1
|
Bailly M, Beraud D, Lambert C, Garnier YM, Pereira B, Duclos M, Boirie Y, Isacco L, Thivel D, Verney J. Constitutional thinness might be characterized by physiologically adapted and not impaired muscle function and architecture: new results from the NUTRILEAN study. Eur J Appl Physiol 2024; 124:3303-3315. [PMID: 38900200 DOI: 10.1007/s00421-024-05539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE While muscle mass and skeletal muscle fibers phenotype have been shown atypical in constitutional thinness (CT), force production capacities and its architectural determinants have never been explored. The present study compared muscle functionality and architecture between participants with CT and their normal-weight (NW) counterparts. METHODS Anthropometry, body composition (Dual-X-ray Absorptiometry), physical activity/sedentary behavior (ActiGraph wGT3X-BT), ultrasound recording of the Vastus Lateralis (2D-ultrasound system), and functional capacities at maximal isometric and isokinetic voluntary contractions (MVCISO and MVCCON) during knee extension (isokinetic dynamometer chair Biodex) have been measured in 18 women with CT (body mass index < 17.5 kg/m2) and 17 NW women. RESULTS A lower fat-free mass (ES: -1.94, 95%CI: -2.76 to -1.11, p < 0.001), a higher sedentary time, and a trend for a lower time spent at low-intensity physical activity, were observed in CT vs NW participants. While absolute MVCISO, MVCCON, rate of torque development (RTD), and torque work were all markedly lower in CT, these differences disappeared when normalized to body or muscle mass. Muscle thickness and fascicle length were found lower in CT (ES: -1.29, 95%CI: -2.03 to -0.52, p < 0.001; and ES: -0.87, 95%CI: -1.58 to -0.15, p = 0.02, respectively), while pennation angle was found similar. CONCLUSION Despite lower absolute strength capacities observed in CT, present findings support the hypothesis of physiological adaptations to the low body and muscle mass than to some intrinsic contractile impairments. These results call for further studies exploring hypertrophy-targeted strategies in the management of CT.
Collapse
Affiliation(s)
- Mélina Bailly
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - Duane Beraud
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - Céline Lambert
- Biostatistics Unit, DRCI, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Yoann M Garnier
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, EA3920, Université de Franche-Comté, 25000, Besançon, France
| | - Bruno Pereira
- Biostatistics Unit, DRCI, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Martine Duclos
- Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Yves Boirie
- Department of Clinical Nutrition, CHU Clermont-Ferrand, Diet and Musculoskeletal Health Team, CRNH, INRA, University of Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France
| | - Julien Verney
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, CRNH, 63000, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Sanno M, Goldmann JP, Heinrich K, Wahl P, Brüggemann GP. Mechanical power distribution of the lower limbs changed during intermittent 300 countermovement jumps. Eur J Appl Physiol 2024:10.1007/s00421-024-05619-8. [PMID: 39325142 DOI: 10.1007/s00421-024-05619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE The aim of this study was to investigate the effect of 300 intermittent countermovement jumps (CMJs) on the mechanical power distribution at the joints of the lower limbs and the influence of the upper body to explain vertical jump performance. METHODS Fifteen male sport students (age 24.5 ± 2.3 years; body height 1.85 ± 0.06 m; body mass 84.8 ± 8.5 kg) performed a set of intermittent 300 CMJs at maximal effort. An inverse-dynamic approach was used to calculate the mechanical power at the hip, knee, and ankle joint for each jump. RESULTS Jump height and mechanical power in the knee and ankle joints decreased significantly (p < .010), while remained the same in the hip joint. In contrast, a significant increased vertical velocity was observed for the upper body segment. In addition, a significant higher angular momentum at the center of mass was detected during the braking and propulsion phase. CONCLUSION The findings highlight a fatigue-related decrease in lower limb power, particularly in the knee and ankle joints, which changed the mechanical power distribution at the joints of the lower limbs. The trunk extensor muscles were probably able to counteract the fatigue-related decrease in lower limb power by increased vertical velocity of the upper body segment and higher angular momentum at the center of mass during the braking and propulsion phase. Accordingly, the most effective way to maintain jumping performance in fatigued state would be to improve the fatigue resistance of the knee extensors, ankle plantar flexors, and trunk extensor muscles.
Collapse
Affiliation(s)
- Maximilian Sanno
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- German Research Center of Elite Sport, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Jan-Peter Goldmann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
- German Research Center of Elite Sport, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Kai Heinrich
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Patrick Wahl
- German Research Center of Elite Sport, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
3
|
Roussel OP, Pignanelli C, Hubbard EF, Coates AM, Cheng AJ, Burr JF, Power GA. Effects of intensified training with insufficient recovery on joint level and single muscle fibre mechanical function: the role of myofibrillar Ca 2+ sensitivity. Appl Physiol Nutr Metab 2024. [PMID: 39121503 DOI: 10.1139/apnm-2024-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Intense exercise training with insufficient recovery time is associated with reductions in neuromuscular performance. However, it is unclear how single muscle fibre mechanical function and myofibrillar Ca2+ sensitivity contribute to these impairments. We investigated the effects of overload training on joint-level neuromuscular performance and cellular-level mechanical function. Fourteen athletes (4 female and 10 male) underwent a 3-week intensified training protocol consisting of up to 150% of their regular training hours with three additional high-intensity training sessions per week. Neuromuscular performance of the knee extensors was assessed via maximal voluntary contraction (MVC) force, electrically evoked twitch contractions, and a force-frequency relationship. Muscle biopsies were taken from the vastus lateralis to assess single fibre mechanical function. Neither MVC force nor twitch parameters were altered following training (all p > 0.05), but a rightward shift in the force-frequency curve was observed with average reduction in force of 6%-27% across frequencies 5-20 Hz (all p < 0.05). In single fibres, maximal force output was not reduced following training, but there was a rightward shift in the force-pCa curve driven by a 6% reduction in Ca2+ sensitivity (p < 0.05). These data indicate intensified training leads to impaired Ca2+ sensitivity at the single fibre level, which in part explains impaired neuromuscular function at the joint level during lower frequencies of activation. This is an important consideration for athletes, as performance is often assessed at maximal levels of activation, and these underlying impairments in force generation may be less obvious.
Collapse
Affiliation(s)
- Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christopher Pignanelli
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Emma F Hubbard
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexandra M Coates
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON M3J 1P3, Canada
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Stevanovic S, Dalmao-Fernandez A, Mohamed D, Nyman TA, Kostovski E, Iversen PO, Savikj M, Nikolic N, Rustan AC, Thoresen GH, Kase ET. Time-dependent reduction in oxidative capacity among cultured myotubes from spinal cord injured individuals. Acta Physiol (Oxf) 2024; 240:e14156. [PMID: 38711362 DOI: 10.1111/apha.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI. METHODS To characterize inactivity-related disturbances in spinal cord injury, we studied skeletal muscle cells isolated from SCI subjects. Cell cultures were established from biopsy samples from musculus vastus lateralis from subjects with SCI 1 and 12 months after the injury. The myoblasts were proliferated and differentiated into myotubes before fatty acid and glucose metabolism were assessed and gene and protein expressions were measured. RESULTS The results showed that glucose uptake was increased, while oleic acid oxidation was reduced at 12 months compared to 1 month. mRNA expressions of PPARGC1α, the master regulator of mitochondrial biogenesis, and MYH2, a determinant of muscle fiber type, were significantly reduced at 12 months. Proteomic analysis showed reduced expression of several mitochondrial proteins. CONCLUSION In conclusion, skeletal muscle cells isolated from immobilized subjects 12 months compared to 1 month after SCI showed reduced fatty acid metabolism and reduced expression of mitochondrial proteins, indicating an increased loss of oxidative capacity with time after injury.
Collapse
Affiliation(s)
- Stanislava Stevanovic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Derya Mohamed
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Emil Kostovski
- Vestre Viken Hospital Trust, Drammen, Norway
- Manifestsenteret, Røyken, Norway
| | - Per Ole Iversen
- Department of Nutrition, IMB, University of Oslo, Oslo, Norway
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Natasa Nikolic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili T Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
White MS, Graham MC, Janatova T, Hawk GS, Thompson KL, Noehren B. Effect of Sampling Rate, Filtering, and Torque Onset Detection on Quadriceps Rate of Torque Development and Torque Steadiness. SENSORS (BASEL, SWITZERLAND) 2024; 24:4250. [PMID: 39001029 PMCID: PMC11243863 DOI: 10.3390/s24134250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Quadriceps rate of torque development (RTD) and torque steadiness are valuable metrics for assessing explosive strength and the ability to control force over a sustained period of time, which can inform clinical assessments of knee function. Despite their widespread use, there is a significant gap in standardized methodology for measuring these metrics, which limits their utility in comparing outcomes across different studies and populations. To address these gaps, we evaluated the influence of sampling rates, signal filtering, and torque onset detection on RTD and torque steadiness. Twenty-seven participants with a history of a primary anterior cruciate ligament reconstruction (N = 27 (11 male/16 female), age = 23 ± 8 years, body mass index = 26 ± 4 kg/m2) and thirty-two control participants (N = 32 (13 male/19 female), age = 23 ± 7 years, body mass index = 23 ± 3 kg/m2) underwent isometric quadriceps strength testing, with data collected at 2222 Hz on an isokinetic dynamometer. The torque-time signal was downsampled to approximately 100 and 1000 Hz and processed using a low-pass, zero-lag Butterworth filter with a range of cutoff frequencies spanning 10-200 Hz. The thresholds used to detect torque onset were defined as 0.1 Nm, 1 Nm, and 5 Nm. RTD between 0 and 100 ms, 0 and 200 ms, and 40-160 ms was computed, as well as absolute and relative torque steadiness. Relative differences were computed by comparing all outcomes to the "gold standard" values computed, with a sampling rate of 2222 Hz, a cutoff frequency in the low-pass filter of 150 Hz, and torque onset of 1 Nm, and compared utilizing linear mixed models. While all combinations of signal collection and processing parameters reached statistical significance (p < 0.05), these differences were consistent between injured and control limbs. Additionally, clinically relevant differences (+/-10%) were primarily observed through torque onset detection methods and primarily affected RTD between 0 and 100 ms. Although measurements of RTD and torque steadiness were generally robust against diverse signal collection and processing parameters, the selection of torque onset should be carefully considered, especially in early RTD assessments that have shorter time epochs.
Collapse
Affiliation(s)
- McKenzie S White
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
| | - Megan C Graham
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
| | - Tereza Janatova
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
| | - Gregory S Hawk
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA
| | | | - Brian Noehren
- Department of Physical Therapy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Vieira-Lara MA, Bakker BM. The paradox of fatty-acid β-oxidation in muscle insulin resistance: Metabolic control and muscle heterogeneity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167172. [PMID: 38631409 DOI: 10.1016/j.bbadis.2024.167172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The skeletal muscle is a metabolically heterogeneous tissue that plays a key role in maintaining whole-body glucose homeostasis. It is well known that muscle insulin resistance (IR) precedes the development of type 2 diabetes. There is a consensus that the accumulation of specific lipid species in the tissue can drive IR. However, the role of the mitochondrial fatty-acid β-oxidation in IR and, consequently, in the control of glucose uptake remains paradoxical: interventions that either inhibit or activate fatty-acid β-oxidation have been shown to prevent IR. We here discuss the current theories and evidence for the interplay between β-oxidation and glucose uptake in IR. To address the underlying intricacies, we (1) dive into the control of glucose uptake fluxes into muscle tissues using the framework of Metabolic Control Analysis, and (2) disentangle concepts of flux and catalytic capacities taking into account skeletal muscle heterogeneity. Finally, we speculate about hitherto unexplored mechanisms that could bring contrasting evidence together. Elucidating how β-oxidation is connected to muscle IR and the underlying role of muscle heterogeneity enhances disease understanding and paves the way for new treatments for type 2 diabetes.
Collapse
Affiliation(s)
- Marcel A Vieira-Lara
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Barbara M Bakker
- Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Coratella G, Varesco G, Rozand V, Cuinet B, Sansoni V, Lombardi G, Vernillo G, Mourot L. Downhill running increases markers of muscle damage and impairs the maximal voluntary force production as well as the late phase of the rate of voluntary force development. Eur J Appl Physiol 2024; 124:1875-1883. [PMID: 38195943 PMCID: PMC11129977 DOI: 10.1007/s00421-023-05412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE To examined the time-course of the early and late phase of the rate of voluntary force development (RVFD) and muscle damage markers after downhill running. METHODS Ten recreational runners performed a 30-min downhill run at 10 km h-1 and -20% (-11.3°) on a motorized treadmill. At baseline and each day up to 4 days RVFD, knee extensors maximum voluntary isometric force (MVIC), serum creatine kinase (CK) concentration, quadriceps swelling, and soreness were assessed. The early (0-50 ms) and late (100-200 ms) phase of the RVFD, as well as the force developed at 50 and 200 ms, were also determined. RESULTS MVIC showed moderate decrements (p < 0.05) and recovered after 4 days (p > 0.05). Force at 50 ms and the early phase were not impaired (p > 0.05). Conversely, force at 200 ms and the late phase showed moderate decrements (p < 0.05) and recovered after 3 and 4 days, respectively (p > 0.05). CK concentration, quadriceps swelling, and soreness increased (p < 0.05) were overall fully resolved after 4 days (p > 0.05). CONCLUSION Downhill running affected the knee extensors RVFD late but not early phase. The RVFD late phase may be used as an additional marker of muscle damage in trail running.
Collapse
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giorgio Varesco
- Université Jean Monnet Saint-Etienne, Inter-University Laboratory of Human Movement Biology, 42023, Saint-Etienne, France
- Laboratory Movement-Interactions-Performance, MIP Lab, UR 4334, Nantes Université, F-44000, Nantes, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Inter-University Laboratory of Human Movement Biology, 42023, Saint-Etienne, France
| | - Benjamin Cuinet
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies (EA3920), Exercise Performance Health Innovation (EPHI) Platform, University of Franche-Comté, Besançon, France
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Instituto Ortopedico Galeazzi, 20157, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Instituto Ortopedico Galeazzi, 20157, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871, Poznań, Poland
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy.
| | - Laurent Mourot
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies (EA3920), Exercise Performance Health Innovation (EPHI) Platform, University of Franche-Comté, Besançon, France
| |
Collapse
|
8
|
Giuriato G, Romanelli MG, Bartolini D, Vernillo G, Pedrinolla A, Moro T, Franchi M, Locatelli E, Andani ME, Laginestra FG, Barbi C, Aloisi GF, Cavedon V, Milanese C, Orlandi E, De Simone T, Fochi S, Patuzzo C, Malerba G, Fabene P, Donadelli M, Stabile AM, Pistilli A, Rende M, Galli F, Schena F, Venturelli M. Sex differences in neuromuscular and biological determinants of isometric maximal force. Acta Physiol (Oxf) 2024; 240:e14118. [PMID: 38385696 DOI: 10.1111/apha.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
AIM Force expression is characterized by an interplay of biological and molecular determinants that are expected to differentiate males and females in terms of maximal performance. These include muscle characteristics (muscle size, fiber type, contractility), neuromuscular regulation (central and peripheral factors of force expression), and individual genetic factors (miRNAs and gene/protein expression). This research aims to comprehensively assess these physiological variables and their role as determinants of maximal force difference between sexes. METHODS Experimental evaluations include neuromuscular components of isometric contraction, intrinsic muscle characteristics (proteins and fiber type), and some biomarkers associated with muscle function (circulating miRNAs and gut microbiome) in 12 young and healthy males and 12 females. RESULTS Male strength superiority appears to stem primarily from muscle size while muscle fiber-type distribution plays a crucial role in contractile properties. Moderate-to-strong pooled correlations between these muscle parameters were established with specific circulating miRNAs, as well as muscle and plasma proteins. CONCLUSION Muscle size is crucial in explaining the differences in maximal voluntary isometric force generation between males and females with similar fiber type distribution. Potential physiological mechanisms are seen from associations between maximal force, skeletal muscle contractile properties, and biological markers.
Collapse
Affiliation(s)
- Gaia Giuriato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gianluca Vernillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Social Sciences, University of Alberta - Augustana Campus, Camrose, Alberta, Canada
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Locatelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mehran Emadi Andani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Fabio Giuseppe Laginestra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Anesthesiology, University of Utah, Utah, USA
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gloria Fiorini Aloisi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Cavedon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Orlandi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Tonia De Simone
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human Anatomy, Clinical and Forensic, School of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, Utah, USA
| |
Collapse
|
9
|
Tereshenko V, Dotzauer DC, Schmoll M, Harnoncourt L, Carrero Rojas G, Gfrerer L, Eberlin KR, Austen WG, Blumer R, Farina D, Aszmann OC. Peripheral neural interfaces: Skeletal muscles are hyper-reinnervated according to the axonal capacity of the surgically rewired nerves. SCIENCE ADVANCES 2024; 10:eadj3872. [PMID: 38416828 PMCID: PMC10901366 DOI: 10.1126/sciadv.adj3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
Advances in robotics have outpaced the capabilities of man-machine interfaces to decipher and transfer neural information to and from prosthetic devices. We emulated clinical scenarios where high- (facial) or low-neural capacity (ulnar) donor nerves were surgically rewired to the sternomastoid muscle, which is controlled by a very small number of motor axons. Using retrograde tracing and electrophysiological assessments, we observed a nearly 15-fold functional hyper-reinnervation of the muscle after high-capacity nerve transfer, demonstrating its capability of generating a multifold of neuromuscular junctions. Moreover, the surgically redirected axons influenced the muscle's physiological characteristics, by altering the expression of myosin heavy-chain types in alignment with the donor nerve. These findings highlight the remarkable capacity of skeletal muscles to act as biological amplifiers of neural information from the spinal cord for governing bionic prostheses, with the potential of expressing high-dimensional neural function for high-information transfer interfaces.
Collapse
Affiliation(s)
- Vlad Tereshenko
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Laboratory for Bionic Extremity Reconstruction, Medical University of Vienna, Vienna, Austria
| | - Dominik C Dotzauer
- Clinical Laboratory for Bionic Extremity Reconstruction, Medical University of Vienna, Vienna, Austria
| | - Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Harnoncourt
- Clinical Laboratory for Bionic Extremity Reconstruction, Medical University of Vienna, Vienna, Austria
| | - Genova Carrero Rojas
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lisa Gfrerer
- Division of Plastic and Reconstructive Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William G Austen
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Blumer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Dario Farina
- Department of Bioengineering, Imperial College London, South Kensington Campus London, SW7 2AZ London, UK
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Sharma T, Copeland PV, Debenham MIB, Bent LR, Dalton BH. Neuromechanical characterization of the abductor hallucis and its potential role in upright postural control. Appl Physiol Nutr Metab 2024; 49:293-305. [PMID: 37913527 DOI: 10.1139/apnm-2023-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is growing evidence to support a role for the abductor hallucis (AH) in standing balance control; however, functional properties of the muscle that may provide more insight into AH's specific contribution to upright posture have yet to be characterized. This study was conducted to quantify functional neuromechanical properties of the AH and correlate the measures with standing balance variables. We quantified strength and voluntary activation during maximal voluntary isometric contractions of the great toe abductor in nine (3 females and 6 males) healthy, young participants. During electrically evoked twitch and tetanic contractions, we measured great toe abduction peak force and constructed a force-frequency curve. We also evaluated peak abduction force, contraction time (CT), half-relaxation time (HRT), rate of force development (RFD), and relaxation rate (RR) from twitch contractions evoked using doublet stimuli. Strength, VA, CT, HRT, RFD, and RR were correlated to centre of pressure standard deviation (COP SD) and velocity (COP VEL) variables of the traditional COP trace and its rambling and trembling components during single-legged stance. AH twitch properties (e.g., CT: 169.8 ± 32.3 ms; HRT: 124.1 ± 29.2 ms) and force-frequency curve were similar to other slow contractile muscles. Contractile speed related negatively with COP VEL, suggesting AH may be appropriate for slow, prolonged tasks such as ongoing postural balance control. Correlation coefficient outcomes for all variables were similar between rambling and trembling components. Our results provide further evidence for the importance of AH neuromechanical function for standing balance control, at least during a challenging single-legged posture.
Collapse
Affiliation(s)
- Tushar Sharma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Paige V Copeland
- School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Mathew I B Debenham
- School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| |
Collapse
|
11
|
Soendenbroe C, Karlsen A, Svensson RB, Kjaer M, Andersen JL, Mackey AL. Marked irregular myofiber shape is a hallmark of human skeletal muscle ageing and is reversed by heavy resistance training. J Cachexia Sarcopenia Muscle 2024; 15:306-318. [PMID: 38123165 PMCID: PMC10834339 DOI: 10.1002/jcsm.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Age-related loss of strength is disproportionally greater than the loss of mass, suggesting maladaptations in the neuro-myo-tendinous system. Myofibers are often misshaped in aged and diseased muscle, but systematic analyses of large sample sets are lacking. Our aim was to investigate myofiber shape in relation to age, exercise, myofiber type, species and sex. METHODS Vastus lateralis muscle biopsies (n = 265) from 197 males and females, covering an age span of 20-97 years, were examined. The gastrocnemius and soleus muscles of 11 + 22-month-old male C57BL/6 mice were also examined. Immunofluorescence and ATPase stainings of muscle cross-sections were used to measure myofiber cross-sectional area (CSA) and perimeter. From these, a shape factor index (SFI) was calculated in a fibre-type-specific manner (type I/II in humans; type I/IIa/IIx/IIb in mice), with higher values indicating increased deformity. Heavy resistance training (RT) was performed three times per week for 3-4 months by a subgroup (n = 59). Correlation analyses were performed comparing SFI and CSA with age, muscle mass, maximal voluntary contraction (MVC), rate of force development and specific force (MVC/muscle mass). RESULTS In human muscle, SFI was positively correlated with age for both type I (R2 = 0.20) and II (R2 = 0.38) myofibers. When subjects were separated into age cohorts, SFI was lower for type I (4%, P < 0.001) and II (6%, P < 0.001) myofibers in young (20-36) compared with old (60-80) and higher for type I (5%, P < 0.05) and II (14%, P < 0.001) myofibers in the oldest old (>80) compared with old. The increased SFI in old muscle was observed in myofibers of all sizes. Within all three age cohorts, type II myofiber SFI was higher than that for type I myofiber (4-13%, P < 0.001), which was also the case in mice muscles (8-9%, P < 0.001). Across age cohorts, there was no difference between males and females in SFI for either type I (P = 0.496/0.734) or II (P = 0.176/0.585) myofibers. Multiple linear regression revealed that SFI, after adjusting for age and myofiber CSA, has independent explanatory power for 8/10 indices of muscle mass and function. RT reduced SFI of type II myofibers in both young and old (3-4%, P < 0.001). CONCLUSIONS Here, we identify type I and II myofiber shape in humans as a hallmark of muscle ageing that independently predicts volumetric and functional assessments of muscle health. RT reverts the shape of type II myofibers, suggesting that a lack of myofiber recruitment might lead to myofiber deformity.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineCenter for Healthy Aging, University of CopenhagenCopenhagenDenmark
| | - Anders Karlsen
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineCenter for Healthy Aging, University of CopenhagenCopenhagenDenmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesXlab, Center for Healthy Aging, University of CopenhagenCopenhagenDenmark
| | - Rene B. Svensson
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineCenter for Healthy Aging, University of CopenhagenCopenhagenDenmark
| | - Michael Kjaer
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineCenter for Healthy Aging, University of CopenhagenCopenhagenDenmark
| | - Jesper L. Andersen
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineCenter for Healthy Aging, University of CopenhagenCopenhagenDenmark
| | - Abigail L. Mackey
- Department of Orthopedic SurgeryInstitute of Sports Medicine Copenhagen, Copenhagen University Hospital ‐ Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineCenter for Healthy Aging, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
12
|
Nishikawa T, Takeda R, Hirono T, Okudaira M, Ohya T, Watanabe K. Differences in acute neuromuscular response after single session of resistance exercise between young and older adults. Exp Gerontol 2024; 185:112346. [PMID: 38104744 DOI: 10.1016/j.exger.2023.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
AIMS The purpose of this study was to investigate differences in the acute response after resistance exercise between young and older adults. METHODS Seventeen young and 18 older adults performed a single session of resistance exercise, consisting of 3 sets of 10 isometric knee extensions. Maximal voluntary contraction (MVC), motor unit (MU) activity of the vastus lateralis, and electrically elicited torque of the knee extensor were measured before and after the resistance exercise. RESULTS Although both groups showed the same degree of decline in MVC (young: -15.2 ± 14.3 %, older: -16.4 ± 7.9 %, p = 0.839), electrically elicited torque markedly decreased in the young group (young: -21.5 ± 7.7 %, older: -14.3 ± 9.5 %, p < 0.001), and the decrease in the MU firing rate was greater in the older group (young: -26.1 ± 24.1 %, older: -44.7 ± 24.5 %, p < 0.001). Changes in the MU firing rate following the exercise were correlated with the MU recruitment threshold in the older group (p < 0.001, rs = 0.457), but not young group (p = 0.960). DISCUSSION These results showed that young adults exhibited a greater acute response in the peripheral component, whereas older adults showed a greater acute response in the central component of the neuromuscular system, and the acute response in MUs with a high recruitment threshold following resistance exercise was smaller than in those with a low recruitment threshold in older adults. These findings may partly explain why there are different chronic adaptations to resistance training between young and older adults.
Collapse
Affiliation(s)
- Taichi Nishikawa
- Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan; Faculty of Education, Iwate University, Iwate, Japan
| | - Toshiyuki Ohya
- Laboratory for Exercise Physiology and Biomechanics, Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan.
| |
Collapse
|
13
|
Crotty ED, Furlong LAM, Harrison AJ. Neuromuscular Plantar Flexor Performance of Sprinters versus Physically Active Individuals. Med Sci Sports Exerc 2024; 56:82-91. [PMID: 37718513 DOI: 10.1249/mss.0000000000003288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Comparison of the neuromuscular performance of different athlete types may give insight into the in vivo variability of these measures and their underpinning mechanisms. The study aims to compare the neuromuscular function of the plantar flexors of sprinters and physically active individuals to assess any differences in explosive force performance. METHODS Neuromuscular performance of a group of sprinters (highly trained/national level, n = 12; elite/international level, n = 2) and physically active individuals ( n = 14) were assessed during involuntary, explosive, and maximum voluntary isometric plantar flexions, across different muscle-tendon unit (MTU) lengths (10° plantarflexion, 0° (anatomical zero/neutral), and 10° dorsiflexion). Plantarflexion rate of torque development (RTD) was measured in three 50-ms time windows from their onset. The synchronous activation of the plantar flexor agonist muscles was calculated as the time difference between 1) the first and last muscle onset and 2) the onsets of the two gastrocnemii muscles. Muscle size and MTU stiffness were assessed using sonograms of the medial gastrocnemius and myotendinous junction. RESULTS Sprinters exhibited greater involuntary RTD across time points (0-50 ms, 50-100 ms) and MTU lengths. In addition, sprinters demonstrated greater early phase voluntary RTD (0-50 ms, 50-100 ms) across MTU lengths. Sprinters also demonstrated greater late-phase RTD (100-150 ms), and relative maximal voluntary torque at the DF angle only. The sprinters demonstrated a more synchronous activation of the gastrocnemii muscles. There were no observable differences in muscle size and MTU stiffness between groups. CONCLUSIONS These findings suggest sprint-specific training could be a contributing factor toward improved explosive performance of the plantar flexors, particularly in the early phase of muscular contraction, evidenced by the greater explosive torque producing capabilities of sprinters.
Collapse
Affiliation(s)
- Evan D Crotty
- Sport and Human Performance Research Centre, University of Limerick, Limerick, IRELAND
| | | | | |
Collapse
|
14
|
Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, Perez-Suarez I, Garcia-Gonzalez E, Martin-Rincon M, Calbet JAL. Physiological and molecular predictors of cycling sprint performance. Scand J Med Sci Sports 2024; 34:e14545. [PMID: 38268080 DOI: 10.1111/sms.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
The study aimed to identify novel muscle phenotypic factors that could determine sprint performance using linear regression models including the lean mass of the lower extremities (LLM), myosin heavy chain composition (MHC), and proteins and enzymes implicated in glycolytic and aerobic energy generation (citrate synthase, OXPHOS proteins), oxygen transport and diffusion (myoglobin), ROS sensing (Nrf2/Keap1), antioxidant enzymes, and proteins implicated in calcium handling. For this purpose, body composition (dual-energy X-ray absorptiometry) and sprint performance (isokinetic 30-s Wingate test: peak and mean power output, Wpeak and Wmean ) were measured in young physically active adults (51 males and 10 females), from which a resting muscle biopsy was obtained from the musculus vastus lateralis. Although females had a higher percentage of MHC I, SERCA2, pSer16 /Thr17 -phospholamban, and Calsequestrin 2 protein expressions (all p < 0.05), and 18.4% lower phosphofructokinase 1 protein expression than males (p < 0.05), both sexes had similar sprint performance when it was normalized to body weight or LLM. Multiple regression analysis showed that Wpeak could be predicted from LLM, SDHB, Keap1, and MHC II % (R 2 = 0.62, p < 0.001), each variable contributing to explain 46.4%, 6.3%, 4.4%, and 4.3% of the variance in Wpeak , respectively. LLM and MHC II % explained 67.5% and 2.1% of the variance in Wmean , respectively (R 2 = 0.70, p < 0.001). The present investigation shows that SDHB and Keap1, in addition to MHC II %, are relevant determinants of peak power output during sprinting.
Collapse
Affiliation(s)
- Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Ismael Perez-Suarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, Oslo, Norway
| |
Collapse
|
15
|
Tøien T, Nielsen JL, Berg OK, Brobakken MF, Nyberg SK, Espedal L, Malmo T, Frandsen U, Aagaard P, Wang E. The impact of life-long strength versus endurance training on muscle fiber morphology and phenotype composition in older men. J Appl Physiol (1985) 2023; 135:1360-1371. [PMID: 37881849 PMCID: PMC10979801 DOI: 10.1152/japplphysiol.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Abstract
Aging is typically associated with decreased muscle strength and rate of force development (RFD), partly explained by motor unit remodeling due to denervation, and subsequent loss of fast-twitch type II myofibers. Exercise is commonly advocated to counteract this detrimental loss. However, it is unclear how life-long strength versus endurance training may differentially affect markers of denervation and reinnervation of skeletal myofibers and, in turn, affect the proportion and morphology of fast-twitch type II musculature. Thus, we compared fiber type distribution, fiber type grouping, and the prevalence of atrophic myofibers (≤1,494 µm2) in strength-trained (OS) versus endurance-trained (OE) master athletes and compared the results to recreationally active older adults (all >70 yr, OC) and young habitually active references (<30 yr, YC). Immunofluorescent stainings were performed on biopsy samples from vastus lateralis, along with leg press maximal strength and RFD measurements. OS demonstrated similar type II fiber distribution (OS: 52.0 ± 16.4%; YC: 51.1 ± 14.4%), fiber type grouping, maximal strength (OS: 170.0 ± 18.9 kg, YC: 151.0 ± 24.4 kg), and RFD (OS: 3,993 ± 894 N·s-1, YC: 3,470 ± 1,394 N·s-1) as young, and absence of atrophic myofibers (OS: 0.2 ± 0.7%; YC: 0.1 ± 0.4%). In contrast, OE and OC exhibited more atrophic fibers (OE: 1.2 ± 1.0%; OC: 1.1 ± 1.4%), more grouped fibers, and smaller proportion of type II fibers (OE: 39.3 ± 11.9%; OC: 35.0 ± 12.4%) than OS and YC (all P < 0.05). In conclusion, strength-trained master athletes were characterized by similar muscle morphology as young, which was not the case for recreationally active or endurance-trained old. These results indicate that strength training may preserve type II fibers with advancing age in older men, likely as a result of chronic use of high contractile force generation.NEW & NOTEWORTHY Aging is associated with loss of fast-twitch type II myofibers, motor unit remodeling, and grouping of myofibers. This study reveals, for the first time, that strength training preserves neural innervation of type II fibers, resulting in similar myofiber type distribution and grouping in life-long strength-trained master athletes as young moderately active adults. In contrast, life-long endurance-trained master athletes and recreationally active old adults demonstrated higher proportion of type I fibers accompanied by more marked grouping of type I myofibers, and more atrophic fibers compared with strength-trained master athletes and young individuals. Thus, strength training should be utilized as a training modality for preservation of fast-twitch musculature, maximal muscle strength, and rapid force capacity (RFD) with advancing age.
Collapse
Affiliation(s)
- Tiril Tøien
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ole Kristian Berg
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Mathias Forsberg Brobakken
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Stian Kwak Nyberg
- Department of Anesthesiology and Intensive Care, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lars Espedal
- Department of Health and Social Sciences, Molde University College, Molde, Norway
| | - Thomas Malmo
- Norwegian Defence University College, Norwegian Armed Forces, Oslo, Norway
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Eivind Wang
- Department of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Vila-Chã C, Bovolini A, Francisco C, Costa-Brito AR, Vaz C, Rua-Alonso M, de Paz JA, Vieira T, Mendonca GV. Acute effects of isotonic eccentric exercise on the neuromuscular function of knee extensors vary according to the motor task: impact on muscle strength profiles, proprioception and balance. Front Sports Act Living 2023; 5:1273152. [PMID: 38022776 PMCID: PMC10655025 DOI: 10.3389/fspor.2023.1273152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Eccentric exercise has often been reported to result in muscle damage, limiting the muscle potential to produce force. However, understanding whether these adverse consequences extend to a broader, functional level is of apparently less concern. In this study, we address this issue by investigating the acute and delayed effects of supramaximal isotonic eccentric exercise on neuromuscular function and motor performance of knee extensors during tasks involving a range of strength profiles, proprioception, and balance. Methods Fifteen healthy volunteers (23.2 ± 2.9 years old) performed a unilateral isotonic eccentric exercise of the knee extensors of their dominant lower limb (4 × 10 reps at 120% of one Repetition Maximum (1RM)). The maximum voluntary isometric contraction (MVC), rate of force development (RFD), force steadiness of the knee extensors, as well as knee joint position sense and mediolateral (MLI) and anteroposterior stability (API) of the dominant lower limb, were measured pre-, immediately, and 24 h after the eccentric exercise. The EMG amplitude of the vastus medialis (VM) and biceps femoris (BF) were concomitantly evaluated. Results MVC decreased by 17.9% immediately after exercise (P < 0.001) and remained reduced by 13.6% 24 h following exercise (P < 0.001). Maximum RFD decreased by 20.4% immediately after exercise (P < 0.001) and remained reduced by 15.5% at 24 h (P < 0.001). During the MVC, EMG amplitude of the VM increased immediately after exercise while decreasing during the RFD task. Both values returned to baseline 24 h after exercise. Compared to baseline, force steadiness during submaximal isometric tasks reduced immediately after exercise, and it was accompanied by an increase in the EMG amplitude of the VM. MLI and knee joint position sense were impaired immediately after isotonic eccentric exercise (P < 0.05). While MLI returned to baseline values 24 h later, the absolute error in the knee repositioning task did not. Discussion Impairments in force production tasks, particularly during fast contractions and in the knee joint position sense, persisted 24 h after maximal isotonic eccentric training, revealing that neuromuscular functional outputs were affected by muscle fatigue and muscle damage. Conversely, force fluctuation and stability during the balance tasks were only affected by muscle fatigue since fully recovered was observed 24 h following isotonic eccentric exercise.
Collapse
Affiliation(s)
- Carolina Vila-Chã
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences, and Human Development, Vila Real, Portugal
| | - Antonio Bovolini
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences, and Human Development, Vila Real, Portugal
| | - Cristiana Francisco
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
| | - Ana R. Costa-Brito
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
| | - Cláudia Vaz
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
| | - María Rua-Alonso
- Laboratory for the Assessment of Sports Performance, Physical Exercise and Health (Labmov), Polytechnic of Guarda, Guarda, Portugal
- Research Center in Sports Sciences, Health Sciences, and Human Development, Vila Real, Portugal
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | | | - Taian Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Goncalo V. Mendonca
- Neuromuscular Research Laboratory, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Center for the Study of Human Performance (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Wang H, Guo Y, Yan W, Cao L, Bai X, Zhao J, Dang K, Gao Y. Weakened Contractile Performance and Mitochondrial Respiratory Complex Activity in Skeletal Muscle Improve during Interbout Arousal in Hibernating Daurian Ground Squirrel, Spermophilus dauricus. Int J Mol Sci 2023; 24:15785. [PMID: 37958769 PMCID: PMC10650195 DOI: 10.3390/ijms242115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Mammalian hibernation is composed of multiple episodes of torpor bout, separated by phases of interbout arousal. During torpor, the skeletal muscles of mammals are undoubtedly inactive, but it has been proven to mitigate disuse atrophy. While interbout arousal has been implicated in the prevention of muscle atrophy, the underlying mechanisms sustaining muscle contraction remain to be explored. In the present study, Daurian ground squirrels (Spermophilus dauricus) were divided into four groups: pre-hibernation (PRE), torpor (TOR), interbout arousal (IBA), and post-hibernation (POST). The contractile performance of slow-twitch soleus muscle (SOL) and fast-twitch extensor digitorum longus muscle (EDL) was detected both in situ and in vitro. Concurrently, mitochondrial respiratory chain complex activity in these muscles was quantified. Our findings revealed that in situ contractile properties of both muscles, including force, power output, time duration, and force development/relaxation rates of twitch contraction, and force and power output of tetanic contraction declined in the TOR group compared to the PRE group, but improved in the IBA and POST groups. Fatigue resistance of muscles, determined by the power output of repetitive tetanic contractions in situ, decreased in the TOR group but recovered in the IBA and POST groups. In vitro studies demonstrated that tetanic contraction power output in isolated muscles increased with muscle temperature in both TOR and IBA groups. However, at the same temperature, power output was consistently lower in the TOR group compared to the IBA group. Moreover, the activity of the mitochondrial respiratory chain complex, especially Complexes I and II, decreased in the TOR group but showed recovery in the IBA and POST groups. These findings suggest that both the contractile performance and fatigue resistance of mammalian skeletal muscle are compromised during torpor but can be improved during interbout arousal and post-hibernation. The rebound in body temperature and rise in mitochondrial respiratory chain complex activity in skeletal muscle are involved in enhancing contractile performance and fatigue resistance. This study suggests that interbout arousal functions as a vital temporal interval during which skeletal muscles can transition from the inactivity induced by torpor to a state of restored contractile functionality. Thus, interbout arousal serves as a behavioral safeguard against disuse-induced damage to skeletal muscles during hibernation.
Collapse
Affiliation(s)
- Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yuxi Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Wenjing Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Liqi Cao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaozhuo Bai
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China; (H.W.); (Y.G.); (W.Y.); (L.C.); (X.B.); (J.Z.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
18
|
Duchateau J, Amiridis IG. Plyometric Exercises: Optimizing the Transfer of Training Gains to Sport Performance. Exerc Sport Sci Rev 2023; 51:117-127. [PMID: 37560939 DOI: 10.1249/jes.0000000000000320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Rapid force production and its transmission to the skeleton are important factors in movements that involve the stretch-shortening cycle. Plyometric exercises are known to augment this cycle and thereby improve the neuromechanical function of the muscle. However, the training exercises that maximize translation of these gains to sports performance are not well defined. We discuss ways to improve this transfer.
Collapse
Affiliation(s)
- Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, and Centre d'Aide à la Performance Sportive (CAPS), Université Libre de Bruxelles, Brussels, Belgium
| | - Ioannis G Amiridis
- Laboratory of Neuromechanics, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
19
|
Furuichi Y, Furutani A, Tamura K, Manabe Y, Fujii NL. Lack of Musashi-2 induces type IIa fiber-dominated muscle atrophy. FASEB J 2023; 37:e23154. [PMID: 37606581 DOI: 10.1096/fj.202300563r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Skeletal muscle is a highly plastic tissue, adapting its structure and metabolism in response to diverse conditions such as contractile activity, nutrients, and diseases. Finding a novel master regulator of muscle mass and quality will provide new therapeutic targets for the prevention and treatment of muscle weakness. Musashi is an RNA-binding protein that dynamically regulates protein expression; it was originally discovered as a cell fate determination factor in neural cells. Here, we report that Musashi-2 (Msi2) is dominantly expressed in slow-type muscle fibers, fibers characterized by high metabolism and endurance. Msi2 knockout (KO) mice exhibited a decrease in both soleus myofiber size and number compared to control mice. Biochemical and histological analyses revealed that type IIa fibers, which are of the fast type but have high metabolic capacity, were decreased in Msi2 KO mice. The contraction force of isolated soleus muscle was lower in KO mice, and the expression of the metabolic proteins, cytochrome c oxidase and myoglobin, was also decreased in KO muscle. Our data demonstrate the critical role of Msi2 in the maintenance of normal fiber-type composition and metabolism.
Collapse
Affiliation(s)
- Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Ayana Furutani
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Kotaro Tamura
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
20
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
21
|
Lewis CT, Tabrizian L, Nielsen J, Laitila J, Beck TN, Olsen MS, Ognjanovic MM, Aagaard P, Hokken R, Laugesen S, Ingersen A, Andersen JL, Soendenbroe C, Helge JW, Dela F, Larsen S, Sahl RE, Rømer T, Hansen MT, Frandsen J, Suetta C, Ochala J. Physical activity impacts resting skeletal muscle myosin conformation and lowers its ATP consumption. J Gen Physiol 2023; 155:e202213268. [PMID: 37227464 PMCID: PMC10225618 DOI: 10.1085/jgp.202213268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023] Open
Abstract
It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.
Collapse
Affiliation(s)
- Christopher T.A. Lewis
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lee Tabrizian
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jenni Laitila
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas N. Beck
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathilde S. Olsen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marija M. Ognjanovic
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rune Hokken
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Simon Laugesen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Arthur Ingersen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L. Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W. Helge
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatric and Palliative Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Steen Larsen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Ronni E. Sahl
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Rømer
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel T. Hansen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Suetta
- Department of Geriatric and Palliative Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julien Ochala
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Mohamadi O, Torabinezhad F, Sanjari MA, Razazian N, Ebadi A. Evaluation of orofacial force-related measures using a novel measuring device: explanation of associations with speech rate in dysarthria. Expert Rev Med Devices 2023; 20:1193-1210. [PMID: 37942748 DOI: 10.1080/17434440.2023.2282178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The aim of this study was to examine the potential associations between orofacial force-related measures and speech rate in matched groups of 23 adults with dysarthria, and 69 healthy adults. RESEARCH DESIGN AND METHODS A novel piezoresistive sensor-based device was utilized to obtain the orofacial maximum forces (OMFs) and rate of force development (RFD) measures. The study computed alternating motion rates (AMRs), sequential motion rates (SMRs), and articulation rate (AR) for all participants. The analysis included between-group comparisons and correlation analyses. The study also examined the reliability of the OMFs and RFD measures. RESULTS Individuals with dysarthria exhibited significantly slower speech rates (approximately 41.89% to 56.53% slower) compared to the control group. Except for a few exceptions in the jaw, the dysarthria group demonstrated significantly lower OMFs and RFD measures. The correlation analysis revealed that OMFs were weakly to moderately correlated (r = .488-.674) and RFD measures were very weak to moderately correlated (r = .047-.578) with speech rate measures. CONCLUSIONS The findings suggest that reduced OMFs and RFD measures may contribute to the slowed speech rate observed in adults with dysarthria. The study also highlights that OMFs are significantly more reliable (day-to-day) than RFD measures.
Collapse
Affiliation(s)
- Omid Mohamadi
- Department of Speech-Language Pathology, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Torabinezhad
- Department of Speech-Language Pathology, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sanjari
- Biomechanics Lab. Rehabilitation Research Center, and Department of Basic Rehabilitation Sciences, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Razazian
- Department of Neurology, Imam Reza hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abbas Ebadi
- Behavioral Sciences Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 2023; 5:546-562. [PMID: 37100996 PMCID: PMC10427836 DOI: 10.1038/s42255-023-00783-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms 'mitochondrial function' and 'mitochondrial dysfunction' are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.
Collapse
Affiliation(s)
- Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
24
|
Dalton BE, Mazara N, Debenham MIB, Zwambag DP, Noonan AM, Weersink E, Brown SHM, Power GA. The relationship between single muscle fibre and voluntary rate of force development in young and old males. Eur J Appl Physiol 2023; 123:821-832. [PMID: 36484861 DOI: 10.1007/s00421-022-05111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE It is suggested that the early phase (< 50 ms) of force development during a muscle contraction is associated with intrinsic contractile properties, while the late phase (> 50 ms) is associated with maximal force. There are no direct investigations of single muscle fibre rate of force development (RFD) as related to joint-level RFD METHODS: Sixteen healthy, young (n = 8; 26.4 ± 1.5 yrs) and old (n = 8; 70.1 ± 2.8 yrs) males performed maximal voluntary isometric contractions (MVC) and electrically evoked twitches of the knee extensors to assess RFD. Then, percutaneous muscle biopsies were taken from the vastus lateralis and chemically permeabilized, to assess single fibre function. RESULTS At the joint level, older males were ~ 30% weaker and had ~ 43% and ~ 40% lower voluntary RFD values at 0-100 and 0-200 ms, respectively, than the younger ones (p ≤ 0.05). MVC torque was related to every voluntary RFD epoch in the young (p ≤ 0.001), but only the 0-200 ms epoch in the old (p ≤ 0.005). Twitch RFD was ~ 32% lower in the old compared to young (p < 0.05). There was a strong positive relationship between twitch RFD and voluntary RFD during the earliest time epochs in the young (≤ 100 ms; p ≤ 0.01). While single fibre RFD was unrelated to joint-level RFD in the young, older adults trended (p = 0.052-0.055) towards significant relationships between joint-level RTD and Type I single fibre RFD at the 0-30 ms (r2 = 0.48) and 0-50 ms (r2 = 0.49) time epochs. CONCLUSION Electrically evoked twitches are good predictors of early voluntary RFD in young, but not older adults. Only the older adults showed a potential relationship between single fibre (Type I) and joint-level rate of force development.
Collapse
Affiliation(s)
- Benjamin E Dalton
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Nicole Mazara
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- Faculty of Education, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mathew I B Debenham
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Derek P Zwambag
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Alex M Noonan
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Erin Weersink
- Sports Medicine Clinic, Health and Performance Centre, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Stephen H M Brown
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada.
| |
Collapse
|
25
|
Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111415. [PMID: 36931425 DOI: 10.1016/j.cbpa.2023.111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Humans are unique among terrestrial mammals in our manner of walking and running, reflecting 7 to 8 Ma of musculoskeletal evolution since diverging with the genus Pan. One component of this is a shift in our skeletal muscle biology towards a predominance of myosin heavy chain (MyHC) I isoforms (i.e. slow fibers) across our pelvis and lower limbs, which distinguishes us from chimpanzees. Here, new MyHC data from 35 pelvis and hind limb muscles of a Western gorilla (Gorilla gorilla) are presented. These data are combined with a similar chimpanzee dataset to assess the MyHC I content of humans in comparison to African apes (chimpanzees and gorillas) and other terrestrial mammals. The responsiveness of human skeletal muscle to behavioral interventions is also compared to the human-African ape differential. Humans are distinct from African apes and among a small group of terrestrial mammals whose pelvis and hind/lower limb muscle is slow fiber dominant, on average. Behavioral interventions, including immobilization, bed rest, spaceflight and exercise, can induce modest decreases and increases in human MyHC I content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much smaller than the mean human-African ape differential (i.e. 31%). Taken together, these results indicate muscle fiber content is likely an evolvable trait under selection in the hominin lineage. As such, we highlight potential targets of selection in the genome (e.g. regions that regulate MyHC content) that may play an important role in hominin skeletal muscle evolution.
Collapse
|
26
|
Lee H, Kim SH, Lee JS, Lee YJ, Lee OJ, Ajiteru O, Sultan MT, Lee SW, Park CH. Functional Skeletal Muscle Regeneration Using Muscle Mimetic Tissue Fabricated by Microvalve-Assisted Coaxial 3D Bioprinting. Adv Healthc Mater 2023; 12:e2202664. [PMID: 36469728 DOI: 10.1002/adhm.202202664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Indexed: 12/12/2022]
Abstract
3D-printed artificial skeletal muscle, which mimics the structural and functional characteristics of native skeletal muscle, is a promising treatment method for muscle reconstruction. Although various fabrication techniques for skeletal muscle using 3D bio-printers are studied, it is still challenging to build a functional muscle structure. A strategy using microvalve-assisted coaxial 3D bioprinting in consideration of functional skeletal muscle fabrication is reported. The unit (artificial muscle fascicle: AMF) of muscle mimetic tissue is composed of a core filled with medium-based C2C12 myoblast aggregates as a role of muscle fibers and a photo cross-linkable hydrogel-based shell as a role of connective tissue in muscles that enhances printability and cell adhesion and proliferation. Especially, a microvalve system is applied for the core part with even cell distribution and strong cell-cell interaction. This system enhances myotube formation and consequently shows spontaneous contraction. A multi-printed AMF (artificial muscle tissue: AMT) as a piece of muscle is implanted into the anterior tibia (TA) muscle defect site of immunocompromised rats. As a result, the TA-implanted AMT responds to electrical stimulation and represents histologically regenerated muscle tissue. This microvalve-assisted coaxial 3D bioprinting shows a significant step forward to mimicking native skeletal muscle tissue.
Collapse
Affiliation(s)
- Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Suk Woo Lee
- Department of Obstetrics and Gynecology, Hallym University Sacred Heart Hospital, Anyang, 14068, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
27
|
Zuccaro E, Marchioretti C, Pirazzini M, Pennuto M. Introduction to the Special Issue "Skeletal Muscle Atrophy: Mechanisms at a Cellular Level". Cells 2023; 12:cells12030502. [PMID: 36766844 PMCID: PMC9914442 DOI: 10.3390/cells12030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the most abundant tissue in the body and requires high levels of energy to function properly. Skeletal muscle allows voluntary movement and body posture, which require different types of fiber, innervation, energy, and metabolism. Here, we summarize the contribution received at the time of publication of this Introductory Issue for the Special Issue dedicated to "Skeletal Muscle Atrophy: Mechanisms at a Cellular Level". The Special Issue is divided into three sections. The first is dedicated to skeletal muscle pathophysiology, the second to disease mechanisms, and the third to therapeutic development.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padova, Italy
- Padova Neuroscience Centre (PNC), 35128 Padova, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padova, Italy
- Padova Neuroscience Centre (PNC), 35128 Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Cir-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, 35131 Padova, Italy
- Correspondence: (M.P.); (M.P.)
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padova, Italy
- Padova Neuroscience Centre (PNC), 35128 Padova, Italy
- Correspondence: (M.P.); (M.P.)
| |
Collapse
|
28
|
Narayanan S, Gopinath V. Generation and analysis of synthetic surface electromyography signals under varied muscle fiber type proportions and validation using recorded signals. Proc Inst Mech Eng H 2023; 237:209-223. [PMID: 36651535 DOI: 10.1177/09544119221149234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The magnitude and duration of muscle force production are influenced by the fiber type proportion. In this work, surface electromyography (sEMG) signals of muscles with varied fiber type proportions, are generated. For this, relevant components of existing models reported in various literature have been adopted. Also, a method to calculate the motor unit size factor is proposed. sEMG signals of adductor pollicis (AP) and triceps brachii (TB) muscles are simulated from the onset of force production to muscle fatigue state at various percentages of maximal voluntary contraction (MVC) values. The model is validated using signals recorded from these muscles using well-defined isometric exercise protocols. Root mean square and mean power spectral density values extracted from the simulated and recorded signals are found to increase for TB and decrease for AP with time. A linear variation of the features with %MVC values is obtained for simulated and experimental results. The Bland-Altman plot is used to analyze the agreement between simulated and experimental feature values. Good agreement is obtained for the feature values at various %MVCs. The mean endurance time calculated using the model is found to be comparable to that of the experimental value. This method can be used to generate sEMG signals of different muscles with varying fiber type ratios under various neuromuscular conditions.
Collapse
Affiliation(s)
- Sidharth Narayanan
- Department of Instrumentation and Control Engineering, NSS College of Engineering, Palakkad, Kerala, India.,Department of Electronics and Communication Engineering, NSS College of Engineering, Palakkad, Kerala, India.,APJ Abdul Kalam Technological University, Kerala, India
| | - Venugopal Gopinath
- Department of Instrumentation and Control Engineering, NSS College of Engineering, Palakkad, Kerala, India.,APJ Abdul Kalam Technological University, Kerala, India
| |
Collapse
|
29
|
Martins EJ, Mattiello-Sverzut AC, Franco CSB, de Lemos TW, Aagaard P. Muscle strength, rate of torque development and neuromuscular activation of the upper arm muscles in children and adolescents with spina bifida. Clin Biomech (Bristol, Avon) 2023; 102:105861. [PMID: 36623326 DOI: 10.1016/j.clinbiomech.2022.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The use of locomotive devices requires sufficient levels of upper limb strength. Therefore, it is important to evaluate the maximal isometric torque, rate of torque development and neuromuscular activation in youth with spina bifida. The objective was to investigate these parameters in the elbow muscles of youth with spina bifida versus healthy age-matched peers. METHODS Forty-eight participants (8-17 years) were recruited: Spina Bifida (n = 23) and non-affected Controls (n = 25). Maximal isometric elbow flexor/extensor contractions were performed to assess maximal muscle strength (peak torque) and rate of torque development, along with synchronized electromyography recording in the biceps and triceps brachii muscles. FINDINGS During elbow flexor contractions, Spina Bifida showed reduced rate of torque development in the early contraction phase (0-50 ms) along with lowered relative rate of torque development in the later rate of torque development phase (0-100/200/300 ms) compared to controls. Spina Bifida showed reduced rate of torque development for the elbow extensors in the later phase of rising muscle force (0-200/300 ms) compared to controls. Lower isometric peak torque and smaller triceps brachii electromyography amplitudes (0-200/300 ms) were observed during elbow extensor contractions in Ambulatory spina bifida participants vs. controls. INTERPRETATION Although a majority of peak torque and rate of torque development parameters did not differ, significant impairments in maximal and rapid elbow muscle force characteristics were noted in Spina Bifida compared to non-affected Controls. Ambulatory and Non-ambulatory spina bifida participants demonstrated similar rate of torque development in their upper arm muscles.
Collapse
Affiliation(s)
- Emanuela Juvenal Martins
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, Muscle Physiology and Biomechanics Research Unit, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
30
|
Jakobsen JR, Mackey AL, Koch M, Imhof T, Hannibal J, Kjaer M, Krogsgaard MR. Larger interface area at the human myotendinous junction in type 1 compared with type 2 muscle fibers. Scand J Med Sci Sports 2023; 33:136-145. [PMID: 36226768 PMCID: PMC10091713 DOI: 10.1111/sms.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/13/2022] [Accepted: 10/01/2022] [Indexed: 01/11/2023]
Abstract
The myotendinous junction (MTJ) is structurally specialized to transmit force. The highly folded muscle membrane at the MTJ increases the contact area between muscle and tendon and potentially the load tolerance of the MTJ. Muscles with a high content of type II fibers are more often subject to strain injury compared with muscles with type I fibers. It is hypothesized that this is explained by a smaller interface area of MTJ in type II compared with type I muscle fibers. The aim was to investigate by confocal microscopy whether there is difference in the surface area at the MTJ between type I and II muscle fibers. Individual muscle fibers with an intact MTJ were isolated by microscopic dissection in samples from human semitendinosus, and they were labeled with antibodies against collagen XXII (indicating MTJ) and type I myosin (MHCI). Using a spinning disc confocal microscope, the MTJ from each fiber was scanned and subsequently reconstructed to a 3D-model. The interface area between muscle and tendon was calculated in type I and II fibers from these reconstructions. The MTJ was analyzed in 314 muscle fibers. Type I muscle fibers had a 22% larger MTJ interface area compared with type II fibers (p < 0.05), also when the area was normalized to fiber diameter. By the new method, it was possible to analyze the structure of the MTJ from a large number of human muscle fibers. The finding that the interface area between muscle and tendon is higher in type I compared with type II fibers suggests that type II fibers are less resistant to strain and therefore more susceptible to injury.
Collapse
Affiliation(s)
- Jens Rithamer Jakobsen
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Abigail Louise Mackey
- Department of Orthopaedic Surgery M, Institute of Sports Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M, Institute of Sports Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Michael Rindom Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
31
|
Mayfield DL, Cronin NJ, Lichtwark GA. Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomech Model Mechanobiol 2023; 22:309-337. [PMID: 36335506 PMCID: PMC9958200 DOI: 10.1007/s10237-022-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, USA.
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Soedirdjo SDH, Rodriguez LA, Chung YC, Casey E, Dhaher YY. Sex hormone-mediated change on muscle activation deactivation dynamics in young eumenorrheic women. Front Physiol 2023; 14:1104578. [PMID: 36960149 PMCID: PMC10029997 DOI: 10.3389/fphys.2023.1104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The goal of the study was to characterize muscle activation/deactivation dynamics across the menstrual cycle in healthy young women. Twenty-two healthy eumenorrheic women (age: 27.0 ± 4.4 years; mean ± SD) were tested every other day for one menstrual cycle. Serum estradiol and progesterone were quantified at the time of testing. Peak torque (PT), time to peak torque (TPT), and half relaxation time (HRT) of soleus muscle twitch were measured. Muscle twitch was elicited by delivering 1 ms width electrical pulses to the tibial nerve at an intensity that generated a maximum motor response (S-100) and at supramaximal intensity (S-120; 1.2 × S-100). The analyses were performed for each menstrual cycle phase: 1) the follicular phase to analyze the effect of estradiol while the progesterone concentrations remained at low concentrations; 2) the luteal phase to analyze the effect of progesterone with background estradiol concentrations. In the follicular phase, there was no association of estradiol for PT, TPT, and HRT. In the luteal phase, while estradiol had no association on PT, TPT, and HRT, progesterone expressed a significant association with HRT reduction but no association on PT or TPT. Also, there was a significant estradiol and progesterone interaction for HRT. However, the regression parameters are nearly zero, suggesting that the change in HRT may not have an impact on muscle performance across the menstrual cycle but implications on other women's health conditions with elevated sex hormone concentrations, such as pregnancy, may prove critical.
Collapse
Affiliation(s)
- Subaryani D. H. Soedirdjo
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
| | - Luis A. Rodriguez
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ellen Casey
- Department of Physiatry, Hospital for Special Surgery, New York, NY, United States
| | - Yasin Y. Dhaher
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Yasin Y. Dhaher,
| |
Collapse
|
33
|
Effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD : A pilot study. Wien Klin Wochenschr 2023; 135:35-44. [PMID: 36044093 DOI: 10.1007/s00508-022-02073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is associated with reduced exercise capacity. In COPD iron deficiency is found in up to 50% of patients and may impair exercise capacity, the potential therapeutic effect is yet unknown. We aimed to estimate the beneficial effect of intravenous ferric carboxymaltose on exercise capacity and quality of life in patients with COPD. METHODS In this non-randomized, interrupted time series pilot trial we enrolled outpatients with stable COPD (GOLD II and III) and nonanemic iron deficiency (i.e., ferritin level < 100 μg/l or ferritin level 100-300 μg/l if transferrin saturation < 20%). Patients with cardiovascular-or inflammatory diseases were excluded. Participants performed 6‑minute walking test (6-MWT) and cardiopulmonary exercise testing (CPET) and completed the St. George's Respiratory Questionnaire (SGRQ). RESULTS From 35 screened patients, 11 (72% male, 63 ± 8 years, FEV1%predicted 44 ± 14) were included. Mean ferritin and hemoglobin were 70 ± 41 µg/l and 13.8 ± 1.7 g/dl, respectively. Four weeks after iron administration the 6‑MWT distance increased by 34.7 ± 34.4 m (95% CI, 10.0-59.3); p = 0.011. The VO2max increased by 1.87 ± 1.2 ml/kg/min (95% CI, 0.76-3); p = 0.006. Mean score of SGRQ was reduced by 7.56 ± 6.12 units (95% CI, 3 to 11); p = 0.004. The insignificant alteration in hemoglobin did not correlate with increase in exercise capacity. CONCLUSION Administration of intravenous iron was associated with improved exercise capacity and quality of life in stable COPD patients independent of hemoglobin. Our data provide a basis to calculate a statistically sufficient sample size for a randomized controlled follow-up study.
Collapse
|
34
|
de Diego M, Casado A, Gómez M, Ciurana N, Rodríguez P, Avià Y, Cuesta-Torralvo E, García N, San José I, Barbosa M, de Paz F, Pastor JF, Potau JM. Elbow Extensor Muscles in Humans and Chimpanzees: Adaptations to Different Uses of the Upper Extremity in Hominoid Primates. Animals (Basel) 2022; 12:ani12212987. [PMID: 36359111 PMCID: PMC9655010 DOI: 10.3390/ani12212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chimpanzees and humans are both species of hominoid primates that are closely related phylogenetically. One of the key differences between these two species is their use of their upper extremities. Humans use this limb mainly in manipulative tasks, while chimpanzees also use it during locomotion. In this study, we have analyzed the muscle architecture and the expression of the myosin heavy chain isoforms in the two elbow extensor muscles, the triceps brachii and the anconeus, in humans and chimpanzees, in order to find differences that could be related to the different uses of the upper extremities in these species. We have found that the triceps brachii of chimpanzees is more prepared for strength and power as an adaptation to locomotion, while the same muscle in humans is more prepared for speed and resistance to fatigue as an adaptation to manipulative activities. Our results increase the knowledge we have of the musculoskeletal system of chimpanzees and can be applied in various fields, such as comparative anatomy, evolutionary anatomy or anthropology. Abstract The anatomical and functional characteristics of the elbow extensor muscles (triceps brachii and anconeus) have not been widely studied in non-human hominoid primates, despite their great functional importance. In the present study, we have analyzed the muscle architecture and the expression of the myosin heavy chain (MHC) isoforms in the elbow extensors in humans and chimpanzees. Our main objective was to identify differences in these muscles that could be related to the different uses of the upper extremity in the two species. In five humans and five chimpanzees, we have analyzed muscle mass (MM), muscle fascicle length (MFL), and the physiological cross-sectional area (PCSA). In addition, we have assessed the expression of the MHC isoforms by RT-PCR. We have found high MM and PCSA values and higher expression of the MHC-IIx isoform in the triceps brachii of chimpanzees, while in humans, the triceps brachii has high MFL values and a higher expression of the MHC-I and MHC-IIa isoforms. In contrast, there were no significant differences between humans and chimpanzees in any of the values for the anconeus. These findings could be related to the participation of the triceps brachii in the locomotion of chimpanzees and to the use of the upper extremity in manipulative functions in humans. The results obtained in the anconeus support its primary function as a stabilizer of the elbow joint in the two species.
Collapse
Affiliation(s)
- Marina de Diego
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Aroa Casado
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
| | - Mónica Gómez
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Neus Ciurana
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Patrícia Rodríguez
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
| | - Yasmina Avià
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
- Biological Anthropology Unit, Department of Animal Biology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Elisabeth Cuesta-Torralvo
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
- Biological Anthropology Unit, Department of Animal Biology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Natividad García
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Isabel San José
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Mercedes Barbosa
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Félix de Paz
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Juan Francisco Pastor
- Department of Anatomy and Radiology, University of Valladolid, 47005 Valladolid, Spain
| | - Josep Maria Potau
- Unit of Human Anatomy and Embryology, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Arqueologia de la Universitat de Barcelona (IAUB), Faculty of Geography and History, University of Barcelona (UB), 08001 Barcelona, Spain
- Correspondence: ; Tel.: +34-9-3402-1906
| |
Collapse
|
35
|
Hirata K, Ito M, Nomura Y, Yoshida T, Yamada Y, Akagi R. Can phase angle from bioelectrical impedance analysis associate with neuromuscular properties of the knee extensors? Front Physiol 2022; 13:965827. [PMID: 36035485 PMCID: PMC9403265 DOI: 10.3389/fphys.2022.965827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Maintenance and improvement of neuromuscular functions is crucial for everyone regardless of age. An easy way to assess neuromuscular properties without muscle contraction is useful especially for those who cannot perform strenuous muscular force production, such as older adults and patients with orthopedic or cognitive disorders. Bioelectrical impedance analysis (BIA) can assess body electrical properties e.g., phase angle (PhA) which is regarded as muscle quantity/quality index. The purpose of this study was to investigate associations of PhA with neuromuscular properties of the knee extensors in 55 young (n = 23) and older (n = 32) adults. The values of PhA of the right thigh and whole-body were determined with BIA at 50 kHz. The participants performed 4-s maximal voluntary isometric contraction (MVIC) to measure peak torque (PTMVIC), and 1-s brief MVIC to assess rate of torque development (RTD) over the time interval of 0–200 ms. As markers of physiological mechanisms of muscle force production, twitch contractile properties (peak twitch torque, rate of twitch torque development, and time-to-peak twitch torque) of the knee extensors obtained by femoral nerve electrical stimulation, and muscle activity assessed as root mean square values of electromyographic activity (EMG-RMS) during PTMVIC and RTD measurements were measured. Thigh and whole-body PhA significantly correlated with PTMVIC (r ≥ 0.555, p < 0.001) and electrically evoked twitch parameters (peak twitch torque, rate of twitch torque development, and time-to-peak twitch torque; |r| ≥ 0.420, p ≤ 0.001), but not RTD (r ≤ 0.237, p ≥ 0.081) or EMG-RMSs (|r| ≤ 0.214, p ≥ 0.117). Stepwise multiple linear regression analysis revealed that thigh PhA was selected as a significant variable to predict PTMVIC but not RTD. Whole-body PhA was not selected as a significant variable to predict PTMVIC or RTD. In conclusion, both thigh and whole-body PhA can associate with maximal voluntary muscle strength of the knee extensors, and this association may be due to intrinsic contractile properties but not neural aspects. Regarding prediction of the knee extensor strength, thigh PhA is preferable as the predictor rather than whole-body PhA which is used as a widely acknowledged indicator of sarcopenia.
Collapse
Affiliation(s)
- Kosuke Hirata
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- *Correspondence: Kosuke Hirata, ; Ryota Akagi,
| | - Mari Ito
- Airweave Inc., Aichi, Japan
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yuta Nomura
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Tsukasa Yoshida
- Section of Healthy Longevity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Tokyo, Japan
| | - Yosuke Yamada
- Section of Healthy Longevity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Tokyo, Japan
| | - Ryota Akagi
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- *Correspondence: Kosuke Hirata, ; Ryota Akagi,
| |
Collapse
|
36
|
Swain P, Mortreux M, Laws JM, Kyriacou H, De Martino E, Winnard A, Caplan N. Skeletal muscle deconditioning during partial weight-bearing in rodents - A systematic review and meta-analysis. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:68-86. [PMID: 35940691 DOI: 10.1016/j.lssr.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Space agencies are planning to send humans back to the Lunar surface, in preparation for crewed exploration of Mars. However, the effect of hypogravity on human skeletal muscle is largely unknown. A recently established rodent partial weight-bearing model has been employed to mimic various levels of hypogravity loading and may provide valuable insights to better understanding how human muscle might respond to this environment. The aim of this study was to perform a systematic review regarding the effects of partial weight-bearing on the morphology and function of rodent skeletal muscle. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (partial weight-bearing for ≥1 week), control (full weight-bearing), outcome(s) (skeletal muscle morphology/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. Partial weight-bearing at 20%, 40%, and 70% of full loading caused rapid deconditioning of skeletal muscle morphology and function within the first one to two weeks of exposure. Calf circumference, hindlimb wet muscle mass, myofiber cross-sectional area, front/rear paw grip force, and nerve-stimulated plantarflexion force were reduced typically by medium to very large effects. Higher levels of partial weight-bearing often attenuated deconditioning but failed to entirely prevent it. Species and sex mediated the deconditioning response. Risk of bias was low/unclear for most studies. These findings suggest that there is insufficient stimulus to mitigate muscular deconditioning in hypogravity settings highlighting the need to develop countermeasures for maintaining astronaut/cosmonaut muscular health on the Moon and Mars.
Collapse
Affiliation(s)
- Patrick Swain
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom.
| | - Marie Mortreux
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center Boston, Massachusetts, United States
| | - Jonathan M Laws
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Harry Kyriacou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
37
|
Pethick J, Taylor MJD, Harridge SDR. Ageing and skeletal muscle force control: current perspectives and future directions. Scand J Med Sci Sports 2022; 32:1430-1443. [PMID: 35815914 PMCID: PMC9541459 DOI: 10.1111/sms.14207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
During voluntary muscle contractions, force output is characterized by constant inherent fluctuations, which can be quantified either according to their magnitude or temporal structure, that is, complexity. The presence of such fluctuations when targeting a set force indicates that control of force is not perfectly accurate, which can have significant implications for task performance. Compared to young adults, older adults demonstrate a greater magnitude and lower complexity in force fluctuations, indicative of decreased steadiness, and adaptability of force output, respectively. The nature of this loss‐of‐force control depends not only on the age of the individual but also on the muscle group performing the task, the intensity and type of contraction and whether the task is performed with additional cognitive load. Importantly, this age‐associated loss‐of‐force control is correlated with decreased performance in a range of activities of daily living and is speculated to be of greater importance for functional capacity than age‐associated decreases in maximal strength. Fortunately, there is evidence that acute physical activity interventions can reverse the loss‐of‐force control in older individuals, though whether this translates to improved functional performance and whether lifelong physical activity can protect against the changes have yet to be established. A number of mechanisms, related to both motor unit properties and the behavior of motor unit populations, have been proposed for the age‐associated changes in force fluctuations. It is likely, though, that age‐associated changes in force control are related to increased common fluctuations in the discharge times of motor units.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | - Matthew J D Taylor
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | | |
Collapse
|
38
|
Oskolkov N, Santel M, Parikh HM, Ekström O, Camp GJ, Miyamoto-Mikami E, Ström K, Mir BA, Kryvokhyzha D, Lehtovirta M, Kobayashi H, Kakigi R, Naito H, Eriksson KF, Nystedt B, Fuku N, Treutlein B, Pääbo S, Hansson O. High-throughput muscle fiber typing from RNA sequencing data. Skelet Muscle 2022; 12:16. [PMID: 35780170 PMCID: PMC9250227 DOI: 10.1186/s13395-022-00299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal muscle fiber type distribution has implications for human health, muscle function, and performance. This knowledge has been gathered using labor-intensive and costly methodology that limited these studies. Here, we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested. Methods By using single-nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in two independent cohorts (n = 39 and 22). Results The correlation between the sequencing-based method and the other two were rATPas = 0.44 [0.13–0.67], [95% CI], and rmyosin = 0.83 [0.61–0.93], with p = 5.70 × 10–3 and 2.00 × 10–6, respectively. The deconvolution inference of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average of ~ 10,000 paired-end reads. Conclusions This new method (https://github.com/OlaHanssonLab/PredictFiberType) consequently allows for measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor-efficient way. It is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well-powered studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00299-4.
Collapse
Affiliation(s)
- Nikolay Oskolkov
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Lund University, Lund, Sweden
| | - Malgorzata Santel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hemang M Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Gainesville, USA
| | - Ola Ekström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Gray J Camp
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Kristoffer Ström
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Bilal Ahmad Mir
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Mikko Lehtovirta
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
| | | | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | | | - Björn Nystedt
- Department of Cell and Molecular Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Ola Hansson
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland.
| |
Collapse
|
39
|
Holmberg PM, Harrison PW, Jenkins DG, Kelly VG. Factors Modulating the Priming Response to Resistance and Stretch-Shortening Cycle Exercise Stimuli. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to systematically review the effects of the different velocity loss (VL) thresholds during resistance training (RT) on strength and athletic adaptations. The VL was analyzed as both a categorical and continuous variable. For the categorical analysis, individual VL thresholds were divided into Low-ModVL (≤ 25% VL) or Mod-HighVL (> 25% VL). The efficacy of these VL thresholds was examined using between-group (Low-ModVL vs. Mod-HighVL) and within-group (pre–post effects in each group) analyses. For the continuous analysis, the relationship (R2) between each individual VL threshold and its respective effect size (ES) in each outcome was examined. Ten studies (308 resistance-trained young men) were finally included. The Low-ModVL group trained using a significantly (p ≤ 0.001) lower VL (16.1 ± 6.2 vs. 39.8 ± 9.0%) and volume (212.0 ± 102.3 vs. 384.0 ± 95.0 repetitions) compared with Mod-HighVL. Between-group analyses yielded higher efficacy of Low-ModVL over Mod-HighVL to increase performance against low (ES = 0.31, p = 0.01) and moderate/high loads (ES = 0.21, p = 0.07). Within-group analyses revealed superior effects after training using Low-ModVL thresholds in all strength (Low-ModVL, ES = 0.79–2.39 vs. Mod-HighVL, ES = 0.59–1.91) and athletic (Low-ModVL, ES = 0.35–0.59 vs. Mod-HighVL, ES = 0.05–0.36) parameters. Relationship analyses showed that the adaptations produced decreased as the VL threshold increased, especially for the low loads (R2 = 0.73, p = 0.01), local endurance (R2 = 0.93, p = 0.04), and sprint ability (R2 = 0.61, p = 0.06). These findings prove that low–moderate levels of intra-set fatigue (≤25% VL) are more effective and efficient stimuli than moderate–high levels (> 25% VL) to promote strength and athletic adaptations.
Collapse
|
41
|
Association of age-related decrease in intracellular-to-total water ratio with that in explosive strength of the plantar flexors: a cross-sectional study. J Physiol Anthropol 2022; 41:10. [PMID: 35346376 PMCID: PMC8962585 DOI: 10.1186/s40101-022-00284-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background We aimed to investigate the association of age-related differences in the intracellular-to-total water ratio with explosive strength of the plantar flexors. Methods A total of 60 young (21–33 years) and older (64–83 years) individuals were recruited. Intracellular- (ICW) and total-water (TW) content within the right leg was evaluated by bioelectrical impedance spectroscopy as indicators of muscle cell mass and whole muscle mass within the segment, respectively. ICW divided by TW (ICW/TW) was calculated as an index of the occupancy of muscle cells within whole muscle. Rate of torque development (RTD) and electromyography (EMG) activity during maximal voluntary isometric plantar flexion were measured as indicators of explosive muscle strength and neuromuscular activity, respectively. RTD was calculated from three time windows of 0–50, 50–100, and 100–200 ms. Time-to-peak torque (TPT) was assessed from evoked twitch contraction. Results Compared with young participants, older participants showed lower ICW/TW (−7%, P < 0.001), RTD (−25 to −40%, P = 0.003 to 0.001), and longer TPT (+11%, P < 0.001). ICW/TW associated positively with RTD (r = 0.377 to 0.408, P = 0.004 to 0.001) and negatively with TPT (r = −0.392, P = 0.002), but not with EMG activity. RTD was associated positively with EMG for each time window (r = 0.527 to 0.607, P < 0.001). Conclusions These results indicate that ICW/TW may be a useful predictor of the age-related decrease in RTD, and that the decrease in ICW/TW with age may reflect age-associated changes in intrinsic contractile properties.
Collapse
|
42
|
Tourville TW, Voigt TB, Choquette RH, Failla MJ, Endres NK, Slauterbeck JR, Beynnon BD, Toth MJ. Skeletal muscle cellular contractile dysfunction after anterior cruciate ligament reconstruction contributes to quadriceps weakness at 6-month follow-up. J Orthop Res 2022; 40:727-737. [PMID: 33969521 PMCID: PMC8578585 DOI: 10.1002/jor.25065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
Muscle dysfunction following anterior cruciate ligament reconstruction (ACLR) may evolve from alterations in muscle contractility at the myofilament protein level. Using a prospective, within-subject case-control design, we evaluated cellular-level contractility, cross-sectional area (CSA), and myosin heavy chain (MHC) isoform expression on single muscle fibers 3 weeks post ACLR, and evaluated their relationship to whole muscle strength and patient-oriented outcomes 6 months post operation. Biopsies of the vastus lateralis were performed 3 weeks post ACLR in 11 subjects (5 females, mean age ± SD = 24.7 ± 6.5 years, height = 172.7 ± 8.2 cm, mass = 75.7 ± 12.5 kg) following first-time ACL rupture and whole muscle strength and self-reported pain, function, and quality of life assessed 6 months post ACLR. At 3 weeks post ACLR, force production was reduced (p < 0.01) in MHC I (-36%) and IIA (-48%) fibers compared with the non-injured leg. When force production was expressed relative to CSA to account for fiber atrophy, reductions remained in MHC IIA fibers (-40%; p < 0.001), but MHC I fibers showed only a trend toward being lower (-13%; p = 0.09). Finally, skeletal muscle fiber functional deficits at 3 weeks post ACLR were associated with whole muscle weakness and less favorable patient-reported outcomes at 6-month follow-up. Thus, ACLR promotes early cellular contractile dysfunction that may contribute to decreased whole muscle strength and patient function, and increased patient-reported symptoms, at 6-month follow-up.
Collapse
Affiliation(s)
- Timothy W. Tourville
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA.,Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Thomas B. Voigt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Rebecca H. Choquette
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Mathew J. Failla
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA
| | - Nathan K. Endres
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - James R. Slauterbeck
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Bruce D. Beynnon
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Michael J. Toth
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA,Department of Medicine, University of Vermont, Burlington, VT, USA,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
43
|
Abstract
The Exercise Boom of the 1970's resulted in the adoption of habitual exercise in a significant portion of the population. Many of these individuals are defying the cultural norms by remaining physically active and competing at a high level in their later years. The juxtaposition between masters athletes and non-exercisers demonstrate the importance of remaining physically active throughout the lifespan on physiological systems related to healthspan (years of healthy living). This includes ~50% improved maximal aerobic capacity (VO2max) and enhanced skeletal muscle health (size, function, as well as metabolic and communicative properties) compared to non-exercisers at a similar age. By taking a reductionist approach to VO2max and skeletal muscle health, we can gain insight into how aging and habitual exercise affects the aging process. Collectively, this review provides a physiological basis for the elite performances seen in masters athletes, as well as the health implications of lifelong exercise with a focus on VO2max, skeletal muscle metabolic fitness, whole muscle size and function, single muscle fiber physiology, and communicative properties of skeletal muscle. This review has significant public health implications due to the potent health benefits of habitual exercise across the lifespan.
Collapse
Affiliation(s)
- Kevin J Gries
- Exercise and Sports Science, Marian University, Indianapolis, United States
| | - S W Trappe
- Human Performance Laboratory, Ball State University, Muncie, United States
| |
Collapse
|
44
|
Trevino MA, Dimmick HL, Parra ME, Sterczala AJ, Miller JD, Deckert JA, Gallagher PM, Fry AC, Weir JP, Herda TJ. Effects of continuous cycling training on motor unit firing rates, input excitation, and myosin heavy chain of the vastus lateralis in sedentary females. Exp Brain Res 2022; 240:825-839. [DOI: 10.1007/s00221-021-06278-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
|
45
|
Kozinc Ž, Smajla D, Šarabon N. The rate of force development scaling factor: a review of underlying factors, assessment methods and potential for practical applications. Eur J Appl Physiol 2022; 122:861-873. [DOI: 10.1007/s00421-022-04889-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
|
46
|
Kalakoutis M, Di Giulio I, Douiri A, Ochala J, Harridge SDR, Woledge RC. Methodological considerations in measuring specific force in human single skinned muscle fibres. Acta Physiol (Oxf) 2021; 233:e13719. [PMID: 34286921 DOI: 10.1111/apha.13719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/02/2023]
Abstract
Chemically skinned fibres allow the study of human muscle contractile function in vitro. A particularly important parameter is specific force (SF), that is, maximal isometric force divided by cross-sectional area, representing contractile quality. Although SF varies substantially between studies, the magnitude and cause of this variability remains puzzling. Here, we aimed to summarize and explore the cause of variability in SF between studies. A systematic search was conducted in Medline, Embase and Web of Science databases in June 2020, yielding 137 data sets from 61 publications which studied healthy, young adults. Five-fold differences in mean SF data were observed. Adjustments to the reported data for key methodological differences allowed between-study comparisons to be made. However, adjustment for fibre shape, swelling and sarcomere length failed to significantly reduce SF variance (I2 = 96%). Interestingly, grouping papers based on shared authorship did reveal consistency within research groups. In addition, lower SF was found to be associated with higher phosphocreatine concentrations in the fibre activating solution and with Triton X-100 being used as a skinning agent. Although the analysis showed variance across the literature, the ratio of SF in single fibres containing myosin heavy chain isoforms IIA or I was found to be consistent across research groups. In conclusion, whilst the skinned fibre technique is reliable for studying in vitro force generation of single fibres, the composition of the solution used to activate fibres, which differs between research groups, is likely to heavily influence SF values.
Collapse
Affiliation(s)
- Michaeljohn Kalakoutis
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Irene Di Giulio
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Abdel Douiri
- School of Population Health and Environmental Sciences King’s College London London UK
| | - Julien Ochala
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Stephen D. R. Harridge
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| | - Roger C. Woledge
- Centre for Human and Applied Physiological Sciences Faculty of Life Sciences & Medicine King’s College London London UK
| |
Collapse
|
47
|
Aidar FJ, Clemente FM, de Lima LF, de Matos DG, Ferreira ARP, Marçal AC, Moreira OC, Bulhões-Correia A, de Almeida-Neto PF, Díaz-de-Durana AL, Neves EB, Cabral BGAT, Reis VM, Garrido ND, Nikolaidis PT, Knechtle B. Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting. Sports (Basel) 2021; 9:sports9100142. [PMID: 34678923 PMCID: PMC8541460 DOI: 10.3390/sports9100142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Variable resistance training has recently become a component of strength and conditioning programs. Objective: This randomized counterbalanced cross-over study aimed to investigate the use of elastic bands (EB) and the traditional method (TRAD) and force indicators in a training session. Methods: 12 Paralympic athletes (age: 28.60 ± 7.60 years) participated in this three-week study. In the first week, the participants were familiarized with EB and TRAD and were tested for maximal repetition (1-RM). The research occurred in weeks 2 and 3, which included the pre-post training, during which the following measures were extracted: maximum isometric force (MIF), the peak torque (PT), rate of force development (RFD), fatigue index (FI), and time to MIF (Time). The athletes performed two tests, EB and TRAD, separated by a one-week interval. Results: Significant differences were found between the pre- and post-test for 1RM (p = 0.018, η2p = 0.412), MIF (p = 0.011, η2p = 0.415), PT (p = 0.012, η2p = 0.413), and RFD (p = 0.0002, η2p = 0.761). With the use of EB, there was a difference in RFD between TRAD before and EB after (p = 0.016, η2p = 0.761). There were significant differences in the before and after for FI between TRAD and EB (p < 0.001) and for Time (p < 0.001), indicating that training with the use of elastic bands promotes overload, characterized by increased fatigue and decreased strength. Conclusions: Training with EB did not decrease 1RM, PT, MIF or RFD, however, there was an increase in fatigue and time to reach MIF when compared to the method with fixed resistance.
Collapse
Affiliation(s)
- Felipe J. Aidar
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (L.F.d.L.); (D.G.d.M.); (A.R.P.F.); (A.C.M.)
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Correspondence: ; Tel.: +55-799-9685-7777
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal;
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Luiz Fernandes de Lima
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (L.F.d.L.); (D.G.d.M.); (A.R.P.F.); (A.C.M.)
| | - Dihogo Gama de Matos
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (L.F.d.L.); (D.G.d.M.); (A.R.P.F.); (A.C.M.)
- Cardiovascular & Physiology of Exercise Research Laboratory, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alexandre Reis Pires Ferreira
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (L.F.d.L.); (D.G.d.M.); (A.R.P.F.); (A.C.M.)
- College of Physical Education and Exercise Science, University of Brasília (UnB), Brasília 70910-900, Brazil
| | - Anderson Carlos Marçal
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (L.F.d.L.); (D.G.d.M.); (A.R.P.F.); (A.C.M.)
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Osvaldo Costa Moreira
- Institute of Biological Sciences and Health, Campus Florestal, Federal University of Viçosa, Viçosa 35690-000, Brazil;
| | - Alexandre Bulhões-Correia
- Department of Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil; (A.B.-C.); (P.F.d.A.-N.); (B.G.A.T.C.)
| | - Paulo Francisco de Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil; (A.B.-C.); (P.F.d.A.-N.); (B.G.A.T.C.)
| | - Alfonso López Díaz-de-Durana
- Sports Department, Physical Activity and Sports Faculty-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Eduardo Borba Neves
- Graduate Program in Biomedical Engineering, Federal Technological University of Paraná (UTFPR), Curitiba 80230-901, Brazil;
| | - Breno Guilherme Araújo Tinoco Cabral
- Department of Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil; (A.B.-C.); (P.F.d.A.-N.); (B.G.A.T.C.)
| | - Victor Machado Reis
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Trásos Montes and Alto Douro University, 5001-801 Vila Real, Portugal; (V.M.R.); (N.D.G.)
| | - Nuno Domingos Garrido
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Trásos Montes and Alto Douro University, 5001-801 Vila Real, Portugal; (V.M.R.); (N.D.G.)
| | - Pantelis Theo Nikolaidis
- School of Health and Caring Sciences, University of West Attica, 12243 Egaleo, Greece;
- Exercise Physiology Laboratory, 12243 Nikaia, Greece
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland
| |
Collapse
|
48
|
Maximal muscular power: lessons from sprint cycling. SPORTS MEDICINE-OPEN 2021; 7:48. [PMID: 34268627 PMCID: PMC8282832 DOI: 10.1186/s40798-021-00341-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Maximal muscular power production is of fundamental importance to human functional capacity and feats of performance. Here, we present a synthesis of literature pertaining to physiological systems that limit maximal muscular power during cyclic actions characteristic of locomotor behaviours, and how they adapt to training. Maximal, cyclic muscular power is known to be the main determinant of sprint cycling performance, and therefore we present this synthesis in the context of sprint cycling. Cyclical power is interactively constrained by force-velocity properties (i.e. maximum force and maximum shortening velocity), activation-relaxation kinetics and muscle coordination across the continuum of cycle frequencies, with the relative influence of each factor being frequency dependent. Muscle cross-sectional area and fibre composition appear to be the most prominent properties influencing maximal muscular power and the power-frequency relationship. Due to the role of muscle fibre composition in determining maximum shortening velocity and activation-relaxation kinetics, it remains unclear how improvable these properties are with training. Increases in maximal muscular power may therefore arise primarily from improvements in maximum force production and neuromuscular coordination via appropriate training. Because maximal efforts may need to be sustained for ~15-60 s within sprint cycling competition, the ability to attenuate fatigue-related power loss is also critical to performance. Within this context, the fatigued state is characterised by impairments in force-velocity properties and activation-relaxation kinetics. A suppression and leftward shift of the power-frequency relationship is subsequently observed. It is not clear if rates of power loss can be improved with training, even in the presence adaptations associated with fatigue-resistance. Increasing maximum power may be most efficacious for improving sustained power during brief maximal efforts, although the inclusion of sprint interval training likely remains beneficial. Therefore, evidence from sprint cycling indicates that brief maximal muscular power production under cyclical conditions can be readily improved via appropriate training, with direct implications for sprint cycling as well as other athletic and health-related pursuits.
Collapse
|
49
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Gejl KD, Hvid LG, Andersson EP, Jensen R, Holmberg HC, Ørtenblad N. Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers. Front Physiol 2021; 12:682943. [PMID: 34220547 PMCID: PMC8242206 DOI: 10.3389/fphys.2021.682943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Little is known about potential differences in contractile properties of muscle fibers of the same type in arms and legs. Accordingly, the present study was designed to compare the force-generating capacity and Ca2+ sensitivity of fibers from arm and leg muscles of highly trained cross-country skiers. Method Single muscle fibers of m. vastus lateralis and m. triceps brachii of eight highly trained cross-country skiers were analyzed with respect to maximal Ca2+-activated force, specific force and Ca2+ sensitivity. Result The maximal Ca2+-activated force was greater for myosin heavy chain (MHC) II than MHC I fibers in both the arm (+62%, P < 0.001) and leg muscle (+77%, P < 0.001), with no differences between limbs for each MHC isoform. In addition, the specific force of MHC II fibers was higher than that of MHC I fibers in both arms (+41%, P = 0.002) and legs (+95%, P < 0.001). The specific force of MHC II fibers was the same in both limbs, whereas MHC I fibers from the m. triceps brachii were, on average, 39% stronger than fibers of the same type from the m. vastus lateralis (P = 0.003). pCa50 was not different between MHC I and II fibers in neither arms nor legs, but the MHC I fibers of m. triceps brachii demonstrated higher Ca2+ sensitivity than fibers of the same type from m. vastus lateralis (P = 0.007). Conclusion Comparison of muscles in limbs equally well trained revealed that MHC I fibers in the arm muscle exhibited a higher specific force-generating capacity and greater Ca2+ sensitivity than the same type of fiber in the leg, with no such difference in the case of MHC II fibers. These distinct differences in the properties of fibers of the same type in equally well-trained muscles open new perspectives in muscle physiology.
Collapse
Affiliation(s)
- Kasper Degn Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Lars G Hvid
- Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Erik P Andersson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsö, Norway
| | - Rasmus Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Department of Health Sciences, Luleå University of Technology, Luleå, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|