1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
León-Rodríguez A, Grondona JM, Marín-Wong S, López-Aranda MF, López-Ávalos MD. Long-term reprogramming of primed microglia after moderate inhibition of CSF1R signaling. Glia 2024. [PMID: 39448548 DOI: 10.1002/glia.24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
In acute neuroinflammation, microglia activate transiently, and return to a resting state later on. However, they may retain immune memory of such event, namely priming. Primed microglia are more sensitive to new stimuli and develop exacerbated responses, representing a risk factor for neurological disorders with an inflammatory component. Strategies to control the hyperactivation of microglia are, hence, of great interest. The receptor for colony stimulating factor 1 (CSF1R), expressed in myeloid cells, is essential for microglia viability, so its blockade with specific inhibitors (e.g. PLX5622) results in significant depletion of microglial population. Interestingly, upon inhibitor withdrawal, new naïve microglia repopulate the brain. Depletion-repopulation has been proposed as a strategy to reprogram microglia. However, substantial elimination of microglia is inadvisable in human therapy. To overcome such drawback, we aimed to reprogram long-term primed microglia by CSF1R partial inhibition. Microglial priming was induced in mice by acute neuroinflammation, provoked by intracerebroventricular injection of neuraminidase. After 3-weeks recovery, low-dose PLX5622 treatment was administrated for 12 days, followed by a withdrawal period of 7 weeks. Twelve hours before euthanasia, mice received a peripheral lipopolysaccharide (LPS) immune challenge, and the subsequent microglial inflammatory response was evaluated. PLX5622 provoked a 40%-50% decrease in microglial population, but basal levels were restored 7 weeks later. In the brain regions studied, hippocampus and hypothalamus, LPS induced enhanced microgliosis and inflammatory activation in neuraminidase-injected mice, while PLX5622 treatment prevented these changes. Our results suggest that PLX5622 used at low doses reverts microglial priming and, remarkably, prevents broad microglial depletion.
Collapse
Affiliation(s)
- Ana León-Rodríguez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Sonia Marín-Wong
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel F López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| |
Collapse
|
3
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
4
|
Cao S, Zhou M, Ji S, Ma D, Zhu S. Recent Advances in the Study of Alphaherpesvirus Latency and Reactivation: Novel Guidance for the Design of Herpesvirus Live Vector Vaccines. Pathogens 2024; 13:779. [PMID: 39338969 PMCID: PMC11435198 DOI: 10.3390/pathogens13090779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and varicella-zoster virus (VZV), infect a diverse array of hosts, spanning both humans and animals. Alphaherpesviruses have developed a well-adapted relationship with their hosts through long-term evolution. Some alphaherpesviruses exhibit a typical neurotropic characteristic, which has garnered widespread attention and in-depth research. Virus latency involves the retention of viral genomes without producing infectious viruses. However, under stress, this can be reversed, resulting in lytic infection. Such reactivation events can lead to recurrent infections, manifesting as diseases like herpes labialis, genital herpes, and herpes zoster. Reactivation is a complex process influenced by both viral and host factors, and identifying how latency and reactivation work is vital to developing new antiviral therapies. Recent research highlights a complex interaction among the virus, neurons, and the immune system in regulating alphaherpesvirus latency and reactivation. Neurotropic alphaherpesviruses can breach host barriers to infect neurons, proliferate extensively within their cell bodies, and establish latent infections or spread further. Whether infecting neurons or spreading further, the virus undergoes transmission along axons or dendrites, making this process an indispensable part of the viral life cycle and a critical factor influencing the virus's invasion of the nervous system. Research on the transmission process of neurotropic alphaherpesviruses within neurons can not only deepen our understanding of the virus but can also facilitate the targeted development of corresponding vaccines. This review concentrates on the relationship between the transmission, latency, and activation of alphaherpesviruses within neurons, summarizes recent advancements in the field, and discusses how these findings can inform the design of live virus vaccines for alphaherpesviruses.
Collapse
Affiliation(s)
- Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China;
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| |
Collapse
|
5
|
Pavlou A, Mulenge F, Gern OL, Busker LM, Greimel E, Waltl I, Kalinke U. Orchestration of antiviral responses within the infected central nervous system. Cell Mol Immunol 2024; 21:943-958. [PMID: 38997413 PMCID: PMC11364666 DOI: 10.1038/s41423-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/14/2024] Open
Abstract
Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses with certain pathological hallmarks observed in neurodegeneration.
Collapse
Affiliation(s)
- Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Elisabeth Greimel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Akbar H, Jarosinski KW. Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek's Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD. Viruses 2024; 16:1130. [PMID: 39066292 PMCID: PMC11281646 DOI: 10.3390/v16071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
Collapse
Affiliation(s)
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
7
|
Berki P, Cserép C, Környei Z, Pósfai B, Szabadits E, Domonkos A, Kellermayer A, Nyerges M, Wei X, Mody I, Kunihiko A, Beck H, Kaikai H, Ya W, Lénárt N, Wu Z, Jing M, Li Y, Gulyás AI, Dénes Á. Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices. Nat Commun 2024; 15:5402. [PMID: 38926390 PMCID: PMC11208608 DOI: 10.1038/s41467-024-49773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.
Collapse
Affiliation(s)
- Péter Berki
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, H-1083, Hungary
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Neuronal Network and Behaviour, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Andor Domonkos
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Miklós Nyerges
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Araki Kunihiko
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - He Kaikai
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wang Ya
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary.
| |
Collapse
|
8
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
9
|
Yang Y, Hang W, Li J, Liu T, Hu Y, Fang F, Yan D, McQuillan PM, Wang M, Hu Z. Effect of General Anesthetic Agents on Microglia. Aging Dis 2024; 15:1308-1328. [PMID: 37962460 PMCID: PMC11081156 DOI: 10.14336/ad.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of general anesthetic agents (GAAs) on microglia and their potential neurotoxicity have attracted the attention of neuroscientists. Microglia play important roles in the inflammatory process and in neuromodulation of the central nervous system. Microglia-mediated neuroinflammation is a key mechanism of neurocognitive dysfunction during the perioperative period. Microglial activation by GAAs induces anti-inflammatory and pro-inflammatory effects in microglia, suggesting that GAAs play a dual role in the mechanism of postoperative cognitive dysfunction. Understanding of the mechanisms by which GAAs regulate microglia may help to reduce the incidence of postoperative adverse effects. Here, we review the actions of GAAs on microglia and the consequent changes in microglial function. We summarize clinical and animal studies associating microglia with general anesthesia and describe how GAAs interact with neurons via microglia to further explore the mechanisms of action of GAAs in the nervous system.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA.
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA, USA.
| | - Mi Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
11
|
Binder LB, Rosa PB, de Sousa BM, Chagas LS, Dubljević O, Martineau FS, Mottarlini F, Castany S, Morton L, Krstanović F, Tassinari ID, Choconta JL, Pereira-Santos AR, Weinhard L, Pallegar PN, Vahsen BF, Lepiarz-Raba I, Compagnion AC, Lorente-Picón M. Neuro-immune interactions in health and disease: Insights from FENS-Hertie 2022 Winter School. Eur J Neurosci 2024; 59:1977-1992. [PMID: 38311960 DOI: 10.1111/ejn.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/07/2024] [Indexed: 02/06/2024]
Abstract
In a great partnership, the Federation of European Neuroscience Societies (FENS) and the Hertie Foundation organized the FENS-Hertie 2022 Winter School on 'Neuro-immune interactions in health and disease'. The school selected 27 PhD students and 13 postdoctoral fellows from 20 countries and involved 14 faculty members experts in the field. The Winter School focused on a rising field of research, the interactions between the nervous and both innate and adaptive immune systems under pathological and physiological conditions. A fine-tuned neuro-immune crosstalk is fundamental for healthy development, while disrupted neuro-immune communication might play a role in neurodegeneration, neuroinflammation and aging. However, much is yet to be understood about the underlying mechanisms of these neuro-immune interactions in the healthy brain and under pathological scenarios. In addition to new findings in this emerging field, novel methodologies and animal models were presented to foment research on neuro-immunology. The FENS-Hertie 2022 Winter School provided an insightful knowledge exchange between students and faculty focusing on the latest discoveries in the biology of neuro-immune interactions while fostering great academic and professional opportunities for early-career neuroscientists from around the world.
Collapse
Affiliation(s)
- Luisa B Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Priscila B Rosa
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Luana S Chagas
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Olga Dubljević
- Department of Neurobiology, Univerzitet u Beogradu Institut za Biološka Istraživanja Siniša Stanković, Institute for Biological Research, Beograd, Republic of Serbia
| | | | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Sílvia Castany
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Lorena Morton
- Faculty of Medicine, Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University, Magdeburg, Germany
| | - Fran Krstanović
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
| | - Isadora D Tassinari
- Department of Physiology, Graduate Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeiny L Choconta
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ana Raquel Pereira-Santos
- Center for Neuroscience and Cell Biology (CNC), CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | | | | | - Björn F Vahsen
- Nuffield Department of Clinical Neurosciences, Oxford Motor Neuron Disease Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Izabela Lepiarz-Raba
- BRAINCITY: Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Marina Lorente-Picón
- Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
12
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024:S2090-1232(24)00006-7. [PMID: 38195039 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Awogbindin I, Wanklin M, Verkhratsky A, Tremblay MÈ. Microglia in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:497-512. [PMID: 39207709 DOI: 10.1007/978-3-031-55529-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are manifested by a progressive death of neural cells, resulting in the deterioration of central nervous system (CNS) functions, ultimately leading to specific behavioural and cognitive symptoms associated with affected brain regions. Several neurodegenerative disorders are caused by genetic variants or mutations, although the majority of cases are sporadic and linked to various environmental risk factors, with yet an unknown aetiology. Neuroglial changes are fundamental and often lead to the pathophysiology of neurodegenerative diseases. In particular, microglial cells, which are essential for maintaining CNS health, become compromised in their physiological functions with the exposure to environmental risk factors, genetic variants or mutations, as well as disease pathology. In this chapter, we cover the contribution of neuroglia, especially microglia, to several neurodegenerative diseases, including Nasu-Hakola disease, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, infectious disease-associated neurodegeneration, and metal-precipitated neurodegeneration. Future research perspectives for the field pertaining to the therapeutic targeting of microglia across these disease conditions are also discussed.
Collapse
Affiliation(s)
- Ifeoluwa Awogbindin
- Department of Biochemistry, Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Michael Wanklin
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
16
|
Cserép C, Pósfai B, Szabadits E, Dénes Á. Contactomics of Microglia and Intercellular Communication. ADVANCES IN NEUROBIOLOGY 2024; 37:135-149. [PMID: 39207690 DOI: 10.1007/978-3-031-55529-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia represent the main immunocompetent cell type in the parenchyma of the brain and the spinal cord, with roles extending way beyond their immune functions. While emerging data show the pivotal role of microglia in brain development, brain health and brain diseases, the exact mechanisms through which microglia contribute to complex neuroimmune interactions are still largely unclear. Understanding the communication between microglia and other cells represents an important cornerstone of these interactions, which may provide novel opportunities for therapeutic interventions in neurological or psychiatric disorders. As such, in line with studying the effects of the numerous soluble mediators that influence neuroimmune processes, attention on physical interactions between microglia and other cells in the CNS has increased substantially in recent years. In this chapter, we briefly summarize the latest literature on "microglial contactomics" and its functional implications in health and disease.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Szabadits
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
17
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
18
|
Long Y, Li XQ, Deng J, Ye QB, Li D, Ma Y, Wu YY, Hu Y, He XF, Wen J, Shi A, Yu S, Shen L, Ye Z, Zheng C, Li N. Modulating the polarization phenotype of microglia - A valuable strategy for central nervous system diseases. Ageing Res Rev 2024; 93:102160. [PMID: 38065225 DOI: 10.1016/j.arr.2023.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Central nervous system (CNS) diseases have become one of the leading causes of death in the global population. The pathogenesis of CNS diseases is complicated, so it is important to find the patterns of the disease to improve the treatment strategy. Microglia are considered to be a double-edged sword, playing both harmful and beneficial roles in CNS diseases. Therefore, it is crucial to understand the progression of the disease and the changes in the polar phenotype of microglia to provide guidance in the treatment of CNS diseases. Microglia activation may evolve into different phenotypes: M1 and M2 types. We focused on the roles that M1 and M2 microglia play in regulating intercellular dialogues, pathological reactions and specific diseases in CNS diseases. Importantly, we summarized the strategies used to modulate the polarization phenotype of microglia, including traditional pharmacological modulation, biological therapies, and physical strategies. This review will contribute to the development of potential strategies to modulate microglia polarization phenotypes and provide new alternative therapies for CNS diseases.
Collapse
Affiliation(s)
- Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Qiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qiao-Bo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuan-Yuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao-Fang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lin Shen
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medine, Tianjin, China.
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
19
|
Mein N, von Stackelberg N, Wickel J, Geis C, Chung HY. Low-dose PLX5622 treatment prevents neuroinflammatory and neurocognitive sequelae after sepsis. J Neuroinflammation 2023; 20:289. [PMID: 38041192 PMCID: PMC10691003 DOI: 10.1186/s12974-023-02975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is characterized by symptoms of delirium including hallucinations, impaired concentration, agitation, or coma and is associated with poor outcome in the early phase of sepsis. In addition, sepsis survivors often suffer from persisting memory deficits and impaired executive functions. Recent studies provide evidence that microglia are involved in the pathophysiology of SAE. METHODS Here, we investigated whether pharmacological depletion of microglia using PLX5622 (1200 ppm or 300 ppm) in the acute phase of sepsis is able to prevent long-term neurocognitive decline in a male mouse model of polymicrobial sepsis or lipopolysaccharide-induced sterile neuroinflammation. Therefore, we performed the novel object recognition test at different time points after sepsis to address hippocampus-dependent learning. To further assess synapse engulfment in microglia, colocalization analysis was performed using high-resolution 3D Airyscan imaging of Iba1 and Homer1. We also investigated the effect of PLX5622 on acute astrocyte and chronic microglia proliferation in the hippocampus after sepsis induction using immunofluorescence staining. RESULTS High-dose application of the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 (1200 ppm) seven days prior to sepsis induction lead to 70-80% microglia reduction but resulted in fatal outcome of bacterial sepsis or LPS induced inflammation. This is likely caused by severely compromised host immune response upon PLX5622-induced depletion of peripheral monocytes and macrophages. We therefore tested partial microglia depletion using a low-dose of PLX5622 (300 ppm) for seven days prior to sepsis which resulted in an increased survival in comparison to littermates subjected to high-dose CSF1R inhibiton and to a stable microglia reduction of ~ 40%. This partial microglia depletion in the acute stage of sepsis largely prevented the engulfment and microglia-induced stripping of postsynaptic terminals. In addition, PLX5622 low-dose microglia depletion attenuated acute astrogliosis as well as long-term microgliosis and prevented long-term neurocognitive decline after experimental sepsis. CONCLUSIONS We conclude that partial microglia depletion before the induction of sepsis may be sufficient to attenuate long-term neurocognitive dysfunction. Application of PLX5622 (300 ppm) acts by reducing microglia-induced synaptic attachement/engulfment and preventing chronic microgliosis.
Collapse
Affiliation(s)
- Nils Mein
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Nikolai von Stackelberg
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jonathan Wickel
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- German Center for Mental Health, Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Ha-Yeun Chung
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| |
Collapse
|
20
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
21
|
Fruhwürth S, Reinert LS, Öberg C, Sakr M, Henricsson M, Zetterberg H, Paludan SR. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. SCIENCE ADVANCES 2023; 9:eadf5808. [PMID: 37595041 PMCID: PMC10438464 DOI: 10.1126/sciadv.adf5808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway. TREM2 was found to be important for virus-induced IFNB induction through the DNA-sensing cGAS-STING pathway in microglia and for phagocytosis of HSV1-infected neurons. Consequently, TREM2 depletion increased susceptibility to HSV1 infection in human microglia-neuron cocultures and in the mouse brain. TREM2 augmented STING signaling and activation of downstream targets TBK1 and IRF3. Thus, TREM2 is important for the antiviral immune response in microglia. Since TREM2 loss-of-function mutations and HSV1 serological status are both linked to Alzheimer's disease, this work poses the question whether genetic or virus-induced alterations of TREM2 activity predispose to post-infection neurological pathologies.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Line S. Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carl Öberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcelina Sakr
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Søren R. Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Sun X, Jin X, Liu X, Wang L, Li L, Yang J, Feng H, Lin Z, Zhan C, Zhang W, Gu C, Hu X, Liu X, Cheng G. Microglia play an important role in PRV infection-induced immune responses of the central nervous system. Virol J 2023; 20:151. [PMID: 37452371 PMCID: PMC10349424 DOI: 10.1186/s12985-023-02118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Pseudorabies virus (PRV) can infect multiple hosts and lead to fatal encephalitis. There is a significant increase in the number of microglia in the brain of animals infected with PRV. However, whether and how microglia contribute to central nervous system damage in PRV infection remain unknown. In the present study, we elucidated that PRV infection can cause more severe inflammatory cell infiltration, thicker and more numerous vessel sleeve walls, and more severe inflammatory responses in the brains of natural hosts (pigs) than in those of nonnatural hosts (mice). In a mice infection model, activated microglia restricted viral replication in the early stage of infection. Acute neuroinflammation caused by microglia hyperactivation at late-stage of infection. Furthermore, in vitro experiments revealed that microglia restricted viral replication and decreased viral infectivity. This may be associated with the phagocytic ability of microglia because we observed a significant increase in the expression of the membrane receptor TREM2 in microglia, which is closely related to phagocytosis, we observed that depletion of microglia exacerbated neurological symptoms, blood-brain barrier breakdown, and peripheral lymphocyte infiltration. Taken together, we revealed the dual role of microglia in protecting the host and neurons from PRV infection.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Jin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lumeng Wang
- Henan Shengming Biotechnology Research, Xinxiang, China
| | - Li Li
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junjie Yang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Helong Feng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengdan Lin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cunlin Zhan
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changqin Gu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoli Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guofu Cheng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
23
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
McMillan RE, Wang E, Carlin AF, Coufal NG. Human microglial models to study host-virus interactions. Exp Neurol 2023; 363:114375. [PMID: 36907350 PMCID: PMC10521930 DOI: 10.1016/j.expneurol.2023.114375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Microglia, the resident macrophage of the central nervous system, are increasingly recognized as contributing to diverse aspects of human development, health, and disease. In recent years, numerous studies in both mouse and human models have identified microglia as a "double edged sword" in the progression of neurotropic viral infections: protecting against viral replication and cell death in some contexts, while acting as viral reservoirs and promoting excess cellular stress and cytotoxicity in others. It is imperative to understand the diversity of human microglial responses in order to therapeutically modulate them; however, modeling human microglia has been historically challenging due to significant interspecies differences in innate immunity and rapid transformation upon in vitro culture. In this review, we discuss the contribution of microglia to the neuropathogenesis of key neurotropic viral infections: human immunodeficiency virus 1 (HIV-1), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We pay special attention to recent work with human stem cell-derived microglia and propose strategies to leverage these powerful models to further uncover species- and disease-specific microglial responses and novel therapeutic interventions for neurotropic viral infections.
Collapse
Affiliation(s)
- Rachel E McMillan
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, United States of America; Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Ellen Wang
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America
| | - Aaron F Carlin
- Department of Pathology and Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America.
| | - Nicole G Coufal
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, United States of America.
| |
Collapse
|
25
|
Ming LG, Hu DX, Zuo C, Zhang WJ. G protein-coupled P2Y12 receptor is involved in the progression of neuropathic pain. Biomed Pharmacother 2023; 162:114713. [PMID: 37084563 DOI: 10.1016/j.biopha.2023.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The pathological mechanism of neuropathic pain is complex, which seriously affects the physical and mental health of patients, and its treatment is also difficult. The role of G protein-coupled P2Y12 receptor in pain has been widely recognized and affirmed. After nerve injury, stimulated cells can release large amounts of nucleotides into the extracellular matrix, act on P2Y12 receptor. Activated P2Y12 receptor activates intracellular signal transduction and is involved in the development of pain. P2Y12 receptor activation can sensitize primary sensory neurons and receive sensory information. By transmitting the integrated information through the dorsal root of the spinal cord to the secondary neurons of the posterior horn of the spinal cord. The integrated information is then transmitted to the higher center through the ascending conduction tract to produce pain. Moreover, activation of P2Y12 receptor can mediate immune cells to release pro-inflammatory factors, increase damage to nerve cells, and aggravate pain. While inhibits the activation of P2Y12 receptor can effectively relieve pain. Therefore, in this article, we described P2Y12 receptor antagonists and their pharmacological properties. In addition, we explored the potential link between P2Y12 receptor and the nervous system, discussed the intrinsic link of P2Y12 receptor and neuropathic pain and as a potential pharmacological target for pain suppression.
Collapse
Affiliation(s)
- Li-Guo Ming
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
26
|
Spiteri AG, Wishart CL, Ni D, Viengkhou B, Macia L, Hofer MJ, King NJC. Temporal tracking of microglial and monocyte single-cell transcriptomics in lethal flavivirus infection. Acta Neuropathol Commun 2023; 11:60. [PMID: 37016414 PMCID: PMC10074823 DOI: 10.1186/s40478-023-01547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6Chi inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality. However, the contribution of microglia to this response is currently undefined. Here we used a combination of experimental tools, including single-cell RNA sequencing (scRNA-seq), microglia and MC depletion reagents, high-dimensional spectral cytometry and computational algorithms to dissect the differential contribution of microglia and MCs to the anti-viral immune response in severe neuroinflammation seen in WNE. Intriguingly, analysis of scRNA-seq data revealed 6 unique microglia and 3 unique MC clusters that were predominantly timepoint-specific, demonstrating substantial transcriptional adaptation with disease progression over the course of WNE. While microglia and MC adopted unique gene expression profiles, gene ontology enrichment analysis, coupled with microglia and MC depletion studies, demonstrated a role for both of these cells in the trafficking of peripheral immune cells into the CNS, T cell responses and viral clearance. Over the course of infection, microglia transitioned from a homeostatic to an anti-viral and then into an immune cell-recruiting phenotype. Conversely, MC adopted antigen-presenting, immune cell-recruiting and NO-producing phenotypes, which all had anti-viral function. Overall, this study defines for the first time the single-cell transcriptomic responses of microglia and MCs over the course of WNE, demonstrating both protective and pathological roles of these cells that could potentially be targeted for differential therapeutic intervention to dampen immune-mediated pathology, while maintaining viral clearance functions.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claire L Wishart
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barney Viengkhou
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
27
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|
28
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
29
|
Akbar H, Fasick JJ, Ponnuraj N, Jarosinski KW. Purinergic signaling during Marek's disease in chickens. Sci Rep 2023; 13:2044. [PMID: 36739336 PMCID: PMC9899245 DOI: 10.1038/s41598-023-29210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Purinergic receptors (PRs) have been reported as potential therapeutic targets for many viral infections including herpesviruses, which urges the investigation into their role in Marek's disease (MD), a herpesvirus induced cancer in chickens that is an important pathogen for the poultry industry. MD is caused by MD virus (MDV) that has a similar viral life cycle as human varicella zoster virus in that it is shed from infected epithelial skin cells and enters the host through the respiratory route. In this report, PR responses during natural MDV infection and disease progression was examined in MD-resistant white Leghorns (WL) and MD-susceptible Pure Columbian (PC) chickens during natural infection. Whole lung lavage cells (WLLC) and liver tissue samples were collected from chickens infected but showing no clinical signs of MD (Infected) or presenting with clinical disease (Diseased). RNA was extracted followed by RT-qPCR analysis with gene specific primers against members of the P1, P2X, and P2Y PR families. Differential expression (p < 0.05) was observed in breed and disease conditions. Some PRs showed tissue specific expression (P1A1, P2X1, and P2X6 in WLLC) whereas others responded to MDV infection only in MD-susceptible (PC) chickens (P1A2A, P2X1, P2X5, P2X7). P2Y PRs had differential expression in both chicken lines in response to MDV infection and MD progression. This study is the first to our knowledge to examine PR responses during MDV infection and disease progression. These results suggest PR signaling may an important area of research for MDV replication and MD.
Collapse
Affiliation(s)
- Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julia J Fasick
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
30
|
Alves VS, Santos SACS, Leite-Aguiar R, Paiva-Pereira E, dos Reis RR, Calazans ML, Fernandes GG, Antônio LS, de Lima EV, Kurtenbach E, Silva JL, Fontes-Dantas FL, Passos GF, Figueiredo CP, Coutinho-Silva R, Savio LEB. SARS-CoV-2 Spike protein alters microglial purinergic signaling. Front Immunol 2023; 14:1158460. [PMID: 37114062 PMCID: PMC10126242 DOI: 10.3389/fimmu.2023.1158460] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine Paiva-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Rodrigues dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana L. Calazans
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leticia Silva Antônio
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V. de Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabricia Lima Fontes-Dantas
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes Institute Biology (IBRAG), Universidade Estadual do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|
31
|
Bourgon C, Albin AS, Ando-Grard O, Da Costa B, Domain R, Korkmaz B, Klonjkowski B, Le Poder S, Meunier N. Neutrophils play a major role in the destruction of the olfactory epithelium during SARS-CoV-2 infection in hamsters. Cell Mol Life Sci 2022; 79:616. [PMID: 36460750 PMCID: PMC9734468 DOI: 10.1007/s00018-022-04643-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
The loss of smell (anosmia) related to SARS-CoV-2 infection is one of the most common symptoms of COVID-19. Olfaction starts in the olfactory epithelium mainly composed of olfactory sensory neurons surrounded by supporting cells called sustentacular cells. It is now clear that the loss of smell is related to the massive infection by SARS-CoV-2 of the sustentacular cells in the olfactory epithelium leading to its desquamation. However, the molecular mechanism behind the destabilization of the olfactory epithelium is less clear. Using golden Syrian hamsters infected with an early circulating SARS-CoV-2 strain harboring the D614G mutation in the spike protein; we show here that rather than being related to a first wave of apoptosis as proposed in previous studies, the innate immune cells play a major role in the destruction of the olfactory epithelium. We observed that while apoptosis remains at a low level in the damaged area of the infected epithelium, the latter is invaded by Iba1+ cells, neutrophils and macrophages. By depleting the neutrophil population or blocking the activity of neutrophil elastase-like proteinases, we could reduce the damage induced by the SARS-CoV-2 infection. Surprisingly, the impairment of neutrophil activity led to a decrease in SARS-CoV-2 infection levels in the olfactory epithelium. Our results indicate a counterproductive role of neutrophils leading to the release of infected cells in the lumen of the nasal cavity and thereby enhanced spreading of the virus in the early phase of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey St Albin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ophélie Ando-Grard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Sophie Le Poder
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704, Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
32
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Cowan MN, Kovacs MA, Sethi I, Babcock IW, Still K, Batista SJ, O’Brien CA, Thompson JA, Sibley LA, Labuzan SA, Harris TH. Microglial STAT1-sufficiency is required for resistance to toxoplasmic encephalitis. PLoS Pathog 2022; 18:e1010637. [PMID: 36067217 PMCID: PMC9481170 DOI: 10.1371/journal.ppat.1010637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that establishes a life-long chronic infection largely restricted to the central nervous system (CNS). Constant immune pressure, notably IFN-γ-STAT1 signaling, is required for preventing fatal pathology during T. gondii infection. Here, we report that abrogation of STAT1 signaling in microglia, the resident immune cells of the CNS, is sufficient to induce a loss of parasite control in the CNS and susceptibility to toxoplasmic encephalitis during the early stages of chronic infection. Using a microglia-specific genetic labeling and targeting system that discriminates microglia from blood-derived myeloid cells that infiltrate the brain during infection, we find that, contrary to previous in vitro reports, microglia do not express inducible nitric-oxide synthase (iNOS) during T. gondii infection in vivo. Instead, transcriptomic analyses of microglia reveal that STAT1 regulates both (i) a transcriptional shift from homeostatic to “disease-associated microglia” (DAM) phenotype conserved across several neuroinflammatory models, including T. gondii infection, and (ii) the expression of anti-parasitic cytosolic molecules that are required for eliminating T. gondii in a cell-intrinsic manner. Further, genetic deletion of Stat1 from microglia during T. gondii challenge leads to fatal pathology despite largely equivalent or enhanced immune effector functions displayed by brain-infiltrating immune populations. Finally, we show that microglial STAT1-deficiency results in the overrepresentation of the highly replicative, lytic tachyzoite form of T. gondii, relative to its quiescent, semi-dormant bradyzoite form typical of chronic CNS infection. Our data suggest an overall protective role of CNS-resident microglia against T. gondii infection, illuminating (i) general mechanisms of CNS-specific immunity to infection (ii) and a clear role for IFN-STAT1 signaling in regulating a microglial activation phenotype observed across diverse neuroinflammatory disease states. The brain, an immune-privileged organ, can be invaded and colonized by pathogens such as the opportunistic parasite, Toxoplasma gondii. How microglia, the resident immune cells of the brain, provide resistance to infection is an active area of investigation. In this study, we used a genetic approach to generate and study mice with microglia that lack STAT1, a critical transcription factor that confers protection against intracellular pathogens in both humans and mice. We find that despite robust activation and recruitment of immune cells from the blood to the brain during infection, STAT1 deficiency in microglia leads to increased brain parasite burden and uniform lethality in mice when challenged with T. gondii. Our bioinformatic analyses also indicate that STAT1 in microglia regulates (i) the expression of large families of genes associated with parasite killing and (ii) a microglial activation state that has been classically seen in neurodegeneration. Our findings identify mechanisms by which microglia contribute to parasite control and contribute to a greater understanding of their cellular physiology during neuroinflammation.
Collapse
Affiliation(s)
- Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael A. Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Isaac W. Babcock
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katherine Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Samantha J. Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carleigh A. O’Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeremy A. Thompson
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lydia A. Sibley
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sydney A. Labuzan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bocharova OV, Fisher A, Pandit NP, Molesworth K, Mychko O, Scott AJ, Makarava N, Ritzel R, Baskakov IV. Aβ plaques do not protect against HSV-1 infection in a mouse model of familial Alzheimer's disease, and HSV-1 does not induce Aβ pathology in a model of late onset Alzheimer's disease. Brain Pathol 2022; 33:e13116. [PMID: 36064300 PMCID: PMC9836376 DOI: 10.1111/bpa.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023] Open
Abstract
The possibility that the etiology of late onset Alzheimer's disease is linked to viral infections of the CNS has been actively debated in recent years. According to the antiviral protection hypothesis, viral pathogens trigger aggregation of Aβ peptides that are produced as a defense mechanism in response to infection to entrap and neutralize pathogens. To test the causative relationship between viral infection and Aβ aggregation, the current study examined whether Aβ plaques protect the mouse brain against Herpes Simplex Virus 1 (HSV-1) infection introduced via a physiological route and whether HSV-1 infection triggers formation of Aβ plaques in a mouse model of late-onset AD that does not develop Aβ pathology spontaneously. In aged 5XFAD mice infected via eye scarification, high density of Aβ aggregates did not improve survival time or rate when compared with wild type controls. In 5XFADs, viral replication sites were found in brain areas with a high density of extracellular Aβ deposits, however, no association between HSV-1 and Aβ aggregates could be found. To test whether HSV-1 triggers Aβ aggregation in a mouse model that lacks spontaneous Aβ pathology, 13-month-old hAβ/APOE4/Trem2*R47H mice were infected with HSV-1 via eye scarification with the McKrae HSV-1 strain, intracranial inoculation with McKrae, intracranial inoculation after priming with LPS for 6 weeks, or intracranial inoculation with high doses of McKrae or 17syn + strains that represent different degrees of neurovirulence. No signs of Aβ aggregation were found in any of the experimental groups. Instead, extensive infiltration of peripheral leukocytes was observed during the acute stage of HSV-1 infection, and phagocytic activity of myeloid cells was identified as the primary defense mechanism against HSV-1. The current results argue against a direct causative relationship between HSV-1 infection and Aβ pathology.
Collapse
Affiliation(s)
- Olga V. Bocharova
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Aidan Fisher
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kara Molesworth
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Olga Mychko
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Alison J. Scott
- Department of Microbial PathogenesisUniversity of Maryland School of DentistryBaltimoreMarylandUSA
| | - Natallia Makarava
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Rodney Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR)University of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
35
|
Patrycy M, Chodkowski M, Krzyzowska M. Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens 2022; 11:pathogens11070809. [PMID: 35890053 PMCID: PMC9324537 DOI: 10.3390/pathogens11070809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is defined as an inflammatory state within the central nervous system (CNS). Microglia conprise the resident tissue macrophages of the neuronal tissue. Upon viral infection of the CNS, microglia become activated and start to produce inflammatory mediators important for clearance of the virus, but an excessive neuroinflammation can harm nearby neuronal cells. Herpesviruses express several molecular mechanisms, which can modulate apoptosis of infected neurons, astrocytes and microglia but also divert immune response initiated by the infected cells. In this review we also describe the link between virus-related neuroinflammation, and development of neurodegenerative diseases.
Collapse
|
36
|
Trehalose Treatment in Zebrafish Model of Lafora Disease. Int J Mol Sci 2022; 23:ijms23126874. [PMID: 35743315 PMCID: PMC9224929 DOI: 10.3390/ijms23126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a−/− zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.
Collapse
|
37
|
Wu Z, Chhun BB, Popova G, Guo SM, Kim CN, Yeh LH, Nowakowski T, Zou J, Mehta SB. DynaMorph: self-supervised learning of morphodynamic states of live cells. Mol Biol Cell 2022; 33:ar59. [PMID: 35138913 PMCID: PMC9265147 DOI: 10.1091/mbc.e21-11-0561] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
A cell's shape and motion represent fundamental aspects of cell identity and can be highly predictive of function and pathology. However, automated analysis of the morphodynamic states remains challenging for most cell types, especially primary human cells where genetic labeling may not be feasible. To enable automated and quantitative analysis of morphodynamic states, we developed DynaMorph-a computational framework that combines quantitative live cell imaging with self-supervised learning. To demonstrate the robustness and utility of this approach, we used DynaMorph to annotate morphodynamic states observed with label-free measurements of optical density and anisotropy of live microglia isolated from human brain tissue. These cells show complex behavior and have varied responses to disease-relevant perturbations. DynaMorph generates quantitative morphodynamic representations that can be used to compare the effects of the perturbations. Using DynaMorph, we identify distinct morphodynamic states of microglia polarization and detect rare transition events between states. The concepts and the methods presented here can facilitate automated discovery of functional states of diverse cellular systems.
Collapse
Affiliation(s)
- Zhenqin Wu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | | | - Galina Popova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | | | - Chang N. Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | - Li-Hao Yeh
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Tomasz Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
38
|
Spiteri AG, Ni D, Ling ZL, Macia L, Campbell IL, Hofer MJ, King NJC. PLX5622 Reduces Disease Severity in Lethal CNS Infection by Off-Target Inhibition of Peripheral Inflammatory Monocyte Production. Front Immunol 2022; 13:851556. [PMID: 35401512 PMCID: PMC8990748 DOI: 10.3389/fimmu.2022.851556] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
PLX5622 is a CSF-1R inhibitor and microglia-depleting reagent, widely used to investigate the biology of this central nervous system (CNS)-resident myeloid population, but the indirect or off-target effects of this agent remain largely unexplored. In a murine model of severe neuroinflammation induced by West Nile virus encephalitis (WNE), we showed PLX5622 efficiently depleted both microglia and a sub-population of border-associated macrophages in the CNS. However, PLX5622 also significantly depleted mature Ly6Chi monocytes in the bone marrow (BM), inhibiting their proliferation and lethal recruitment into the infected brain, reducing neuroinflammation and clinical disease scores. Notably, in addition, BM dendritic cell subsets, plasmacytoid DC and classical DC, were depleted differentially in infected and uninfected mice. Confirming its protective effect in WNE, cessation of PLX5622 treatment exacerbated disease scores and was associated with robust repopulation of microglia, rebound BM monopoiesis and markedly increased inflammatory monocyte infiltration into the CNS. Monoclonal anti-CSF-1R antibody blockade late in WNE also impeded BM monocyte proliferation and recruitment to the brain, suggesting that the protective effect of PLX5622 is via the inhibition of CSF-1R, rather than other kinase targets. Importantly, BrdU incorporation in PLX5622-treated mice, suggest remaining microglia proliferate independently of CSF-1 in WNE. Our study uncovers significantly broader effects of PLX5622 on the myeloid lineage beyond microglia depletion, advising caution in the interpretation of PLX5622 data as microglia-specific. However, this work also strikingly demonstrates the unexpected therapeutic potential of this molecule in CNS viral infection, as well as other monocyte-mediated diseases.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Zheng Lung Ling
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Uyar O, Dominguez JM, Bordeleau M, Lapeyre L, Ibáñez FG, Vallières L, Tremblay ME, Corbeil J, Boivin G. Single-cell transcriptomics of the ventral posterolateral nucleus-enriched thalamic regions from HSV-1-infected mice reveal a novel microglia/microglia-like transcriptional response. J Neuroinflammation 2022; 19:81. [PMID: 35387656 PMCID: PMC8985399 DOI: 10.1186/s12974-022-02437-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background Microglia participate in the immune response upon central nervous system (CNS) infections. However, the role of these cells during herpes simplex encephalitis (HSE) has not been fully characterized. We sought to identify different microglia/microglia-like cells and describe the potential mechanisms and signaling pathways involved during HSE. Methods The transcriptional response of CD11b+ immune cells, including microglia/microglia-like cells, was investigated using single-cell RNA sequencing (scRNA-seq) on cells isolated from the ventral posterolateral nucleus (VPL)-enriched thalamic regions of C57BL/6 N mice intranasally infected with herpes simplex virus-1 (HSV-1) (6 × 105 PFUs/20 µl). We further performed scanning electronic microscopy (SEM) analysis in VPL regions on day 6 post-infection (p.i.) to provide insight into microglial functions. Results We describe a novel microglia-like transcriptional response associated with a rare cell population (7% of all analyzed cells), named “in transition” microglia/microglia-like cells in HSE. This new microglia-like transcriptional signature, found in the highly infected thalamic regions, was enriched in specific genes (Retnlg, Cxcr2, Il1f9) usually associated with neutrophils. Pathway analysis of this cell-type transcriptome showed increased NLRP3-inflammasome-mediated interleukin IL-1β production, promoting a pro-inflammatory response. These cells' increased expression of viral transcripts suggests that the distinct “in transition” transcriptome corresponds to the intrinsic antiviral immune signaling of HSV-1-infected microglia/microglia-like cells in the thalamus. In accordance with this phenotype, we observed several TMEM119+/IBA-I+ microglia/microglia-like cells immunostained for HSV-1 in highly infected regions. Conclusions A new microglia/microglia-like state may potentially shed light on how microglia could react to HSV-1 infection. Our observations suggest that infected microglia/microglia-like cells contribute to an exacerbated CNS inflammation. Further characterization of this transitory state of the microglia/microglia-like cell transcriptome may allow the development of novel immunomodulatory approaches to improve HSE outcomes by regulating the microglial immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02437-7.
Collapse
Affiliation(s)
- Olus Uyar
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Juan Manuel Dominguez
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada
| | - Lina Lapeyre
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Fernando González Ibáñez
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luc Vallières
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Marie-Eve Tremblay
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Jacques Corbeil
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
40
|
Tsai MS, Wang LC, Wu HL, Tzeng SF, Conway EM, Hsu SM, Chen SH. Absence of the lectin-like domain of thrombomodulin reduces HSV-1 lethality of mice with increased microglia responses. J Neuroinflammation 2022; 19:66. [PMID: 35277184 PMCID: PMC8915510 DOI: 10.1186/s12974-022-02426-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background Herpes simplex virus 1 (HSV-1) can induce fatal encephalitis. Cellular factors regulate the host immunity to affect the severity of HSV-1 encephalitis. Recent reports focus on the significance of thrombomodulin (TM), especially the domain 1, lectin-like domain (TM-LeD), which modulates the immune responses to bacterial infections and toxins and various diseases in murine models. Few studies have investigated the importance of TM-LeD in viral infections, which are also regulated by the host immunity. Methods In vivo studies comparing wild-type and TM-LeD knockout mice were performed to determine the role of TM-LeD on HSV-1 lethality. In vitro studies using brain microglia cultured from mice or a human microglia cell line to investigate whether and how TM-LeD affects microglia to reduce HSV-1 replication in brain neurons cultured from mice or in a human neuronal cell line. Results Absence of TM-LeD decreased the mortality, tissue viral loads, and brain neuron apoptosis of HSV-1-infected mice with increases in the number, proliferation, and phagocytic activity of brain microglia. Moreover, TM-LeD deficiency enhanced the phagocytic activity of brain microglia cultured from mice or of a human microglia cell line. Co-culture of mouse primary brain microglia and neurons or human microglia and neuronal cell lines revealed that TM-LeD deficiency augmented the capacity of microglia to reduce HSV-1 replication in neurons. Conclusions Overall, TM-LeD suppresses microglia responses to enhance HSV-1 infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02426-w.
Collapse
|
41
|
Császár E, Lénárt N, Cserép C, Környei Z, Fekete R, Pósfai B, Balázsfi D, Hangya B, Schwarcz AD, Szabadits E, Szöllősi D, Szigeti K, Máthé D, West BL, Sviatkó K, Brás AR, Mariani JC, Kliewer A, Lenkei Z, Hricisák L, Benyó Z, Baranyi M, Sperlágh B, Menyhárt Á, Farkas E, Dénes Á. Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. J Exp Med 2022; 219:e20211071. [PMID: 35201268 PMCID: PMC8932534 DOI: 10.1084/jem.20211071] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.
Collapse
Affiliation(s)
- Eszter Császár
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Diána Balázsfi
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Anett D. Schwarcz
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Szabadits
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | | | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Ana Rita Brás
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Jean-Charles Mariani
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Andrea Kliewer
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Zsolt Lenkei
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, Paris, France
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ákos Menyhárt
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
42
|
Cowan MN, Sethi I, Harris TH. Microglia in CNS infections: insights from Toxoplasma gondii and other pathogens. Trends Parasitol 2022; 38:217-229. [PMID: 35039238 PMCID: PMC8852251 DOI: 10.1016/j.pt.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are poised to respond to neuropathology. Microglia play multiple roles in maintaining homeostasis and promoting inflammation in numerous disease states. The study of microglial innate immune programs has largely focused on exploring neurodegenerative disease states with the use of genetic targeting approaches. Our understanding of how microglia participate in immune responses against pathogens is just beginning to take shape. Here, we review existing animal models of CNS infection, with a focus on how microglial physiology and inflammatory processes control protozoan and viral infections of the brain. We further discuss how microglial participation in over-exuberant immune responses can drive immunopathology that is detrimental to CNS health and homeostasis.
Collapse
Affiliation(s)
- Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States,Correspondence: (T. H. Harris)
| |
Collapse
|
43
|
O'Brien CA, Bennett FC, Bennett ML. Microglia in antiviral immunity of the brain and spinal cord. Semin Immunol 2022; 60:101650. [PMID: 36099864 PMCID: PMC9934594 DOI: 10.1016/j.smim.2022.101650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Viral infections of the central nervous system (CNS) are a significant cause of neurological impairment and mortality worldwide. As tissue resident macrophages, microglia are critical initial responders to CNS viral infection. Microglia seem to coordinate brain-wide antiviral responses of both brain resident cells and infiltrating immune cells. This review discusses how microglia may promote this antiviral response at a molecular level, from potential mechanisms of virus recognition to downstream cytokine responses and interaction with antiviral T cells. Recent advancements in genetic tools to specifically target microglia in vivo promise to further our understanding about the precise mechanistic role of microglia in CNS infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
44
|
Kim J, Erice C, Rohlwink UK, Tucker EW. Infections in the Developing Brain: The Role of the Neuro-Immune Axis. Front Neurol 2022; 13:805786. [PMID: 35250814 PMCID: PMC8891478 DOI: 10.3389/fneur.2022.805786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
Central nervous system (CNS) infections occur more commonly in young children than in adults and pose unique challenges in the developing brain. This review builds on the distinct vulnerabilities in children's peripheral immune system (outlined in part 1 of this review series) and focuses on how the developing brain responds once a CNS infection occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter the CNS and initiate a localized innate immune response with release of cytokines and chemokines to recruit peripheral immune cells that contribute to the inflammatory cascade. This immune response is initiated by the resident brain cells, microglia and astrocytes, which are not only integral to fighting the infection but also have important roles during normal brain development. Additionally, cytokines and other immune mediators such as matrix metalloproteinases from neurons, glia, and endothelial cells not only play a role in BBB permeability and peripheral cell recruitment, but also in brain maturation. Consequently, these immune modulators and the activation of microglia and astrocytes during infection adversely impact normal neurodevelopment. Perturbations to normal brain development manifest as neurodevelopmental and neurocognitive impairments common among children who survive CNS infections and are often permanent. In part 2 of the review series, we broadly summarize the unique challenges CNS infections create in a developing brain and explore the interaction of regulators of neurodevelopment and CNS immune response as part of the neuro-immune axis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula K. Rohlwink
- Faculty of Health Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth W. Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Zhang J, Li Z, Lu H, Shi J, Gao R, Ma Y, Lan Y, Guan J, Zhao K, Gao F, He W. Evidence of Microglial Immune Response Following Coronavirus PHEV Infection of CNS. Front Immunol 2022; 12:804625. [PMID: 35082791 PMCID: PMC8784595 DOI: 10.3389/fimmu.2021.804625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurotropic coronavirus that invades the host central nervous system (CNS) and causes neurological dysfunction. Microglia are key immune cells in the CNS, however, whether and how they response to PHEV infection remains unclear. Herein, microglial activation and proliferation were detected in the CNS of PHEV-infected mice, as along with the proinflammatory response. Moreover, the production of proinflammatory cytokines induced by moderately activated microglia limited viral replication in the early stage of infection. Microglial depletion assays showed that during late infection, excess activation of microglia aggravated neurological symptoms, BBB destruction, and peripheral monocyte/macrophage infiltration into the CNS. Using an in vitro brain slice model, PHEV was identified to specifically and moderately induce microglial activation in the absence of peripheral immune cells infiltration. Consistently, macrophage clearance from circulating blood indicated that peripheral monocytes/macrophages crossing the BBB of mice were responsible for excess activation of microglia and CNS damage in late PHEV infection. Overall, our findings provide evidence supporting a dual role for microglia in the host CNS in response to coronavirus PHEV invasion.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Junchao Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
46
|
Iring A, Tóth A, Baranyi M, Otrokocsi L, Módis LV, Gölöncsér F, Varga B, Hortobágyi T, Bereczki D, Dénes Á, Sperlágh B. The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson's disease: Signalling pathway and novel therapeutic targets. Pharmacol Res 2022; 176:106045. [PMID: 34968684 DOI: 10.1016/j.phrs.2021.106045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative condition; characterized with the degeneration of the nigrostriatal dopaminergic pathway and neuroinflammation. During PD progression, microglia, the resident immune cells in the central nervous system (CNS) display altered activity, but their role in maintaining PD development has remained unclear to date. The purinergic P2Y12-receptor (P2Y12R), which is expressed on the microglia in the CNS has been shown to regulate microglial activity and responses; however, the function of the P2Y12R in PD is unknown. Here we show that MPTP-induced PD symptoms in mice are associated with marked neuroinflammatory changes and P2Y12R contribute to the activation of microglia and progression of the disease. Surprisingly, while pharmacological or genetic targeting of the P2Y12R augments acute mortality in MPTP-treated mice, these interventions protect against the neurodegenerative cell loss and the development of neuroinflammation in vivo. Pharmacological inhibition of receptors during disease development reverses the symptoms of PD and halts disease progression. We found that P2Y12R regulates ROCK and p38 MAPK activity and control cytokine production. Our principal finding is that the receptor has a dualistic role in PD: functional P2Y12Rs are essential to initiate a protective inflammatory response, since the lack of the receptor leads to reduced survival; however, at later stages of neurodegeneration, P2Y12Rs are apparently responsible for maintaining the activated state of microglia and stimulating pro-inflammatory cytokine response. Understanding protective and detrimental P2Y12R-mediated actions in the CNS may reveal novel approaches to control neuroinflammation and modify disease progression in PD.
Collapse
Affiliation(s)
- András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Adrián Tóth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary; Department of Neurology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - László V Módis
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bernadett Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary; Institute of Pathology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Dániel Bereczki
- Department of Neurology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary.
| |
Collapse
|
47
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|
48
|
ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A 2022; 119:2103812119. [PMID: 35101972 PMCID: PMC8832969 DOI: 10.1073/pnas.2103812119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is associated with many neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis (MS). Thus, decreasing neuroinflammation may be a promising treatment for these diseases. Apoptosis signal-related kinase 1 (ASK1) has been shown to cause neuroinflammation in neurodegenerative disease models, but its mechanism of action has been unclear. Here, we generated conditional knockout mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We propose that ASK1 is required in microglia and astrocytes to cause and maintain neuroinflammation by a feedback loop between these two cell types. Neuroinflammation is well known to be associated with neurodegenerative diseases. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that has been implicated in neuroinflammation, but its precise cellular and molecular mechanisms remain unknown. In this study, we generated conditional knockout (CKO) mice that lack ASK1 in T cells, dendritic cells, microglia/macrophages, microglia, or astrocytes, to assess the roles of ASK1 during experimental autoimmune encephalomyelitis (EAE). We found that neuroinflammation was reduced in both the early and later stages of EAE in microglia/macrophage-specific ASK1 knockout mice, whereas only the later-stage neuroinflammation was ameliorated in astrocyte-specific ASK1 knockout mice. ASK1 deficiency in T cells and dendritic cells had no significant effects on EAE severity. Further, we found that ASK1 in microglia/macrophages induces a proinflammatory environment, which subsequently activates astrocytes to exacerbate neuroinflammation. Microglia-specific ASK1 deletion was achieved using a CX3CR1CreER system, and we found that ASK1 signaling in microglia played a major role in generating and maintaining disease. Activated astrocytes produce key inflammatory mediators, including CCL2, that further activated and recruited microglia/macrophages, in an astrocytic ASK1-dependent manner. Astrocyte-specific analysis revealed CCL2 expression was higher in the later stage compared with the early stage, suggesting a greater proinflammatory role of astrocytes in the later stage. Our findings demonstrate cell-type–specific roles of ASK1 and suggest phase-specific ASK1-dependent glial cell interactions in EAE pathophysiology. We propose glial ASK1 as a promising therapeutic target for reducing neuroinflammation.
Collapse
|
49
|
Microglia activate early anti-viral responses upon HSV-1 entry into the brain to counteract development of encephalitis-like disease in mice. J Virol 2022; 96:e0131121. [PMID: 35045263 DOI: 10.1128/jvi.01311-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spread of herpes simplex virus 1 (HSV1) from the periphery to the central nervous system (CNS) can lead to extensive infection and pathological inflammation in the brain, causing herpes simplex encephalitis (HSE). It has been shown that microglia, the CNS-resident macrophages, are involved in early sensing of HSV1 and an induction of antiviral responses. In addition, infiltration of peripheral immune cells may contribute to control of viral infection. In this study, we tested the effect of microglia depletion in a mouse model of HSE. Increased viral titers and increased disease severity were observed in microglia-depleted mice. The effect of microglia depletion was more pronounced in wild-type than in cGas-/- mice, revealing that this immune sensor contributes to the antiviral activity of microglia. Importantly, microglia depletion led to reduced production of type I interferon (IFN), pro-inflammatory cytokines and chemokines at early time points after viral entry into the CNS. In line with this, in vitro experiments on murine primary CNS cells demonstrated microglial presence to be essential for IFN RNA induction, and control of HSV1 replication. However, the effect of microglia depletion on expression of IFNs, and inflammatory cytokines was restricted to early time point of HSV1 entry into the CNS. There was no major alteration of infiltration of CD45-positive cells in microglia-depleted mice. Collectively, our data demonstrate a key role for microglia in controlling HSV1 replication early after viral entry into the CNS and highlight the importance of a prompt antiviral innate response to reduce the risk of HSE development. Importance One of the most devastating and acute neurological conditions is encephalitis, i.e. inflammation of brain tissue. Herpes simplex virus 1 (HSV1) is a highly prevalent pathogen in humans, and the most frequent cause of viral sporadic encephalitis, called herpes simplex encephalitis (HSE). HSV1 has the ability to infect peripheral neurons and reach the central nervous system (CNS) of humans, where it can be detected by brain resident cells and infiltrating immune cells, leading to protective and damaging immune responses. In this study, we investigated the effects of a depletion of microglia, the main brain-resident immune cell type. For this purpose, we used a mouse model of HSE. We found that viral levels increased and disease symptoms worsened in microglia-depleted mice. In addition, mice lacking a major sensor of viral DNA, cGAS, manifested more pronounced disease than wild-type mice, highlighting the importance of this immune sensor in the activity of microglia. Evidently, microglia depletion led to a reduced production of many known antiviral factors, most notably type I interferon (IFN). The importance of microglia in the early control of HSV1 spread and the generation of antiviral responses is further demonstrated by experiments on murine mixed glial cell cultures. Interestingly, mice with microglia depletion exhibited an unaltered activation of antiviral responses and recruitment of immune cells from the periphery at later time points of infection, but this did not prevent the development of the disease. Overall, the data highlight the importance of a rapid activation of the host defense, with microglia playing a critical role in controlling HSV1 infection, which eventually prevents damage to neurons and brain tissue.
Collapse
|
50
|
Rodríguez AM, Rodríguez J, Giambartolomei GH. Microglia at the Crossroads of Pathogen-Induced Neuroinflammation. ASN Neuro 2022; 14:17590914221104566. [PMID: 35635133 PMCID: PMC9158411 DOI: 10.1177/17590914221104566] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
Collapse
Affiliation(s)
- Ana María Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|