1
|
Choi JM, Manthapuri V, Keenum I, Brown CL, Xia K, Chen C, Vikesland PJ, Blair MF, Bott C, Pruden A, Zhang L. A machine learning framework to predict PPCP removal through various wastewater and water reuse treatment trains. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024:d4ew00892h. [PMID: 39758590 PMCID: PMC11694563 DOI: 10.1039/d4ew00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal via wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments). For this, we grouped PPCPs based on their relative abundances by comparing peak areas measured via non-target profiling using ultra-performance liquid chromatography-tandem mass spectrometry through two field-scale treatment trains. The resulting clusters were then classified using Abraham descriptors and log K ow as input to the three ML models: support vector machines (SVM), logistic regression, and random forest (RF). SVM achieved the highest accuracy, 79.1%, in predicting PPCP removal. Notably, a 58-75% overlap was observed between the ML clusters of PPCPs and the Abraham descriptor and log K ow clusters of PPCPs, indicating the potential of using Abraham descriptors and log K ow to predict the fate of PPCPs through various treatment trains. Given the myriad of PPCPs of concern, this approach can supplement information gathered from experimental testing to help optimize the design of wastewater and water reuse treatment trains for PPCP removal.
Collapse
Affiliation(s)
- Joung Min Choi
- Department of Computer Science, Virginia Tech Blacksburg VA 24061 USA
| | - Vineeth Manthapuri
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Ishi Keenum
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
- Civil, Environmental and Geospatial Engineering, Michigan Tech University MI 49931 USA
| | - Connor L Brown
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech Blacksburg VA 24061 USA
| | - Kang Xia
- School of Plant and Environmental Sciences Blacksburg VA 24061 USA
| | - Chaoqi Chen
- School of Plant and Environmental Sciences Blacksburg VA 24061 USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Matthew F Blair
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Charles Bott
- Hampton Roads Sanitation District Virginia Beach VA 23455 USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
2
|
Ashraf M, Siddiqui MT, Galodha A, Anees S, Lall B, Chakma S, Ahammad SZ. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176999. [PMID: 39427916 DOI: 10.1016/j.scitotenv.2024.176999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem. Emphasis is placed on critically evaluating and discussing the underlying principles, ongoing advancements, and applications of diverse multimedia models across geographically distinct regions. Furthermore, the review underscores the imperative of ensuring data quality, strategically planning monitoring initiatives, and leveraging cutting-edge modelling techniques in the quest for a more holistic understanding of PPCP dynamics. It also ventures into prospective developments, particularly the integration of Artificial Intelligence (AI) and Machine Learning (ML) methodologies, to enhance the precision and predictive capabilities of PPCP models. In addition, the broader implications of PPCP modelling on sustainability development goals (SDG) and the One Health approach are also discussed. GIS-based modelling offers a cost-effective approach for incorporating time-variable parameters, enabling a spatially explicit analysis of contaminant fate. Swin-Transformer model enhanced with Normalization Attention Modules demonstrated strong groundwater level estimation with an R2 of 82 %. Meanwhile, integrating Interferometric Synthetic Aperture Radar (InSAR) time-series with gravity recovery and climate experiment (GRACE) data has been pivotal for assessing water-mass changes in the Indo-Gangetic basin, enhancing PPCP fate and transport modelling accuracy, though ongoing refinement is necessary for a comprehensive understanding of PPCP dynamics. The review aims to establish a framework for the future development of a comprehensive PPCP modelling approach, aiding researchers and policymakers in effectively managing water resources impacted by increasing PPCP levels.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Mohammad Tahir Siddiqui
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Abhinav Galodha
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sanya Anees
- Department of Electronics and Communication Engineering, Netaji Subash University of Technology (NSUT), New Delhi 110078, India.
| | - Brejesh Lall
- Bharti School of Telecommunication Technology and Management, Indian Institute of Technology, Delhi, New Delhi e110016, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
3
|
Sun H, Zhang L, Wang Y, Zhang J, Dong D, Guo Z. Bromate-induced oxidation of carbamazepine and toxicity assessment of transformation products in the freezing-sunlight process: Effects of trivalent chromium. ENVIRONMENTAL RESEARCH 2024; 262:119815. [PMID: 39159778 DOI: 10.1016/j.envres.2024.119815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Bromate (BrO3-)-induced pharmaceutical and personal care products (PPCPs) oxidation is enhanced in freezing systems. Reduced forms of metals are widely present, often coexisting with various contaminants. However, their effects on the interaction of PPCPs with BrO3- in ice in cold regions may have been overlooked. Herein we investigated the effects of representative reducing metal Cr(III) on the interaction between the representative PPCP carbamazepine (CBZ) and BrO3- in the freezing system. Our findings demonstrated that the degradation rate constants of CBZ by BrO3- and Cr(III) were 29.4%-60.3% lower than those by BrO3- in ice, revealing the inhibition of Cr(III) on CBZ degradation by BrO3- in ice. In BrO3-/freezing/sunlight system, BrO3- contributed 62.8% to CBZ degradation. In BrO3-/Cr(III)/freezing/sunlight system, Cr(III) promoted the generation of hydroxyl radical (·OH), leading to 51.0% contribution of ·OH to CBZ degradation. Oxidants were consumed by Cr(III) to form Cr(VI) rather than reacting with CBZ, thereby decreasing CBZ degradation by BrO3- in ice. Due to sunlight-induced Cr(VI) reduction in ice, only 0.3% of Cr(III) was converted to Cr(VI) in BrO3-/Cr(III)/freezing/sunlight system. BrO3--induced CBZ degradation rate in ice decreased in order of Fe(II), Cr(III), and Mn(II), which was due to the different reducing capabilities. An effective reduction in comprehensive toxicity of systems followed the freezing-sunlight process, even in the presence of Cr(III). This work sheds new light on the environmental behaviors and fate of PPCPs, brominated disinfection by-products, and reducing metals during seasonal freezing.
Collapse
Affiliation(s)
- Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yakun Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Sikorski Ł, Bęś A, Karetko-Sikorska E, Truszkowski W, Tomaszewska K. Ion-exchange chromatography in the assessment of environmental pollution with chlortetracycline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107142. [PMID: 39504861 DOI: 10.1016/j.aquatox.2024.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Chemical substances such as drugs pose a threat to the environment. One of the substances recorded in soil and water is chlortetracycline, an antibiotic used in veterinary medicine. Plants exposed to such xenobiotics show changes in the content of biogenic amines. An analytical technique - ion exchange chromatography is used to assess their content. The occurrence of these active compounds is used to determine the degree of environmental pollution with chemical substances. The study aimed to evaluate the toxicity of chlortetracycline (CTC) at concentrations of 0; 0.05; 0.1; 0.2 0.5;1; 2; 3; and 5 mM towards the test organism Lemna minor, and determine the content of biogenic amines in the plant tissues. The content of biogenic amines was analyzed by ion-exchange chromatography with post-column ninhydrin derivatization and photometric detection. The Lemna test proved that increasing concentrations of CTC had a toxic effect on the plants. It was calculated that the Lowest Observed Effects Concentration (LOEC) of CTC at >0.04 mM and >0.05 mM was phytotoxic to L. minor growth and yield. It was determined that the levels of histamine, tyramine, and cadaverine exhibited an increase, reaching 1.04, 1.90, and 3.10 µg g-1 of tissue at 2.00 mM CTC. Simultaneously, spermine and putrescine increased to 1.21 and 3.89 µg g-1 of tissue at concentrations of 0.10 and 0.50 mM of the drug. Conversely, the study revealed an over 88 % reduction in spermidine in plants at 5 mM of CTC. Using ion-exchange chromatography, analysis of biogenic amines, particularly spermidine and cadaverine, highlighted these intra-tissue compounds as sensitive biomarkers for water contamination with the tested drug. This research confirmed that the Lemna test is effective for assessing CTC toxicity and that ion-exchange chromatography is useful for evaluating environmental pollution by this antibiotic.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland.
| | - Agnieszka Bęś
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| | - Elżbieta Karetko-Sikorska
- Experiment and Education Station, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1,10-724 Olsztyn, Poland
| | - Wojciech Truszkowski
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 8,10-719 Olsztyn, Poland
| | - Katarzyna Tomaszewska
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4,10-727 Olsztyn, Poland
| |
Collapse
|
5
|
Picinini-Zambelli J, Garcia ALH, Da Silva J. Emerging pollutants in the aquatic environments: A review of genotoxic impacts. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 795:108519. [PMID: 39577759 DOI: 10.1016/j.mrrev.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Urbanization and industrial growth have negatively impacted water quality, raising concerns about emerging aquatic pollutants. Despite advancements in water treatment, these substances persist, endangering aquatic life and human health. Although research has focused on the physiological effects of these pollutants, their genetic damage potential remains poorly understood. This systematic review aimed to consolidate existing knowledge on the genotoxic potential of emerging aquatic pollutants. A comprehensive search was conducted across major databases, encompassing articles published from 2001 to 2022. The review primarily focused on research articles that evaluated genotoxicity in environmental samples containing emerging pollutants, as well as in vitro studies using various concentrations of these substances. Fourteen articles were included in the review, with pharmaceutical compounds, personal care products, disinfection byproducts, and industrial chemicals being the most extensively investigated classes. Other notable pollutants included metals, cyanotoxins, antiseptics, pesticides, and caffeine. All these pollutants classes were found to cause DNA damage, either in vitro at specific concentrations or in complex environmental mixtures. The comet assay was the most frequently used method, owing to its sensitivity and practicality in assessing DNA damage. For some pollutants, different responses were observed when comparing in vitro and in vivo studies, emphasizing the need for studies employing both approaches. However, the limited number of available articles underscores the necessity for further research on the genotoxic potential of emerging pollutants. More research is required to clarify mutagenicity, DNA repair kinetics, and cumulative effects of pollutants, which are critical for shaping policies and ensuring safe water quality. A greater knowledge about these pollutants will enable better understanding risk mitigation, ultimately protecting public health and ecosystems.
Collapse
Affiliation(s)
- Juliana Picinini-Zambelli
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Av. Farroupilha, 8001, Building 22 (4th floor), Canoas, RS 92425-900, Brazil.
| | - Ana Letícia Hilário Garcia
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Av. Farroupilha, 8001, Building 22 (4th floor), Canoas, RS 92425-900, Brazil; La Salle University (UniLaSalle), Laboratory of Genetic Toxicology, PPGSDH (Postgraduate Program in Health and Human Development), Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil
| | - Juliana Da Silva
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Av. Farroupilha, 8001, Building 22 (4th floor), Canoas, RS 92425-900, Brazil; La Salle University (UniLaSalle), Laboratory of Genetic Toxicology, PPGSDH (Postgraduate Program in Health and Human Development), Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil.
| |
Collapse
|
6
|
Pu C, Liu Y, Zhu J, Ma J, Cui M, Mehdi OM, Wang B, Wang A, Zhang C. Mechanisms insights into bisphenol S-induced oxidative stress, lipid metabolism disruption, and autophagy dysfunction in freshwater crayfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135704. [PMID: 39217924 DOI: 10.1016/j.jhazmat.2024.135704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol S (BPS) is widely used in plastic products, food packaging, electronic products, and other applications. In recent years, BPS emissions have increasingly impacted aquatic ecosystems. The effects of BPS exposure on aquatic animal health have been documented; however, our understanding of its toxicology remains limited. This study aimed to explore the mechanisms of lipid metabolism disorders, oxidative stress, and autophagy dysfunction induced in freshwater crayfish (Procambarus clarkii) by exposure to different concentrations of BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) over 14 d. The results indicated that BPS exposure led to oxidative stress by inducing elevated levels of reactive oxygen species (ROS) and inhibiting the activity of antioxidant-related enzymes. Additionally, BPS exposure led to increased lipid content in the serum and hepatopancreas, which was associated with elevated lipid-related enzyme activity and increased expression of related genes. Furthermore, BPS exposure decreased levels of phosphatidylcholine (PC) and phosphatidylinositol (PI), disrupted glycerophospholipid (GPI) metabolism, and caused lipid deposition in the hepatopancreatic. These phenomena may have occurred because BPS exposure reduced the transport of fatty acids and led to hepatopancreatic lipid deposition by inhibiting the transport and synthesis of PC and PI in the hepatopancreas, thereby inhibiting the PI3K-AMPK pathway. In conclusion, BPS exposure induced oxidative stress, promoted lipid accumulation, and led to autophagy dysfunction in the hepatopancreas of freshwater crayfish. Collectively, our findings provide the first evidence that environmentally relevant levels of BPS exposure can induce hepatopancreatic lipid deposition through multiple pathways, raising concerns about the potential population-level harm of BPS and other bisphenol analogues.
Collapse
Affiliation(s)
- Changchang Pu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuanyi Liu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiaxiang Zhu
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianshuang Ma
- Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengran Cui
- Henan University of Science and Technology, Luoyang, Henan, China
| | | | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou, Henan, China
| | - Aimin Wang
- Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Chunnuan Zhang
- Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
7
|
Sharma M, Bains A, Sridhar K, Chawla P, Sharma M. Environmental impact and source-controlled approaches for emerging micropollutants: Current status and future prospects. Food Chem Toxicol 2024; 193:115038. [PMID: 39384093 DOI: 10.1016/j.fct.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Emerging micropollutants, originating from diverse sources, including pharmaceutical, pesticides, and industrial effluents, are a serious environmental concern. Their presence in natural water bodies has negative effects on ecosystems and human health. To address this issue, the importance of a source-controlled approach has grown, highlighting the use of advanced technologies such as oxidation processes, membrane filtration, and adsorption to prevent micropollutants from entering the environment. Therefore, this review provides a comprehensive overview of emerging micropollutants, their analytical detection methods, and their environmental impacts, with a focus on aquatic ecosystems, human health, and terrestrial environments. It also highlights the importance of using a source-controlled approach and provides insights into the benefits and drawbacks of this strategy. The primary micropollutants identified in this review were erythromycin, ibuprofen, and triclocarban, originating from the pharmaceutical industries for their use as antibiotics, analgesic, and antibacterial drugs. The primary analytical methods used for detection involved hybrid techniques that integrate chromatography with spectroscopy. Thus, this review emphasizes the source-controlled approach's benefits and drawbacks, focusing on emerging micropollutants, their detection, and impacts on ecosystems and health.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, India.
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, 315000, China.
| |
Collapse
|
8
|
Landová P, Mravcová L, Poláková Š, Kosubová P. Application of QuEChERS extraction and LC-MS/MS for determination of pharmaceuticals in sewage sludges sampled across the Czech Republic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63946-63958. [PMID: 39520625 PMCID: PMC11602849 DOI: 10.1007/s11356-024-35508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The use of pharmaceuticals entails a significant risk of environmental contamination. Wastewater treatment plants (WWTPs) are considered to be the main contributors to contamination as they ineffectively eliminate these compounds from wastewater. Simultaneously, they produce solid waste, sludge, which often contains a variety of retained pollutants, including pharmaceuticals. Since sewage sludge is frequently applied to agricultural soil due to its rich nutrient content, pollutants are introduced into the environment in this way. Only a few studies have been carried out on the topic of the analysis of pharmaceuticals in sludge. Therefore, information on the occurrence of pharmaceuticals in sludge is limited. The present study employed quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis to establish a simple and reliable procedure for determining 16 pharmaceuticals (antibiotics, anticonvulsants, antidepressants and β-blockers) in sewage sludge. The method has been thoroughly validated, and parameters such as linear range, accuracy, precision, matrix effects and detection and quantification limits were assessed. Our method achieved low limits of quantification (0.5-9.0 µg kg-1) and satisfactory recoveries (51-101%). Forty sludge samples from different WWTPs across the Czech Republic were analysed. Fourteen compounds were detected and quantified in most samples, with antidepressants having the highest detection frequency and overall content. Sertraline, with a mean concentration of 521.0 µg kg-1, was notably prevalent alongside its metabolite norsertraline (mean concentration 204.9 µg kg-1). The antibiotic azithromycin was also found at higher levels (mean concentration 185.1 µg kg-1).
Collapse
Affiliation(s)
- Pavlína Landová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic.
- Central Institute for Supervising and Testing in Agriculture (CISTA), Hroznová 63/2, 603 00, Brno, Czech Republic.
| | - Ludmila Mravcová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
| | - Šárka Poláková
- Central Institute for Supervising and Testing in Agriculture (CISTA), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Petra Kosubová
- Central Institute for Supervising and Testing in Agriculture (CISTA), Hroznová 63/2, 603 00, Brno, Czech Republic
| |
Collapse
|
9
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
10
|
Huang J, Cheng F, He L, Lou X, Li H, You J. Effect driven prioritization of contaminants in wastewater treatment plants across China: A data mining-based toxicity screening approach. WATER RESEARCH 2024; 264:122223. [PMID: 39116614 DOI: 10.1016/j.watres.2024.122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
A diversity of contaminants of emerging concern (CECs) are present in wastewater effluent, posing potential threats to receiving waters. It is urgent for a holistic assessment of the occurrence and risk of CECs related to wastewater treatment plants (WWTP) on national and regional scales. A data mining-based risk prioritization method was developed to collect the reported contaminants and their respective concentrations in municipal and industrial WWTPs and their receiving waters across China over the past 20 years. A total of 10,781 chemicals were reported in 8336 publications, of which 1037 contaminants were reported with environmental concentrations. While contaminant categories varied across WWTP types (municipal vs. industrial) and regions, pharmaceuticals and cyclic hydrocarbons were the most studied CECs. Contaminant composition in receiving water was closer to that in municipal than industrial WWTPs. Publications on legacy pesticides and polycyclic aromatic hydrocarbons in WWTP decreased recently compared to the past, while pharmaceuticals and perfluorochemicals have received increasing attention, showing a changing concern over time. Detection frequency, concentration, removal efficiency, and toxicity data were integrated for assessing potential risks and prioritizing CECs on national and regional scales using an environmental health prioritization index (EHPi) approach. Among 666 contaminants in municipal WWTP effluent, trichlorfon and perfluorooctanesulfonic acid were with the highest EHPi scores, while 17ɑ-ethinylestradiol and bisphenol A had the highest EHPi scores among 304 contaminants in industrial WWTPs. The prioritized contaminants varied across regions, suggesting a need for tailoring regional measures of wastewater treatment and control.
Collapse
Affiliation(s)
- Jiehui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Fei Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Liwei He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaohan Lou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
11
|
Telgmann L, Horn H. The behavior of pharmaceutically active compounds and contrast agents during wastewater treatment - Combining sampling strategies and analytical techniques: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174344. [PMID: 38964417 DOI: 10.1016/j.scitotenv.2024.174344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Increasing consumption of pharmaceuticals and the respective consequences for the aquatic environment have been the focus of many studies over the last thirty years. Various aspects in this field were investigated, considering diverse pharmaceutical groups and employing a wide range of research methodologies. Various questions from the perspectives of different research areas were devised and answered, resulting in a large mix of individual findings and conclusions. Collectively, the results of the studies offer a comprehensive overview. The large variety of methods and strategies, however, demands close attention when comparing and combining information from heterogeneous projects. This review critically examines the application of diverse sampling techniques as well as analytical methods in investigations concerning the behavior of pharmaceutically active compounds (PhACs) and contrast agents (CAs) in wastewater treatment plants (WWTPs). The combination of sampling and analysis is discussed with regard to its suitability for specific scientific problems. Different research focuses need different methods and answer different questions. An overview of studies dealing with the fate and degradation of PhACs and CAs in WWTPs is presented, discussing their strategic approaches and findings. This review includes surveys of anticancer drugs, antibiotics, analgesics and anti-inflammatory drugs, antidiabetics, beta blockers, hormonal contraceptives, lipid lowering agents, antidepressants as well as contrast agents for X-ray and magnetic resonance imaging.
Collapse
Affiliation(s)
- Lena Telgmann
- Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Harald Horn
- Department Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
12
|
Carneiro RB, Gil-Solsona R, Subirats J, Restrepo-Montes E, Zaiat M, Santos-Neto ÁJ, Gago-Ferrero P. Biotransformation pathways of pharmaceuticals and personal care products (PPCPs) during acidogenesis and methanogenesis of anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135444. [PMID: 39153297 DOI: 10.1016/j.jhazmat.2024.135444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Jessica Subirats
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
13
|
Pérez-Lucas G, Navarro S. How Pharmaceutical Residues Occur, Behave, and Affect the Soil Environment. J Xenobiot 2024; 14:1343-1377. [PMID: 39449417 PMCID: PMC11503385 DOI: 10.3390/jox14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Many pharmaceuticals (PhMs), compounds for the treatment or prevention of diseases in humans and animals, have been identified as pollutants of emerging concern (PECs) due to their wide environmental distribution and potential adverse impact on nontarget organisms and populations. They are often found at significant levels in soils due to the continuous release of effluent and sludge from wastewater treatment plants (WWTPs), the release of which occurs much faster than the removal of PhMs. Although they are generally present at low environmental concentrations, conventional wastewater treatment cannot successfully remove PhMs from influent streams or biosolids. In addition, the soil application of animal manure can result in the pollution of soil, surface water, and groundwater with PhMs through surface runoff and leaching. In arid and semiarid regions, irrigation with reclaimed wastewater and the soil application of biosolids are usual agricultural practices, resulting in the distribution of a wide number of PhMs in agricultural soils. The ability to accurately study the fate of PhMs in soils is critical for careful risk evaluation associated with wastewater reuse or biosolid return to the environment. The behavior and fate of PhMs in soils are determined by a number of processes, including adsorption/desorption (accumulation) to soil colloids, biotic (biodegradation) and abiotic (chemical and photochemical degradation) degradation, and transfer (movement) through the soil profile. The sorption/desorption of PhMs in soils is the main determinant of the amount of organic chemicals taken up by plant roots. The magnitude of this process depends on several factors, such as crop type, the physicochemical properties of the compound, environmental properties, and soil-plant characteristics. PhMs are assumed to be readily bioavailable in soil solutions for uptake by plants, and such solutions act as carriers to transport PhMs into plants. Determining microbial responses under exposure conditions can assist in elucidating the impact of PhMs on soil microbial activity and community size. For all of the above reasons, soil remediation is critical when soil pollutants threaten the environment.
Collapse
Affiliation(s)
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, School of Chemistry, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain;
| |
Collapse
|
14
|
Polianciuc SI, Ciorîță A, Soran ML, Lung I, Kiss B, Ștefan MG, Leucuța DC, Gurzău AE, Carpa R, Colobațiu LM, Loghin F. Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics (Basel) 2024; 13:780. [PMID: 39200080 PMCID: PMC11350919 DOI: 10.3390/antibiotics13080780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluates antibiotic residues and bacterial loads in influent and effluent samples from three wastewater treatment plants (WWTPs) in Romania, across four seasons from 2021 to 2022. Analytical methods included solid-phase extraction and high-performance liquid chromatography (HPLC) to quantify antibiotic concentrations, while microbiological assays estimated bacterial loads and assessed antibiotic resistance patterns. Statistical analyses explored the impact of environmental factors such as temperature and rainfall on antibiotic levels. The results showed significant seasonal variations, with higher antibiotic concentrations in warmer seasons. Antibiotic removal efficiency varied among WWTPs, with some antibiotics being effectively removed and others persisting in the effluent, posing high environmental risks and potential for antibiotic resistance development. Bacterial loads were higher in spring and summer, correlating with increased temperatures. Eight bacterial strains were isolated, with higher resistance during warmer seasons, particularly to amoxicillin and clarithromycin.
Collapse
Affiliation(s)
- Svetlana Iuliana Polianciuc
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- Electon Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Maria Loredana Soran
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ildiko Lung
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca Elena Gurzău
- Department of Public Health, Faculty of Political, Administrative and Communication Sciences, Babeș-Bolyai University, 400095 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 400015 Cluj Napoca, Romania
| | - Liora Mihaela Colobațiu
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Medici A, De Nisco M, Luongo G, Di Fabio G, Brigante M, Zarrelli A. Degradation Acyclovir Using Sodium Hypochlorite: Focus on Byproducts Analysis, Optimal Conditions and Wastewater Application. Molecules 2024; 29:3783. [PMID: 39202862 PMCID: PMC11357095 DOI: 10.3390/molecules29163783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, the environmental impact of pharmaceutical residues has emerged as a pressing global concern, catalyzed by their widespread usage and persistence in aquatic ecosystems. Among these pharmaceuticals, acyclovir (ACV) stands out due to its extensive prescription during medical treatments for herpes simplex virus, chickenpox, and shingles, as well as its heightened usage amidst the COVID-19 pandemic. ACV is excreted largely unchanged by the human body, leading to significant environmental release through wastewater effluents. The urgency of addressing ACV's environmental impact lies in its potential to persist in water bodies and affect aquatic life. This persistence underscores the critical need for effective degradation strategies that can mitigate its presence in aquatic systems. This study focuses on employing sodium hypochlorite as an oxidative agent for the degradation of ACV, leveraging its common use in wastewater treatment plants. Our research aims to explore the kinetics of ACV degradation, identify and characterize its degradation byproducts, and optimize the conditions under which complete degradation can be achieved. By assessing the efficiency of sodium hypochlorite in real wastewater samples, this study seeks to provide practical insights into mitigating ACV contamination in aquatic environments. The novelty of this research lies in its comprehensive approach to understanding the degradation pathways of ACV and evaluating the feasibility of using sodium hypochlorite as a sustainable solution in wastewater treatment. By addressing the environmental concerns associated with ACV and offering practical solutions, this study contributes to the broader goal of sustainable pharmaceutical waste management and environmental stewardship.
Collapse
Affiliation(s)
- Antonio Medici
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.M.); (G.D.F.)
| | - Mauro De Nisco
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy;
| | - Giovanni Luongo
- Associazione Italiana per la Promozione delle Ricerche su Ambiente e Salute Umana, 82030 Dugenta, Italy;
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.M.); (G.D.F.)
| | - Marcello Brigante
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.M.); (G.D.F.)
| |
Collapse
|
16
|
Mitra S, Saran RK, Srivastava S, Rensing C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173026. [PMID: 38750741 DOI: 10.1016/j.scitotenv.2024.173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.
Collapse
Affiliation(s)
- Suchitra Mitra
- Indian Institute of Science Education and Research, Kolkata 741245, WB, India
| | - R K Saran
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
17
|
Singh A, Pratap SG, Raj A. Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47505-47529. [PMID: 39028459 DOI: 10.1007/s11356-024-34355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.
Collapse
Affiliation(s)
- Anjali Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Shalini G Pratap
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
18
|
van Leeuwen SPJ, Verschoor AM, van der Fels-Klerx HJ, van de Schans MGM, Berendsen BJA. A novel approach to identify critical knowledge gaps for food safety in circular food systems. NPJ Sci Food 2024; 8:34. [PMID: 38898053 PMCID: PMC11187133 DOI: 10.1038/s41538-024-00265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
The transition from linear production towards a circular agro-food system is an important step towards increasing Europe's sustainability. This requires re-designing the food production systems, which inevitably comes with challenges as regards controlling the safety of our food, animals and the ecosystem. Where in current food production systems many food safety hazards are understood and well-managed, it is anticipated that with the transition towards circular food production systems, known hazards may re-emerge and new hazards will appear or accumulate, leading to new -and less understood- food safety risks. In this perspective paper, we present a simple, yet effective approach, to identify knowledge gaps with regard to food safety in the transition to a circular food system. An approach with five questions is proposed, derived from current food safety management approaches like HACCP. Applying this to two cases shows that risk assessment and management should emphasize more on the exposure to unexpected (with regards to its nature and its origin) hazards, as hazards might circulate and accumulate in the food production system. Five knowledge gaps became apparent: there's a need for (1) risk assessment and management to focus more on unknown hazards and mixtures of hazards, (2) more data on the occurrence of hazards in by-products, (3) better understanding the fate of hazards in the circular food production system, (4) the development of models to adequately perform risk assessments for a broad range of hazards and (5) new ways of valorization of co-products in which a safe-by-design approach should be adopted.
Collapse
Affiliation(s)
- Stefan P J van Leeuwen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - A M Verschoor
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - M G M van de Schans
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - B J A Berendsen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| |
Collapse
|
19
|
Hossen MA, Sattar G, Mostafa M. Factors affecting the performance of a pharmaceutical wastewater treatment plant: Characterization of effluent and environmental risk. Heliyon 2024; 10:e29165. [PMID: 38617963 PMCID: PMC11015402 DOI: 10.1016/j.heliyon.2024.e29165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Pharmaceutical industries produce a huge volume of emerging pollutants (EPs) that pose a threat to the aqueous environment. Biological processes have shown their inefficacy in treating many pharmaceutical products. The study assessed physicochemical parameters, EPs, heavy metals in pharmaceutical industrial wastewater, and the removal efficiency (RE) of an aerobic biological treatment plant. The study also assessed the contamination levels and risk using several indices, such as the Canadian Council of Ministers of the Environment Water Quality Index (CCME-WQI), heavy metal pollution index (HPI), heavy metal evaluation index (HEI), and risk quotients index (RQs). The study found that the treated water quality was poor, having antibiotics, nonsteroidal anti-inflammatory drugs, and others, along with several transformation products (TPs) and heavy metals, which were unsafe for consumption with high environmental risk. The analysis results showed that the RE for TSS, BOD5, COD, TDS, and EC were found to be 91.80%, 86.81%, 72.29%, 72.20%, and 65.60%, respectively, where the values of BOD5, COD, NO3-, and PO43- in the effluent were still higher than the permissible limits of the ECR (2023). However, the RE for heavy metals was in the order of Cu (84.62%) > Fe (65.04%) > Mn (63.3%) > Zn (60.58%) > Cd (53.85%) > Ni (54.12%) > Pb (42.42%) > Cr (38%), where Cr and Cd concentrations were still higher than the permissible limit of DoE (2019). The Pearson correlation and PCA suggested that EC, TDS, TSS, DO, BOD5, and COD were the most correlating and contributing variables. This study argued that metal-ligand behaviors mainly affect the removal efficiency of the treatment plant by lowering the removal rate of heavy metals and pharmaceutical products.
Collapse
Affiliation(s)
- Md Anowar Hossen
- Water Research Lab, Institute of Environmental Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - G.S. Sattar
- Water Research Lab, Institute of Environmental Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M.G. Mostafa
- Water Research Lab, Institute of Environmental Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
20
|
Saravanan A, Thamarai P, Deivayanai VC, Karishma S, Shaji A, Yaashikaa PR. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. CHEMOSPHERE 2024; 354:141698. [PMID: 38490608 DOI: 10.1016/j.chemosphere.2024.141698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
21
|
Detzlhofer A, Grechhamer C, Madikizela L, Himmelsbach M, Mlynek F, Buchberger W, Klampfl CW. Uptake, translocation, and metabolization of amitriptyline, lidocaine, orphenadrine, and tramadol by cress and pea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19649-19657. [PMID: 38363510 PMCID: PMC10927770 DOI: 10.1007/s11356-024-32379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
The uptake, translocation, and metabolization of four widely used drugs, amitriptyline, orphenadrine, lidocaine, and tramadol, were investigated in a laboratory study. Cress (Lepidium sativum L.) and pea (Pisum sativum L.) were employed as model plants. These plants were grown in tap water containing the selected pharmaceuticals at concentrations ranging from 0.010 to 10 mg L-1, whereby the latter concentration was employed for the (tentative) identification of drug-related metabolites formed within the plant. Thereby, mainly phase I metabolites were detected. Time-resolved uptake studies, with sampling after 1, 2, 4, 8, and 16 days, revealed that all four pharmaceuticals were taken up by the roots and further relocated to plant stem and leaves. Also in these studies, the corresponding phase I metabolites could be detected, and their translocation from root to stem (pea only) and finally leaves could be investigated.
Collapse
Affiliation(s)
- Anna Detzlhofer
- Institute of Analytical and General Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian Grechhamer
- Institute of Analytical and General Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Lawrence Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort, 1710, South Africa
| | - Markus Himmelsbach
- Institute of Analytical and General Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Franz Mlynek
- Institute of Analytical and General Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Wolfgang Buchberger
- Institute of Analytical and General Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria
| | - Christian W Klampfl
- Institute of Analytical and General Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040, Linz, Austria.
| |
Collapse
|
22
|
D'Amico M, Kallenborn R, Scoto F, Gambaro A, Gallet JC, Spolaor A, Vecchiato M. Chemicals of Emerging Arctic Concern in north-western Spitsbergen snow: Distribution and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168401. [PMID: 37939944 DOI: 10.1016/j.scitotenv.2023.168401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Personal care products contain chemicals that are considered of emerging concern in the Arctic. In this study, a selected group of personal care products was investigated in the snowpack on north-western Spitsbergen. We report a preliminary study on the spatial and seasonal distribution of 13 ingredients commonly found in personal care products, including fragrance materials, UV filters, BHT and BPA. Possible sources and deposition processes are discussed. Experimental analyses utilizing GC-MS/MS, were complemented with outputs from the HYSPLIT transport and dispersion model. The results reveal the presence of all selected compounds in the snow, both in proximity to and distant from the research village of Ny-Ålesund. For some of these chemicals this is the first time their presence is reported in snow in Svalbard. These chemicals show different partitioning behaviours between the particulate and dissolved phases, affecting their transport and deposition processes. Additionally, concentrations of certain compounds vary across different altitudes. It is observed the relevance of long-range atmospheric transport during winter at most sites, and, regardless of the proximity to human settlements, snow concentrations can be influenced by long-distance sources. This study highlights the need for detailed information on CEACs' physical-chemical properties, considering their potential impact on fresh and marine waters during the snowmelt under climate change.
Collapse
Affiliation(s)
- Marianna D'Amico
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Department of Arctic Technology (AT), University Centre in Svalbard (UNIS), 9176 Longyearbyen, Svalbard, Norway
| | - Federico Scoto
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Atmospheric Sciences and Climate - National Research Council (ISAC-CNR), Campus Ecotekne, 73100 Lecce, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | | | - Andrea Spolaor
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
| |
Collapse
|
23
|
Yu X, Wang Y, Watson P, Yang X, Liu H. Application of passive sampling device for exploring the occurrence, distribution, and risk of pharmaceuticals and pesticides in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168393. [PMID: 37963530 DOI: 10.1016/j.scitotenv.2023.168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Pharmaceuticals and pesticides are compounds of high concern in surface waters around the world. However, few studies have used passive sampling methods to screen and detect these compounds in natural waters. In this study, a self-developed passive sampler was employed to measure pharmaceuticals and pesticides in the rivers of Nanjing, China. A total of 41 pharmaceuticals and 11 pesticides were detected, among which antibiotic and insecticide were the predominant classes, respectively. Valproic acid, caffeine and triclosan from the pharmaceuticals, and isoprocarb and imidacloprid from the pesticides were found frequently with high concentrations. At most sampling sites, the concentration ratios of caffeine versus carbamazepine exceeded 10, and even above 50, indicating relatively poor efficiency of wastewater treatment, or possibly the direct discharge of raw sewage, or other unknown source of pollution. It was found that the concentrations and ecological risks in the northern area of Yangtze River were higher than those in the southern area of Yangtze River, implying that economic development and population density were not the main contributors to the discovered pollution. The total concentration of pharmaceuticals and pesticides in Qinhuai River increased gradually with the direction of water flow, demonstrating the success of water diversion project in flushing and scouring pollutants.
Collapse
Affiliation(s)
- Xinzhi Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peter Watson
- Los Alamos National Laboratory, Los Alamos 87545, NM, United States
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
24
|
Yi J, Huang X, Hou J, Xiong J, Qian Z, Liu S, Zhang J, Yin D, Li J, Su Q, Qi S, Chen W. Occurrence and distribution of PPCPs in water from two largest urban lakes of China: First perspective from DGT in-situ measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166656. [PMID: 37647953 DOI: 10.1016/j.scitotenv.2023.166656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are an important group of emerging contaminants that may threaten organisms at trace concentrations. However, research on the occurrence of PPCPs in urban lakes in China is still scarce. In this study, 15 PPCPs in the Tangxun Lake and the Donghu Lake were collected using the diffusive gradients in thin-films (DGT) technique and analyzed by high performance liquid chromatography tandem-mass spectrometry (HPLC-MS/MS). Thirteen of the 15 targeted PPCPs were detected in the Tangxun Lake, and all PPCPs were detected in the Donghu Lake, with total concentrations ranging from 160 to 730 ng/L (average: 401 ng/L) and 187 to 1933 ng/L (average: 653 ng/L), respectively. Bisphenol A (BPA) was the dominant PPCP, followed by disinfectants in both lakes. The total concentrations of PPCPs in the Donghu Lake were higher than those in the Tangxun Lake. The spatial distribution characteristics of PPCPs in the two lakes were different, with higher total concentrations in the eastern part than in the western part of the Tangxun Lake spatially and higher in the north-western part than in the south-eastern part of the Donghu Lake. The results of the risk assessment showed that BPA and estrone posed high risks to the aquatic environment (RQ ≥ 1), while triclosan and estriol presented a medium risk (0.1 ≤ RQ < 1) in some sites. This study was the first attempt to apply DGT for providing vital data on the evaluation of the ecological risk of PPCPs in the two largest lakes in China, and attention should be paid to the long-term ecological effects caused by the occurrence of PPCPs in lakes.
Collapse
Affiliation(s)
- Jiapei Yi
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Xi Huang
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Jie Hou
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Junwu Xiong
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Zhe Qian
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Shan Liu
- School of Environmental Science and Engineering, and Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, and Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Dacong Yin
- Hubei Key Laboratory of Water Resources & Eco-Environmental Sciences, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Junyi Li
- China NUS (Suzhou) Research Institute, Suzhou 215128, China
| | - Qiuke Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shihua Qi
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Wei Chen
- School of Environmental Studies and Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; School of Environmental Science and Engineering, and Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China.
| |
Collapse
|
25
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
26
|
Chen J, Zhang Q, Chen W, Farooq U, Lu T, Wang B, Ni J, Zhang H, Qi Z. Mobility of antipyretic drugs with different molecular structures in saturated soil porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2092-2101. [PMID: 37905737 DOI: 10.1039/d3em00358b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In the post-COVID-19 era, extensive quantities of antipyretic drugs are being haphazardly released from households into the environment, which may pose potential risks to ecological systems and human health. Identification of the mobility behaviors of these compounds in the subsurface environment is crucial to understand the environmental fate of these common contaminants. The mobility properties of three broad-spectrum antipyretic drugs, including ibuprofen (IBF), indometacin (IMC), and acetaminophen (APAP), in porous soil media, were investigated in this study. The results showed that the mobility of the three drugs (the background electrolyte was Na+) through the soil column followed the order of APAP > IBF > IMC. The difference in the physicochemical characteristics of various antipyretic drugs (e.g., the molecular structure and hydrophobicity) could explain this trend. Unlike Na+, Ca2+ ions tended to serve as bridging agents by linking the soil grains and antipyretic molecules, leading to the relatively weak mobility behaviors of antipyretic drugs. Furthermore, for a given antipyretic drug, the antipyretic mobility was promoted when the background solution pH values were raised from 5.0 to 9.0. The phenomenon stemmed from the improved electrostatic repulsion between the dissociated species of antipyretic molecules and soil grains, as well as the weakened hydrophobic interactions between antipyretic drugs and soil organic matter. Furthermore, a two-site non-equilibrium transport model was used to estimate the mobility of antipyretic drugs. The results obtained from this work provide vital information illustrating the transport and retention of various antipyretic drugs in aquifers.
Collapse
Affiliation(s)
- Jiuyan Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
27
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
28
|
Gao J, Zhao J, Chen X, Wang J. A review on in silico prediction of the environmental risks posed by pharmaceutical emerging contaminants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1535. [PMID: 38008816 DOI: 10.1007/s10661-023-12159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Computer-aided (in silico) prediction has shown good potential to support the environmental risk assessment (ERA) of pharmaceutical emerging contaminants (PECs), allowing low-cost, animal-free, high-throughput screening of multiple potential risks posed by a wide variety of pharmaceuticals in the environment based on insufficient toxicity data. This review provided recent insights regarding the application of in silico approaches in prediction for environmental risks of PECs. Based on the review of 20 included articles from 8 countries published since 2018, we found that the researchers' interest and concern in this research topic were sharply aroused since 2021. Recently, in silico approaches have been widely used for the prediction of bioaccumulation and biodegradability, lethal endpoints, developmental toxicity, mutagenicity, other eco-toxicological effects such as ototoxicity and hematological toxicity, and human health hazards of exposure to PECs. Particular attention has been given to the simultaneous discernment of multiple environmental risks and health effects of PECs based on mechanistic data of pharmaceuticals using advanced bioinformatic methods such as transcriptomic analysis and network pharmacology prediction. In silico software platforms and databases used in the included studies were diversified, and there is currently no standardized and accepted in silico model for ERA of PECs. Date suggested that in silico prediction of the environmental risks posed by PECs is still in its infancy. Considerable critical challenges need to be addressed, including consideration of environmental exposure concentration for PECs, interactions among mixtures of PECs and other contaminants coexisting in environments, and development of in silico models specific to ERA of PECs.
Collapse
Affiliation(s)
- Jian Gao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinru Zhao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xintong Chen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jun Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
29
|
Lam TK, Law JCF, Leung KSY. Hazardous radical-coupled transformation products of benzophenone-3 formed during manganese dioxide treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166481. [PMID: 37611723 DOI: 10.1016/j.scitotenv.2023.166481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Radical-coupled transformation products (TPs) have been identified as the byproducts of various transformation processes, including both natural attenuation and artificial treatments, of phenolic micropollutants. Benzophenone-3 (BP-3), an organic UV filter of emerging concern, has been previously reported with ubiquitous occurrence in the natural environment and water bodies. Current research has demonstrated how TPs are formed from BP-3 when it is treated with manganese oxide (MnO2). The ecological and toxicological risks of these TPs have also been assessed. Polymerization of BP-3 through radical coupling was observed as the major pathway by which BP-3 is transformed when treated with MnO2. These radical-coupled TPs haven't shown further degradation after formation, suggesting their potential persistence once occurred in the environment. In silico experiments predict the radical-coupled TPs will increase in mobility, persistence and ecotoxicity. If true, they also represent an ever-increasing threat to the environment, ecosystems and, most immediately, aquatic living organisms. In addition, radical-coupled TPs produced by MnO2 transformation of BP-3 have shown escalated estrogenic activity compared to the parent compound. This suggests that radical coupling amplifies the toxicological impacts of parent compound. These results provide strong evidence that radical-coupled TPs with larger molecular sizes are having potential adverse impacts on the ecosystem and biota.
Collapse
Affiliation(s)
- Tsz-Ki Lam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, P. R. China.
| |
Collapse
|
30
|
Pegu R, Paul S, Bhattacharyya P, Prakash A, Bhattacharya SS. Exorbitant signatures of pesticides and pharmaceuticals in municipal solid wastes (MSWs): Novel insights through risk analysis, dissolution dynamics, and model-based source identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165855. [PMID: 37516171 DOI: 10.1016/j.scitotenv.2023.165855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Studies on the occurrence and fates of emerging organic micropollutants (EOMPs) like pharmaceuticals and pesticides in MSWs are scarce in the literature. Therefore, MSWs were sampled from 20 Indian landfills and characterized for five widely consumed EOMPs (chlorpyrifos, cypermethrin, carbofuran, carbamazepine, and sodium diclofenac), physicochemical, and biological properties. The pesticide (median: 0.17-0.44 mg kg-1) and pharmaceutical (median: 0.20-0.26 mg kg-1) concentrations significantly fluctuated based on landfill localities. Eventually, principal component and multi-factor (MFA) models demonstrated close interactions of EOMPs with biological (microbial biomass and humification rates) and chemical (N, P, K, Ca, S, etc.) properties of MSWs. At the same time, the MFA resolved that EOMPs' fates in MSWs significantly differ from bigger cosmopolitan cities to smaller rural townships. Correspondingly, the concentration-driven ecological risks were high in 15 MSWs with EOMP-toxicity ranks of diclofenac > carbofuran = chlorpyrifos > cypermethrin > carbamazepine. The EOMPs' dissolution dynamics and source apportionments were evaluated using the positive matrix factorization (PMF) model for the first time on experimental data, extracting four anthropogenic sources (households, heterogeneous business centers, agricultural, and open drains). The most significant contribution of EOMPs to MSWs was due to heterogeneous business activity. Notably, the aging of soluble chemical fractions seems to influence the source characteristics of EOMPs strongly.
Collapse
Affiliation(s)
- Ratul Pegu
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India
| | - Sarmistha Paul
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India; State Pollution Control Board, Govt. of Assam, Guwahati-781021, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India
| | - Amit Prakash
- Environmental Modeling Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India.
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India.
| |
Collapse
|
31
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Lu S, Hou L, Chen L. Profiling of the spatiotemporal distribution, risks, and prioritization of pharmaceuticals and personal care products in coastal waters of the northern Yellow Sea, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132163. [PMID: 37515990 DOI: 10.1016/j.jhazmat.2023.132163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) have aroused global concerns due to their ubiquitous occurrence and detrimental effects. The spatiotemporal distributions of 64 PPCPs and their synergetic ecological risks were comprehensively investigated in the seawater of Yantai Bay, and 1 H-benzotriazole (BT), ethenzamide, phenazone, propyphenazone, 4-hydroxybenzophenone and N, N'-diphenylurea were first determined in the seawater of China. Fifty-six PPCPs were detected and their concentrations were 27.5-182 ng/L, with BT contributing around 58.0%. Higher PPCP concentrations were observed in winter and spring, with the concentrations of antioxidants, analgesic/anti-inflammatory drugs and human-used antibiotics significantly higher in winter, while those of aquaculture-used antibiotics and UV filters significantly higher in summer, which was closely related with their usage patterns. Positive correlations were observed for PPCP concentrations between surface and bottom water, except summer, during which time the weak vertical exchange and varied environmental behaviors among different PPCPs resulted in the distinct compositions and concentrations. Terrestrial inputs and mariculture resulted in higher PPCP concentrations in the area located adjacent to the coast and aquaculture bases. The PPCP mixtures posed medium to high risk to crustaceans, and bisphenol A was identified as a high-risk pollutant that needs special attention.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
32
|
Becker RW, Cardoso RM, Dallegrave A, Ruiz-Padillo A, Sirtori C. Quantification of pharmaceuticals in hospital effluent: Weighted ranking of environmental risk using a fuzzy hybrid multicriteria method. CHEMOSPHERE 2023; 338:139368. [PMID: 37406941 DOI: 10.1016/j.chemosphere.2023.139368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
An analytical method for quantification of seventeen pharmaceuticals and one metabolite was validated and applied in the analysis of hospital effluent samples. Two different sampling strategies were used: seasonal sampling, with 7 samples collected bimonthly; and hourly sampling, with 12 samples collected during 12 h. Thus, the variability was both seasonal and within the same day. High variability was observed in the measured concentrations of the pharmaceuticals and the metabolite. The quantification method, performed using weighted linear regression model, demonstrated results of average concentrations in seasonal samples ranged between 0.19 μgL-1 (carbamazepine) and higher than 61.56 μgL-1 (acetaminophen), while the hourly samples showed average concentrations between 0.07 μgL-1 (diazepam) and higher than 54.91 μgL-1 (acetaminophen). It is described as higher because the maximum concentration of the calibration curve took into account the dilution factor provided by DLLME. The diurnal results showed a trend towards higher concentrations in the first and last hours of sampling. The risk quotient (RQ) was calculated using organisms from three different trophic levels, for all the analytes quantified in the samples. Additionally, in order to understand the level of importance of each RQ, an expert panel was established, with contributions from 23 specialists in the area. The results were analyzed using a hybrid decision-making approach based on a Fuzzy Analytic Hierarchy Process (FAHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, in order to rank the compounds by environmental risk priority. The compounds of greatest concern were losartan, acetaminophen, 4-aminoantipyrine, sulfamethoxazole, and metoclopramide. Comparison of the environmental risk priority ranking with the potential human health risk was performed by applying the same multicriteria approach, with the prediction of endpoints using in silico (Q)SAR models. The results obtained suggested that sulfamethoxazole and acetaminophen were the most important analytes to be considered for monitoring.
Collapse
Affiliation(s)
- Raquel Wielens Becker
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Renata Martins Cardoso
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Alexsandro Dallegrave
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | | | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Oh E, Choi SJ, Han S, Lee KH, Choi HJ. Highly Effective Salt-Activated Alcohol-Based Disinfectants with Enhanced Antimicrobial Activity. ACS NANO 2023; 17:17811-17825. [PMID: 37639494 DOI: 10.1021/acsnano.3c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Surfaces contaminated with pathogens raise concerns about the increased risk of disease transmission and infection. To clean biocontaminated surfaces, alcohol-based disinfectants have been predominantly used for disinfecting high-touch areas in diverse settings. However, due to its limited antimicrobial activities and concern over the emergence of alcohol-tolerant strains, much effort has been made to develop highly efficient disinfectant formulations. In this study, we hypothesize that the addition of a physical pathogen inactivation mechanism by salt recrystallization (besides the existing chemical inactivation mechanism by alcohol in such formulations) can improve inactivation efficiency by preventing the emergence of alcohol tolerance. To this end, we employed the drying-induced salt recrystallization process to implement the concept of highly efficient alcohol-based disinfectant formulations. To identify the individual and combined effects of isopropyl alcohol (IPA) and NaCl, time-dependent morphological/structural changes of various IPA solutions containing NaCl have been characterized by optical microscopy/X-ray diffraction analysis. Their antimicrobial activities have been tested on surfaces (glass slide, polystyrene Petri dish, and stainless steel) contaminated with Gram-positive/negative bacteria (methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica subsp. enterica Typhimurium) and viruses (A/PR8/34 H1N1 influenza virus and HCoV-OC43 human coronavirus). We found that additional salt crystallization during the drying of the alcohol solution facilitated stronger biocidal effects than IPA-only formulations, regardless of the types of solid surfaces and pathogens, including alcohol-tolerant strains adapted from wild-type Escherichia coli MG1655. Our findings can be useful in developing highly effective disinfectant formulations by minimizing the use of toxic antimicrobial substances to improve public health and safety.
Collapse
Affiliation(s)
- Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Seung Joon Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Han
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
34
|
Ashraf M, Ahammad SZ, Chakma S. Advancements in the dominion of fate and transport of pharmaceuticals and personal care products in the environment-a bibliometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64313-64341. [PMID: 37067715 PMCID: PMC10108824 DOI: 10.1007/s11356-023-26796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The study on the fate and transport of Pharmaceuticals and Personal Care Products, PPCPs (FTP) in the environment, has received particular attention for over two decades. The PPCPs threaten ecology and human health even at low concentrations due to their synergistic effects and long-range transport. The research aims to provide an inclusive map of the scientific background of FTP research over the last 25 years, from 1996 to 2020, to identify the main characteristics, evolution, salient research themes, trends, and research hotspots in the field of interest. Bibliometric networks were synthesized and analyzed for 577 journal articles extracted from the Scopus database. Consequently, seven major themes of FTP research were identified as follows: (i) PPCPs category; (ii) hazardous effects; (iii) occurrence of PPCPs; (iv) PPCPs in organisms; (v) remediation; (vi) FTP-governing processes; and (vii) assessment in the environment. The themes gave an in-depth picture of the sources of PPCPs and their transport and fate processes in the environment, which originated from sewage treatment plants and transported further to sediment/soils/groundwater/oceans that act as the PPCPs' major sink. The article provided a rigorous analysis of the research landscape in the FTP study conducted during the specified years. The prominent research themes, content analysis, and research hotspots identified in the study may serve as the basis of real-time guidance to lead future research areas and a prior review for policymakers and practitioners.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
35
|
Coccia M, Bontempi E. New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. ENVIRONMENTAL RESEARCH 2023; 229:115938. [PMID: 37086878 DOI: 10.1016/j.envres.2023.115938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Modern society has increasingly a diffusion of pollutants and emerging contaminants (e.g., different types of chemicals and endocrine disruptors in pharmaceuticals, pesticides, household cleaning, and personal care products, etc.) that have detrimental effects on the environment (atmosphere, hydrosphere, biosphere and anthroposphere) and also generate diseases and disorders on the people health. Environmental science requires efforts in the detection and elimination of manifold pollutants and emerging pollutants with appropriate product and process technologies. This study aims to analyze different paths of treatment technologies to investigate their evolution and predict new directions of promising technological trajectories to support the removal of contaminants directed to reach, whenever possible, sustainable development objectives. The work is mainly devoted to wastewater treatment technologies. A proposed model analyzes the evolution of patents (proxy of innovation and new technology) on publications (proxy of science and knowledge advances) to quantify the relative growth rate of new trajectories of technologies to remove pollutants and emerging contaminants. Results reveal that new directions of treatment technologies having an accelerated rate of growth are (in decreasing order): biochar and reverse osmosis in physical-based technologies, coagulation, and disinfection water treatments in chemical-based technologies and anaerobic processes in biological-based technologies. Other main technologies, such as carbon nanotubes and advanced oxidation processes, seem to be in the initial phase of development and need learning by using processes and further science and technology advances to be implemented as effective treatments and cost-effective. The results here are in accord with global water and wastewater equipment treatment market revenues by technology, showing a similar trend. These findings bring us to the main information to extend the knowledge about new directions of technologies for the treatment and/or elimination of pollutants and microorganisms that can support decisions of policymakers towards goals of sustainable development by reducing environmental degradation and people health disorders.
Collapse
Affiliation(s)
- Mario Coccia
- National Research Council of Italy, IRCRES-CNR, Turin Research Area of the National Research Council, Strada Delle Cacce, 73-10135, Torino, Italy.
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
36
|
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130075. [PMID: 36209607 DOI: 10.1016/j.jhazmat.2022.130075] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Biochar has shown large potential in environmental remediation because of its low cost, large specific surface area, porosity, and high conductivity. Biochar-assisted advanced oxidation processes (BC-AOPs) have recently attracted increasing attention to the remediation of organic pollutants from water. However, the effects of biochar properties on catalytic performance need to be further explored. There are still controversial and knowledge gaps in the reaction mechanisms of BC-AOPs, and regeneration methods of biochar catalysts are lacking. Therefore, it is necessary to systematically review the latest research progress of BC-AOPs in the treatment of organic pollutants in water. In this review, first of all, the effects of biochar properties on catalytic activity are summarized. The biochar properties can be optimized by changing the feedstocks, preparation conditions, and modification methods. Secondly, the catalytic active sites and degradation mechanisms are explored in different BC-AOPs. Different influencing factors on the degradation process are analyzed. Then, the applications of BC-AOPs in environmental remediation and regeneration methods of different biochar catalysts are summarized. Finally, the development prospects and challenges of biochar catalysts in environmental remediation are put forward, and some suggestions for future development are proposed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
37
|
Vitorino JD, Costa PM. After a Century of Research into Environmental Mutagens and Carcinogens, Where Do We Stand? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1040. [PMID: 36673796 PMCID: PMC9859577 DOI: 10.3390/ijerph20021040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Cancer is one of the longest-known human diseases, yet only in recent times have we begun to perceive that the percentage of neoplasms caused by environmental factors, lifestyle and chemicals, is likely underestimated. The first medical reports associating cancer with pollutants like tars appeared by the early 20th century, but despite initial evidence relating oncogenesis and chromosomal alterations, only after the structure of DNA had been elucidated in the 1950s have genetic disorders been fully perceived as cause. This led to a growing interest in genotoxic and mutagenic pollutants. Even though we are now familiar with a range of environmental carcinogens spanning between aromatic hydrocarbons and asbestos to radionuclides and forms of carbon nanomaterials, establishing causal networks between pollutants and cancer remains cumbersome. In most part, this is due to the complexity of toxicant matrices, unknown modes-of-action of chemicals or their mixtures, the widening array of novel pollutants plus difficulties in subtracting background effects from true aetiology of disease. Recent advances in analytical chemistry, high-throughput toxicology, next-generation sequencing, computational biology and databases that allocate whole normal and cancer genomes, all indicate that we are on the verge of a new age of research into mechanistic 'oncotoxicology', but how can it impact risk assessment and prevention?
Collapse
Affiliation(s)
| | - Pedro M. Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
38
|
Ekanayake A, Rajapaksha AU, Hewawasam C, Anand U, Bontempi E, Kurwadkar S, Biswas JK, Vithanage M. Environmental challenges of COVID-19 pandemic: resilience and sustainability - A review. ENVIRONMENTAL RESEARCH 2023; 216:114496. [PMID: 36257453 PMCID: PMC9576205 DOI: 10.1016/j.envres.2022.114496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 05/05/2023]
Abstract
The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.
Collapse
Affiliation(s)
- Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Choolaka Hewawasam
- Faculty of Technology, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
39
|
Rogowska J, Zimmermann A. Household Pharmaceutical Waste Disposal as a Global Problem-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315798. [PMID: 36497873 PMCID: PMC9737308 DOI: 10.3390/ijerph192315798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 05/31/2023]
Abstract
The negative effect of the pharmaceuticals presence (persistence?) in various components of the environment is a global problem today. These compounds are released into the environment as a result of, inter alia, their use and improper disposal. Therefore, it is important to reduce excessive drug consumption and to develop a system for the collection of unused/expired pharmaceuticals. The effectiveness of actions in this area is inextricably linked with the need to educate society on how to deal properly with unwanted medications. The aim of the study was to show that the inappropriate handling of unused/expired drugs by society is an important problem in waste management systems, and it impacts the state of the environment. Forty-eight scientific articles published between 2012 and 2021 were taken into account that discussed the systems in various countries for the collection of unused/expired pharmaceuticals. This literature review shows that the main method of disposing of unused/expired medications, according to respondents from different countries, is either by disposing of them in household waste or flushing them into the sewage system. This is also the case in countries with systems or programs for the return of redundant drugs, which indicates that these systems are not sufficiently effective. This may be influenced by many factors, including the lack or ineffective education of the society.
Collapse
|
40
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|