Public Health and Community Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Khloud Gamal Abdelsalam
- Biochemistry Unit, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sohaila Sabry Awad
- Independent Researcher, Bachelor Degree of Biochemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Nariman A Sindi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
20
|
Verma AK, Beg MMA, Bhatt D, Dev K, Alsahli MA, Rahmani AH, Goyal Y. Assessment and Management of Diabetic Patients During the COVID-19 Pandemic. Diabetes Metab Syndr Obes 2021; 14:3131-3146. [PMID: 34262317 PMCID: PMC8275137 DOI: 10.2147/dmso.s285614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has become a great challenge across the globe, particularly in developing and densely populated countries, such as India. COVID-19 is extremely infectious and is transmitted via respiratory droplets from infected persons. DM, hypertension, and cardiovascular disease are highly prevalent comorbidities associated with COVID-19. It has been observed that COVID-19 is associated with high blood-glucose levels, mainly in people with type 2 diabetes mellitus (T2DM). Several studies have shown DM to be a significant risk factor affecting the severity of various kinds of infection. Dysregulated immunoresponse found in diabetic patients plays an important role in exacerbating severity. DM is among the comorbidities linked with mortality and morbidity in COVID-19 patients. Chronic conditions like obesity, cardiovascular disorders, and hypertension, together with changed expression of ACE2, dysregulated immunoresponse, and endothelial dysfunction, may put diabetic patients at risk of greater COVID-19 severity. Therefore, it is important to study specific characteristics of COVID-19 in diabetic people and treat these comorbidities along with COVID-19 infection, mainly among old individuals who are already suffering from serious and critical infections. This review will be helpful in understanding the mechanisms involved in COVID-19 and DM, the role of ACE2 in COVID-19 pathogenesis, management of DM, and associated complications in COVID-19 patients.
Collapse
Affiliation(s)
- Amit K Verma
- Medical Biotechnology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Deepti Bhatt
- Medical Biotechnology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kapil Dev
- Medical Biotechnology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Yamini Goyal
- Medical Biotechnology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
21
|
Russo V, Silverio A, Scudiero F, Attena E, D'Andrea A, Nunziata L, Parodi G, Celentani D, Varbella F, Albani S, Musumeci G, Di Micco P, Di Maio M. Preadmission Statin Therapy and Clinical Outcome in Hospitalized Patients With COVID-19: An Italian Multicenter Observational Study. J Cardiovasc Pharmacol 2021; 78:e94-e100. [PMID: 34173802 PMCID: PMC8253374 DOI: 10.1097/fjc.0000000000001041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
ABSTRACT Statin therapy has been recently suggested as possible adjuvant treatment to improve the clinical outcome in patients with coronavirus disease 2019 (COVID-19). The aim of this study was to describe the prevalence of preadmission statin therapy in hospitalized patients with COVID-19 and to investigate its potential association with acute distress respiratory syndrome (ARDS) at admission and in-hospital mortality. We retrospectively recruited 467 patients with laboratory-confirmed COVID-19 admitted to the emergency department of 10 Italian hospitals. The study population was divided in 2 groups according to the ARDS diagnosis at admission and in-hospital mortality. A multivariable regression analysis was performed to assess the risk of ARDS at admission and death during hospitalization among patients with COVID-19. A competing risk analysis in patients taking or not statins before admission was also performed. ARDS at admission was reported in 122 cases (26.1%). There was no statistically significant difference for clinical characteristics between patients presenting with and without ARDS. One hundred seven patients (18.5%) died during the hospitalization; they showed increased age (69.6 ± 13.1 vs. 66.1 ± 14.9; P = 0.001), coronary artery disease (23.4% vs. 12.8%; P = 0.012), and chronic kidney disease (20.6% vs. 11.1%; P = 0.018) prevalence; moreover, they presented more frequently ARDS at admission (48.6% vs. 19.4%; P < 0.001). At multivariable regression model, statin therapy was not associated neither with ARDS at admission nor with in-hospital mortality. Preadmission statin therapy does not seem to show a protective effect in severe forms of COVID-19 complicated by ARDS at presentation and rapidly evolving toward death.
Collapse
Affiliation(s)
- Vincenzo Russo
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”—Monaldi and Cotugno Hospital, Naples, Italy
| | - Angelo Silverio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (Salerno), Italy;
| | - Fernando Scudiero
- Cardiology Unit, Health Authority Bergamo East, Seriate (Bergamo), Italy;
| | - Emilio Attena
- Division of Cardiology, San Giuliano Hospital, Naples, Italy;
| | - Antonello D'Andrea
- Cardiology and Intensive Care Unit, Umberto I Hospital, Nocera Inferiore, Italy;
| | | | - Guido Parodi
- Clinical and Interventional Cardiology, Sassari University Hospital, Sassary, Italy;
| | | | | | | | | | - Pierpaolo Di Micco
- Medicine Unit, Division of Cardiology, Fatebenefratelli Hospital of Naples, Naples, Italy; and
| | - Marco Di Maio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (Salerno), Italy;
- Division of Cardiology, Maria SS. Addolorata Hospital, Eboli (Salerno), Italy.
| |
Collapse
|
22
|
Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells 2021; 10:1412. [PMID: 34204163 PMCID: PMC8227274 DOI: 10.3390/cells10061412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.
Collapse
Affiliation(s)
- Chong-Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| |
Collapse
|
23
|
Miličić Stanić B, Maddox S, de Souza AMA, Wu X, Mehranfard D, Ji H, Speth RC, Sandberg K. Male bias in ACE2 basic science research: missed opportunity for discovery in the time of COVID-19. Am J Physiol Regul Integr Comp Physiol 2021; 320:R925-R937. [PMID: 33848207 PMCID: PMC8203415 DOI: 10.1152/ajpregu.00356.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Throughout the world, including the United States, men have worse outcomes from COVID-19 than women. SARS-CoV-2, the causative virus of the COVID-19 pandemic, uses angiotensin-converting enzyme 2 (ACE2) to gain cellular entry. ACE2 is a member of the renin-angiotensin system (RAS) and plays an important role in counteracting the harmful effects mediated by the angiotensin type 1 receptor. Therefore, we conducted Ovid MEDLINE and Embase database searches of basic science studies investigating the impact of the biological variable of sex on ACE2 expression and regulation from 2000, the year ACE2 was discovered, through December 31, 2020. Out of 2,131 publications, we identified 853 original research articles on ACE2 conducted in primary cells, tissues, and/or whole mammals excluding humans. The majority (68.7%) of these studies that cited the sex of the animal were conducted in males, while 11.2% were conducted solely in females; 9.26% compared ACE2 between the sexes, while 10.8% did not report the sex of the animals used. General findings are that sex differences are tissue-specific and when present, are dependent upon gonadal state. Renal, cardiac, and adipose ACE2 is increased in both sexes under experimental conditions that model co-morbidities associated with worse COVID-19 outcomes including hypertension, obesity, and renal and cardiovascular diseases; however, ACE2 protein was generally higher in the males. Studies in Ace2 knockout mice indicate ACE2 plays a greater role in protecting the female from developing hypertension than the male. Studying the biological variable of sex in ACE2 research provides an opportunity for discovery in conditions involving RAS dysfunction and will shed light on sex differences in COVID-19 severity.
Collapse
Affiliation(s)
- Branka Miličić Stanić
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Sydney Maddox
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Aline M A de Souza
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Xie Wu
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Danial Mehranfard
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, District of Columbia
| | - Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, District of Columbia
| |
Collapse
|
24
|
Lima RS, Rocha LPC, Moreira PR. Genetic and epigenetic control of ACE2 expression and its possible role in COVID-19. Cell Biochem Funct 2021; 39:713-726. [PMID: 34075603 PMCID: PMC8239811 DOI: 10.1002/cbf.3648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2), is a pandemic that is claiming hundreds of thousands of lives around the world. Angiotensin‐converting enzyme‐2 (ACE2) is a key player in COVID‐19 due to its pivotal role in the SARS‐CoV‐2 infection. This enzyme is expressed throughout the body and the studies conducted so far have shown that its expression varies according to several factors, including cell type, sex, age, disease states and probably SARS‐CoV‐2 infection. Single‐nucleotide polymorphisms (SNPs) and epigenetic mechanisms, including DNA methylation, histone post‐translational modifications and microRNAs, impact ACE2 expression and may explain structural variation. The understanding of how genetic variants and epigenetic markers act to control ACE2 expression in health and disease states may contribute to comprehend several aspects of COVID‐19 that are puzzling researchers and clinicians. This review collects and appraises the literature regarding some aspects in the ACE2 biology, the expression patterns of this molecule, SNPs of the ACE2 gene and epigenetic mechanisms that may impact ACE2 expression in the context of COVID‐19.
Collapse
Affiliation(s)
- Rafael Silva Lima
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Paulo Carvalho Rocha
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Rocha Moreira
- Department of Morphology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Vergara A, Jacobs-Cachá C, Molina-Van den Bosch M, Domínguez-Báez P, Benito B, García-Carro C, Serón D, Soler MJ. Effect of ramipril on kidney, lung and heart ACE2 in a diabetic mice model. Mol Cell Endocrinol 2021; 529:111263. [PMID: 33811970 PMCID: PMC8010347 DOI: 10.1016/j.mce.2021.111263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19). The main organ affected in this infection is the lung and the virus uses the angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the target cells. In this context, a controversy raised regarding the use of renin-angiotensin system (RAAS) blockers, as these drugs might increase ACE2 expression in some tissues and potentially increase the risk for SARS-CoV-2 infection. This is specially concerning in diabetic patients as diabetes is a risk factor for COVID-19. METHODS 12-week old diabetic mice (db/db) were treated with ramipril, or vehicle control for 8 weeks. Non-diabetic db/m mice were included as controls. ACE2 expression and activity were studied in lung, kidney and heart of these animals. RESULTS Kidney ACE2 activity was increased in the db/db mice as compared to the db/m (143.2% ± 23% vs 100% ± 22.3%, p = 0.004), whereas ramipril had no significant effect. In the lung, no differences were found in ACE2 when comparing db/db mice to db/m and ramipril also had no significant effect. In the heart, diabetes decreased ACE2 activity (83% ± 16.8%, vs 100% ± 23.1% p = 0.02), and ramipril increased ACE2 significantly (83% ± 16.8% vs 98.2% ± 15%, p = 0.04). CONCLUSIONS In a mouse model of type 2 diabetes, ramipril had no significant effect on ACE2 activity in either kidneys or in the lungs. Therefore, it is unlikely that RAAS blockers or at least angiotensin-converting enzyme inhibitors increase the risk of SARS-CoV-2 infection through increasing ACE2.
Collapse
Affiliation(s)
- Ander Vergara
- Nephrology Department. Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Nephrology Research Group, Vall d'Hebrón Research Institute (VHIR), Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'Hebrón Research Institute (VHIR), Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; REDinREN (RD16/0009/0030), Spain.
| | - Mireia Molina-Van den Bosch
- Nephrology Research Group, Vall d'Hebrón Research Institute (VHIR), Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pamela Domínguez-Báez
- Nephrology Research Group, Vall d'Hebrón Research Institute (VHIR), Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Begoña Benito
- Cardiology Group, Vall d'Hebrón Research Institute (VHIR), Barcelona, Spain; Cardiology Department, Vall d'Hebrón Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara García-Carro
- Nephrology Department. Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Nephrology Research Group, Vall d'Hebrón Research Institute (VHIR), Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; REDinREN (RD16/0009/0030), Spain
| | - Daniel Serón
- Nephrology Department. Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Nephrology Research Group, Vall d'Hebrón Research Institute (VHIR), Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; REDinREN (RD16/0009/0030), Spain
| | - María José Soler
- Nephrology Department. Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Nephrology Research Group, Vall d'Hebrón Research Institute (VHIR), Vall d'Hebrón Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; REDinREN (RD16/0009/0030), Spain.
| |
Collapse
|
26
|
Low plasma angiotensin-converting enzyme 2 level in diabetics increases the risk of severe COVID-19 infection. Aging (Albany NY) 2021; 13:12301-12307. [PMID: 33962399 PMCID: PMC8148475 DOI: 10.18632/aging.202967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/02/2021] [Indexed: 01/25/2023]
Abstract
Patients with pre-existing chronic diseases are more susceptible to coronavirus disease 2019 (COVID-19), yet the underlying causes of increased risk are of infection remain unclear. Angiotensin-converting- enzyme 2 (ACE2), the cell surface receptor that recognizes the coronavirus spike protein has protective effects against inflammation and chronic hyperglycemia in animal models. The roles of ACE2 in severe SARS-CoV-2 infections remains ambiguous due to contradictory findings. In this study, we aimed to investigate the relationship between human plasma ACE2 levels in diabetics and the high risk of severe SARS-CoV-2 infection. First, the medical records of 245 patients with SARS-CoV-2-positive who have chronic diseases were analyzed. We also recruited 404 elderly subjects with comorbid chronic diseases such as diabetes mellitus, coronary heart disease, cerebrovascular disease, hypertension and obesity, and investigated the ACE2 plasma levels. Plasma concentrations of ACE2 were much lower (2973.83±2196.79 pg/mL) in diabetics with chronic disease than in healthy controls (4308.21±2352.42 pg/ml), and the use of hypoglycemia drugs was associated with lower circulating concentrations of ACE2 (P=1.49E-08). Diabetics with lower plasma levels of ACE2 may be susceptible to severe COVID-19. Our findings suggest that the poor prognosis in patients with diabetes infected with SARS-CoV-2 may be due to low circulating ACE2 levels.
Collapse
|
27
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
28
|
Dysregulation of the Renin-Angiotensin-Aldosterone System (RAA) in Patients Infected with SARS-CoV-2-Possible Clinical Consequences. Int J Mol Sci 2021; 22:ijms22094503. [PMID: 33925881 PMCID: PMC8123500 DOI: 10.3390/ijms22094503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/22/2023] Open
Abstract
SARS-CoV-2 impairs the renin-angiotensin-aledosterone system via binding ACE2 enzyme. ACE2 plays a key role in the biosynthesis of angiotensin (1-7), catalyzing the conversion of angiotensin 2 into angiotensin (1-7) and the reaction of angiotensin synthesis (1-9), from which angiotensin is (1-7) produced under the influence of ACE (Angiotensin-Converting Enzyme). Angiotensin 2 is a potent vasoconstrictor and atherogenic molecule converted by ACE2 to reducing inflammation and vasodilating in action angiotensin (1-7). Angiotensin (1-9), that is a product of angiotensin 1 metabolism and precursor of angiotensin (1-7), also exerts cell protective properties. Balance between angiotensin 2 and angiotensin (1-7) regulates blood pressure and ACE2 plays a critical role in this balance. ACE2, unlike ACE, is not inhibited by ACE inhibitors at the doses used in humans during the treatment of arterial hypertension. Membrane ACE2 is one of the receptors that allows SARS-CoV-2 to enter the host cells. ACE2 after SARS-CoV-2 binding is internalized and degraded. Hence ACE2 activity on the cell surface is reduced leading to increase the concentration of angiotensin 2 and decrease the concentration of angiotensin (1-7). Disturbed angiotensins metabolism, changes in ratio between angiotensins with distinct biological activities leading to domination of atherogenic angiotensin 2 can increase the damage to the lungs.
Collapse
|
29
|
COVID-19: Direct and Indirect Mechanisms of Statins. Int J Mol Sci 2021; 22:ijms22084177. [PMID: 33920709 PMCID: PMC8073792 DOI: 10.3390/ijms22084177] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The virus responsible for the current COVID-19 pandemic is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a new virus with high infectivity and moderate mortality. The major clinical manifestation of COVID-19 is interstitial pneumonia, which may progress to acute respiratory distress syndrome (ARDS). However, the disease causes a potent systemic hyperin-flammatory response, i.e., a cytokine storm or macrophage activation syndrome (MAS), which is associated with thrombotic complications. The complexity of the disease requires appropriate intensive treatment. One of promising treatment is statin administration, these being 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that exert pleiotropic anti-inflammatory effects. Recent studies indicate that statin therapy is associated with decreased mortality in COVID-19, which may be caused by direct and indirect mechanisms. According to literature data, statins can limit SARS-CoV-2 cell entry and replication by inhibiting the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). The cytokine storm can be ameliorated by lowering serum IL-6 levels; this can be achieved by inhibiting Toll-like receptor 4 (TLR4) and modulating macrophage activity. Statins can also reduce the complications of COVID-19, such as thrombosis and pulmonary fibrosis, by reducing serum PAI-1 levels, attenuating TGF-β and VEGF in lung tissue, and improving endothelial function. Despite these benefits, statin therapy may have side effects that should be considered, such as elevated creatinine kinase (CK), liver enzyme and serum glucose levels, which are already elevated in severe COVID-19 infection. The present study analyzes the latest findings regarding the benefits and limitations of statin therapy in patients with COVID-19.
Collapse
|
30
|
Viswanathan V, Puvvula A, Jamthikar AD, Saba L, Johri AM, Kotsis V, Khanna NN, Dhanjil SK, Majhail M, Misra DP, Agarwal V, Kitas GD, Sharma AM, Kolluri R, Naidu S, Suri JS. Bidirectional link between diabetes mellitus and coronavirus disease 2019 leading to cardiovascular disease: A narrative review. World J Diabetes 2021; 12:215-237. [PMID: 33758644 PMCID: PMC7958478 DOI: 10.4239/wjd.v12.i3.215] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/20/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic where several comorbidities have been shown to have a significant effect on mortality. Patients with diabetes mellitus (DM) have a higher mortality rate than non-DM patients if they get COVID-19. Recent studies have indicated that patients with a history of diabetes can increase the risk of severe acute respiratory syndrome coronavirus 2 infection. Additionally, patients without any history of diabetes can acquire new-onset DM when infected with COVID-19. Thus, there is a need to explore the bidirectional link between these two conditions, confirming the vicious loop between "DM/COVID-19". This narrative review presents (1) the bidirectional association between the DM and COVID-19, (2) the manifestations of the DM/COVID-19 loop leading to cardiovascular disease, (3) an understanding of primary and secondary factors that influence mortality due to the DM/COVID-19 loop, (4) the role of vitamin-D in DM patients during COVID-19, and finally, (5) the monitoring tools for tracking atherosclerosis burden in DM patients during COVID-19 and "COVID-triggered DM" patients. We conclude that the bidirectional nature of DM/COVID-19 causes acceleration towards cardiovascular events. Due to this alarming condition, early monitoring of atherosclerotic burden is required in "Diabetes patients during COVID-19" or "new-onset Diabetes triggered by COVID-19 in Non-Diabetes patients".
Collapse
Affiliation(s)
- Vijay Viswanathan
- M Viswanathan Hospital for Diabetes, M Viswanathan Diabetes Research Centre, Chennai 600013, India
| | - Anudeep Puvvula
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, Andhra Pradesh, India
| | - Ankush D Jamthikar
- Department of Electronics and Communications, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Monserrato 09045, Cagliari, Italy
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Hypertension Center, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 541-24, Greece
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110020, India
| | - Surinder K Dhanjil
- Stroke Diagnosis and Monitoring Division, AtheroPoint™ LLC, CA 95661, United States
| | - Misha Majhail
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA 95661, United States
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Vikas Agarwal
- Departments of Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, United Kingdom
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, United Kingdom
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Ohio, OH 43082, United States
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, United States
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA 95661, United States
| |
Collapse
|
31
|
Abstract
The dual pandemics of coronavirus disease-19 (COVID-19) and diabetes among patients are associated with 2- to 3-times higher intensive care admissions and higher mortality rates. Whether sheltering at home, quarantined with a positive COVID-19 test, or hospitalized, the person living with diabetes needs special considerations for successful management. Having diabetes and being COVID-19-positive increases the risk of poor outcomes and death. Providers need to give anticipatory pharmacologic guidance to patients with diabetes during COVID-19 lockdown. Patients with diabetes need to be more observant than others and to use self-protective actions. This review (1) discusses the clinical observations of COVID-19, diabetes and underlying mechanisms, (2) describes special considerations in caring for patients with diabetes in a COVID-19 environment, and (3) reviews clinical implications for the health care provider. This review highlights current evidenced-based knowledge. Additional research regarding clinical management is warranted.
Collapse
|
32
|
Cai L, Guo X, Cao Y, Ying P, Hong L, Zhang Y, Yi G, Fu M. Determining available strategies for prevention and therapy: Exploring COVID‑19 from the perspective of ACE2 (Review). Int J Mol Med 2021; 47:43. [PMID: 33576441 PMCID: PMC7891831 DOI: 10.3892/ijmm.2021.4876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infectious pneumonia caused by a novel type of coronavirus infection. There are currently no clinically available specific drugs for the treatment of this virus. The process of host invasion is the key to viral infection, and it is a mechanism that needs to be considered when exploring antiviral drugs. At present, studies have confirmed that angiotensin-converting enzyme II (ACE2) is the main functional receptor through which severe acute respiratory syndrome coronavirus (SARS-CoV-2) invades host cells. Therefore, a number of studies have focused on this field. However, as ACE2 may play a dual role in mediating susceptibility and immunity to SARS-CoV-2 infection, the role of ACE2 in viral infection is controversial. Beginning with the physiological function of ACE2, the present review article summarizes the influence of the ACE2 content on the susceptibility to the virus and acute lung injury. Drug mechanisms were taken as the starting point, combined with the results of clinical trials, specifically elaborating upon and analyzing the efficacy of several ACE2-centered therapeutic drugs and their potential effects. In addition, the current status of ACE2 as a targeted therapy for COVID-19 is discussed in order to provide new insight into the clinical prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Liyang Cai
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuchen Cao
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peixi Ying
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuxi Zhang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun‑Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
33
|
Zhu H, Zhang L, Ma Y, Zhai M, Xia L, Liu J, Yu S, Duan W. The role of SARS-CoV-2 target ACE2 in cardiovascular diseases. J Cell Mol Med 2021; 25:1342-1349. [PMID: 33443816 PMCID: PMC7875924 DOI: 10.1111/jcmm.16239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs.
Collapse
Affiliation(s)
- Hanzhao Zhu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Liyun Zhang
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Yubo Ma
- Department of Dermatology and VenereologyPeking University First HospitaBeijingChina
| | - Mengen Zhai
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Lin Xia
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Jincheng Liu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Shiqiang Yu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| |
Collapse
|
34
|
Parit R, Jayavel S. Association of ACE inhibitors and angiotensin type II blockers with ACE2 overexpression in COVID-19 comorbidities: A pathway-based analytical study. Eur J Pharmacol 2021; 896:173899. [PMID: 33508281 PMCID: PMC7839513 DOI: 10.1016/j.ejphar.2021.173899] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) outbreak is a major public health concern, which has accounted for >1.7 million deaths across the world. A surge in the case fatality ratio as compared with the infection ratio has been observed in most of the countries. The novel Coronavirus SARS-CoV-2 shares the most common sequence with SARS-CoV, but it has a higher rate of transmission. The SARS-CoV-2 pathogenesis is initiated by the binding of viral spike protein with the target receptor Angiotensin-Converting Enzyme 2 (ACE2) facilitating virus internalization within host cells. SARS-CoV-2 mainly causes alveolar damage ranging from mild to severe clinical respiratory manifestations. Most of the cases have revealed the association of Coronavirus disease with patients having earlier comorbidities like Hypertension, Diabetes mellitus, and Cerebrovascular diseases. Pharmacological investigation of the SARS-Cov-2 patients has revealed the frequent use of drugs belongs to Angiotensin-converting enzyme inhibitors (ACEi) and/or Angiotensin II type I receptor blockers (ARBs). Interestingly, a significant increase in ACE2 expression was noticed in patients routinely treated with the above group of drugs were also reported. To date, the association of ACEi and/or ARBs with the up-regulation of ACE2 expression has not been defined distinctively. The proposed review will focus on the pathways which are responsible for the upregulation of ACE2 and its impact on gravity of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Rahul Parit
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Sridhar Jayavel
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India.
| |
Collapse
|
35
|
Peymani P, Dehesh T, Aligolighasemabadi F, Sadeghdoust M, Kotfis K, Ahmadi M, Mehrbod P, Iranpour P, Dastghaib S, Nasimian A, Ravandi A, Kidane B, Ahmed N, Sharma P, Shojaei S, Bagheri Lankarani K, Madej A, Rezaei N, Madrakian T, Los MJ, Labouta HI, Mokarram P, Ghavami S. Statins in patients with COVID-19: a retrospective cohort study in Iranian COVID-19 patients. TRANSLATIONAL MEDICINE COMMUNICATIONS 2021; 6:3. [PMID: 33521322 PMCID: PMC7829327 DOI: 10.1186/s41231-021-00082-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/08/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has profoundly affected the lives of millions of people. To date, there is no approved vaccine or specific drug to prevent or treat COVID-19, while the infection is globally spreading at an alarming rate. Because the development of effective vaccines or novel drugs could take several months (if not years), repurposing existing drugs is considered a more efficient strategy that could save lives now. Statins constitute a class of lipid-lowering drugs with proven safety profiles and various known beneficial pleiotropic effects. Our previous investigations showed that statins have antiviral effects and are involved in the process of wound healing in the lung. This triggered us to evaluate if statin use reduces mortality in COVID-19 patients. RESULTS After initial recruitment of 459 patients with COVID-19 (Shiraz province, Iran) and careful consideration of the exclusion criteria, a total of 150 patients, of which 75 received statins, were included in our retrospective study. Cox proportional-hazards regression models were used to estimate the association between statin use and rate of death. After propensity score matching, we found that statin use appeared to be associated with a lower risk of morbidity [HR = 0.85, 95% CI = (0.02, 3.93), P = 0.762] and lower risk of death [(HR = 0.76; 95% CI = (0.16, 3.72), P = 0.735)]; however, these associations did not reach statistical significance. Furthermore, statin use reduced the chance of being subjected to mechanical ventilation [OR = 0.96, 95% CI = (0.61-2.99), P = 0.942] and patients on statins showed a more normal computed tomography (CT) scan result [OR = 0.41, 95% CI = (0.07-2.33), P = 0.312]. CONCLUSIONS Although we could not demonstrate a significant association between statin use and a reduction in mortality in patients with COVID19, we do feel that our results are promising and of clinical relevance and warrant the need for prospective randomized controlled trials and extensive retrospective studies to further evaluate and validate the potential beneficial effects of statin treatment on clinical symptoms and mortality rates associated with COVID-19.
Collapse
Affiliation(s)
- Payam Peymani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tania Dehesh
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Aligolighasemabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammadamin Sadeghdoust
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Shiraz Endocrine and Metabolism Research Center, Namazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Nasimian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Ravandi
- Section of Cardiology, St. Boniface Hospital, University of Manitoba, Winnipeg, MB Canada
| | - Biniam Kidane
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba Canada
| | - Naseer Ahmed
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Pawan Sharma
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA USA
| | - Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba Canada
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Andrzej Madej
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hagar Ibrahim Labouta
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba Canada
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba Canada
| |
Collapse
|
36
|
Butt JH, Gerds TA, Schou M, Kragholm K, Phelps M, Havers-Borgersen E, Yafasova A, Gislason GH, Torp-Pedersen C, Køber L, Fosbøl EL. Association between statin use and outcomes in patients with coronavirus disease 2019 (COVID-19): a nationwide cohort study. BMJ Open 2020; 10:e044421. [PMID: 33277291 PMCID: PMC7722358 DOI: 10.1136/bmjopen-2020-044421] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To investigate the association between recent statin exposure and risk of severe COVID-19 infection and all-cause mortality in patients with COVID-19 in Denmark. DESIGN AND SETTING Observational cohort study using data from Danish nationwide registries. PARTICIPANTS Patients diagnosed with COVID-19 from 22 February 2020 to 17 May 2020 were followed from date of diagnosis until outcome of interest, death or 17 May 2020. INTERVENTIONS Use of statins, defined as a redeemed drug prescription in the 6 months prior to COVID-19 diagnosis. PRIMARY AND SECONDARY OUTCOME MEASURES All-cause mortality, severe COVID-19 infection and the composite. RESULTS The study population comprised 4842 patients with COVID-19 (median age 54 years (25th-75th percentile, 40-72), 47.1% men), of whom 843 (17.4%) redeemed a prescription of statins. Patients with statin exposure were more often men and had a greater prevalence of comorbidities. The median follow-up was 44 days. After adjustment for age, sex, ethnicity, socioeconomic status and comorbidities, statin exposure was not associated with a significantly different risk of mortality (HR 0.96 (95% CI 0.78 to 1.18); 30-day standardised absolute risk (SAR), 9.8% (8.7% to 11.0%) vs 9.5% (8.2% to 10.8%); SAR difference, -0.4% (-1.9% to 1.2%)), severe COVID-19 infection (HR 1.16 (95% CI 0.95 to 1.41); 30-day SAR, 13.0% (11.8% to 14.2%) vs 14.9% (12.8% to 17.1%); SAR difference, 1.9% (-0.7% to 4.5%)), and the composite outcome of all-cause mortality or severe COVID-19 infection (HR 1.05 (95% CI 0.89 to 1.23); 30-day SAR, 17.6% (16.4% to 18.8%) vs 18.2% (16.4% to 20.1%); SAR difference, 0.6% (-1.6% to 2.9%)). The results were consistent across subgroups of age, sex and presumed indication for statin therapy. Among patients with statin exposure, there was no difference between statin drug or treatment intensity with respect to outcomes. CONCLUSIONS Recent statin exposure in patients with COVID-19 infection was not associated with an increased or decreased risk of all-cause mortality or severe infection.
Collapse
Affiliation(s)
- Jawad Haider Butt
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Alexander Gerds
- The Danish Heart Foundation, Copenhagen, Denmark
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev-Gentofte University Hospital, Herlev, Denmark
| | - Kristian Kragholm
- Departments of Cardiology, North Denmark Regional Hospital and Aalborg University Hospital, Aalborg, Denmark
| | | | - Eva Havers-Borgersen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adelina Yafasova
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gunnar Hilmar Gislason
- The Danish Heart Foundation, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte University Hospital, Hellerup, Denmark
| | | | - Lars Køber
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
37
|
Kaur U, Acharya K, Mondal R, Singh A, Saso L, Chakrabarti S, Chakrabarti SS. Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2. Eur J Pharmacol 2020; 887:173545. [PMID: 32926917 PMCID: PMC7485553 DOI: 10.1016/j.ejphar.2020.173545] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) has resulted in almost 28 million cases of COVID-19 (Corona virus disease-2019) and more than 900000 deaths worldwide since December 2019. In the absence of effective antiviral therapy and vaccine, treatment of COVID-19 is largely symptomatic. By making use of its spike (S) protein, the virus binds to its primary human cell receptor, angiotensin converting enzyme 2 (ACE2) which is present in the pulmonary epithelial cells as well as other organs. SARS-CoV-2 may cause a downregulation of ACE2. ACE2 plays a protective role in the pulmonary system through its Mas-receptor and alamandine-MrgD-TGR7 pathways. Loss of this protective effect could be a major component of COVID-19 pathogenesis. An attractive strategy in SARS-CoV-2 therapeutics would be to augment ACE2 either directly by supplementation or indirectly through drugs which increase its levels or stimulate its downstream players. In this semi-systematic review, we have analysed the pathophysiological interplay between ACE and ACE2 in the cardiopulmonary system, the modulation of these two proteins by SARS-CoV-2, and potential therapeutic avenues targeting ACE-Ang II and ACE2-Ang (1-7) axes, that can be utilized against COVID-19 disease progression.
Collapse
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur, UP, India
| | - Kumudini Acharya
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, UP, India
| | - Ritwick Mondal
- Department of Internal Medicine, Institute of Post Graduate Medical Education and Research, Kolkata, WB, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, UP, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Ambala, Haryana, India.
| | | |
Collapse
|
38
|
Wang S, Li W, Hui H, Tiwari SK, Zhang Q, Croker BA, Rawlings S, Smith D, Carlin AF, Rana TM. Cholesterol 25-Hydroxylase inhibits SARS-CoV-2 and other coronaviruses by depleting membrane cholesterol. EMBO J 2020; 39:e106057. [PMID: 32944968 PMCID: PMC7537045 DOI: 10.15252/embj.2020106057] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 and has spread across the globe. SARS-CoV-2 is a highly infectious virus with no vaccine or antiviral therapy available to control the pandemic; therefore, it is crucial to understand the mechanisms of viral pathogenesis and the host immune responses to SARS-CoV-2. SARS-CoV-2 is a new member of the betacoronavirus genus like other closely related viruses including SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Both SARS-CoV and MERS-CoV have caused serious outbreaks and epidemics in the past eighteen years. Here, we report that one of the interferon-stimulated genes (ISGs), cholesterol 25-hydroxylase (CH25H), is induced by SARS-CoV-2 infection in vitro and in COVID-19-infected patients. CH25H converts cholesterol to 25-hydrocholesterol (25HC) and 25HC shows broad anti-coronavirus activity by blocking membrane fusion. Furthermore, 25HC inhibits USA-WA1/2020 SARS-CoV-2 infection in lung epithelial cells and viral entry in human lung organoids. Mechanistically, 25HC inhibits viral membrane fusion by activating the ER-localized acyl-CoA:cholesterol acyltransferase (ACAT) which leads to the depletion of accessible cholesterol from the plasma membrane. Altogether, our results shed light on a potentially broad antiviral mechanism by 25HC through depleting accessible cholesterol on the plasma membrane to suppress virus-cell fusion. Since 25HC is a natural product with no known toxicity at effective concentrations, it provides a potential therapeutic candidate for COVID-19 and emerging viral diseases in the future.
Collapse
Affiliation(s)
- Shaobo Wang
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| | - Wanyu Li
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
- Department of BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Hui Hui
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
- Department of BiologyUniversity of California San DiegoLa JollaCAUSA
- Bioinformatics ProgramUniversity of California San DiegoLa JollaCAUSA
| | - Shashi Kant Tiwari
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| | - Qiong Zhang
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| | - Ben A Croker
- Division of Allergy, Immunology, and RheumatologyDepartment of PediatricsUniversity of California San DiegoLa JollaCAUSA
| | - Stephen Rawlings
- Division of Infectious Diseases and Global Public HealthDepartment of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Davey Smith
- Division of Infectious Diseases and Global Public HealthDepartment of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Aaron F Carlin
- Division of Infectious Diseases and Global Public HealthDepartment of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Tariq M Rana
- Division of GeneticsDepartment of PediatricsInstitute for Genomic MedicineProgram in ImmunologyUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
39
|
Iqbal Z, Ho JH, Adam S, France M, Syed A, Neely D, Rees A, Khatib R, Cegla J, Byrne C, Qureshi N, Capps N, Ferns G, Payne J, Schofield J, Nicholson K, Datta D, Pottle A, Halcox J, Krentz A, Durrington P, Soran H. Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK. Atherosclerosis 2020; 313:126-136. [PMID: 33045618 PMCID: PMC7490256 DOI: 10.1016/j.atherosclerosis.2020.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes Coronavirus Disease 2019 (COVID-19) has resulted in a pandemic. SARS-CoV-2 is highly contagious and its severity highly variable. The fatality rate is unpredictable but is amplified by several factors including advancing age, atherosclerotic cardiovascular disease, diabetes mellitus, hypertension and obesity. A large proportion of patients with these conditions are treated with lipid lowering medication and questions regarding the safety of continuing lipid-lowering medication in patients infected with COVID-19 have arisen. Some have suggested they may exacerbate their condition. It is important to consider known interactions with lipid-lowering agents and with specific therapies for COVID-19. This statement aims to collate current evidence surrounding the safety of lipid-lowering medications in patients who have COVID-19. We offer a consensus view based on current knowledge and we rated the strength and level of evidence for these recommendations. Pubmed, Google scholar and Web of Science were searched extensively for articles using search terms: SARS-CoV-2, COVID-19, coronavirus, Lipids, Statin, Fibrates, Ezetimibe, PCSK9 monoclonal antibodies, nicotinic acid, bile acid sequestrants, nutraceuticals, red yeast rice, Omega-3-Fatty acids, Lomitapide, hypercholesterolaemia, dyslipidaemia and Volanesorsen. There is no evidence currently that lipid lowering therapy is unsafe in patients with COVID-19 infection. Lipid-lowering therapy should not be interrupted because of the pandemic or in patients at increased risk of COVID-19 infection. In patients with confirmed COVID-19, care should be taken to avoid drug interactions, between lipid-lowering medications and drugs that may be used to treat COVID-19, especially in patients with abnormalities in liver function tests.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jan Hoong Ho
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Safwaan Adam
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom,The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Michael France
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Akheel Syed
- Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Dermot Neely
- Department of Blood Sciences and NIHR MedTech and IVD Centre, Newcastle Upon Tyne Hospitals, Newcastle Upon Tyne, United Kingdom
| | - Alan Rees
- HEART UK, Maidenhead, United Kingdom
| | - Rani Khatib
- Departments of Cardiology & Pharmacy, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Jaimini Cegla
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, W12 0NN, London, United Kingdom
| | - Christopher Byrne
- Department of Nutrition and Metabolism, Faculty of Medicine, University of Southampton, United Kingdom
| | - Nadeem Qureshi
- Division of Primary Care, University of Nottingham, Nottingham, United Kingdom
| | - Nigel Capps
- The Shrewsbury and Telford Hospital NHS Trust, United Kingdom
| | - Gordon Ferns
- Department of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Jonathan Schofield
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kirsty Nicholson
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Dev Datta
- Department of Metabolic Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Alison Pottle
- Department of Cardiology, Harefield Hospital, United Kingdom
| | - Julian Halcox
- Department of Medicine, Swansea University, Swansea, United Kingdom
| | - Andrew Krentz
- Institute of Cardiovascular & Metabolic Research, University of Reading, United Kingdom
| | - Paul Durrington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Handrean Soran
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | | |
Collapse
|
40
|
Routine use of statins and increased COVID-19 related mortality in inpatients with type 2 diabetes: Results from the CORONADO study. DIABETES & METABOLISM 2020; 47:101202. [PMID: 33091555 PMCID: PMC7572108 DOI: 10.1016/j.diabet.2020.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/30/2022]
Abstract
Aim Patients with type 2 diabetes mellitus (T2DM) represent a high-risk population for both cardiovascular diseases and severe coronavirus disease 2019 (COVID-19). Recent studies have reported interactions between statin treatment and COVID-19-related outcomes. The study reported here specifically assessed the association between routine statin use and COVID-19-related outcomes in inpatients with T2DM. Methods The Coronavirus–SARS-CoV-2 and Diabetes Outcomes (CORONADO) study was a nationwide observational study aiming to describe the phenotypic characteristics and prognosis of T2DM patients with COVID-19 admitted to 68 French hospitals between 10 March and 10 April 2020. The composite primary outcome comprised tracheal intubation and/or death within 7 and 28 days of admission. The association between statin use and outcomes was estimated by logistic regression analysis after applying inverse probability of treatment weighting (IPTW) using a propensity score-weighting approach. Results Of the 2449 patients with T2DM (881 women, 1568 men; aged 70.9 ± 12.5 years) suitable for analysis, 1192 (49%) were using statin treatment before admission. In unadjusted analyses, patients using statins had rates of the primary outcome similar to those of non-users within both 7 (29.8% vs 27.0%, respectively; P = 0.1338) and 28 days (36.2% vs 33.8%, respectively; P = 0.2191) of admission. However, mortality rates were significantly higher in statin users within 7 (12.8% vs 9.8%, respectively; P = 0.02) and 28 days (23.9% vs 18.2%, respectively; P < 0.001). After applying IPTW, significant associations were observed with statin use and the primary outcome within 7 days (OR [95% CI]: 1.38 [1.04–1.83]) and with death within both 7 (OR [95% CI]: 1.74 [1.13–2.65]) and 28 days (OR [95% CI]: 1.46 [1.08–1.95]). Conclusion Routine statin treatment is significantly associated with increased mortality in T2DM patients hospitalized for COVID-19.
Collapse
|
41
|
Frías Vargas M, Díaz Rodríguez A, Díaz Fernández B. [Lipid treatment in the period COVID-19]. Semergen 2020; 46:497-502. [PMID: 32718781 PMCID: PMC7328617 DOI: 10.1016/j.semerg.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES The COVID-19 pandemic has shown that cardiovascular diseases carry a higher risk of mortality. Doubts have been raised regarding lipid therapy in these patients. The objectives are to analyze the efficacy and safety of lipid lowering therapy in patients with COVID-19. MATERIAL AND METHODS A review of the scientific literature was conducted in PubMed, CDC Reports, NIH, and NCBI SARS-CoV-2 using the keywords: COVID-2, statins, ezetimibe, PCSK9 inhibitors, hypercholesterolemia, and hypolipidemic drugs. RESULTS The statins should continue to use patients with COVID-19 based on their efficacy, safety, immunosuppressive effects, anti-inflammatory availability and accessibility. Depending on the cardiovascular risk levels of these patients, the use of high potency statins and/or ezetimibe and/or iPCSK9 may be necessary in patients with high and very high cardiovascular risk. Patients treated with iPCSK9 should continue treatment for its beneficial effects in preventing cardiovascular disease. Patients with familial hypercholesterolemia and COVID-19 are especially vulnerable to cardiovascular disease and should continue to receive severe lipid lowering therapy. CONCLUSIONS In patients with COVID-19, the majority of baseline CVDs are of atherosclerotic origin, with the worst prediction for patients with high risk and very high risk of CVD. In these patients, intensive treatment with statins and/or fixed combination with ezetimibe and/or iPCSK9 plays a fundamental role.
Collapse
|
42
|
Bansal R, Gubbi S, Muniyappa R. Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology 2020; 161:bqaa112. [PMID: 32603424 PMCID: PMC7337756 DOI: 10.1210/endocr/bqaa112] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Individuals with metabolic syndrome are at increased risk for poor disease outcomes and mortality from COVID-19. The pathophysiologic mechanisms for these observations have not been fully elucidated. A critical interaction between SARS-CoV-2 and the angiotensin-converting enzyme 2 (ACE2) facilitates viral entry into the host cell. ACE2 is expressed in pancreatic islets, vascular endothelium, and adipose tissue, and the SARS-CoV-2 -ACE2 interaction in these tissues, along with other factors, governs the spectrum and the severity of clinical manifestations among COVID-19 patients with metabolic syndrome. Moreover, the pro-inflammatory milieu observed in patients with metabolic syndrome may contribute toward COVID-19-mediated host immune dysregulation, including suboptimal immune responses, hyperinflammation, microvascular dysfunction, and thrombosis. This review describes the spectrum of clinical features, the likely pathophysiologic mechanisms, and potential implications for the management of metabolic syndrome in COVID-19 patients.
Collapse
Affiliation(s)
- Rashika Bansal
- Clinical Endocrine Section, Diabetes, Endocrinology, and
Obesity Branch, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, MD
| | - Sriram Gubbi
- Clinical Endocrine Section, Diabetes, Endocrinology, and
Obesity Branch, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, MD
| | - Ranganath Muniyappa
- Clinical Endocrine Section, Diabetes, Endocrinology, and
Obesity Branch, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Dambha-Miller H, Albasri A, Hodgson S, Wilcox CR, Khan S, Islam N, Little P, Griffin SJ. Currently prescribed drugs in the UK that could upregulate or downregulate ACE2 in COVID-19 disease: a systematic review. BMJ Open 2020; 10:e040644. [PMID: 32928868 PMCID: PMC7490921 DOI: 10.1136/bmjopen-2020-040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To review evidence on routinely prescribed drugs in the UK that could upregulate or downregulate ACE2 and potentially affect COVID-19 disease. DESIGN Systematic review. DATA SOURCE MEDLINE, EMBASE, CINAHL, the Cochrane Library and Web of Science. STUDY SELECTION Any design with animal or human models examining a currently prescribed UK drug compared with a control, placebo or sham group, and reporting an effect on ACE2 level, activity or gene expression. DATA EXTRACTION AND SYNTHESIS MEDLINE, EMBASE, CINAHL, the Cochrane Library, Web of Science and OpenGrey from inception to 1 April 2020. Methodological quality was assessed using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk-of-bias tool for animal studies and Cochrane risk-of-bias tool for human studies. RESULTS We screened 3360 titles and included 112 studies with 21 different drug classes identified as influencing ACE2 activity. Ten studies were in humans and one hundred and two were in animal models None examined ACE2 in human lungs. The most frequently examined drugs were angiotensin receptor blockers (ARBs) (n=55) and ACE inhibitors (ACE-I) (n=22). More studies reported upregulation than downregulation with ACE-I (n=22), ARBs (n=55), insulin (n=8), thiazolidinedione (n=7) aldosterone agonists (n=3), statins (n=5), oestrogens (n=5) calcium channel blockers (n=3) glucagon-like peptide 1 (GLP-1) agonists (n=2) and Non-steroidal anti-inflammatory drugs (NSAIDs) (n=2). CONCLUSIONS There is an abundance of the academic literature and media reports on the potential of drugs that could attenuate or exacerbate COVID-19 disease. This is leading to trials of repurposed drugs and uncertainty among patients and clinicians concerning continuation or cessation of prescribed medications. Our review indicates that the impact of currently prescribed drugs on ACE2 has been poorly studied in vivo, particularly in human lungs where the SARS-CoV-2 virus appears to enact its pathogenic effects. We found no convincing evidence to justify starting or stopping currently prescribed drugs to influence outcomes of COVID-19 disease.
Collapse
Affiliation(s)
- Hajira Dambha-Miller
- Department of Primary Care, University of Southampton, Southampton, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Ali Albasri
- Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sam Hodgson
- Department of Primary Care, University of Southampton, Southampton, UK
| | | | - Shareen Khan
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Nazrul Islam
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Population Health, University of Oxford, Oxford, UK
| | - Paul Little
- Department of Primary Care, University of Southampton, Southampton, UK
| | - Simon J Griffin
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Akhtar S, Benter IF, Danjuma MI, Doi SAR, Hasan SS, Habib AM. Pharmacotherapy in COVID-19 patients: a review of ACE2-raising drugs and their clinical safety. J Drug Target 2020; 28:683-699. [PMID: 32700580 DOI: 10.1080/1061186x.2020.1797754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic is caused by the severe acute-respiratory-syndrome-coronavirus-2 that uses ACE2 as its receptor. Drugs that raise serum/tissue ACE2 levels include ACE inhibitors (ACEIs) and angiotensin-II receptor blockers (ARBs) that are commonly used in patients with hypertension, cardiovascular disease and/or diabetes. These comorbidities have adverse outcomes in COVID-19 patients that might result from pharmacotherapy. Increasing ACE2 could potentially increase the risk of infection, severity or mortality in COVID-19 or it might be protective as it forms angiotensin-(1-7) which exhibits anti-inflammatory/anti-oxidative effects and prevents diabetes- and/or hypertension-induced end-organ damage. Thus, there existed clinical uncertainty. Here, we review studies implicating 15 classes of drugs in increasing ACE2 levels in vivo and the available literature on the clinical safety of these drugs in COVID-19 patients. Further, in a re-analysis of clinical data from a meta-analysis of 9 studies, we show that ACEIs/ARBs usage was not associated with an increased risk of all-cause mortality. Literature suggests that ACEIs/ARBs usage generally appears to be clinically safe though their use in severe COVID-19 patients might increase the risk of acute renal injury. For definitive clarity, further clinical and mechanistic studies are needed in assessing the safety of all classes of ACE2 raising medications.
Collapse
Affiliation(s)
- Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Mohammed I Danjuma
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Division of Internal Medicine, Hamad Medical Corporation Hospital, Doha, Qatar
| | - Suhail A R Doi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Syed S Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
45
|
Zhang XJ, Qin JJ, Cheng X, Shen L, Zhao YC, Yuan Y, Lei F, Chen MM, Yang H, Bai L, Song X, Lin L, Xia M, Zhou F, Zhou J, She ZG, Zhu L, Ma X, Xu Q, Ye P, Chen G, Liu L, Mao W, Yan Y, Xiao B, Lu Z, Peng G, Liu M, Yang J, Yang L, Zhang C, Lu H, Xia X, Wang D, Liao X, Wei X, Zhang BH, Zhang X, Yang J, Zhao GN, Zhang P, Liu PP, Loomba R, Ji YX, Xia J, Wang Y, Cai J, Guo J, Li H. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab 2020; 32:176-187.e4. [PMID: 32592657 PMCID: PMC7311917 DOI: 10.1016/j.cmet.2020.06.015] [Citation(s) in RCA: 349] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Statins are lipid-lowering therapeutics with favorable anti-inflammatory profiles and have been proposed as an adjunct therapy for COVID-19. However, statins may increase the risk of SARS-CoV-2 viral entry by inducing ACE2 expression. Here, we performed a retrospective study on 13,981 patients with COVID-19 in Hubei Province, China, among which 1,219 received statins. Based on a mixed-effect Cox model after propensity score-matching, we found that the risk for 28-day all-cause mortality was 5.2% and 9.4% in the matched statin and non-statin groups, respectively, with an adjusted hazard ratio of 0.58. The statin use-associated lower risk of mortality was also observed in the Cox time-varying model and marginal structural model analysis. These results give support for the completion of ongoing prospective studies and randomized controlled trials involving statin treatment for COVID-19, which are needed to further validate the utility of this class of drugs to combat the mortality of this pandemic.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lijun Shen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yan-Ci Zhao
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ming-Ming Chen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Huilin Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Liangjie Bai
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiaohui Song
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Meng Xia
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Feng Zhou
- Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianghua Zhou
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19004, USA
| | - Qingbo Xu
- Centre for Clinic Pharmacology, The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430072, China
| | - Guohua Chen
- Department of Neurology, Wuhan First Hospital/Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430072, China
| | - Liming Liu
- Department of General Surgery, Ezhou Central Hospital, Ezhou 436000, China
| | - Weiming Mao
- Department of General Surgery, Huanggang Central Hospital, Huanggang 438000, China
| | - Youqin Yan
- Wuhan Seventh Hospital, Wuhan 430072, China
| | - Bing Xiao
- Department of Stomatology, Xiantao First People's Hospital, Xiantao 433000, China
| | - Zhigang Lu
- Department of Neurology, The First People's Hospital of Jingmen Affiliated to Hubei Minzu University, Jingmen 448000, China
| | - Gang Peng
- Department of Hepatobiliary and Pancreatic Surgery, Suizhou Central Hospital Affiliated to Hubei Medical College, Suizhou 441300, China
| | - Mingyu Liu
- The Ninth Hospital of Wuhan City, Wuhan 430072, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital and Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China
| | - Luyu Yang
- Department of Intensive Care Unit, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, China
| | - Changjiang Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Haofeng Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Changjiang University, Jingzhou, China
| | - Xigang Xia
- Department of Hepatobiliary Surgery, Jingzhou Central Hospital, Jingzhou, China
| | - Daihong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Xianning Central Hospital, Xianning, Hubei Province, China
| | - Xiaofeng Liao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Hong Zhang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Juan Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Guang-Nian Zhao
- Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peter P Liu
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California, San Diego, San Diego, CA, USA
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yibin Wang
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410000, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine & Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China & Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
46
|
Abstract
The COVID-19 pandemic has driven unprecedented efforts to identify existing treatments that can be quickly and effectively repurposed to reduce morbidity and mortality. In this issue of Cell Metabolism, Zhang et al. (2020) report an association between statin use and improved outcomes in a large observational study of hospitalized COVID-19 patients. Given the widespread availability, low cost, and safety of statins, this promising result should be further investigated in randomized controlled trials.
Collapse
Affiliation(s)
- David C Fajgenbaum
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Filardi T, Morano S. COVID-19: is there a link between the course of infection and pharmacological agents in diabetes? J Endocrinol Invest 2020; 43:1053-1060. [PMID: 32495299 PMCID: PMC7268955 DOI: 10.1007/s40618-020-01318-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Coronavirus disease 2019 (COVID-19) and type 2 diabetes (T2D) are two pandemics that share the dramatic impact on global mortality and economic resources. COVID-19 largely exhibits mild to moderate clinical manifestations. However, severe pneumonia with high fatality rate may occur, especially in the elderly and in patients with underlying conditions, such as diabetes and cardiovascular disease. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) binds to the angiotensin-converting enzyme 2 (ACE2), a ubiquitous trans-membrane carboxypeptidase, to enter the cells. AIMS This short review discusses some open questions about the link between COVID-19 and diabetes, principally focusing on the possible effects of commonly used drugs in patients with diabetes. RESULTS Preclinical studies have reported that angiotensin receptor blockers (ARBs) and ACE inhibitors might increase ACE2 expression in several cell types. Hence, it has been speculated that the treatment with these agents might influence the course of the infection, and both harmful and beneficial effects have been supposed. Other pharmacological agents are thought to increase ACE2 expression, including statins and proliferator-activated receptor gamma (PPAR-γ) agonists. All these drug classes are broadly adopted in T2D. Besides ACE2, other unknown co-factors might be involved in cell infection. It has been recently observed that dipeptidyl peptidase-4 (DPP4), the receptor for MERS-CoV (Middle East respiratory syndrome-related coronavirus) and ACE2 have similar expression profiles in the lung. DPP4 has important metabolic and immune functions and is a target for commonly used therapies in T2D. CONCLUSIONS Although clinical data supporting an influence of all these drugs on the course of the disease are limited, this is an interesting background for further research that might help unravel the complex mechanisms underlying the link between COVID-19 and diabetes.
Collapse
Affiliation(s)
- T Filardi
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - S Morano
- Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
48
|
Rahimi L, Malek M, Ismail-Beigi F, Khamseh ME. Challenging Issues in the Management of Cardiovascular Risk Factors in Diabetes During the COVID-19 Pandemic: A Review of Current Literature. Adv Ther 2020; 37:3450-3462. [PMID: 32632851 PMCID: PMC7338141 DOI: 10.1007/s12325-020-01417-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 outbreak was declared a pandemic on March 2020. Many patients with SARS-CoV-2 infection have underlying chronic medical conditions such as diabetes, cardiovascular disease (CVD), and hypertension. Patient-related outcomes are worse if there are associated comorbidities. We do not have enough evidence regarding the most appropriate management of patients with diabetes during COVID-19 infection. Insulin resistance and CVD together increase the inflammatory state of the body, which can contribute to and perhaps mediate the increase of COVID-19 severity. Hence, in addition to management of dysglycemia, other CVD risk factors should be targeted. We explore the possible pathophysiologic links between diabetes and COVID-19 and discuss various options to treat dysglycemia, hypertension, and dyslipidemia in the era of COVID-19.
Collapse
Affiliation(s)
- Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
49
|
Michaud V, Deodhar M, Arwood M, Al Rihani SB, Dow P, Turgeon J. ACE2 as a Therapeutic Target for COVID-19; its Role in Infectious Processes and Regulation by Modulators of the RAAS System. J Clin Med 2020; 9:E2096. [PMID: 32635289 PMCID: PMC7408699 DOI: 10.3390/jcm9072096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is the recognized host cell receptor responsiblefor mediating infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2bound to tissue facilitates infectivity of SARS-CoV-2; thus, one could argue that decreasing ACE2tissue expression would be beneficial. However, ACE2 catalytic activity towards angiotensin I (AngI) and II (Ang II) mitigates deleterious effects associated with activation of the renin-angiotensinaldosteronesystem (RAAS) on several organs, including a pro-inflammatory status. At the tissuelevel, SARS-CoV-2 (a) binds to ACE2, leading to its internalization, and (b) favors ACE2 cleavage toform soluble ACE2: these actions result in decreased ACE2 tissue levels. Preserving tissue ACE2activity while preventing ACE2 shredding is expected to circumvent unrestrained inflammatoryresponse. Concerns have been raised around RAAS modulators and their effects on ACE2expression or catalytic activity. Various cellular and animal models report conflicting results invarious tissues. However, recent data from observational and meta-analysis studies in SARS-CoV-2-infected patients have concluded that RAAS modulators do not increase plasma ACE2 levels orsusceptibility to infection and are not associated with more severe diseases. This review presentsour current but evolving knowledge of the complex interplay between SARS-CoV-2 infection, ACE2levels, modulators of RAAS activity and the effects of RAAS modulators on ACE2 expression.
Collapse
Affiliation(s)
- Veronique Michaud
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Malavika Deodhar
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Meghan Arwood
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Sweilem B Al Rihani
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Pamela Dow
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, FL 32827, USA; (V.M.); (M.D.); (M.A.); (S.B.A.R.); (P.D.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
50
|
Ghafouri-Fard S, Noroozi R, Omrani MD, Branicki W, Pośpiech E, Sayad A, Pyrc K, Łabaj PP, Vafaee R, Taheri M, Sanak M. Angiotensin converting enzyme: A review on expression profile and its association with human disorders with special focus on SARS-CoV-2 infection. Vascul Pharmacol 2020; 130:106680. [PMID: 32423553 PMCID: PMC7211701 DOI: 10.1016/j.vph.2020.106680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Angiotensin-converting enzyme (ACE) and its homologue, ACE2, have been mostly associated with hypertensive disorder. However, recent pandemia of SARS-CoV-2 has put these proteins at the center of attention, as this virus has been shown to exploit ACE2 protein to enter cells. Clear difference in the response of affected patients to this virus has urged researchers to find the molecular basis and pathophysiology of the cell response to this virus. Different levels of expression and function of ACE proteins, underlying disorders, consumption of certain medications and the existence of certain genomic variants within ACE genes are possible explanations for the observed difference in the response of individuals to the SARS-CoV-2 infection. In the current review, we discuss the putative mechanisms for this observation.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|