1
|
O'Leary M, Greed E, Pritchard J, Struszczak L, Bozbaş E, Bowtell J. The skeletal muscle proteomic determinants of neuromuscular function in young and older women following 8 weeks of resistance training. Exp Physiol 2024. [PMID: 39663727 DOI: 10.1113/ep092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Resistance training (RT) is the gold standard intervention for ameliorating sarcopenia. Outstanding mechanistic questions remain regarding the malleability of the molecular determinants of skeletal muscle function in older age. Discovery of proteomics can expand such knowledge. We aimed to compare the effect of RT on the skeletal muscle proteome and neuromuscular function (NMF) in older and younger women. Seven young (22 ± 6 years) and eight older (63 ± 5 years) women completed 8 weeks' leg RT. Pre- and post-training, measures of leg and handgrip strength, NMF and vastus lateralis (VL) biopsies were obtained. Tandem-mass-tagged skeletal muscle proteomic analyses were performed. Data were analysed using differential expression and weighted gene co-expression network approaches. Proteins related to skeletal muscle contraction were lower in older skeletal muscle; this was not normalised by RT. Following RT, older women had higher expression of VL mitochondrial biogenesis proteins compared to the young, a reversal of pre-training observations. Seventy proteins were differentially expressed between age groups. VL expression of these proteins in older women was consistently and significantly associated with poorer leg strength/NMF. Conversely, VL expression of these proteins in older women was often associated with greater handgrip strength. This study has identified important differences in the molecular responses of young and old skeletal muscle to RT. We have demonstrated their close relationship with skeletal muscle function. Proteins that are refractory to RT may represent targets to ameliorate sarcopenia. We have described a 'proteomic-function' relationship that appears to be muscle-specific. Future research should further unpick these complex relationships.
Collapse
Affiliation(s)
- Mary O'Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, Devon, UK
| | - Elsa Greed
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, Devon, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jack Pritchard
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, Devon, UK
| | - Lauren Struszczak
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, Devon, UK
| | - Esra Bozbaş
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, Devon, UK
| | - Joanna Bowtell
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, Devon, UK
| |
Collapse
|
2
|
Meacci E, Chirco A, Garcia-Gil M. Potential Vitamin E Signaling Mediators in Skeletal Muscle. Antioxidants (Basel) 2024; 13:1383. [PMID: 39594525 PMCID: PMC11591548 DOI: 10.3390/antiox13111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vitamin E (Vit E) deficiency studies underline the relevance of this vitamin in skeletal muscle (SkM) homeostasis. The knowledge of the effectors and modulators of Vit E action in SkM cells is limited, especially in aging and chronic diseases characterized by a decline in musculoskeletal health. Vit E comprises eight fat-soluble compounds grouped into tocopherols and tocotrienols, which share the basic chemical structure but show different biological properties and potentials to prevent diseases. Vit E has antioxidant and non-antioxidant activities and both favorable and adverse effects depending on the specific conditions and tissues. In this review, we focus on the actual knowledge of Vit E forms in SkM functions and new potential signaling effectors (i.e., bioactive sphingolipids and myokines). The possible advantages of Vit E supplementation in counteracting SkM dysfunctions in sarcopenia and under microgravity will also be discussed.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
- Interuniversity Institute of Myology, University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
| | - Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Via S. Zeno 31, 56127 Pisa, Italy;
| |
Collapse
|
3
|
Yamashita S. Late-onset primary muscle diseases mimicking sarcopenia. Geriatr Gerontol Int 2024; 24:1099-1110. [PMID: 39402847 DOI: 10.1111/ggi.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Sarcopenia is an age-related loss of skeletal muscle mass, strength, and function that causes various health problems. In contrast, late-onset primary myopathies, which occur in the older population, are caused by a variety of factors, including genetic mutations, autoimmune processes, and metabolic abnormalities. Although sarcopenia and primary myopathy are two distinct disease processes, their symptoms can overlap, making differentiation challenging. The diagnostic criteria for sarcopenia have evolved over time, and various criteria have been proposed by expert groups. Late-onset primary muscle diseases such as inclusion body myositis, sporadic late-onset nemaline myopathy, muscular dystrophies, distal myopathies, myofibrillar myopathies, metabolic myopathies, and mitochondrial myopathies share common pathogenic mechanisms with sarcopenia, further complicating the diagnostic process. Appropriate clinical evaluation, including detailed history-taking, physical examination, and diagnostic testing, is essential for accurate diagnosis and management. Treatment approaches, including exercise, nutritional support, and disease-specific therapies, must be tailored to the characteristics of each disease. Despite these differences, sarcopenia and primary myopathies require careful consideration in the clinical setting for proper diagnosis and management. This review outlines the evolution of diagnostic criteria and diagnostic items for sarcopenia, late-onset primary myopathies that should be differentiated from sarcopenia, common pathomechanisms, and diagnostic algorithms to properly differentiate primary myopathies. Geriatr Gerontol Int 2024; 24: 1099-1110.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
4
|
Bettariga F, Taaffe DR, Galvão DA, Lopez P, Bishop C, Markarian AM, Natalucci V, Kim JS, Newton RU. Exercise training mode effects on myokine expression in healthy adults: A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:764-779. [PMID: 38604409 PMCID: PMC11336361 DOI: 10.1016/j.jshs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The benefits of exercise are well known; however, many of the underlying molecular mechanisms are not fully understood. Skeletal muscle secretes myokines, which mediate muscle-organ crosstalk. Myokines regulate satellite-cell proliferation and migration, inflammatory cascade, insulin secretion, angiogenesis, fatty oxidation, and cancer suppression. To date, the effects of different exercise modes (namely, aerobic and resistance exercise) on myokine response remain to be elucidated. This is crucial considering the clinical implementation of exercise to enhance general health and wellbeing and as a medical treatment. METHODS A systematic search was undertaken in PubMed, MEDLINE, CINAHL, Embase, SPORTDiscus, and Web of Science in April 2023. Eligible studies examining the effects of a single bout of exercise on interleukin15 (IL-15), irisin, secreted protein acidic and rich in cysteine (SPARC), oncostatin M (OSM), and decorin were included. A random-effects meta-analysis was also undertaken to quantify the magnitude of change. RESULTS Sixty-two studies were included (n = 1193). Overall, exercise appeared to induce small to large increases in myokine expression, with effects observed immediately after to 60 min post-exercise, although these were mostly not statistically significant. Both aerobic and resistance exercise resulted in changes in myokine levels, without any significant difference between training modes, and with the magnitude of change differing across myokines. Myokine levels returned to baseline levels within 180 min to 24 h post-exercise. However, owing to potential sources of heterogeneity, most changes were not statistically significant, indicating that precise conclusions cannot be drawn. CONCLUSION Knowledge is limited but expanding with respect to the impact of overall and specific effects of exercise on myokine expression at different time points in the systemic circulation. Further research is required to investigate the effects of different exercise modes at multiple time points on myokine response.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Pedro Lopez
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, WA 6009, Australia; Medical School, Faculty of Health & Medical Sciences, University of Western Australia, Perth, WA 6009, Australia; Grupo de Pesquisa em Exercício para Populações Clínicas (GPCLIN), Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Anna Maria Markarian
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Valentina Natalucci
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20133, Italy
| | - Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
5
|
Pérez-Regalado S, Leon J, Padial P, Benavente C, Almeida F, Bonitch-Góngora J, de la Fuente B, Feriche B. Exploring the Impact of Resistance Training at Moderate Altitude on Metabolic Cytokines in Humans: Implications for Adipose Tissue Dynamics. Int J Mol Sci 2024; 25:11418. [PMID: 39518972 PMCID: PMC11546518 DOI: 10.3390/ijms252111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hypobaric hypoxia (HH) limits oxygen supply to tissues and increases metabolic demands, especially during exercise. We studied the influence of HH exposure on the subcutaneous adipose tissue (SAT) thickness and circulating metabolic-related cytokines levels after a resistance training (RT) program. Twenty trained men participated in a traditional hypertrophy RT for 8 weeks (three sessions/week) under intermittent terrestrial HH (2320 m) or normoxia (N, 690 m) conditions. Before, at week 6, and after the RT, SAT, and vastus lateralis (VL) muscle thickness were measured by ultrasound. Blood samples were taken to analyse serum cytokines (IL-6, IL-15, irisin, and myostatin) by multiplex immunoassay. Our findings revealed a moderate reduction in IL-6 and irisin in HH following the RT (ES < -0.64; p < 0.05). Additionally, RT in HH promoted serum IL-15 release (ES = 0.890; p = 0.062), which exhibited a trivial inverse association with the reductions observed on SAT (-17.69%; p < 0.001) compared with N. RT in HH explained ~50% of SAT variance (p < 0.001). These results highlight the benefit of stressor factors linked to RT in HH on SAT through the modulation of serum metabolic cytokine profiles, suggesting a potential effect on overall body composition.
Collapse
Affiliation(s)
- Sergio Pérez-Regalado
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Josefa Leon
- Biosanitary Research Institute of Granada, ibs. Granada, 18012 Granada, Spain
- Clinical Management Unit of Digestive System, San Cecilio University Clinical Hospital, 18007 Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Filipa Almeida
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Juan Bonitch-Góngora
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| | - Blanca de la Fuente
- High-Performance Centre of Sierra Nevada, Spanish Sports Council, 18196 Granada, Spain;
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; (S.P.-R.); (P.P.); (C.B.); (F.A.); (J.B.-G.); (B.F.)
| |
Collapse
|
6
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
7
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
8
|
Horgan BG, West NP, Tee N, Halson SL, Drinkwater EJ, Chapman DW, Haff GG. Effect of repeated post-resistance exercise cold or hot water immersion on in-season inflammatory responses in academy rugby players: a randomised controlled cross-over design. Eur J Appl Physiol 2024; 124:2615-2628. [PMID: 38613679 PMCID: PMC11365841 DOI: 10.1007/s00421-024-05424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/25/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Uncertainty exists if post-resistance exercise hydrotherapy attenuates chronic inflammatory and hormone responses. The effects of repeated post-resistance exercise water immersion on inflammatory and hormone responses in athletes were investigated. METHODS Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week programme divided into 3 × 4-week blocks of post-resistance exercise water immersion (either, no immersion control [CON]; cold [CWI]; or hot [HWI] water immersion), utilising a randomised cross-over pre-post design. Fasted, morning blood measures were collected prior to commencement of first intervention block, and every fourth week thereafter. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. RESULTS Repeated CWI (p = 0.025, g = 0.05) and HWI (p < 0.001, g = 0.62) reduced creatine kinase (CK), compared to CON. HWI decreased (p = 0.013, g = 0.59) interleukin (IL)-1ra, compared to CON. HWI increased (p < 0.001-0.026, g = 0.06-0.17) growth factors (PDGF-BB, IGF-1), compared to CON and CWI. CWI increased (p = 0.004, g = 0.46) heat shock protein-72 (HSP-72), compared to HWI. CONCLUSION Post-resistance exercise CWI or HWI resulted in trivial and moderate reductions in CK, respectively, which may be partly due to hydrostatic effects of water immersion. Post-resistance exercise HWI moderately decreased IL-1ra, which may be associated with post-resistance exercise skeletal muscle inflammation influencing chronic resistance exercise adaptive responses. Following post-resistance exercise water immersion, CWI increased HSP-72 suggesting a thermoregulatory response indicating improved adaptive inflammatory responses to temperature changes, while HWI increased growth factors (PDGF-BB, IGF-1) indicating different systematic signalling pathway activation. Our data supports the continued use of post-resistance exercise water immersion recovery strategies of any temperature during in-season competition phases for improved inflammatory adaptive responses in athletes.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia.
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia.
- Brumbies Rugby, Bruce, ACT, Australia.
| | - Nicholas P West
- School of Medical Science, Menzies Health Institute QLD, Griffith University, Gold coast, Queensland, Australia
| | - Nicolin Tee
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Shona L Halson
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Banyo, Queensland, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Centre for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale W Chapman
- Australian Institute of Sport (AIS), Australian Sports Commission, Bruce, ACT, 2617, Australia
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Curtin University, Bentley, WA, 6102, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University (ECU), Joondalup, WA, Australia
- Directorate of Psychology and Sport, University of Salford, Greater Manchester, Salford, UK
| |
Collapse
|
9
|
Cornish SM, Cordingley DM. Inflammatory pathway communication with skeletal muscle-Does aging play a role? A topical review of the current evidence. Physiol Rep 2024; 12:e16098. [PMID: 38872451 PMCID: PMC11176593 DOI: 10.14814/phy2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Skeletal muscle plays an integral role in locomotion, but also as part of the integrative physiological system. Recent progress has identified crosstalk between skeletal muscle and various physiological systems, including the immune system. Both the musculoskeletal and immune systems are impacted by aging. Increased age is associated with decreased muscle mass and function, while the immune system undergoes "inflammaging" and immunosenescence. Exercise is identified as a preventative medicine that can mitigate loss of function for both systems. This review summarizes: (1) the inflammatory pathways active in skeletal muscle; and (2) the inflammatory and skeletal muscle response to unaccustomed exercise in younger and older adults. Compared to younger adults, it appears older individuals have a muted pro-inflammatory response and elevated anti-inflammatory response to exercise. This important difference could contribute to decreased regeneration and recovery following unaccustomed exercise in older adults, as well as in chronic disease. The current research provides specific information on the role inflammation plays in altering skeletal muscle form and function, and adaptation to exercise; however, the pursuit of more knowledge in this area will delineate specific interventions that may enhance skeletal muscle recovery and promote resiliency in this tissue particularly with aging.
Collapse
Affiliation(s)
- Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean M Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Gad SA, Smith H, Roberts LD. Metabolic small talk during exercise: The role of metabokines and lipokines in interorgan signalling. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 35:100525. [PMID: 39185341 PMCID: PMC11339532 DOI: 10.1016/j.coemr.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 08/27/2024]
Abstract
Metabolites in exercise have traditionally been viewed as a fuel source, waste product, or anabolic components required for exercise-induced biosynthetic processes. However, it is now recognised that metabolites and lipids may act as mediators of interorgan crosstalk to coordinate the local and systemic physiological adaptations required to meet the complex system-wide challenge of exercise. These bioactive metabolite and lipid signals have been termed metabokines and lipokines, respectively. There is emerging evidence that metabokines and lipokines contribute to the health benefits of exercise. This review highlights several of the key recent discoveries related to metabokine and lipokine signalling during exercise. The discovery of these metabokines and lipokines, and their signalling targets, may provide the basis of future therapies for human disease.
Collapse
Affiliation(s)
- Shaimaa A. Gad
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Faculty of Medicine, Mansoura University, Egypt
| | - Hannah Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
McCloskey KD, Kanai A, Panicker JN, Hashitani H, Fry CH. What do we really know about the external urethral sphincter? CONTINENCE (AMSTERDAM, NETHERLANDS) 2024; 10:None. [PMID: 39669761 PMCID: PMC11636974 DOI: 10.1016/j.cont.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The external urethral sphincter (EUS), composed of skeletal muscle, along with a smooth muscle-lined internal urethral sphincter (IUS), have crucial roles in maintaining continence during bladder filling and facilitating urine flow during voiding. Disruption of this complex activity has profound consequences on normal lower urinary tract function during the micturition cycle. However, relatively little is known about the normal and pathological functions of these particular muscle types, how activity can be manipulated and regulated and why, for example, loss of EUS function and sarcopenia is associated with ageing. Here we discuss the unique physiological, biochemical and metabolic properties of striated and smooth muscle components of the urethral sphincter, which have distinct roles in maintaining continence during bladder filling. Relevant in vivo models for investigation of pathophysiological mechanisms, and for pre-clinical evaluation of therapeutic approaches are reviewed. Electromyography and Urethral Pressure Profile recordings are pivotal to understanding the function and dysfunction of the EUS and for clinical evaluation of e.g. urinary retention. Pre-clinical and clinical studies have revealed that age- or disease-related tissue remodelling that lead to filling/voiding disorders may be mitigated with emerging therapeutic approaches.
Collapse
Affiliation(s)
- Karen D. McCloskey
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, UK
| | - Anthony Kanai
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jalesh N. Panicker
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Christopher H. Fry
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, Bristol BS8 1TD, UK
| |
Collapse
|
13
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
14
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
15
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
No effect of repeated post-resistance exercise cold or hot water immersion on in-season body composition and performance responses in academy rugby players: a randomised controlled cross-over design. Eur J Appl Physiol 2023; 123:351-359. [PMID: 36284024 PMCID: PMC9895015 DOI: 10.1007/s00421-022-05075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Following resistance exercise, uncertainty exists as to whether the regular application of cold water immersion attenuates lean muscle mass increases in athletes. The effects of repeated post-resistance exercise cold versus hot water immersion on body composition and neuromuscular jump performance responses in athletes were investigated. METHODS Male, academy Super Rugby players (n = 18, 19.9 ± 1.5 y, 1.85 ± 0.06 m, 98.3 ± 10.7 kg) participated in a 12-week (4-week × 3-intervention, i.e., control [CON], cold [CWI] or hot [HWI] water immersion) resistance exercise programme, utilising a randomised cross-over pre-post-design. Body composition measures were collected using dual-energy X-ray absorptiometry prior to commencement and every fourth week thereafter. Neuromuscular squat (SJ) and counter-movement jump (CMJ) performance were measured weekly. Linear mixed-effects models were used to analyse main (treatment, time) and interaction effects. RESULTS There were no changes in lean (p = 0.960) nor fat mass (p = 0.801) between interventions. CON (p = 0.004) and CWI (p = 0.003) increased (g = 0.08-0.19) SJ height, compared to HWI. There were no changes in CMJ height (p = 0.482) between interventions. CONCLUSION Repeated post-resistance exercise whole-body CWI or HWI does not attenuate (nor promote) increases in lean muscle mass in athletes. Post-resistance exercise CON or CWI results in trivial increases in SJ height, compared to HWI. During an in-season competition phase, our data support the continued use of post-resistance exercise whole-body CWI by athletes as a recovery strategy which does not attenuate body composition increases in lean muscle mass, while promoting trivial increases in neuromuscular concentric-only squat jump performance.
Collapse
|
17
|
Horgan BG, West NP, Tee N, Drinkwater EJ, Halson SL, Vider J, Fonda CJ, Haff GG, Chapman DW. Acute Inflammatory, Anthropometric, and Perceptual (Muscle Soreness) Effects of Postresistance Exercise Water Immersion in Junior International and Subelite Male Volleyball Athletes. J Strength Cond Res 2022; 36:3473-3484. [PMID: 34537801 DOI: 10.1519/jsc.0000000000004122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Horgan, BG, West, NP, Tee, N, Drinkwater, EJ, Halson, SL, Vider, J, Fonda, CJ, Haff, GG, and Chapman, DW. Acute inflammatory, anthropometric, and perceptual (muscle soreness) effects of postresistance exercise water immersion in junior international and subelite male volleyball athletes. J Strength Cond Res 36(12): 3473-3484, 2022-Athletes use water immersion strategies to recover from training and competition. This study investigated the acute effects of postexercise water immersion after resistance exercise. Eighteen elite and subelite male volleyball athletes participated in an intervention using a randomized cross-over design. On separate occasions after resistance exercise, subjects completed 1 of 4 15-minute interventions: control (CON), cold water immersion (CWI), contrast water therapy (CWT), or hot water immersion (HWI). Significance was accepted at p ≤ 0.05. Resistance exercise induced significant temporal changes (time effect) for inflammatory, anthropometric, perceptual, and performance measures. Serum creatine kinase was reduced ( g = 0.02-0.30) after CWI ( p = 0.007), CWT ( p = 0.006), or HWI ( p < 0.001) vs. CON, whereas it increased significantly ( g = 0.50) after CWI vs. HWI. Contrast water therapy resulted in significantly higher ( g = 0.56) interleukin-6 concentrations vs. HWI. Thigh girth increased ( g = 0.06-0.16) after CWI vs. CON ( p = 0.013) and HWI ( p < 0.001) and between CWT vs. HWI ( p = 0.050). Similarly, calf girth increased ( g = 0.01-0.12) after CWI vs. CON ( p = 0.039) and CWT ( p = 0.018), and HWI vs. CON ( p = 0.041) and CWT ( p = 0.018). Subject belief in a postexercise intervention strategy was associated with HSP72 ("believer">"nonbeliever," p = 0.026), muscle soreness ("believer">"nonbeliever," p = 0.002), and interleukin-4 ("nonbeliever">"believer," p = 0.002). There were no significant treatment × time (interaction effect) pairwise comparisons. Choice of postexercise water immersion strategy (i.e., cold, contrast, or hot) combined with a belief in the efficacy of that strategy to enhance recovery or performance improves biological and perceptual markers of muscle damage and soreness. On same or subsequent days where resistance exercise bouts are performed, practitioners should consider athlete beliefs when prescribing postexercise water immersion, to reduce muscle soreness.
Collapse
Affiliation(s)
- Barry G Horgan
- Australian Institute of Sport, Bruce, ACT, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Brumbies Rugby, Bruce, ACT, Australia
| | - Nicholas P West
- School of Medical Science and Menzies Health Institute QLD, Griffith University, Queensland, Australia
| | - Nicolin Tee
- Australian Institute of Sport, Bruce, ACT, Australia
| | - Eric J Drinkwater
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Center for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Shona L Halson
- Australian Institute of Sport, Bruce, ACT, Australia.,Australian Catholic University, McAuley at Banyo, Brisbane, Queensland, Australia
| | - Jelena Vider
- School of Medical Science and Menzies Health Institute QLD, Griffith University, Queensland, Australia
| | | | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Directorate of Psychology and Sport, University of Salford, Salford, Greater Manchester, United Kingdom; and
| | - Dale W Chapman
- Australian Institute of Sport, Bruce, ACT, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,New South Wales Institute of Sport, Sydney Olympic Park, New South Wales, Australia
| |
Collapse
|
18
|
Suzuki K, Hekmatikar AHA, Jalalian S, Abbasi S, Ahmadi E, Kazemi A, Ruhee RT, Khoramipour K. The Potential of Exerkines in Women's COVID-19: A New Idea for a Better and More Accurate Understanding of the Mechanisms behind Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315645. [PMID: 36497720 PMCID: PMC9737724 DOI: 10.3390/ijerph192315645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The benefits of physical exercise are well-known, but there are still many questions regarding COVID-19. Chow et al.'s 2022 study, titled Exerkines and Disease, showed that a special focus on exerkines can help to better understand the underlying mechanisms of physical exercise and disease. Exerkines are a group of promising molecules that may underlie the beneficial effects of physical exercise in diseases. The idea of exerkines is to understand the effects of physical exercise on diseases better. Exerkines have a high potential for the treatment of diseases and, considering that, there is still no study of the importance of exerkines on the most dangerous disease in the world in recent years, COVID-19. This raises the fundamental question of whether exerkines have the potential to manage COVID-19. Most of the studies focused on the general changes in physical exercise in patients with COVID-19, both during the illness and after discharge from the hospital, and did not investigate the basic differences. A unique look at the management of COVID-19 by exerkines, especially in obese and overweight women who experience high severity of COVID-19 and whose recovery period is long after discharge from the hospital, can help to understand the basic mechanisms. In this review, we explore the potential of exerkines in COVID-19 by practicing physical exercise to provide compelling practice recommendations with new insights.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Amir Hossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Shadi Jalalian
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran 10600, Iran
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran 10600, Iran
| | - Elmira Ahmadi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Abdolreza Kazemi
- Department of Sports Science, Faculty of Literature and Humanities, Vali-e-Asr University, Rafsanjan 7718897111, Iran
| | | | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| |
Collapse
|
19
|
Cordingley DM, Anderson JE, Cornish SM. Myokine Response to Blood-Flow Restricted Resistance Exercise in Younger and Older Males in an Untrained and Resistance-Trained State: A Pilot Study. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2022. [PMCID: PMC9099348 DOI: 10.1007/s42978-022-00164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose The purpose of this study was to examine the response of myokines to blood-flow restricted resistance-exercise (BFR-RE) in younger and older males before and after completing a 12-week resistance-training program. Methods There were 8 younger (24.8 ± 3.9 yrs) and 7 older (68.3 ± 5.0 yrs) untrained male participants completed this study. Anthropometric and maximal strength (1RM) measurements were collected before and after a 12-week, supervised, progressive full-body resistance-training program. As well, an acute bout of full-body BFR-RE was performed with venipuncture blood samples collected before and immediately following the BFR-RE, followed by sampling at 3, 6, 24 and 48 h. Results The 12-week training program stimulated a 32.2% increase in average strength and 30% increase in strength per kg of fat free mass. The response of particular myokines to the acute bout of BFR-RE was influenced training status (IL-4, untrained = 78.1 ± 133.2 pg/mL vs. trained = 59.8 ± 121.6 pg/mL, P = 0.019; IL-7, untrained = 3.46 ± 1.8 pg/mL vs. trained = 2.66 ± 1.3 pg/mL, P = 0.047) or both training and age (irisin, P = 0.04; leukemia inhibitory factor, P < 0.001). As well, changes in strength per kg of fat free mass were correlated with area under the curve for IL-4 (r = 0.537; P = 0.039), IL-6 (r = 0. 525; P = 0.044) and LIF (r = − 0.548; P = 0.035) in the untrained condition. Conclusion This study identified that both age and training status influence the myokine response to an acute bout of BFR-RE with the release of IL-4, IL-6 and LIF in the untrained state being associated with changes in strength per kg of fat free mass.
Collapse
Affiliation(s)
- Dean M. Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
- Pan Am Clinic Foundation, 75 Poseidon Bay, Winnipeg, MB R3M 3E4 Canada
| | | | - Stephen M. Cornish
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, 110 Frank Kennedy Centre, Winnipeg, MB R3T 2N2 Canada
- Centre for Aging, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
20
|
Myokines and Resistance Training: A Narrative Review. Int J Mol Sci 2022; 23:ijms23073501. [PMID: 35408868 PMCID: PMC8998961 DOI: 10.3390/ijms23073501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few years, the muscular system has gained attention due to the discovery of the muscle-secretome and its high potency for retaining or regaining health. These cytokines, described as myokines, released by the working muscle, are involved in anti-inflammatory, metabolic and immunological processes. These are able to influence human health in a positive way and are a target of research in metabolic diseases, cancer, neurological diseases, and other non-communicable diseases. Therefore, different types of exercise training were investigated in the last few years to find associations between exercise, myokines and their effects on human health. Particularly, resistance training turned out to be a powerful stimulus to enhance myokine release. As there are different types of resistance training, different myokines are stimulated, depending on the mode of training. This narrative review gives an overview about resistance training and how it can be utilized to stimulate myokine production in order to gain a certain health effect. Finally, the question of why resistance training is an important key regulator in human health will be discussed.
Collapse
|
21
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
22
|
Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne) 2022; 13:811751. [PMID: 35250869 PMCID: PMC8892203 DOI: 10.3389/fendo.2022.811751] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenic obesity is defined as a multifactorial disease in aging with decreased body muscle, decreased muscle strength, decreased independence, increased fat mass, due to decreased physical activity, changes in adipokines and myokines, and decreased satellite cells. People with sarcopenic obesity cause harmful changes in myokines and adipokines. These changes are due to a decrease interleukin-10 (IL-10), interleukin-15 (IL-15), insulin-like growth factor hormone (IGF-1), irisin, leukemia inhibitory factor (LIF), fibroblast growth factor-21 (FGF-21), adiponectin, and apelin. While factors such as myostatin, leptin, interleukin-6 (IL-6), interleukin-8 (IL-8), and resistin increase. The consequences of these changes are an increase in inflammatory factors, increased degradation of muscle proteins, increased fat mass, and decreased muscle tissue, which exacerbates sarcopenia obesity. In contrast, exercise, especially strength training, reverses this process, which includes increasing muscle protein synthesis, increasing myogenesis, increasing mitochondrial biogenesis, increasing brown fat, reducing white fat, reducing inflammatory factors, and reducing muscle atrophy. Since some people with chronic diseases are not able to do high-intensity strength training, exercises with blood flow restriction (BFR) are newly recommended. Numerous studies have shown that low-intensity BFR training produces the same increase in hypertrophy and muscle strength such as high-intensity strength training. Therefore, it seems that exercise interventions with BFR can be an effective way to prevent the exacerbation of sarcopenia obesity. However, due to limited studies on adipokines and exercises with BFR in people with sarcopenic obesity, more research is needed.
Collapse
|
23
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
24
|
Hedt C, McCulloch PC, Harris JD, Lambert BS. Blood Flow Restriction Enhances Rehabilitation and Return to Sport: The Paradox of Proximal Performance. Arthrosc Sports Med Rehabil 2022; 4:e51-e63. [PMID: 35141536 PMCID: PMC8811501 DOI: 10.1016/j.asmr.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
The use of blood flow restriction (BFR) within rehabilitation is rapidly increasing as further research is performed elucidating purported benefits such as improved muscular strength and size, neuromuscular control, decreased pain, and increased bone mineral density. Interestingly, these benefits are not isolated to structures distal to the occlusive stimulus. Proximal gains are of high interest to rehabilitation professionals, especially those working with patients who are limited due to pain or postsurgical precautions. The review to follow will focus on current evidence and ongoing hypotheses regarding physiologic responses to BFR, current clinical applications, proximal responses to BFR training, potential practical applications for rehabilitation and injury prevention, and directions for future research. Interestingly, benefits have been found in musculature proximal to the occlusive stimulus, which may lend promise to a greater variety of patient populations and conditions. Furthermore, an increasing demand for BFR use in the sports world warrants further research for performance research and recovery. LEVEL OF EVIDENCE Level V, expert opinion.
Collapse
Affiliation(s)
- Corbin Hedt
- Houston Methodist Orthopedics & Sports Medicine, Houston, Texas, U.S.A
| | | | - Joshua D. Harris
- Houston Methodist Orthopedics & Sports Medicine, Houston, Texas, U.S.A
| | | |
Collapse
|
25
|
Nasiri E, Ganji Harsini A, Arabi F, Samadi A, Rashki Kamak Z. Eight weeks of Pilates exercise improved physical performance of overweight and obese women without significant changes in body composition and serum myokines. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Mancinelli R, Checcaglini F, Coscia F, Gigliotti P, Fulle S, Fanò-Illic G. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int J Mol Sci 2021; 22:8520. [PMID: 34445222 PMCID: PMC8395159 DOI: 10.3390/ijms22168520] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decade, clear evidence has emerged that the cellular components of skeletal muscle are important sites for the release of proteins and peptides called "myokines", suggesting that skeletal muscle plays the role of a secretory organ. After their secretion by muscles, these factors serve many biological functions, including the exertion of complex autocrine, paracrine and/or endocrine effects. In sum, myokines affect complex multi-organ processes, such as skeletal muscle trophism, metabolism, angiogenesis and immunological response to different physiological (physical activity, aging, etc.) or pathological states (cachexia, dysmetabolic conditions, chronic inflammation, etc.). The aim of this review is to describe in detail a number of myokines that are, to varying degrees, involved in skeletal muscle aging processes and belong to the group of proteins present in the functional environment surrounding the muscle cell known as the "Niche". The particular myokines described are those that, acting both from within the cell and in an autocrine manner, have a defined relationship with the modulation of oxidative stress in muscle cells (mature or stem) involved in the regulatory (metabolic or regenerative) processes of muscle aging. Myostatin, IGF-1, NGF, S100 and irisin are examples of specific myokines that have peculiar features in their mechanisms of action. In particular, the potential role of one of the most recently characterized myokines-irisin, directly linked to an active lifestyle-in reducing if not reversing senescence-induced oxidative damage is discussed in terms of its possible application as an agent able to counteract the deleterious effects of muscle aging.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Franco Checcaglini
- Free University of Alcatraz, Santa Cristina di Gubbio, 06100 Perugia, Italy;
| | - Francesco Coscia
- Department of Medicine, Laboratory of Sport Physiology, University of Perugia, 39038 San Candido-Innichen, Italy; (F.C.); (P.G.)
| | - Paola Gigliotti
- Department of Medicine, Laboratory of Sport Physiology, University of Perugia, 39038 San Candido-Innichen, Italy; (F.C.); (P.G.)
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgio Fanò-Illic
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Free University of Alcatraz, Santa Cristina di Gubbio, 06100 Perugia, Italy;
- A&C M-C Foundation for Translational Myology, 35100 Padova, Italy
| |
Collapse
|
27
|
Lambert B, Hedt C, Daum J, Taft C, Chaliki K, Epner E, McCulloch P. Blood Flow Restriction Training for the Shoulder: A Case for Proximal Benefit. Am J Sports Med 2021; 49:2716-2728. [PMID: 34110960 DOI: 10.1177/03635465211017524] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although blood flow restriction (BFR) is becoming increasingly popular in physical therapy and athletic training settings, little is known about the effects of BFR combined with low-intensity exercise (LIX) on muscles proximal to the site of occlusion. HYPOTHESIS/PURPOSE Determine whether LIX combined with BFR applied distally to the shoulder on the brachial region of the arm (BFR-LIX) promotes greater increases in shoulder lean mass, rotator cuff strength, endurance, and acute increases in shoulder muscle activation compared with LIX alone. We hypothesized that BFR-LIX would elicit greater increases in rotator cuff strength, endurance, and muscle mass. We also hypothesized that the application of BFR would increase EMG amplitude in the shoulder muscles during acute exercise. STUDY DESIGN Controlled laboratory study. METHODS 32 healthy adults were randomized into 2 groups (BFR group, 13 men, 3 women; No-BFR group, 10 men, 6 women) who performed 8 weeks of shoulder LIX (2 times per week; 4 sets [30/15/15/fatigue]; 20% maximum) using common rotator cuff exercises (cable external rotation [ER], cable internal rotation [IR], dumbbell scaption, and side-lying dumbbell ER). The BFR group also trained with an automated tourniquet placed at the proximal arm (50% occlusion). Regional lean mass (dual-energy x-ray absorptiometry), isometric strength, and muscular endurance (repetitions to fatigue [RTF]; 20% maximum; with and without 50% occlusion) were measured before and after training. Electromyographic amplitude (EMGa) was recorded from target shoulder muscles during endurance testing. A mixed-model analysis of covariance (covaried on baseline measures) was used to detect within-group and between-group differences in primary outcome measures (α = .05). RESULTS The BFR group had greater increases in lean mass in the arm (mean ± 95% CI: BFR, 175 ± 54 g; No BFR, -17 ± 77 g; P < .01) and shoulder (mean ± 95% CI: BFR, 278 ± 90 g; No BFR, 96 ± 61 g; P < .01), isometric IR strength (mean ± 95% CI: BFR, 2.9 ± 1.3 kg; No BFR, 0.1 ± 1.3 kg; P < .01), single-set RTF volume (repetitions × resistance) for IR (~1.7- to 2.1-fold higher; P < .01), and weekly training volume (weeks 4, 6-8, ~5%-22%; P < .05). Acute occlusion (independent of group or timepoint) yielded increases in EMGa during RTF (~10%-20%; P < .05). CONCLUSION Combined BFR-LIX may yield greater increases in shoulder and arm lean mass, strength, and muscular endurance compared with fatiguing LIX alone during rotator cuff exercises. These findings may be due, in part, to a greater activation of shoulder muscles while using BFR. CLINICAL RELEVANCE The present study demonstrates that BFR-LIX may be a suitable candidate for augmenting preventive training or rehabilitation outcomes for the shoulder.
Collapse
Affiliation(s)
- Bradley Lambert
- Orthopedic Biomechanics Research Laboratory, Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Corbin Hedt
- Orthopedic Biomechanics Research Laboratory, Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Joshua Daum
- Orthopedic Biomechanics Research Laboratory, Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Carter Taft
- Department of Kinesiology, Rice University, Houston, Texas, USA
| | - Kalyan Chaliki
- Department of Kinesiology, Rice University, Houston, Texas, USA
| | - Eden Epner
- Orthopedic Biomechanics Research Laboratory, Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Patrick McCulloch
- Orthopedic Biomechanics Research Laboratory, Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|